# Communication Networks (0368-3030) / Spring 2011 

The Blavatnik School of Computer Science, Tel-Aviv University

Allon Wagner

## Error Detection and Correction

Kurose \& Ross, Chapter 5.2 ( $5^{\text {th }}$ ed.)

## Error Detection

EDC $=$ Error Detection and Correction bits (redundancy)
$D$ = Data protected by error checking, may include header fields

- Error detection not $100 \%$ reliable!
- protocol may miss some errors, but rarely
- larger EDC field yields better detection and correction



## Example - Parity bit

- Assume D has d bits.
- The EDC is one bit s.t. the number of 1's in the $d+1$ bits ( $D$ and the EDC) is even.
- Receiver can detect an error inverting an odd number of bits
- Example:
- D = 11101
- Sender sends 111010
- Receiver gets 101010
- Illegal parity - an error has occurred
- Receiver cannot correct the error



## Error detection vs. <br> Error correction

## Some theory

- Assume all messages are of size d
- We have $2^{\text {d }}$ possible messages, all of them valid
- When some bits flip, the receiver still gets a valid message
- It cannot know there was an error
- The proposed solution:
- Add $r$ bits of redundancy .
- Now, we have $2^{\mathrm{d}+\mathrm{r}}$ possible messages, but only $2^{\mathrm{d}}$ of them are valid (these are called codewords).
- "Small errors" are likely to transform the valid message into an invalid one, so that the receiver knows an error has occurred.


## Some theory (cont.)

- Definition: The Hamming-distance of two strings $x$ and $y$ is the number of bits in which they differ, denoted $\mathrm{dH}(\mathrm{x}, \mathrm{y})$.
- For instance: $x=110010 y=111000 . d H(x, y)=2$
- Definition: The Hamming-distance of an errorcorrection scheme ( = code) is the minimal Hamming-distance between two valid messages ( = codewords). $d H(C)=\min \{d H(x, y): x, y \in C\}$


## Parity bit revisited

- Assume all messages have $d$ bits.
- The valid messages ( = codewords) are all the $d+1$ messages s.t their total number of 1 's is even.
- The Hamming-distance of this scheme is 2 .
- No two valid codewords $x, y$ s.t. $d H(x, y)=1$
- If $d H(x, y)=1$ then either $x$ or $y$ has an odd number of 1's.
- There are two valid codewords with distance 2 :
- For instance, for $d=6$

$$
x=111100 y=111111 \rightarrow d H(x, y)=2
$$

## Why is Hamming-distance important?

- Theorem 1: If a code $C$ has $d H(C)=k+1$, then it can detect all errors of $k$ bits or less.
- Such errors necessarily produce an invalid codeword
- Theorem 2: If a code $C$ has $d H(C)=2 k+1$, then it can correct all errors of $k$ bits or less.
- Think why
- And indeed: parity bit can detect all single-bit errors, but cannot correct any.


## CRC - Cyclic Redundancy Check

- Bits represent polynomials over GF(2)
- Example: $100101=x^{5}+x^{2}+1$
- Addition and subtraction are actually XOR (no carry)
- Example: $1101+0111=1010$ $\left(x^{3}+x^{2}+1\right)+\left(x^{2}+x+1\right)=x^{3}+x$
- Sender \& receiver agree in advance on a generating polynomial $G$ of degree $r$
- When sender wish to send $D$, it calculates $R$ s.t. DR is divisible by $G$.
- When the receiver gets $D^{\prime} R^{\prime}$ it divides it by $G$. If the remainder is not 0 - an error has occurred.


