
Bringing Practical Lock-Free Synchronization to 64-Bit
Applications

Simon Doherty
School of Mathematical and Computing Sciences

Victoria University
Wellington, New Zealand

simon.doherty@mcs.vuw.ac.nz

Maurice Herlihy
Department of Computer Science

Brown University
Providence, RI 02912, USA

mph@cs.brown.edu

Victor Luchangco
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803, USA

victor.luchangco@sun.com

Mark Moir
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803, USA

mark.moir@sun.com

ABSTRACT
Many lock-free data structures in the literature exploit tech-
niques that are possible only because state-of-the-art 64-bit
processors are still running 32-bit operating systems and
applications. As software catches up to hardware, “64-bit-
clean” lock-free data structures, which cannot use such tech-
niques, are needed.

We present several 64-bit-clean lock-free implementations:
load-linked/store-conditional variables of arbitrary size, a
FIFO queue, and a freelist. In addition to being portable to
64-bit software, our implementations also improve on previ-
ous ones in that they are space-adaptive and do not require
knowledge of the number of threads that will access them.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.4.2 [Operating Systems]: Storage Management;
E.1 [Data]: Data Structures

General Terms
Algorithms, Theory

Keywords
Multiprocessors, 64-bit architectures, 64-bit-clean software,
nonblocking synchronization, lock-free, memory management,
population-oblivious, space-adaptive, compare-and-swap (cas),
load-linked/store-conditional (ll/sc), queues, freelists

1. INTRODUCTION
For more than a decade, 64-bit architectures have been

available [14, 16, 18, 21]. These architectures support 64-
bit addresses, allowing direct access to huge virtual address

PODC’04,July 25–28, 2004, St. John’s, Newfoundland, Canada.
Copyright 2004 Sun Microsystems, Inc. All rights reserved.
ACM 1-58113-802-4/04/0007.

spaces [3]. They also support atomic access to 64-bit quanti-
ties using synchronization primitives such as compare-and-
swap (cas) and the load-linked/store conditional (ll/sc)
pair, which provide powerful tools for implementing lock-
free data structures.

Predictably, operating systems and application software
that exploit these 64-bit capabilities have been slower to
emerge. Thus, many important 32-bit operating systems
and applications are still in common use, and most 64-bit ar-
chitectures support them. As a result, for a period of several
years, techniques that use 64-bit synchronization primitives
to atomically manipulate 32-bit pointers together with other
information, such as version numbers, have been widely ap-
plicable. Many practical lock-free data structures exploit
such techniques (e.g., [13, 19]).

The increasing prevalence of 64-bit operating systems and
applications (in which pointers are 64 bits) signals the end
of this convenient era: 64-bit-clean lock-free data struc-
tures that do not require synchronization primitives that
can atomically manipulate a pointer and a version number
are increasingly important.

We present 64-bit-clean1 implementations of several im-
portant lock-free data structures: arbitrary-size variables
supporting ll and sc operations, FIFO queues, and freelists.

Our implementations are based on 64-bit cas, but it is
straightforward to modify them for use in architectures that
support ll/sc instead of cas [15]. Our ll/sc implemen-
tation is useful even in architectures that provide ll/sc in
hardware, because it eliminates numerous restrictions on the
size of variables accessed by ll/sc and the way in which they
are used. For example, in some architectures, the program
must perform only register operations between an ll and
the following sc; no such restriction is imposed by our imple-
mentation. Our results therefore will help programmers to
develop portable code, because they can ignore the different
restrictions imposed by different architectures on the use of

1Our techniques target any architecture that can perform
cas on a pointer-sized variable (of at least 64 bits); for con-
creteness, we present our techniques assuming that this size
is 64 bits.

31



ll/sc. Furthermore, our implementations are portable be-
tween 32-bit and 64-bit applications, while many previous
lock-free data structure implementations are not.

The only previous 64-bit-clean cas-based implementation
of ll/sc is due to Jayanti and Petrovic [10]. While their im-
plementation is wait-free [5], it requires O(mn) space, where
m is the number of variables that support ll/sc and n is
the number of threads that can access those variables; ours
uses only O(m+n) space. Furthermore, the implementation
in [10] requires a priori knowledge of a fixed upper bound
on the number of threads that will access an ll/sc vari-
able. We call such implementations population-aware [8].
In contrast, our implementation has no such requirement; it
is population-oblivious. However, our implementation guar-
antees only lock-freedom, a weaker progress guarantee than
wait-freedom, but one that is generally considered adequate
in practice.

Our lock-free FIFO queue implementation is the first that
is 64-bit-clean, population-oblivious and space-adaptive (i.e.,
its space consumption depends only on the number of items
in the queue and the number of threads currently accessing
the queue). Previous lock-free FIFO queue implementations
have at most one of these advantages.

A freelist manages memory resources and can be used to
avoid the cost of using a general malloc/free implementation
for this purpose. Previous lock-free freelists [19] are not 64-
bit-clean, and can be prevented by a single thread failure
from ever freeing memory blocks to the system. Ours over-
comes both of these problems.

We provide some background in Section 2, and present our
ll/sc implementation in detail in Section 3. In Sections 4
and 5, we explain how to adapt the techniques used in the
ll/sc implementation to achieve our queue and freelist im-
plementations We conclude in Section 6.

