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Error Detection
EDC= Error Detection and Correction bits (redundancy)
D    = Data protected by error checking, may include header fields 

• Error detection not 100% reliable!
• protocol may miss some errors, but rarely
• larger EDC field yields better detection and correction

otherwise



Example – Parity bit

• Assume D has d bits.
• The EDC is one bit s.t. the 

number of 1’s in the d+1 bits (D 
and the EDC) is even.

• Receiver can detect an error 
inverting an odd number of bits

• Example:
▫ D = 11101
▫ Sender sends 111010
▫ Receiver gets  101010
▫ Illegal parity – an error has 

occurred
▫ Receiver cannot correct the 

error 

Error detection vs. 
Error correction



Some theory

• Assume all messages are of size d
▫ We have 2d possible messages, all of them valid
▫ When some bits flip, the receiver still gets a valid message
▫ It cannot know there was an error

• The proposed solution:
▫ Add r bits of redundancy .
▫ Now, we have 2d+r possible messages, but only 2d of them 

are valid (these are called codewords).
▫ “Small errors” are likely to transform the valid message into 

an invalid one, so that the receiver knows an error has 
occurred.



Some theory (cont.)

• Definition: The Hamming-distance of two strings x 
and y is the number of bits in which they differ, 
denoted dH(x,y).
▫ For instance: x = 110010 y = 111000. dH(x,y) = 2

• Definition: The Hamming-distance of an error-
correction scheme ( = code) is the minimal 
Hamming-distance between two valid messages ( = 
codewords).
dH(C) = min { dH(x,y) : x, y ϵ C }



Parity bit revisited

• Assume all messages have d bits.

• The valid messages ( = codewords) are all the d+1
messages s.t their total number of 1’s is even.

• The Hamming-distance of this scheme is 2.
▫ No two valid codewords x,y s.t. dH(x,y) = 1
 If dH(x,y) = 1 then either x or y has an odd number of 1’s.

▫ There are two valid codewords with distance 2:
 For instance, for d = 6

x = 111100 y = 111111  dH(x,y) = 2



Why is Hamming-distance important?

• Theorem 1: If a code C has dH(C) = k+1, then it can 
detect all errors of k bits or less.
▫ Such errors necessarily produce an invalid codeword

• Theorem 2 : If a code C has dH(C) = 2k+1, then it can 
correct all errors of k bits or less.
▫ Think why

• And indeed: parity bit can detect all single-bit errors, 
but cannot correct any.



CRC – Cyclic Redundancy Check

• Bits represent polynomials over GF(2)
▫ Example: 100101 = x5 + x2 + 1
▫ Addition and subtraction are actually XOR (no carry)
▫ Example: 1101 + 0111 = 1010

(x3 + x2 + 1) + (x2 + x + 1) = x3 + x

• Sender & receiver agree in advance on a generating 
polynomial G of degree r

• When sender wish to send D, it calculates R s.t. DR is 
divisible by G.

• When the receiver gets D’R’ it divides it by G. If the 
remainder is not 0 – an error has occurred.



Calculating R

• DR = xr ∙ D + R

• We want: DR = xr ∙ D + R = n ∙ G 
▫ But addition and subtraction are just XOR – they are 

interchangeable

• Equivalently, then, we want: xr ∙ D = n ∙ G + R

• Namely, R is the remainder of xr ∙ D divided by G!

• Observation: R’s degree is at most r-1.
▫ It is the remainder of dividing by G, and deg(G) = r



CRC Example

• D = 101110 = x5 + x3 + x2 + x

• G = 1001 = x3 + 1
▫ r = deg(G) = 3

• Shift D r bits to the left:
▫ xr ∙ D = x8 + x6 + x5 + x4

▫ xr ∙ D = 101110000

• Now we can divide xr ∙ D by G:

▫ on board
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CRC Example

Want:

D.2r XOR R = nG

equivalently:

D.2r = nG XOR R 

equivalently:

if we divide D.2r by 
G, want remainder R

R = remainder[           ]
D.2r

G



CRC Example (cont.)

• D = 101110 = x5 + x3 + x2 + x

• G = 1001 = x3 + 1
▫ r = deg(G) = 3

• Now we can divide xr ∙ D by G:
▫ we  get: R = x + 1 = 011

• Sender sends:
▫ DR = xr ∙ D + R = 101110011
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The algorithm

When a the network layer generates a new frame:
1. If the adapter senses the channel to idle (that is no signal 

detected for 96 bit times) – start transmitting the frame
2. Otherwise (channel is busy) – wait until you sense no signal 

energy (plus 96 bit times) and then start transmitting
3. While transmitting – listen for signal coming from other adapters. 

If the adapter transmitted the entire frame without detecting 
signal energy – it is done with the frame.

4. If signal energy is detected while transmitting – stop transmitting 
the frame.

I. Transmit a 48 bit jam-signal
II. Exponential backoff:

after experiencing the n-th collision is a row for the current frame 
choose K randomly from {0, 1, …, 2m – 1} with m = min{ n, 10 }.
Wait K ∙ 512 bit times and return to step 1.



The jam signal

• The jam-signal makes sure all other transmitting 
adapters are aware of the collision
▫ Suppose that A starts to transmit

▫ Just before A’s signal reaches B, B begins to transmit

▫ B senses A’s signal and aborts.

▫ B transmitted just a few bits before aborting. These 
bits propogate to A but might not constitute enough 
energy for A to detect the collision!

▫ To make sure A detects the collision, B transmits the 
48-bit jam signal



Exponential backoff

• When an adapter first detects collision, it cannot 
know how many adapters are involved in the 
collision,

• Exponential backoff dynamically adapts the waiting-
time before reattempting transmission to the 
number of adapters involved in the collision
▫ Few adapters involved: Choose K from a small set, so 

that no one waits unnecessarily
▫ Many adapters involved: Choose K from a large set, so 

everyone is likely to choose a different time to 
transmit, and the collision will be resolved.



Exponential backoff example

• Assume A and B both have a new frame to transmit. 
They both begin to transmit exactly on the same 
time and collide.

• They both choose K from {0, 1}

• The possible outcomes:



Exponential backoff example (cont.)

OutcomeProbabilityB choosesA choosesCase

another collision on round 20.2500(a)

A successful on round 2, 
B successful on round 3

0.2510(b)

B successful on round 2, 
A successful on round 3

0.2501(c)

another collision on round 30.2511(d)


