
א"תשע/אייר/ב"י

1

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Kurose & Ross, Chapter 3 (5th ed.)

Many slides adapted from:

J. Kurose & K. Ross \
Computer Networking: A Top Down Approach (5th ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Transport Layer 3-3

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-4

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnter checksum

F S R P A U
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-5

TCP Connection Management

Recall: TCP sender, receiver
establish “connection”
before exchanging data
segments

 initialize TCP variables:

 seq. #s

 buffers, flow control
info (e.g. RcvWindow)

 client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
 server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server

 specifies initial seq #

 no data

Step 2: server host receives
SYN, replies with SYNACK
segment

 server allocates buffers

 specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Three-way handshake

Transport Layer

3-6

Host 1 Host 2 time

SYN =1 (SEQ = x)

SYN = 1 ACK = 1
(SEQ = y, ACK = x+1)

ACK = 1
(SEQ = x+1, ACK = y+1)

א"תשע/אייר/ב"י

2

Transport Layer 3-7

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

client server

close

close

closed

ti
m

e
d
 w

ai
t

Transport Layer 3-8

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

 Enters “timed wait” -
will respond with ACK
to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

client server

closing

closing

closed

ti
m

e
d
 w

ai
t

closed

TCP’s statechart

• On board
▫ Statechart appears in RFC 793

• Discussion of:

▫ TIME_WAIT state

▫ Syn flood attacks

Transport Layer

3-9