2. BACKGROUND
A data structure implementation is linearizable [9] if for

each operation, there is some point—called the linearization
point—during the execution of that operation at which the
operation appears to have taken place atomically. It is lock-
free [5] if it guarantees that after a finite number of steps of
any operation on the data structure, some operation com-
pletes. It is population-oblivious [8] if it does not depend on
the number of threads that will access the data structure.
Finally, it is space-adaptive if at all times, the space used is
proportional to the size of the abstract data structure (and
the number of threads currently accessing it).2

The cas operation, defined in Figure 1, takes the address
of a memory location, an expected value, and a new value.
If the location contains the expected value, then the cas

atomically stores the new value into the location and re-
turns true. Otherwise, the contents of the location remain
unchanged, and the cas returns false. We say that the cas

succeeds if it returns true, and that it fails if it returns false.
A typical way to use cas is to read a value—call it A—

from a location, and to then use cas to attempt to change
the location from A to a new value. The intent is often to
ensure that the cas succeeds only if the location’s value does
not change between the read and the cas. However, the lo-
cation might change to a different value B and then back

2There are other variants of space adaptivity [8], but this
simple definition suffices for this paper.

bool cas(a, e, n) {
atomically {

if (∗a == e) {
∗a = n;
return true;

} else
return false;

}
Figure 1: The CAS operation.

to A again between the read and the cas, in which case
the cas can succeed. This phenomenon is known as the
ABA problem [17] and is a common source of bugs in cas-
based algorithms. The problem can be avoided by storing
the variable being accessed together with a version number
in a cas-able word: the version number is incremented with
each modification of the variable, eliminating the ABA prob-
lem (at least in practice; see [15] for more detail). However,
if the variable being modified is a 64-bit pointer, then this
technique cannot be used in architectures that can perform
cas only on 64-bit variables. A key contribution of this pa-
per is a novel solution to the ABA problem that can be used
in such architectures.

The ll and sc operations are used in pairs: An sc op-
eration is matched with the preceding ll operation by the
same thread to the same variable; there must be such an ll

operation for each sc operation, and no ll operation may
match more than one sc operation. ll loads the value of a
location, and sc conditionally stores a value to a location,
succeeding (returning true) if and only if no other store to
the location has occurred since the matching ll.3 Thus the
ABA problem does not arise when using ll and sc—instead
of read and cas—to modify a variable.

For simplicity, we require every ll to be matched. If a
thread decides not to invoke a matching sc for a previous
ll, it instead invokes unlink, which has no semantic effect
on the variable. An ll operation is said to be outstanding
from its linearization point until its matching sc or unlink

returns. It is straightforward to eliminate the need for an
explicit thread-visible unlink operation by having ll in-
voke unlink whenever a previous ll operation by the same
thread to the same location is already outstanding.

Related work
Anderson and Moir [2] describe a wait-free implementation
of a multiword ll/sc that requires O(mn2) space, where m
is the number of variables and n is the number of threads
that may access the variables; Jayanti and Petrovic present
another that uses O(mn) space [10]. These algorithms are
impractical for applications that require ll/sc on many vari-
ables. In addition, they are not population-oblivious; they
require n to be known in advance, a significant drawback
for applications with dynamic threads. Moir [15] presents
a lock-free algorithm that uses only O(m) space, but his
algorithm is not 64-bit-clean.

Our queue algorithm is similar to the algorithms of Val-
ois [20] and of Michael and Scott [13]. However, those algo-
rithms are not 64-bit-clean. Furthermore, they cannot free
nodes removed from the queue for general reuse (though the

3We describe the ideal ll/sc semantics here. Hardware
ll/sc implementations are usually weaker; in particular,
they allow sc to fail even in the absence of an intervening
store [15].

32



nodes can be reused by subsequent enqueue operations), and
are therefore not space adaptive.

Herlihy et al. [7] and Michael [11] independently proposed
general techniques to enable memory to be freed from lock-
free data structures, and they applied these techniques to
the Michael-and-Scott queue [6, 11]. However, the resulting
algorithms are not population-oblivious. Although they can
be made population-oblivious [8], the resulting solutions are
still not space adaptive; in the worst case, they require space
proportional to the number of all threads that ever access
the queue.

Treiber [19] provides two freelist implementations, neither
of which is 64-bit-clean. Furthermore, the first does not
provide operations for expanding and contracting the freel-
ist. Modifying the implementation to expand the freelist is
straightforward, but enabling contraction is not. Treiber’s
second freelist implementation does allow contraction, but
a single delayed thread can prevent all contraction. In con-
trast, our freelist implementation is 64-bit-clean and does
not allow thread delays to prevent other threads from con-
tracting the freelist.

3. OUR LL/SC IMPLEMENTATION
With unbounded memory, it is straightforward to imple-

ment a lock-free, population-oblivious, arbitrary-sized ll/sc
variable using the standard pointer-swinging technique: We
store values in contiguous regions of memory called nodes
and maintain a pointer to the current node. ll simply reads
the pointer to the current node and returns the contents of
the node it points to. sc allocates a new node, initializes it
with the value to be stored, and then uses cas to attempt
to “swing” the pointer from the previously current node to
the new one; the sc succeeds if and only if the cas succeeds.
If every sc uses a new node, then the cas in an sc succeeds
if and only if there is no change to the pointer between the
cas and the read in the preceding ll. This technique is well-
known and used in systems that use garbage collection to
provide the illusion of unbounded memory (see the JSR-166
library [1], for example).

