RSA and Digital Signatures

Kurose \& Ross, Chapters 8.2-8.3 (5 $5^{\text {th }} \mathrm{ed}$.)
Slides adapted from:
J. Kurose \& K. Ross \}

Computer Networking: A Top Down Approach (5 ${ }^{\text {th }}$ ed.)
Addison-Wesley, April 2009.
Copyright 1996-2010, J.F Kurose and K.W. Ross, All Rights Reserved.

Public key cryptography

Prerequisite: modular arithmetic

$* x \bmod n=$ remainder of x when divide by n

* Facts:
$[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$
$[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
$[(a \bmod n) *(b \bmod n)] \bmod n=(a * b) \bmod n$
* Thus
$(a \bmod n)^{d} \bmod n=a^{d} \bmod n$
* Example: $x=14, n=10, d=2$:
$(x \bmod n)^{d} \bmod n=4^{2} \bmod 10=6$
$x^{d}=14^{2}=196 x^{d} \bmod 10=6$

Public Key Cryptography

symmetric key crypto

* requires sender, receiver know shared secret key
* Q: how to agree on key in first place (particularly if never "met")?
public key cryptography
* radically different approach [DiffieHellman76, RSA78]
* sender, receiver do not share secret key
* public encryption key known to all
* private decryption key known only to receiver

Public key encryption algorithms

Requirements:
(1) need $K_{B}^{+}(\cdot)$ and $K_{B}^{-}(\cdot)$ such that $K_{B}^{-}\left(K_{B}^{+}(m)\right)=m$
(2) given public key K_{B}^{+}, it should be impossible to compute private key K_{B}^{-}

RSA: Rivest, Shamir, Adelson algorithm

RSA: getting ready

* A message is a bit pattern.
* A bit pattern can be uniquely represented by an integer number.
* Thus encrypting a message is equivalent to encrypting a number.
Example
* $m=10010001$. This message is uniquely represented by the decimal number 145 .
* To encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

RSA: Creating public/private key pair

1. Choose two large prime numbers p, q. (e.g., 1024 bits each)
2. Compute $n=p q, \quad z=(p-1)(q-1)$
3. Choose e (with exn) that has no common factors with z . (e, z are "relatively prime").
4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod $z=1$).
5. Public key is $\underbrace{(n, e)}_{\mathrm{K}_{\mathrm{B}}^{+}}$. Private key is $\underbrace{(n, d)}_{\mathrm{K}_{\mathrm{B}}^{-}}$.

RSA example:

Bob chooses $p=5, q=7$. Then $n=35, z=24$. $e=5$ (so e, z relatively prime). $d=29$ (so ed-1 exactly divisible by z).
Encrypting 8-bit messages.

encrypt:	bit pattern	m	$\mathrm{m}^{\text {e }}$	$c=m^{e} \bmod n$
	00001000	12	24832	17
decrypt:	c	$\underline{c}^{\text {d }}$		$\underline{m}=c^{d} \bmod n$
	17 4819685	220750	41182523077197	12

$$
=m^{(e d \bmod z)} \bmod n
$$

$$
=m^{1} \bmod n
$$

RSA: another important property

The following property will be very useful later:

$$
\underbrace{K_{B}^{-}\left(K_{B}^{+}(m)\right.})=m=\underbrace{K_{B}^{+}\left(K_{B}^{-}(m)\right)}
$$

use public key
first, followed by private key
use private key
first, followed by public key

Why $K_{B}^{-}\left(K_{B}^{+}(m)\right)=m=K_{B}^{+}\left(K_{B}^{-}(m)\right)$?

Follows directly from modular arithmetic:
$\left(m^{e} \bmod n\right)^{d} \bmod n=m^{e d} \bmod n$

$$
\begin{aligned}
& =m^{d e} \bmod n \\
& =\left(m^{d} \bmod n\right)^{e} \bmod n
\end{aligned}
$$

Result is the same!

Why does RSA work?

* Must show that $c^{d} \bmod n=m$ where $c=m^{e} \bmod n$
* Fact: for any x and $y: x^{y} \bmod n=x^{(y \bmod z)} \bmod n$ - where $n=p q$ and $z=(p-1)(q-1)$
* Thus,
$c^{d} \bmod n=\left(m^{e} \bmod n\right)^{d} \bmod n$

$$
=m^{e d} \bmod n
$$

.

Network Security $\quad 8-8$
0 . Given (n, e) and (n, d) as computed above

1. To encrypt message m ($<n$), compute $c=m^{e} \bmod n$
2. To decrypt received bit pattern, c, compute $m=c^{d} \bmod n$

$$
\begin{gathered}
\text { Magic } \\
\text { happens! }
\end{gathered} m=(\underbrace{m^{e} \bmod n}_{c})^{d} \bmod n
$$

RSA: Encryption, decryption

m

$$
=m
$$

Why is RSA Secure?

