Communication Networks (0368-3030) / Spring 2011

The Blavatnik School of Computer Science,
Tel-Aviv University

Allon Wagner

Max-Min Fairness – Another Example

Recommended references:

- Computer Networks Performance and Quality of Service \ Ivan Marsic (available online)
- An Engineering Approach to Computer Networking \ S.Keshav

Generalization to a graph

- We have a directed graph G=(V,E), with capacy c_e for each edge e.
- We have a set of ongoing calls (flows). Each call i has demand r_i and a (fixed) path p_i .
- Algorithm:
 - Increase all flows equally until one link fills.
 - Fix the rate of the bottleneck flows.
 - Continue with the unfixed flows.

Algorithm – in more detail

- 1. Assign flow 0 for all calls.
- 2. Let S be the set of all calls.
- 3. Increase the rate equally for all demands in S until:
 - a) some link is saturated– OR –
 - b) until some demand is fulfilled
- 4. Remove all the calls passing through the saturated links, and all the calls whose demand is fulfilled from S.
 - (these calls' rates become fixed these rates will not change anymore)
- 5. Return to step 3, until there are no more calls left in S.

- A network with 5 nodes, and 5 calls $\gamma_1, \dots, \gamma_5$.
- All link capacities are 1.
- All demands are ∞ .
- $S = {\gamma_1, ..., \gamma_5},$ $\forall i = 1, ..., 5. r_i = 0$

- Increase all flows in S equally.
- When all flows get rate 1/3 link (B, C) becomes saturated.
- γ_2 , γ_3 , γ_5 are removed from S, hence their rates will no longer change.
- $S = \{ \gamma_1, \gamma_4 \}$

- Increase all flows in S equally.
- When you reach
 2/3 link (C, E)
 becomes saturated.
- $S = \{ \gamma_4 \}$

- Increase all flows in S equally.
- When you reach 1 link (D, E) becomes saturated
- $S = \Phi$

An example - variant

- A network with 5 nodes, and 5 calls $\gamma_1, \dots, \gamma_5$.
- All link capacities are 1.
- All demands are 0.5.
- $S = {\gamma_1, ..., \gamma_5},$ $\forall i = 1, ..., 5. r_i = 0$

An example - variant

- Increase all flows in S equally.
- When all flows get rate 1/3 link (B, C) becomes saturated.
- γ_2 , γ_3 , γ_5 are removed from S, hence their rates will no longer change.
- $S = \{ \gamma_1, \gamma_4 \}$

An example - variant

- Increase all flows in S equally.
- When you reach 1/2 the demands γ_1, γ_4 are fulfilled.
- γ_1 , γ_4 are removed from S.
- $S = \Phi$