## Calculating $R$

- $D R=x^{r} \cdot D+R$
- We want: $D R=x^{r} \cdot D+R=n \cdot G$
- But addition and subtraction are just XOR - they are interchangeable
- Equivalently, then, we want: $\mathrm{x}^{r} \cdot \mathrm{D}=\mathrm{n} \cdot \mathrm{G}+\mathrm{R}$
- Namely, $R$ is the remainder of $x^{r} \cdot D$ divided by $G$ !
- Observation: $R^{\prime}$ s degree is at most $r-1$.
- It is the remainder of dividing by $G$, and $\operatorname{deg}(G)=r$


## CRC Example

- $D=101110=x^{5}+x^{3}+x^{2}+x$
- $\mathrm{G}=1001=\mathrm{x}^{3}+1$
- $r=\operatorname{deg}(G)=3$
- Shift $D r$ bits to the left:
- $x^{r} \cdot D=x^{8}+x^{6}+x^{5}+x^{4}$
- $x^{r} \cdot D=101110000$
- Now we can divide $x^{r} \cdot D$ by G:
- on board


## CRC Example

Want:

$$
D \cdot 2^{r} X O R R=n G
$$

equivalently:

$$
D \cdot 2^{r}=n G X O R R
$$

equivalently:
if we divide D. $2^{r}$ by
$G$, want remainder $R$

$$
R=\text { remainder }\left[\frac{D \cdot 2^{r}}{G}\right]
$$

## CRC Example (cont.)

- $D=101110=x^{5}+x^{3}+x^{2}+x$
- $\mathrm{G}=1001=\mathrm{x}^{3}+1$
- $r=\operatorname{deg}(G)=3$
- Now we can divide $x^{r} \cdot D$ by G:
- we get: R = x + $1=011$
- Sender sends:

$$
\text { - } D R=x^{r} \cdot D+R=101110011
$$

## Ethernet's CSMA/CD

Kurose \& Ross, Chapter 5.5.2 (5 $5^{\text {th }}$ ed.)

## The algorithm

When a the network layer generates a new frame:

1. If the adapter senses the channel to idle (that is no signal detected for 96 bit times) - start transmitting the frame
2. Otherwise (channel is busy) - wait until you sense no signal energy (plus 96 bit times) and then start transmitting
3. While transmitting - listen for signal coming from other adapters. If the adapter transmitted the entire frame without detecting signal energy - it is done with the frame.
4. If signal energy is detected while transmitting - stop transmitting the frame.
I. Transmit a 48 bit jam-signal
II. Exponential backoff:
after experiencing the $n$-th collision is a row for the current frame choose $K$ randomly from $\left\{0,1, \ldots, 2^{m}-1\right\}$ with $m=\min \{n, 10\}$. Wait K $\cdot 512$ bit times and return to step 1 .

## The jam signal

- The jam-signal makes sure all other transmitting adapters are aware of the collision
- Suppose that A starts to transmit
- Just before A's signal reaches $B, B$ begins to transmit
- B senses A's signal and aborts.
- B transmitted just a few bits before aborting. These bits propogate to $A$ but might not constitute enough energy for A to detect the collision!
- To make sure $A$ detects the collision, $B$ transmits the 48-bit jam signal


## Exponential backoff

- When an adapter first detects collision, it cannot know how many adapters are involved in the collision,
- Exponential backoff dynamically adapts the waitingtime before reattempting transmission to the number of adapters involved in the collision
- Few adapters involved: Choose K from a small set, so that no one waits unnecessarily
- Many adapters involved: Choose K from a large set, so everyone is likely to choose a different time to transmit, and the collision will be resolved.


## Exponential backoff example

- Assume $A$ and $B$ both have a new frame to transmit. They both begin to transmit exactly on the same time and collide.
- They both choose $K$ from $\{0,1\}$
- The possible outcomes:


## Exponential backoff example (cont.)

| Case | A chooses | B chooses | Probability | Outcome |
| :---: | :---: | :---: | :---: | :---: |
| (a) | 0 | 0 | 0.25 | another collision on round 2 |
| (b) | 0 | 1 | 0.25 | A successful on round 2, <br> B successful on round 3 |
| (c) | 1 | 0 | 0.25 | B successful on round 2, <br> A successful on round 3 |
| (d) | 1 | 1 | 0.25 | another collision on round 3 |

