
א"תשע/ניסן/ט"כ

1

Communication Networks
(0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Kurose & Ross, Chapter 3.4 (5th ed.)

Slides adapted from:

J. Kurose & K. Ross \
Computer Networking: A Top Down Approach (5th ed.)
Addison-Wesley, April 2009.

Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Transport Layer 3-3

rdt3.0 sender

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

Wait

for

ACK0

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,1))

Wait for

call 1 from

above

sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

start_timer

rdt_send(data)

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&

(corrupt(rcvpkt) ||

isACK(rcvpkt,0))

rdt_rcv(rcvpkt)

&& notcorrupt(rcvpkt)

&& isACK(rcvpkt,1)

stop_timer

stop_timer

udt_send(sndpkt)

start_timer

timeout

udt_send(sndpkt)

start_timer

timeout

rdt_rcv(rcvpkt)

Wait for

call 0from

above

Wait

for

ACK1

L

rdt_rcv(rcvpkt)

L

L

L

Transport Layer 3-4

rdt3.0 in action

Transport Layer 3-5

rdt3.0 in action

Transport Layer 3-6

Performance of rdt3.0

 rdt3.0 works, but performance stinks

 ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

 U sender: utilization – fraction of time sender busy sending

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

 if RTT=30 msec, 1KB pkt every 30 msec -> 33kB/sec thruput
over 1 Gbps link

 network protocol limits use of physical resources!

dsmicrosecon8
bps10

bits8000
9

R

L
dtrans

א"תשע/ניסן/ט"כ

2

Transport Layer 3-7

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

U
sender

=
.008

30.008
= 0.00027

microsec

onds

L / R

RTT + L / R
=

Transport Layer 3-8

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-to-
be-acknowledged pkts
 range of sequence numbers must be increased

 buffering at sender and/or receiver

 two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-9

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender

=
.024

30.008
= 0.0008

microsecon

ds

3 * L / R

RTT + L / R
=

Increase utilization
by a factor of 3!

Transport Layer 3-10

Pipelined Protocols

Go-back-N: big picture:
 sender can have up to

N unacked packets in
pipeline

 rcvr only sends
cumulative acks
 doesn‟t ack packet if

there‟s a gap

 sender has timer for
oldest unacked packet
 if timer expires,

retransmit all unack‟ed
packets

Selective Repeat: big pic
 sender can have up to

N unack‟ed packets in
pipeline

 rcvr sends individual
ack for each packet

 sender maintains timer
for each unacked
packet
 when timer expires,

retransmit only
unack‟ed packet

Transport Layer 3-11

Go-Back-N
Sender:
 k-bit seq # in pkt header

 “window” of up to N, consecutive unack‟ed pkts allowed

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt

 timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-12

GBN: sender extended FSM

Wait
start_timer

udt_send(sndpkt[base])

udt_send(sndpkt[base+1])

…

udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextseqnum])

if (base == nextseqnum)

start_timer

nextseqnum++

}

else

refuse_data(data)

base = getacknum(rcvpkt)+1

If (base == nextseqnum)

stop_timer

else

start_timer

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

base=1

nextseqnum=1

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt)

L

א"תשע/ניסן/ט"כ

3

Transport Layer 3-13

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt
with highest in-order seq #
 may generate duplicate ACKs

 need only remember expectedseqnum

 out-of-order pkt:
 discard (don‟t buffer) -> no receiver buffering!

 Re-ACK pkt with highest in-order seq #

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)

&& notcurrupt(rcvpkt)

&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(expectedseqnum,ACK,chksum)

udt_send(sndpkt)

expectedseqnum++

expectedseqnum=1

sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

L

Transport Layer 3-14

GBN in
action

Transport Layer 3-15

Selective Repeat

 receiver individually acknowledges all correctly
received pkts
 buffers pkts, as needed, for eventual in-order delivery

to upper layer

 sender only resends pkts for which ACK not
received
 sender timer for each unACKed pkt

 sender window
 N consecutive seq #‟s

 again limits seq #s of sent, unACK‟ed pkts

Transport Layer 3-16

Selective repeat: sender, receiver windows

Transport Layer 3-17

Selective repeat

data from above :
 if next available seq # in

window, send pkt

timeout(n):
 resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt,
advance window base to
next unACKed seq #

sender
pkt n in [rcvbase, rcvbase+N-1]

 send ACK(n)

 out-of-order: buffer

 in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

 ACK(n)

otherwise:
 ignore

receiver

Transport Layer 3-18

Selective repeat in action

א"תשע/ניסן/ט"כ

4

Transport Layer 3-19

Selective repeat:
dilemma

Example:
 seq #‟s: 0, 1, 2, 3

 window size=3

 receiver sees no
difference in two
scenarios!

 incorrectly passes
duplicate data as new
in (a)

Q: what relationship
between seq # size
and window size?

