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Abstract. A mutual exclusion algorithm is presented that has four
desired properties: (1) it satisfies FIFO fairness, (2) it satisfies local-
spinning, (3) it is adaptive, and (4) it uses finite number of bounded size
atomic registers. No previously published algorithm satisfies all these
properties. In fact, it is the first algorithm (using only atomic registers)
which satisfies both FIFO and local-spinning, and it is the first bounded
space algorithm which satisfies both FIFO and adaptivity.
All the algorithms presented are based on Lamport’s famous Bakery
algorithm [27], which satisfies FIFO, but uses unbounded size registers
(and does not satisfy local-spinning and is not adaptive). Using only one
additional shared bit, we bound the amount of space required by the
Bakery algorithm by coloring the tickets taken in the Bakery algorithm.
The resulting Black-White Bakery algorithm preserves the simplicity and
elegance of the original algorithm, satisfies FIFO and uses finite number
of bounded size registers. Then, in a sequence of steps (which preserve
simplicity and elegance) we modify the new algorithm so that it is also
adaptive to point contention and satisfies local-spinning.

1 Introduction

Motivation and results

Several interesting mutual exclusion algorithms have been published in recent
years that are either adaptive to contention or satisfy the local-spinning property
[3, 4, 6, 7, 9, 10, 14, 21, 24, 34, 37, 41, 44]. (These two important properties are de-
fined in the sequel.) However, each one of these algorithms either does not satisfy
FIFO, uses unbounded size registers, or uses synchronization primitives which
are stronger than atomic registers. We presents an algorithm that satisfies all
these four desired properties: (1) it satisfies FIFO fairness, (2) it is adaptive, (3)
it satisfies local-spinning, and (4) it uses finite number of bounded size atomic
registers. The algorithm is based on Lamport’s famous Bakery algorithm [27].

The Bakery algorithm is based on the policy that is sometimes used in a
bakery. Upon entering the bakery a customer gets a number which is greater
than the numbers of other customers that are waiting for service. The holder
of the lowest number is the next to be served. The numbers can grow without
bound and hence its implementation uses unbounded size registers.



Using only one additional shared bit, we bound the amount of space required
in the Bakery algorithm, by coloring the tickets taken in the original Bakery al-
gorithm with the colors black and white. The new algorithm, which preserves the
simplicity and elegance of the original algorithm, has the following two desired
properties, (1) it satisfies FIFO: processes are served in the order they arrive,
and (2) it uses finite number of bounded size registers: the numbers taken by
waiting processes can grow only up to n, where n is the number of processes.

Then, in a sequence of steps which preserve simplicity and elegance, we mod-
ify the new algorithm so that it satisfies two additional important properties.
Namely, it satisfies local-spinning and is adaptive to point contention. The re-
sulting algorithm, which satisfies all theses four properties, is the first algorithm
(using only atomic registers) which satisfies both FIFO and local-spinning, and
it is the first bounded space algorithm which satisfies both FIFO and adaptivity.

Mutual exclusion

The mutual exclusion problem is to design an algorithm that guarantees mutu-
ally exclusive access to a critical section among a number of competing processes
[Dij65]. It is assumed that each process is executing a sequence of instructions in
an infinite loop. The instructions are divided into four continuous sections: the
remainder, entry, critical and exit. The problem is to write the code for the entry
and the exit sections in such a way that the following two basic requirements
are satisfied (assumed a process always leaves its critical section),

Mutual exclusion: No two processes are in their critical sections at the same
time.
Deadlock-freedom: If a process is trying to enter its critical section, then some
process, not necessarily the same one, eventually enters its critical section.

A stronger liveness requirement than deadlock-freedom is,

Starvation-freedom: If a process is trying to enter its critical section, then
this process must eventually enter its critical section.

Finally, the strongest fairness requirement is FIFO. In order to formally define
it, we assume that the entry section consists of two parts. The first part, which
is called the doorway, is wait-free: its execution requires only bounded number of
atomic steps and hence always terminates; the second part is a waiting statement:
a loop that includes one or more statements. A waiting process is a process that
has finished the doorway code and reached the waiting part in its entry section.

First-in-first-out (FIFO): No beginning process can pass an already waiting
process. That is, a process that has already passed through its doorway will enter
its critical section before any process that has just started.

Notice that FIFO does not imply deadlock-freedom. (It also does not exactly
guarantee bounded bypass, [32] pages 277 and 296.) Throughout the paper, it
is assumed that there may be up to n processes potentially contending to enter
their critical sections. Each of the n processes has a unique identifier which is a



positive integer taken from the set {1, ..., n}, and the only atomic operations on
the shared registers are reads and writes.

Local-spinning

All the mutual exclusion algorithms which use atomic registers (and many al-
gorithms which use stronger primitives) include busy-waiting loops. The idea
is that in order to wait, a process spins on a flag register, until some other
process terminates the spin with a single write operation. Unfortunately, under
contention, such spinning may generate lots of traffic on the interconnection net-
work between the process and the memory. Hence, by consuming communication
bandwidth spin-waiting by some process can slow other processes.

To address this problem, it makes sense to distinguish between remote ac-
cess and local access to shared memory. In particular, this is the case in dis-
tributed shared memory systems where the shared memory is physically dis-
tributed among the processes. I.e., instead of having the “shared memory” in
one central location, each process “owns” part of the shared memory and keeps
it in its own local memory. For algorithms designed for such systems, it is im-
portant to minimize the number of remote access. That is, the number of times
a process has to reference a shared memory location that does not physically
resides on its local memory. In particular, we would like to avoid remote accesses
in busy-waiting loops.

