Communication Networks (0368-3030) / Spring 2011

The Blavatnik School of Computer Science, Tel-Aviv University

Allon Wagner

Max-Min Fairness - Another Example

Recommended references:

- Computer Networks - Performance and Quality of Service \Ivan Marsic (available online)
- An Engineering Approach to Computer Networking \S.Keshav

Generalization to a graph

- We have a directed graph $G=(V, E)$, with capacy c_{e} for each edge e.
- We have a set of ongoing calls (flows). Each call i has demand r_{i} and a (fixed) path p_{i}.
- Algorithm:
- Increase all flows equally until one link fills.
- Fix the rate of the bottleneck flows.
- Continue with the unfixed flows.

Algorithm - in more detail

1. Assign flow 0 for all calls.
2. Let S be the set of all calls.
3. Increase the rate equally for all demands in S until:
a) some link is saturated

- OR -
b) until some demand is fulfilled

4. Remove all the calls passing through the saturated links, and all the calls whose demand is fulfilled from S.

-

(these calls' rates become fixed - these rates will not change anymore)
5. Return to step 3, until there are no more calls left in S.

An example

- A network with 5 nodes, and 5 calls $\gamma_{1}, \ldots, \gamma_{5}$.
- All link capacities are 1.
- All demands are ∞.
- $S=\left\{\gamma_{1}, \ldots, \gamma_{5}\right\}$,
$\forall i=1, \ldots, 5 . r_{i}=0$

An example

- Increase all flows in S equally.
- When all flows get rate $1 / 3$ link (B, C) becomes saturated.
- $\gamma_{2}, \gamma_{3}, \gamma_{5}$ are removed from S, hence their rates will no longer change.
- $S=\left\{\gamma_{1}, \gamma_{4}\right\}$

An example

- Increase all flows in S equally.
- When you reach 2/3 link (C, E) becomes saturated.
- $S=\left\{\gamma_{4}\right\}$

An example

- Increase all flows in S equally.
- When you reach 1 link (D, E) becomes saturated
- $S=\Phi$

An example - variant

- A network with 5 nodes, and 5 calls $\gamma_{1}, \ldots, \gamma_{5}$.
- All link capacities are 1.
- All demands are 0.5 .
- $S=\left\{\gamma_{1}, \ldots, \gamma_{5}\right\}$,
$\forall i=1, \ldots, 5 . r_{i}=0$

An example - variant

- Increase all flows in S equally.
- When all flows get rate $1 / 3$ link (B, C) becomes saturated.
- $\gamma_{2}, \gamma_{3}, \gamma_{5}$ are removed from S, hence their rates will no longer change.
- $S=\left\{\gamma_{1}, \gamma_{4}\right\}$

An example - variant

- Increase all flows in S equally.
- When you reach $1 / 2$ the demands γ_{1}, γ_{4} are fulfilled.
- γ_{1}, γ_{4} are removed from S.
- $S=\Phi$