Our implementation builds on this simple idea, but is com-
plicated by the need to free and reuse nodes in order to
bound memory consumption. Reclaiming nodes too late re-
sults in excessive space overhead. However, reclaiming them
too soon leads to other problems. First, an ll reading the
contents of a node might in fact read part or all of a value
stored by an sc that is reusing the node. Second, the cas

might succeed despite changes since the previous read be-
cause of the recycling of a node: the ABA problem. Our im-
plementation maintains additional information that allows
nodes to be reclaimed promptly enough to bound its space
complexity, but avoids the problems above by preventing
premature reclamation.

We first describe the basic implementation assuming that
nodes are never reclaimed prematurely and ignoring those
parts related only to node reclamation (Section 3.1). Then
we describe how nodes are reclaimed, argue why they are
never reclaimed prematurely, and analyze the space com-
plexity of the algorithm (Section 3.2). To simplify the code
and discussion, the implementation presented here restricts
threads to have at most one outstanding ll operation at a
time. However, extending it to allow each thread to have
multiple outstanding ll operations is straightforward.

typedef struct {
Node ∗ptr0, ∗ptr1;
EntryTag entry;

} LLSCvar;

typedef struct {
Data d;
Node ∗pred;
ExitTag exit;

} Node;

typedef struct {
int ver;
int count;

} EntryTag;

typedef struct {
int count;
bool nlC;
bool nlP;

} ExitTag;

Figure 2: Data types used in the LL/SC algorithm.
The EntryTag and ExitTag types fit into 64 bits, so
can be atomically accessed using cas.

3.1 The basic implementation
Rather than storing a pointer to the current node in a

single location, we alternate between two locations, ptr0

and ptr1. At any time, one of these pointers is the current
pointer—it points to the current node—and the other is the
noncurrent pointer. Which pointer is current is determined
by a version number entry.ver:4 if entry.ver is even, then
ptr0 is the current pointer; otherwise ptr1 is.

An ll operation determines the current node and returns
the data value it contains. An sc operation attempts to
change the noncurrent pointer to point to a new node—
initialized with the data value to be stored—and then in-
crement entry.ver, making this pointer current. If the sc

successfully installs the new pointer but is delayed before
incrementing the version number, then another thread can
“help” by incrementing the version number on its behalf.
The successful sc is linearized at the point at which the ver-
sion number is incremented (either by the thread executing
that sc or by a helping thread), causing the newly installed
node to become current.

Our algorithm guarantees the following alternating prop-
erty : In any execution, the sequence of events that modify
ptr0 and ptr1 and entry.ver strictly alternates between

• modifying the noncurrent pointer to point to the new
node of an sc operation; and

• incrementing entry.ver, thereby causing the current
pointer to become noncurrent and vice versa.

With this property, it is easy to see that the algorithm de-
scribed above provides the correct semantics: neither ptr0

nor ptr1 ever changes while it is the current pointer; the
noncurrent pointer is changed exactly once (by a successful
sc operation) between consecutive increments of entry.ver;
and each time we increment the version number, and there-
fore linearize a successful sc (the unique sc that changed
the noncurrent pointer since the previous time the version
number was incremented), the new node installed by the
successful sc becomes the current node.

Figure 2 shows the types used in our implementation. An
LLSCvar structure consists of three fields, ptr0, ptr1 and

4In addition to determining which pointer is current, the
version number eliminates the ABA problem in practice,
provided the version number has enough bits to ensure that
it does not repeat a value during the interval in which some
thread executes a short code sequence. In our algorithm, we
can easily allocate 32 or more bits to the version number,
which we believe is sufficient. For further discussion of the
number of bits required to avoid the ABA problem, see [15].

33



ptr0→d = d0 entry.ver = 0
ptr0→pred = ptr1 entry.count = 0
ptr0→exit = 〈0, false, false〉
ptr1→exit = 〈0, true, false〉
Figure 3: Initial state of an LL/SC location, where
d0 is the initial value of the location.

d: b

pred

exit

ptr1

ptr0

countver: 9

d: a

pred

exit

(a)

exit

pred

d: b

exit

pred

d: c

exit

pred

d: a

ver: 9 count

ptr0

ptr1

(b)

Figure 4: Two states of the LL/SC implementation.
Dotted pointer indicates previous value (see text).

entry, each of which is 64 bits (so the cas operation can
be applied to each field, though not to the entire LLSCvar
structure). In addition to the fields already mentioned, the
entry field of an ll/sc variable has a count field, and each
node has pred and exit fields. The pred field of each node
contains a pointer to the node that was current immediately
before this node. The other fields are concerned only with
node reclamation, and are discussed later.