* suppose you know Bob's public key (n, e). How hard is it to determine d?
* essentially need to find factors of n without knowing the two factors p and q.
* fact: factoring a big number is hard.

Generating RSA keys

* have to find big primes p and q
\therefore approach: make good guess then apply testing rules (see Kaufman)

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Message integrity
8.4 Securing e-mail
8.5 Securing TCP connections: SSL
8.6 Network layer security: IPsec
8.7 Securing wireless LANs
8.8 Operational security: firewalls and IDS

Message Digests

* function H() that takes as input an arbitrary length message and outputs a fixed-length string: "message signature"
* note that $\mathrm{H}(\mathrm{)}$ is a many-to-1 function
* $H()$ is often called a "hash function"

desirable properties:
- easy to calculate
- irreversibility: Can't determine m from $H(m)$
- collision resistance: computationally difficult to produce m and m^{\prime} such to produce m and
that $H(m)=H\left(m^{\prime}\right)$ - seemingly random output

Internet checksum: poor message digest

Internet checksum has some properties of hash function:
\checkmark produces fixed length digest (16-bit sum) of input
\checkmark is many-to-one

* but given message with given hash value, it is easy to find another message with same hash value.
- e.g.,: simplified checksum: add 4-byte chunks at a time:

message	ASCII format	message	ASCII format
I O U 1	49 4F 5531	I O U 9	49 4F 5539
00.9	30302 E 39	00 . 1	30302 E 31
9 в ○ в	3942 D2 42	9 B \bigcirc	3942 D2 42
B2 C1 D2 AC - different messages - B2 C1 D2 AC but identical checksums!			

Hash Function Algorithms

* MD5 hash function widely used (RFC 1321)
- computes 128-bit message digest in 4-step process.
* SHA-1 is also used.
- US standard [NIST, FIPS PUB 180-1]
- 160-bit message digest

End-point authentication

* want to be sure of the originator of the message - end-point authentication
* assuming Alice and Bob have a shared secret, will MAC provide end-point authentication?
- we do know that Alice created message.
- ... but did she send it?

Playback attack

Digital Signatures

cryptographic technique analogous to handwritten signatures.

* sender (Bob) digitally signs document, establishing he is document owner/creator.
* goal is similar to that of MAC, except now use public-key cryptography
* verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital Signatures

simple digital signature for message m :

* Bob signs m by encrypting with his private key
K_{B}^{-}, creating "signed" message, $K_{B}^{-}(m)$

Digital Signatures (more)

* suppose Alice receives $m s g m$, digital signature $K_{B}^{-}(m)$
* Alice verifies m signed by Bob by applying Bob's public key K_{B}^{+}to $K_{B}^{-}(m)$ then checks $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$.
* if $K_{B}^{+}\left(K_{B}^{-}(m)\right)=m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:
\checkmark Bob signed m.
\checkmark no one else signed m.
\checkmark Bob signed m and not m.
Non-repudiation:
\checkmark Alice can take m, and signature $K_{B}^{-}(m)$ to court and prove that Bob signed m.

Certification Authorities

* Certification authority (CA): binds public key to particular entity, E.
* E (person, router) registers its public key with CA.
- E provides "proof of identity" to CA.
- CA creates certificate binding E to its public key.
- certificate containing E's public key digitally signed by CA - CA says "this is E's public key"

$\underline{\text { Digital signature }=\text { signed message digest }}$

Bob sends digitally signed message:

Public-key certification

* motivation: Trudy plays pizza prank on Bob
- Trudy creates e-mail order: Dear Pizza Store, Please deliver to me four pepperoni pizzas. Thank you, Bob
- Trudy signs order with her private key
- Trudy sends order to Pizza Store
- Trudy sends to Pizza Store her public key, but says it's Bob's public key.
- Pizza Store verifies signature; then delivers four pizzas to Bob.
- Bob doesn't even like Pepperoni

Certification Authorities

* when Alice wants Bob's public key:
- gets Bob's certificate (Bob or elsewhere).
- apply CA's public key to Bob's certificate, get Bob's public key

Certificates: summary

* primary standard X. 509 (RFC 2459)
* certificate contains:
- issuer name
- entity name, address, domain name, etc.
- entity's public key
- digital signature (signed with issuer's private key)
* Public-Key Infrastructure (PKI)
- certificates, certification authorities
- often considered "heavy"

Why study computer networks?

- An interface between theory (algorithms, mathematics) and practice
- Understanding the design principles of a truly complex system
- Industry-relevant knowledge
- Fun!
- Challenges in teaching computer networks
- Students' feedback

