X"vwn/|on/u">

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

rd+3.0 sender

rdt_send(data) rdt_rev(revpkt) &&
| SnApKL=maKe_pki(0, data, checksum) (cormupt(rovpkt) ||

\ udt_send(sndpkt) iSACK (revpkt,1
rdt_rev(revpkt) \ _start_timer A
A V‘Gaé"“” timeout
call Ofrom udt_send(sndpkt)
start_timer

rdt_rcv(revpkt)

&& notcorrupt(revpkt) rdt_rev(rovpk)
&& isACK(revpkt,1) && notcorrupt(rcvpkt)
Stop_timer &8 iSACK(rovpkt,0)
stop_timer
timeout
Udt_send(sndpkt) C:
start_timer (J rdt_rov(revpkt)
A
s 88 rdt_send(data)
(cormupt(revpkt) || Sndpki = make_pki(L, data, checksum)
iSACK(revpkt,0)) udt_send(sndpkt)
0 start_timer

Transport Layer

rdt3.0 in action

sender receiver sender receiver

send pi0 -“‘“—L—._, fov kIO send p0 \’ v pki0
ACK send ACKD A send ACKO

K

iev ACKD - ov ACKD
send pidl ok . send pitl
ey pkd! v pkil
CK ! send ACK1
(l08s)
fimeout
fimeaut Dkt | resend pid1
Bsend pi] ey [V M1 row pkt
ACK (getect duplicate) TCVACK] (defect duplicats]
ACK] i send ACK] send pki0 send ACK]
=Y
y L)
send pki0 ey PR
- sand ACKD
send ACKD
(c) lost ACK (d) premature timeout

Transport Layer

Reliable Data Transfer
Kurose & Ross, Chapter 3.4 (5t ed.)

Slides adapted from:

J. Kurose & K. Ross \

Computer Networking: A Top Down Approach (5% ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

rdt3.0 in action

o .
sender receiver S=nee okt recsiet
. Bcoin . pktg
send pi0 ~——LX0 send et - eV piiQ
ey pki0 ACK send ACKO
A send ACKO -
. bl rev ACKD
1oV ACKO send pit])
send pktl okt (loss)
. 1oy pktl
ACK send ACK]
evACK] 1 ut
i okt Imeo! pkt
send pki) resend pii1 =
ACK rev pkio fcv pkil
send ACKD . send ACK]
CVACK]
send pki0

(@) operation with no loss fev pk0

send ACKD

(b) lost packet

Transport Layer 3-4.

Performance of rdt3.0

&

rdt3.0 works, but performance stinks
ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

d L = 8000bits =8microseconds

e =R T 10°bps

= U neer: Utilization - fraction of time sender busy sending

&

L/R 008

v} R ——
sender prT . L/R 30008
if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link
network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-6

X"vwn/|on/u">

rdt3.0: stop-and-wait operation

sender receiver

first packet bit i t=0
last packet bit transmitted, t = L / R{

first packet bit arrives

RTT last packet bit arrives, send ACK

ACK arrives, send nenJ
packet, t =RTT + L/R

= L/—R = O;.B = 0.00027

V] = =
sender pTT.L /R 30.008

Transport Layer 3-7

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —e------------ooocooeeeeee]
last bit transmitted, t = L/ R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
—last bit of 3¢ packet arrives, send ACK

Increase utilization
/ by a factor of 3!

_3*L/R _ 924 _ 5008

V) = =
sender RTT+L/R 30,008

Transport Layer 3.9

Go-Back-N

Sender:
+ k-bit seq # in pkt header
+ “window" of up to N, consecutive unack'ed pkts allowed

send_base nexisegnum alrecidy usable, not
ack'ed yet sent

(1N S potee
window size —% '
N

« ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK"
= may receive duplicate ACKs (see receiver)

« timer for each in-flight pkt

« timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-11

Pipelined protocols

pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
= range of sequence humbers must be increased
= buffering at sender and/or receiver

(@) o stop-and-wait protocol in opsrafion (B} @ pipslined protocol in operafion

+ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-8

Pipelined Protocols

Go-back-N: big picture: Selective Repeat: big pic
+ sender can have up to + sender can have up to

N unacked packets in N unack'ed packets in
pipeline pipeline
% rcvr only sends « recvr sends /ndividual
cumulative acks ack for each packet
= doesn't ack packet if « sender maintains timer
there's a gap for each unacked
+ sender has timer for packet
oldest unacked packet = when timer expires,
= if fimer expires, retransmit only
retransmit all unack'ed unack'ed packet
packets

Transport Layer 3-10

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
= make_| data,chksum)
udt_send(sndpkt[nextsegnum])
if (base == nextsegnum)
start_timer
nextseqnum++
}
else
refuse_data(data)

timeout
« e
start_timer
0 udt_send(sndpkt[base])
C« Q udt_send(sndpkt[base+1])

udt_send(sndpkt{nextseqnum-1])

rdt_rev(revpkt) &&
notcorrupt(rcvpkt)
base = getacknum(rcvpki)+1
If (base == nextseqnum)
stop_timer
else
start_timer