Figure 3 shows how an ll/sc variable is initialized and
Figure 4 illustrates two classes of states of our algorithm. In
both illustrations, entry.ver is odd, so ptr1 is the current
pointer and ptr0 is the noncurrent pointer. In Figure 4(a),
the noncurrent pointer points to the current node’s prede-
cessor (i.e., the node that was current before the node that is
current in the figure). In Figure 4(b), the noncurrent pointer
points to a new node whose pred field points to the current
node. From a state like the one in Figure 4(a), installing a
pointer to a new node whose pred field points to the cur-
rent node into the noncurrent pointer results in a state like
the one in Figure 4(b). Furthermore, from a state like the
one in Figure 4(b), incrementing entry.ver results in a state
like the one in Figure 4(a), because incrementing entry.ver
changes its parity, thereby reversing the roles of ptr0 and
ptr1. The key to understanding our algorithm is to notice
that it alternates between states like that in Figure 4(a) and
states like that in Figure 4(b). This behavior is captured by
the alternating property, which is central to the correctness
proof for our algorithm.

We now present our algorithm in more detail and explain
how it preserves the alternating property; we ignore for now
details related to node reclamation. Pseudocode for the ll,
sc and unlink operations is presented in Figure 5. Each
thread has two persistent local variables, mynode and myver,
which are set by the ll operation, and retain their values
while that ll is outstanding. The CURRENT and NONCURADDR

macros determine the current and noncurrent pointers based
on the ptr0 or ptr1 fields and the entry.ver fields, as ex-
plained above. Specifically, if loc→entry.ver == version,
then CURRENT(loc,version) gives the current pointer of loc,
and NONCURADDR(loc,version) gives the address of the non-

current pointer. The release and transfer procedures,
the entry.count field, and the exit field and its initializa-
tion value INIT EXIT are relevant only to node reclamation,
as are the effects of unlink. We defer further discussion of
these procedures and fields until Section 3.2.

Ignoring for now the effect of the cas at line L5 on the
entry.count field, we see that a thread p executing ll records
entry.ver in its persistent local myver variable and the cur-
rent node indicated by this value in its mynode variable. To
ensure a consistent view of the current node and version
number, ll retries if entry.ver changes while it determines
the current node (lines L2 and L5). The ll operation is
linearized at the (unique) point at which p successfully exe-
cutes the cas at line L5.

To execute an sc operation, p allocates and initializes a
new node5 with the value to be stored, and stores the node
observed as current by the previous ll in the node’s pred

field (lines S1 and S2). Then, p uses cas to attempt to
change the noncurrent pointer to point to the new node (line
S4). We do not simply read the contents of the noncurrent
pointer in order to determine the expected value for this cas.
If we did, two different sc operations could install new nodes
in the noncurrent pointer, without the noncurrent pointer
becoming current as the result of an increment of entry.ver.
Such behavior would violate the alternating property.

To avoid this problem, we instead determine the expected
value for the cas by reading the pred field of the node ob-
served as current (line S3). Recall that when a node becomes
current, its pred field points to the node that was current im-
mediately before it. Thus, the pred field of the current node
is the same as the noncurrent pointer before a new node is
installed. Once an sc has successfully changed the noncur-
rent pointer to point to a new node, no other sc can do so
again before entry.ver is incremented. This could happen
only if some thread previously saw the newly installed node
as the predecessor of some node. As we explain later, our
node reclamation technique precludes this possibility.

After the execution of line S4, either p’s sc has succeeded
in changing the noncurrent pointer, or some other sc has. In
either case, the entry.ver field should now be incremented
in order to make the successful sc that installed a new node
take effect. The cas at line S7 ensures that the version
number is incremented. (The loop at lines S6 through S8
is necessary because the cas at line S7 may fail for reasons
other than another thread having incremented entry.ver;
this possibility is explained below.)

3.2 Memory reclamation
If nodes are never reclaimed, then values stored to ptr0

and ptr1 are all distinct, and it is easy to see the correct-
ness of the algorithm as described. We now explain how
our implementation reclaims and reuses nodes and why the
algorithm is correct despite this. For simplicity, we defer
consideration of unlink until later in this section; for now,
we assume that every ll is matched by an sc.

After an ll successfully executes the cas at line L5, it
reads the contents of the node it determined to be current
at lines L6 and S3. We ensure that the node is not reclaimed
before this happens. Specifically, after a thread successfully
executes the cas at line L5, we ensure that the node is not

5If no suitable lock-free memory allocator is available, then
nodes can be allocated from a freelist. The implications of
this approach are described in Section 3.3.

34



Macros:
CURRENT(loc, ver) ≡ (ver%2 == 0 ? loc→ptr0 : loc→ptr1)
NONCURADDR(loc, ver) ≡ (ver%2 == 0 ? &loc→ptr1 : &loc→ptr0)
INIT EXIT ≡ 〈0, false, false〉

Data ll(LLSCvar ∗loc) {
L1. do {
L2. EntryTag e = loc→entry;
L3. myver = e.ver;
L4. mynode = CURRENT(loc, e.ver);
L5. } while (!cas(&loc→entry, e, 〈e.ver, e.count + 1〉));
L6. return mynode→d;

}

void unlink(LLSCvar ∗loc) {
U1. while ((e = loc→entry).ver == myver)
U2. if (cas(&loc→entry, e, 〈e.ver, e.count− 1〉)) return;
U3. release(mynode);

}

bool sc(LLSCvar ∗loc, Data newd) {
S1. Node ∗new nd = alloc(Node);
S2. new nd→d = newd;

new nd→pred = mynode;
new nd→exit = INIT EXIT;

S3. Node ∗pred nd = mynode→pred;
S4. success = cas(NONCURADDR(loc, myver), pred nd, new nd);
S5. if (!success) free(new nd);
S6. while ((e = loc→entry).ver == myver)
S7. if (cas(&loc→entry, e, 〈e.ver + 1, 0〉))
S8. transfer(mynode, e.count);
S9. release(mynode);
S10. return success;

}
Figure 5: The LL, SC, and UNLINK operations.

