Communication Networks (0368-3030) / Spring 2011

 The Blavatnik School of Computer Science, Tel-Aviv UniversityAllon Wagner

Fair allocation

- Unfair allocation is the result of uncontrolled competition between users for the same resource.
- Fairness and user prioritization are complementary network demands.
- Maintain fair allocation while supporting "premium users"
- There's often a tradeoff between fair and optimality

But what is "fair allocation"?

- All users get the same throughput?
- $\gamma_{A D}=\gamma_{B C}=\gamma_{C D}=0.5$
- But then $\gamma_{C D}$ actually gets more resources
- All users get the same amount of network resources?
- $\gamma_{B C}=\gamma_{C D}=0.75$
- $\gamma_{A D}=0.25$ (total on 3 links is 0.75)

Max-Min Fairness

Recommended references:

- Computer Networks - Performance and Quality of Service \Ivan Marsic (available online)
- An Engineering Approach to Computer Networking | S.Keshav

Fairness vs. optimality

- A simple network with 3 nodes and 2 links with capacity 1 each.
- 3 flows with demand 1: $A \rightarrow B, A \rightarrow C, B \rightarrow C$
- Optimal throughput:

$$
\begin{aligned}
& \gamma_{A B}=\gamma_{B C}=1 \\
& \gamma_{A C}=0
\end{aligned}
$$

But what is "fair allocation"?

- Each user gets a throughput proportional to how much it damages other users?

$$
\begin{aligned}
& \text { - } \gamma_{B C}=\gamma_{C D}=\frac{2}{3} \\
& \text { - } \gamma_{A D}=\frac{1}{3} \\
& \text { (total interference on the } \\
& \text { two links is } \frac{2}{3} \text {) }
\end{aligned}
$$

An example

- Assume we have a simple resource with capacity 30
- No network considerations for the time being
- For instance: a single link, a queue in a router etc.
- User demands are $A=20, B=20, C=20$
- Fair allocation is trivial
- But what if the demands are:

$$
A=4, B=20, C=20
$$

An example

- Compute the max-min fair allocation for a set of four sources with demands $2,2.6,4,5$ when the resource has capacity 10.

1. Give 2 to every user. 1's demand is fulfilled, we have 2 excess capacity to distribute.
2. Give 2.6 to users $2,3,4$. 2's demand is fulfilled, we have excess 0.2 to distribute.
3. Final allocation is: $2,2.6,2.7,2.7$

An example

Max-Min Fairness

- A sharing technique commonly used in practice
- The idea: Users who need less than what they are entitled to get their full demand. The excess is evenly distributed among the "heavy" users.
- Formally:
- Resources are allocated in order of increasing demand
- No source obtains a resource share larger than its demand
- Sources with unsatisfied demands obtain an equal share of the resource

Generalization to a graph

- We have a directed graph $G=(V, E)$, with capacy c_{e} for each edge e.
- We have a set of ongoing calls (flows). Each call i has demand r_{i} and a (fixed) path p_{i}.
- Algorithm:
- Increase all flows equally until one link fills.
- Fix the rate of the bottleneck flows.
- Continue with the unfixed flows.

An example

- Give 2 to all flows
- Demand $B C$ is fulfilled.

An example

- Continue increasing flows equally. When $A B$ and $A C$ get each 5 , edge (A, B) is saturated.