A
base=1
nextsegnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Transport Layer 312

X"vwn/|on/u">

GBN: receiver extended FSM

default
udt send(sndpkl) Tdit_rov(rovpkt)
-~ && notcurrupt(rcvpkt)

A To-—l
expectedseqnum=1 @ \)exlract(rcvpkt data)

sndpkt = deliver_data(data)
make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #
* may generate duplicate ACKs
= need only remember expectedseqnum
+ out-of-order pkft:
= discard (don't buffer) -> no receiver buffering!
= Re-ACK pkt with highest in-order seq #

Transport Layer 313

Selective Repeat

+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received
= sender timer for each unACKed pkt
+ sender window
= N consecutive seq #'s
= again limits seq #s of sent, unACK'ed pkts

Transport Layer 3-15

Selective repeat

—sender——— — receiver
data from above : pkt n in [revbase, revbasesN-1]
+ if next available seq # in % send ACK(n)
window, send pkt + out-of-order: buffer
timeout(n): « in-order: deliver (also
+ resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
ACK(n) in [sendbase,sendbase+N]: next not-yet-received pkt
» mark pkf n as received pkf nin [rcvbase-N,revbase-1]
+ if n smallest unACKed pkft, & ACK(n)

advance window base to l ;

next unACKed seq # otherwise:

= ignore

G BN in sender receiver
-_— send pki0 \\
rev pkio
M send pktl sené)ACKO
rcv pkil
send pki2 —_ (0ss send ACK]
send pktd
(waif) rev pki3, discard
/ send ACK]
rcv ACKO
send pkt4
rcv pkid, discard
o ;gkjg — Send ACK!
ki, cf d
pkt2 timeout / rscé%g ACK]IECGr
send pki2 \
send pkf3 rev pkit2, deliver
send pkt4

send ACKZ
send pkts rcv pkit3, deliver
\ send ACK3

Transport Layer 3-14.

Selective repeat: sender, receiver windows

Transport Layer 3-17

send_base nexfsegnum

already usable, not
ack'ed yet sent
I][I ITCTTODOONAN [sorecstas] oo

ndcw size —+

(a) sender view of sequence numbers

out of order acceptable
(buffered) but I (within window)
dlready ack’ed

J00DO0ENETIENIERDETIOND opestesamer oo

}— window size —4
N

rev_base
(b) receiver view of sequence numbers

Transport Layer 3-16

Selective repeat in action

pkt0 sent

ragfese 700y) o dctivened, 4cKD sont

faesereo

. ACKL sent

pkt2 sent

[0r23]aserss—mx

(los9)

ent, vindow full

firealiseres

Pkt3 rovd, buffered, ACK3 sent

o1fzsaslsres

ACKD rcvd, pktd sent
oftesyfserss

pktS sent

VBT g 0

pktZ TIMEOUT, pkt2 resent

zsasferas

pkt4 rovd, buffered, ACK4 sent

PktS rovd, buffered, ACKS sent
01z sle 789

pkt2 rovd, pkt2.pkt3,pktd.pktS
delivered, ACK2 ssnt

012345f783]

ACK3 revd, m:th)ng sent.
[234slerss

sport Layer 318

X"vwn/|on/u">

sender window

Selective repeat: i
dilemma

eceiver window
after raceipt)

Example:
+ seq#s:0,1,2,3 revanait o, o

. . pi1z]s013 ———p receive packet
% window size=3

with seq number 0

(@)

% receiver sees no

difference in two ettt Shtor recemty”
scenarios! R

% incorrectly passes
duplicate data as new

in (a)
. . receive packet
Q: what relationship with seq number 0
between seq # size
and window size? (®)

Transport Layer 319

TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + a*SampleRTT

> Exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value: & =0.125

Transport Layer 3-21

TCP Round Trip Time and Timeout

Setting the timeout

%+ EstimatedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin

> first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
p* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-23

TCP Round Trip Time and Timeout

Q: how to set TCP Q how to estimate RTT?

timeout value? > SampleRTT: measured time from
i segment transmission until ACK

« longer than RTT receipt
= but RTT varies = ignore retransmissions
<+ too short: « SampleRTT will vary, want
premature timeout estimated RTT "smoother”

* average several recent
" unnecessary measurements, not just
retransmissions current SampleRTT

+ too long: slow
reaction to segment
loss

Transport Layer 3-20

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecomfr

—
] A 1AL [

1 s 15 2 2 3% 43 s 5 64 71 78 8 % % 106
time (soconnds)

[~ SampleRTT = Estmaied RTT

Transport Layer 3-22

Extra slides

if time permits

X"vwn/|on/u">

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
= segment structure
= reliable data transfer
= flow control
= connection management
3.6 Principles of
congestion control
3.7 TCP congestion control