Macros:
CLEAN(exit) ≡ (exit.count == 0 ∧ pre.nlC)
FREEABLE(exit) ≡ (CLEAN(exit) ∧ exit.nlP)

void release(Node ∗nd) {
R1. Node ∗pred nd = nd→pred;
R2. do {
R3. ExitTag pre = nd→exit;
R4. ExitTag post = 〈pre.count− 1, pre.nlC, pre.nlP〉;
R5. } while (!cas(&nd→exit, pre, post));
R6. if (CLEAN(post)) setNLPred(pred nd);
R7. if (FREEABLE(post)) free(nd);

}

void transfer(Node ∗nd, int count) {
T1. do {
T2. ExitTag pre = nd→exit;
T3. ExitTag post = 〈pre.count + count, true, pre.nlP〉;
T4. } while (!cas(&nd→exit, pre, post));

}

void setNLPred(Node ∗pred nd) {
P1. do {
P2. ExitTag pre = pred nd→exit;
P3. ExitTag post = 〈pre.count, pre.nlC, true〉;
P4. } while (!cas(&pred nd→exit, pre, post));
P5. if (FREEABLE(post)) free(pred nd);

}
Figure 6: Helper procedures for the LL/SC implementation.

reclaimed before that thread invokes release on that node
at line S9. Also, to avoid the ABA problem, we ensure that
a node is not reclaimed if some thread might still see it as
the predecessor of another node (at line S3), and therefore
use it as the expected value for the cas at line S4.

We avoid both premature reclamation scenarios by record-
ing information in entry.count and the exit field of each
node that allows us to determine when it is safe to re-
claim a node. First, we use entry.count to count the num-
ber of threads that successfully execute the cas at line L5
while entry.ver contains a particular value. (Note that
entry.count is reset to zero whenever entry.ver is incre-
mented at line S7.) When a thread increments entry.count,
we say the thread pins the node that is current at that time.

One might think that we could maintain an accurate count
of the number of threads that have pinned a node and not
subsequently released it by simply decrementing entry.count
in release. However, this approach does not work because
by the time a thread invokes release for a particular node,
that node is no longer current, so entry.count is being used
for a different node—the one that is now current. There-
fore, we instead use a node’s exit.count field to count the
number of threads that have released the node; this counter
starts at zero and is decremented by each releasing thread
(see lines R4 and R5 in Figure 6).

We use the transfer procedure to reconcile the number
of threads that pinned the node with the number that have
since released it. transfer adds the value of entry.count
when a node is replaced as the current node to that node’s

exit.count field (lines S7, S8, and T1 through T4). When
exit.count contains zero after this transfer has happened,
all threads that pinned this node have since released it.

To distinguish the initial zero state of the exit.count field
from the state in which entry.count has been transferred
and all threads have executed release, we use a flag nlC

in the node’s exit field; transfer sets exit.nlC (see line
T3) to indicate that the transfer has occurred (nlC stands
for “no longer current”; transfer is invoked by the thread
that makes the node noncurrent). We say that a node with
exit.nlC set and exit.count == 0 is clean (as captured by
the CLEAN macro).

For the unlink operation, a thread could simply invoke
release, as on line U3. However, if entry.ver has not
changed since the thread pinned a node, we can instead
decrement entry.count (see lines U1 and U2); it is still being
used to keep track of the number of threads that pinned the
node pinned by the thread that invoked unlink.

In our algorithm as described so far, no thread accesses
a clean node. However, it is not always safe to free a clean
node: recall that we must also prevent a node from being
reclaimed while a thread might still determine it to be the
predecessor of another node. For this purpose, we use one
more flag in the exit field called nlP (for “no longer prede-
cessor”). At any time, each node is the predecessor of only
one node, so we simply need to determine when that node’s
pred field will no longer be accessed by any thread, that is,
when that node is clean. A thread that makes a node clean
invokes the setNLPred procedure to set the nlP flag of the

35



node’s predecessor (line R6). When a node is clean and has
its exit.nlP flag set, as expressed by the FREEABLE macro,
it is safe to free the node (lines R7 and P5).

Let us analyze the space requirements for an application
using our implementation for ll/sc variables. Each variable
requires O(1) space for its LLSCvar structure, and has two
nodes that cannot be reclaimed (the nodes pointed to by
its ptr0 and ptr1 fields). In addition, each ll/sc sequence
in progress can prevent the reclamation of three nodes: the
node pinned by the thread between an ll operation and its
matching sc or unlink, the predecessor of the pinned node,
and the new node used by an sc operation. Thus, in an
application with m ll/sc variables, the space used by our
algorithm at any time is O(m + k), where k is the num-
ber of outstanding ll operations at that time. In the worst
case, when all n threads have outstanding ll operations, the
space used is O(m + n). Note that this space complexity is
asymptotically optimal, and that the space used adapts to
the number of threads actually accessing the ll/sc variables
at any time. In particular, only O(m) space is needed when
no threads are accessing these variables. The only previous
64-bit-clean implementation [10] always uses O(mn) space,
a clear limitation in practice. Furthermore, it requires a
priori knowledge of n; our algorithm does not.