Transport Layer 3-20

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

 longer than RTT
 but RTT varies

 too short:
premature timeout

 unnecessary
retransmissions

 too long: slow
reaction to segment
loss

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK
receipt

 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements, not just
current SampleRTT

Transport Layer 3-21

TCP Round Trip Time and Timeout

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value: = 0.125

Transport Layer 3-22

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

Transport Layer 3-23

TCP Round Trip Time and Timeout

Setting the timeout
 EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

(typically, = 0.25)

Then set timeout interval:

Extra slides
if time permits

א"תשע/ניסן/ט"כ

5

Transport Layer 3-25

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 Principles of
congestion control

3.7 TCP congestion control

Transport Layer 3-26

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message boundaries”

 pipelined:
 TCP congestion and flow

control set window size

 send & receive buffers

socket

door

TCP

send buffer

TCP

receive buffer

socket

door

segment

application

writes data
application

reads data

Transport Layer 3-27

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-28

TCP seq. #‟s and ACKs
Seq. #‟s:

 byte stream
“number” of first
byte in segment‟s
data

ACKs:

 seq # of next byte
expected from
other side

 cumulative ACK

Q: how receiver handles
out-of-order segments

 A: TCP spec doesn‟t
say, - up to
implementor

Host A Host B

User
types

„C‟

host ACKs
receipt

of echoed
„C‟

host ACKs
receipt of
„C‟, echoes

back „C‟

time
simple telnet scenario

Transport Layer 3-29

TCP reliable data transfer

 TCP creates rdt
service on top of IP‟s
unreliable service

 pipelined segments

 cumulative acks

 TCP uses single
retransmission timer

 retransmissions are
triggered by:
 timeout events

 duplicate acks

 initially consider
simplified TCP sender:
 ignore duplicate acks

 ignore flow control,
congestion control

Transport Layer 3-30

TCP sender events:
data rcvd from app:

 Create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running (think
of timer as for oldest
unacked segment)

 expiration interval:
TimeOutInterval

timeout:

 retransmit segment
that caused timeout

 restart timer

Ack rcvd:

 If acknowledges
previously unacked
segments
 update what is known to

be acked

 start timer if there are
outstanding segments

א"תשע/ניסן/ט"כ

6

Transport Layer 3-31

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

loop (forever) {

switch(event)

event: data received from application above

create TCP segment with sequence number NextSeqNum

if (timer currently not running)

start timer

pass segment to IP

NextSeqNum = NextSeqNum + length(data)

event: timer timeout

retransmit not-yet-acknowledged segment with

smallest sequence number

start timer

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
acked byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Transport Layer 3-32

TCP: retransmission scenarios

Host A

time
premature timeout

Host B

S
e
q=

9
2

 t
im

e
ou

t

Host A

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

time

S
e
q=

9
2

 t
im

e
ou

t

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 3-33

TCP retransmission scenarios (more)

Host A

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

time

SendBase
= 120

Transport Layer 3-34

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

Arrival of in-order segment with

expected seq #. One other

segment has ACK pending

Arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

Arrival of segment that

partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

Immediately send single cumulative

ACK, ACKing both in-order segments

Immediately send duplicate ACK,

indicating seq. # of next expected byte

Immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-35

Fast Retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-to-
back

 if segment is lost, there
will likely be many
duplicate ACKs.

 if sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
 fast retransmit: resend

segment before timer
expires

Transport Layer 3-36

Host A

ti
m

eo
ut

Host B

time

X

Figure 3.37 Resending a segment after triple duplicate ACK

א"תשע/ניסן/ט"כ

7

Transport Layer 3-37

event: ACK received, with ACK field value of y

if (y > SendBase) {

SendBase = y

if (there are currently not-yet-acknowledged segments)

start timer

}

else {

increment count of dup ACKs received for y

if (count of dup ACKs received for y = 3) {

resend segment with sequence number y

}

Fast retransmit algorithm:

a duplicate ACK for
already ACKed segment

fast retransmit