Socket
door ~

TCP: Overview

%+ point-to-point:

= one sender, one receiver
+ reliable, in-order byte

steam:

* no "message boundaries”
« pipelined:

= TCP congestion and flow

control set window size

« send & receive buffers

wries daa reads data
t

RFCs: 793, 1122, 1323, 2018, 2581

+ full duplex data:
= bi-directional data flow
in same connection
* MSS: maximum segment
size
s+ connection-oriented:
= handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange
+ flow controlled:
v " sender will not

TP TeP.
send buffer receive buffer
T &

o overwhelm receiver

TCP segment structure

32 bits

URG: urgent data
(generally not used)_|_Source port # | dest port #

ACK: ACK # sequence number
valid——acknowledgement number

PSH: push data now W RIS|F| Receive window

(generally not used) checksum Urg data pnter
RST, SYN, FIN: Op% (variable length)

connection estab
(setup, teardown
commands)

application
Internet data
checksum (variable length)
(as in UDP)

TCP reliable data transfer

Transport Layer 325

Transport Layer 3-26

TCP seq. #'s and ACKs

. Seq. #'st
counting . b
by bytes ‘yTe stream
of data “humber” of first
(not segments!) byte in segment's
data
bytes ACKs:
revr willing = seq # of next byte
Yo accept expected from

other side
= cumulative ACK
Q: how receiver handles
out-of-order segments
= A: TCP spec doesn't
say, - up to
implementor

Transport Layer 3-27

@ Host A Host B @
User

Seqsqp
types 2 ACK=7g
'C' , data = o
host ACKs

, receipt of
“ da\afo 'C', echoes
(O back 'C'
socr 122
host ACKs
receipt Se

simple telnet scenario

time

Transport Layer 3-28

TCP sender events:

% TCP creates rdt
service on top of IP's
unreliable service

+ pipelined segments
cumulative acks

» TCP uses single
retransmission timer

'.

<

« retransmissions are
triggered by:
= timeout events
= duplicate acks
« initially consider
simplified TCP sender:
= ignore duplicate acks
= ignore flow control,
congestion control

Transport Layer 3-29

data rcvd from app:

fimeout:

+ Create segment with
seq#

+ seq # is byte-stream
number of first data
byte in segment

« start timer if not
already running (think
of timer as for oldest
unacked segment)

+ expiration interval:
TimeOutInterval

« retransmit segment
that caused timeout

= restart timer

Ack revd:

+ If acknowledges
previously unacked
segments

= update what is known to
be acked

= start timer if there are
outstanding segments

Transport Layer 3-30

X"vwn/|on/u">

NextSegNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

if (timer currently not running)
start timer
pass segment to IP
event: timer timeout
smallest sequence number
start timer
if (y > SendBase) {
SendBase =y

start timer

}

} /* end of loop forever */

event: data received from application above
create TCP segment with sequence number NextSeqNum

NextSegNum = NextSeqNum + length(data)

retransmit not-yet-acknowledged segment with

event: ACK received, with ACK field value of y

if (there are currently not-yet-acknowledged segments)

TcpP

sender
(simplified)

Comment:

+ SendBase-1: last
cumulatively
acked byte
Example:

+ SendBase-1=71;
y= 73, so the revr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-31

TCP retransmission scenarios (more)

B st a Host B @

Segs,

[% Ebytes oy,
= A0
3 Sea100, 2 pe¥

£ S dat;
£ X a

loss
SendBase ,xc\("zc
=120

time
Cumulative ACK scenario

Fast Retransmit

+ time-out period often =
relatively long:
* long delay before
resending lost packet
+ detect lost segments
via duplicate ACKs.
= sender often sends
many segments back-to-
back
= if segment is lost, there
will likely be many
duplicate ACKs.

Transport Layer 3-33

if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

= fast retransmit: resend

segment before timer
expires

Transport Layer 3-35

TCP: retransmission scenarios

@Hosr A Host B@

Segs,
22 8bytes gy

l 00
S okt
€

=4 X

loss
S

eg=,
9792, 8 byteg deta
%
SendBase

=100

time
lost ACK scenario

@Hosf A

u
$
£
£
~
N
%
g
v
SendBase Jf_
=100 5
SendBase é
- £ 0
=120 = C‘(\’)\l
&
L
w
SendBase n
=120 i
i premature timeout
time

Transport Layer 3-32

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver

TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Immediately send single cumulative
ACK, ACKing both in-order segments

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Arrival of segment that
partially or completely fills gap

Host A

B

timeout

time

\-x

1850ng ony soqme
nt

Immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-34

Host B

g

Figure 3.37 Resending a segment after triple duplicate ACK

Transport Layer 3-36

X"vwn/|on/u">

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

else {
increment count of dup ACKs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 337