3.3 Optimizations and Extensions
Our ll/sc implementation can be made more efficient by

observing that if FREEABLE(post) holds before the cas on
line R5 or line P4, then the cas does not need to be executed;
mynode can simply be freed because there are no threads that
still have to release this node. Similarly, a thread that calls
transfer at line S8 will always subsequently call release

at line S9. Therefore, we can combine the effect of the two
cases in those two procedures into a single cas.

It is easy to extend our implementation to allow threads to
have multiple outstanding ll operations: each thread simply
maintains separate mynode and myver local variables for each
outstanding ll. In the resulting extension, a thread may pin
several nodes simultaneously (one for each outstanding ll).
The space complexity of this extension is still O(m + k),
but now there may be more outstanding ll operations than
threads (i.e., we may have k > n). In the unlikely case that
all n threads simultaneously have outstanding ll operations
on all m variables, then O(mn) space is used. However,
this much space is used only while O(mn) ll operations are
outstanding. As before, if no threads are accessing the ll/sc
variables, then the space consumed is O(m).

We can also extend our implementation to provide an
operation that “validates” the previous ll, that is, deter-
mines whether its future matching sc can still succeed. A
validate operation simply determines whether the noncur-
rent pointer still points to the predecessor of the node stored
in mynode by the ll operation. If so, a future sc can replace
it with a new node, thereby ensuring its success.

If our algorithm is used with a memory allocator that
is not lock-free, then neither is our ll/sc implementation.
While lock-free allocators exist [4, 12], most standard alloca-
tors are not lock-free. An alternative means for achieving a
lock-free implementation is to use a lock-free freelist to man-
age nodes. (We present a suitable freelist implementation in
Section 5.) The idea is to populate the freelist with enough
nodes that one is always available for an sc operation to
use. The number of nodes needed depends on the number

void enqueue(Value v) {
E1. Node ∗nd = alloc(Node);
E2. nd→v = v;

nd→next = null;
nd→exit = INIT EXIT;

E3. while (true) {
E4. Node ∗tail = ll(&Tail);
E5. nd→pred = tail;
E6. if (cas(&tail→next, null, nd)) {
E7. sc(&Tail, nd);
E8. return;
E9. } else
E10. sc(&Tail, tail→next);

}
}

Value dequeue() {
D1. while (true) {
D2. Node ∗head = ll(&Head);
D3. Node ∗next = head→next;
D4. if (next == null) {
D5. unlink(&Head);
D6. return null ;

}
D7. if (sc(&Head, next)) {
D8. Value v = next→v;
D9. setToBeFreed(next);
D10. return v;

}
}

}
Figure 7: Queue operations.

of threads that simultaneously access the implemented vari-
able. If we cannot bound this number in advance, we can
resort to the standard memory allocator to increase the size
of the freelist upon thread creation, and remove nodes from
the freelist and free them upon thread destruction. While
this approach involves locking when creating or destroying a
thread, we avoid locking during the lifetime of each thread.

4. QUEUE
In this section, we describe a 64-bit-clean lock-free FIFO

queue implementation that is population-oblivious and con-
sumes space proportional only to the number of items in
the queue (and the number of threads currently accessing
the queue). Our queue implementation is similar in struc-
ture to that of Michael and Scott [13], but overcomes two
important drawbacks. First, the implementation of [13] uses
version numbers on its Head and Tail pointers, and is there-
fore not 64-bit-clean. Second, it cannot free nodes that have
been dequeued; instead it stores them in a freelist for sub-
sequent reuse, resulting in space consumption proportional
to the historical maximum size of the queue.

Figure 7 presents our queue code. Rather than modifying
the Head and Tail pointers with cas and using version num-
bers to avoid the ABA problem (as in [13]), we use ll and
sc. If we ignore memory management issues for a moment,
and assume that the ll and sc operations used are the stan-
dard hardware-supported ones, then this implementation is
essentially the one in [13]. To facilitate the memory manage-
ment required to achieve a 64-bit-clean space-adaptive im-
plementation, we use ll and sc operations similar to those
presented in the previous section in place of the standard
operations.

36



typedef struct {
Value v;
Node ∗next;
Node ∗pred;
ExitTag exit;

} Node;

typedef struct {
int count;
int transfersLeft;
bool nlP;
bool toBeFreed;

} ExitTag;

INIT EXIT ≡ 〈0, 2, false, false〉
CLEAN(exit) ≡ (exit.count == 0 ∧ exit.transfersLeft == 0)
FREEABLE(exit) ≡ (CLEAN(exit) ∧ exit.nlP ∧ exit.toBeFreed)

Figure 8: Modified datatypes and macros for queue
algorithm.

The ll and sc operations used here differ from those in
the previous section in several ways. First, because the val-
ues stored in Head and Tail are just pointers, the level of
indirection used to support variables of arbitrary size in the
previous section is unnecessary: we deal with node pointers
directly. Thus, we embed the exit and pred fields in the
queue node structure, as shown in Figure 8.

Second, sc does not allocate and initialize a new node, but
rather uses the node passed to it by enqueue or dequeue.
Nodes are allocated and initialized by enqueue.

Third, we modify ExitTag to support node reclamation
appropriate for the queue. In the queue implementation, a
node should not be reclaimed until it has been replaced as
the Tail node and it has been replaced as the Head node.
Each of the sc operations that effect these changes must
transfer a count of pinning threads to the node. To detect
when both of these transfers have occurred, we replace the
boolean flag nlC of the ExitTag structure in the previous
section with a counter transfersLeft. This counter is ini-
tialized to 2 and decremented by each transfer: when the
counter is zero, both transfers have occurred. The CLEAN

macro is also modified to check whether transfersLeft is
zero rather than whether nlC is set, as shown in Figure 8.

Finally, as before, we use the exit.nlP field to avoid the
ABA problem when changing the noncurrent pointer to point
to a new node on line S4. However, observe that line D8
reads a value from a node that may not be pinned by any
ll operation. We must also ensure that this node is not
reclaimed before this read occurs. Because only one thread
(the one that changes Head to point to this node) reads this
value, a single additional flag toBeFreed suffices (set on line
D9 by invoking setToBeFreed). As shown in Figure 8, the
FREEABLE macro is modified to check that the toBeFreed flag
is also set.

These changes to the ll and sc operations necessitate
modifications to the other helper procedures used in the im-
plementation; these modifications are straightforward, and
the full code for the ll, sc and other helper procedures can
be found in Figure 10.

As with the ll/sc implementation in the previous section,
we can avoid the overhead of a general-purpose allocator by
using a freelist to store dequeued nodes for future reuse. If
we know a bound on the maximum size of the queue, we can
populate the freelist in advance and avoid using the general-
purpose allocator at all. Otherwise, enough enqueue oper-
ations will inevitably require us to allocate new nodes.

5. FREELIST
In this section, we describe how to adapt the queue algo-

rithm of the previous section to implement a lock-free freel-

Value * get() {
Node ∗nd = dequeue();
return (Value ∗)nd;

}

void put(Value ∗v) {
setToBeEnqueued((Node ∗)v);

}

void expand() {
Node ∗nd = alloc(Node);
enqueue(nd);

}

void contract() {
Node ∗nd = dequeue();
if (nd 6= null) setToBeFreed(nd);

}
Figure 9: Freelist operations.

ist. Our freelist implementation provides four operations:
get, which removes a memory block from the freelist and re-
turns a pointer to that block (or null if no block is available);
put, which takes a pointer to a memory block and puts the
block on the freelist;6 expand, which allocates a new mem-
ory block and puts it on the freelist; and contract, which
removes a block from the freelist (if one is available) and
frees it. An application using the freelist must guarantee
that it will not access the memory block pointed to by a
pointer passed to put until it is subsequently returned by
get, and that any pointer passed to put was returned by
some previous invocation of get.

The freelist is basically a queue of nodes, and the v field of
each node contains a memory block managed by the freelist.
The get operation returns a pointer to the v field of a node;
applications should be oblivious to the presence of the other
fields of the node. The put operation takes a pointer to the
v field; from which we assume it can derive a pointer to the
node containing the field.7

The freelist code appears in Figure 9. This code invokes
enqueue and dequeue operations, which are similar to the
corresponding operations of the previous section except that
these operations take and return pointers to the v field of
nodes rather than the values to be stored in those nodes.
Because the enqueue operation takes a node, it no longer
allocates a new node.

The principal difference between the queue and freelist im-
plementations is that the ExitTag type has yet another flag,
toBeEnqueued. This extra field is necessary because when
a node becomes FREEABLE, there are two possible actions:
If the node was most recently dequeued by the contract

operation then it should be freed, but if it was dequeued by
a get operation and has subsequently been passed back to
a put operation, then it should be enqueued into the freelist
again. Using separate toBeFreed and toBeEnqueued fields
allows us to distinguish the two cases.

6We allow the actual placement of memory blocks on the
freelist to be delayed. That is, a memory block passed to
put may not actually be put on the freelist until some time
after the put operation has returned. The user of the freelist
may notice this discrepancy if a get operation returns null
after some put operation completes.
7In our code, we assume that the v field is placed at the
beginning of the node, so we can use type casting to convert
between pointers to nodes and the values they contain.

37



Node ll(LLSCvar ∗loc) {
do {

EntryTag e = loc→entry;
myver = e.ver;
mynode = CURRENT(loc, e.ver);

} while (!cas(&loc→entry, e, 〈e.ver, e.count + 1〉));
return mynode;

}

bool sc(LLSCvar ∗loc, Node nd) {
Node ∗pred nd = mynode→pred;
success = cas(NONCURADDR(loc, myver), pred nd, nd);
if (!success) free(new nd);
while ((e = loc→entry).ver == myver)

if (cas(&loc→entry, e, 〈e.ver + 1, 0〉))
transfer(mynode, e.count);

release(mynode);
return success;

}

void unlink(LLSCvar ∗loc) {
while ((e = loc→entry).ver == myver)

if (cas(&loc→entry, e, 〈e.ver, e.count− 1〉)) return;
release(mynode);

}

void transfer(Node ∗nd, int count) {
do {

ExitTag pre = nd→exit;
ExitTag post = 〈pre.count + count, pre.transfersLeft− 1,

pre.nlP, pre.toBeFreed〉;
} while (!cas(&nd→exit, pre, post));

}

void release(Node ∗nd) {
Node ∗pred nd = nd→pred;
do {

ExitTag pre = nd→exit;
ExitTag post = 〈pre.count− 1, pre.transfersLeft,

pre.nlP, pre.toBeFreed〉;
} while (!cas(&nd→exit, pre, post));
if (CLEAN(post)) setNLPred(pred nd);
if (FREEABLE(post)) free(nd);

}

void setNLPred(Node ∗pred nd) {
do {

ExitTag pre = pred nd→exit;
ExitTag post = 〈pre.count, pre.transfersLeft,

true, pre.toBeFreed〉;
} while (!cas(&pred nd→exit, pre, post));
if (FREEABLE(post)) free(pred nd);

}

void setToBeFreed(Node ∗pred nd) {
do {

ExitTag pre = pred nd→exit;
ExitTag post = 〈pre.count, pre.transfersLeft,

pre.nlP, true〉;
} while (!cas(&pred nd→exit, pre, post));
if (FREEABLE(post)) free(pred nd);

}

Figure 10: Helper procedures for queue

6. CONCLUDING REMARKS
We have presented a lock-free, cas-based, 64-bit-clean

ll/sc implementation that improves on the only previous
one by substantially reducing space requirements, as well as
eliminating the need for advance knowledge of the number of
threads that will access it. We have also presented the first
lock-free 64-bit-clean FIFO queue and freelist implementa-
tions that do not require advance knowledge of the number
of threads or impose a maximum size on the data structure:
their space usage adapts to current requirements. All of
these factors are important for portability and practicality.

The difficulty of achieving lock-free 64-bit-clean imple-
mentations of such mundane data structures strongly sug-
gests that improved hardware support is necessary before
practical lock-free data structures will be widely available.
However, we do not believe that 128-bit synchronization
primitives are sufficient to achieve this goal; we need syn-
chronization primitives that allow atomic access to multiple,
independent memory locations.

7. REFERENCES
[1] Java Specification Request for Concurrent Utilities

(JSR166). http://jcp.org.

[2] J. Anderson and M. Moir. Universal constructions for
large objects. IEEE Transactions on Parallel and
Distributed Systems, 10(12):1317–1332, 1999.

[3] J. Chase, M. Baker-Harvey, H. Levy, and
E. Lazowska. Opal: A single address space system for
64-bit architectures (abstract). Operating Systems
Review, 26(2):9, 1992.

[4] D. Dice and A. Garthwaite. Mostly lock-free malloc.
In Proceedings of the ACM SIGPLAN International
Symposium on Memory Management, 2002.

[5] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124–149, 1991.

[6] M. Herlihy, V. Luchangco, P. Martin, and M. Moir.
Dynamic-sized lock-free data structures. In
Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing, page 131, July
2002.

[7] M. Herlihy, V. Luchangco, and M. Moir. The repeat
offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures. In
Proceedings of 16th International Symposium on
Distributed Computing, Oct. 2002.

[8] M. Herlihy, V. Luchangco, and M. Moir. Space- and
time-adaptive nonblocking algorithms. In Proceedings
of Computing: The Australasian Theory Symposium,
2003.

[9] M. Herlihy and J. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions
on Programming Languages and Systems,
12(3):463–492, Nov. 1990.

[10] P. Jayanti and S. Petrovic. Efficient and practical
constructions of LL/SC variables. In Proceedings of
the 22nd Annual ACM Symposium on the Principles
of Distributed Computing, July 2003.

[11] M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Transactions
on Parallel and Distributed Systems, 15(8), Aug. 2004.

38



A preliminary version appeared in Proceedings of the
21st Annual ACM Symposium on Principles of
Distributed Computing, 2002.

[12] M. Michael. Scalable lock-free dynamic memory
allocation. In Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and
Implementation, June 2004.

[13] M. Michael and M. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared
memory multiprocessors. Journal of Parallel and
Distributed Computing, 51(10):1–26, 1998.

[14] MIPS R4000 Microprocessor User’s Manual. MIPS
Computer Systems, Inc., 1991.

[15] M. Moir. Practical implementations of non-blocking
synchronization primitives. In Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed
Computing, pages 219–228, 1997.

[16] PowerPC 601 RISC Microprocessor User’s Manual.
Motorola, Inc., 1993.

[17] S. Prakash, Y. Lee, and T. Johnson. A non-blocking
algorithm for shared queues using compare-and-swap.
IEEE Transactions on Computers, 43(5):548–559,
1994.

[18] R. L. Sites. Alpha Architecture Reference Manual.
Digital Press and Prentice-Hall, 1992.

[19] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, 1986.

[20] J. Valois. Implementing lock-free queues. In
Proceedings of the 7th International Conference on
Parallel and Distributed Computing Systems, Oct.
1994.

[21] D. Weaver and T. Germond. The SPARC Architecture
Manual Version 9. PTR Prentice Hall, 1994.

39