Local-spinning: Local Spinning is the situation where a process is spinning on
locally-accessible registers. An algorithm satisfies local-spinning if it is possible
to physically distribute the shared memory among the processes in such a way
that the only type of spinning required is local-spinning.

The advantage of local-spinning is that it does not require remote accesses.
In the above definition, it does not make any difference if the processes have
coherent caches. In cache-coherent machines, a reference to a remote register
r causes communication if the current value of r is not in the cache. Since we
are interested in proving upper bounds, such a definition would only make our
results stronger. (Coherent caching is discussed in Section 4.)

Adaptive algorithms

To speed the entry to the critical section, it is important to design algorithms
in which the time complexity is a function of the actual number of contending
processes rather than a function of the total number of processes. That is, the
time complexity is independent of the total number of processes and is governed
only by the current degree of contention.

Adaptive algorithm: An algorithm is adaptive with respect to time complex-
ity measure ψ, if its time complexity ψ is a function of the actual number of
contending processes.



Our time complexity measures involve counting remote memory accesses. In
Section 4, we formally define time complexity w.r.t. two models: one that assumes
cache-coherent machines, and another that does not. Our algorithms are also
adaptive w.r.t. other common complexity measures, such as system response
time in which the longest time interval where some process is in its entry section
while no process is in its critical section is considered, assuming there is an upper
bound of one time unit for step time in the entry or exit sections and no lower
bound [38]. In the literature, adaptive, local-spinning algorithms are also called
scalable algorithms.

Two notions of contention can be considered: interval contention and point
contention. The interval contention over time interval T is the number of pro-
cesses that are active in T . The point contention over time interval T is the
maximum number of processes that are active at the same time in T . Our adap-
tive algorithms are adaptive w.r.t. both point and interval contention.

Related work

Dijksta’s seminal paper [15] contains the first statement and solution of the mu-
tual exclusion problem. Since than it has been extensively studied and numerous
algorithms have been published. Lamport’s Bakery algorithm is one of the best
known mutual exclusion algorithms [27]. Its main appeal lies in the fact that it
solves a difficult problem in such a simple and elegant way. All the new algo-
rithms presented in this paper are based on Lamport’s Bakery algorithm. For
comprehensive surveys of many algorithms for mutual exclusion see [8, 39].

The Bakery algorithm satisfies FIFO, but uses unbounded size registers. Few
attempts have been made to bound the space required by the Bakery algorithm.
In [43], the integer arithmetic in the original Bakery algorithm is replaced with
modulo arithmetic and the maximum function and the less than relation have
been redefined. The resulting published algorithm is incorrect, since it does not
satisfy deadlock-freedom. Also in [25], modulo arithmetic is used and the max-
imum function and the less than relation have been redefined. In addition, an
additional integer register is used. Redefining and explaining these two notions
in [25] requires over a full page and involve the details of another unbounded
space algorithm. The Black-White Bakery algorithms use integer arithmetic, and
do not require to redefine any of the notions used in the original algorithm.

Another attempt to bound the space required by the Bakery algorithm is
described in [40]. The algorithm presented is incorrect when the number of pro-
cesses n is too big; the registers size is bigger than 215 values; and the algorithm
is complicated. In [1], a variant of the Bakery algorithm is presents, which uses
3n +1 values per register (our algorithm requires only 2n+2 values per register).
Unlike the Bakery algorithm (and ours), the algorithm in [1] is not symmetric:
process pi only reads the values of the lower processes. It is possible to replace
the unbounded timestamps of the Bakery algorithm (i.e., taking a number) with
bounded timestamps, as defined in [22] and constructed in [16, 17, 20], however
the resulting algorithm will be rather complex, when the price of implementing
bounded timestamps is taken into account.



Several FIFO algorithms which are not based on the Bakery algorithm and
use bounded size atomic registers have been published. These algorithms are
more complex than the Black-White Bakery algorithm, and non of them is adap-
tive or satisfies local-spinning. We mention five interesting algorithms below. In
[26], an algorithm that requires n (3-valued) shared registers plus two shared bits
per process is presented. A modification of the algorithm in [26], is presented
in [29] which uses n bits per process. In [30, 31], an algorithm that requires five
shared bits per process is presented, which is based on the One-bit algorithm
that was devised independently in [12, 13] and [29]. In [42], an algorithm that
requires four shared bits per process is presented, which is based on a scheme
similar to that of [33]. Finally, in [2] a first-in-first-enabled solution to the `-
exclusion problem is presented using bounded timestamps. We are not aware
of a way to modify these algorithms, so that they satisfy adaptivity and local-
spinning.

In addition to [27], the design of the Black-White Bakery algorithm was
inspired by two other papers [18, 19]. In [18], an `-exclusion algorithm for the
FIFO allocation of ` identical resources is presented, which uses a single read-
modify-write object. The algorithm uses colored tickets where the number of
different colors used is only `+1, and hence only two colors are needed for mutual
exclusion. In [19], a starvation-free solution to the mutual exclusion problem that
uses two weak semaphores (and two shared bits) is presented.

Three important papers which have investigated local-spinning are [9, 21,
34]. The various algorithms presented in these papers use strong synchroniza-
tion primitives (i.e., stronger than atomic registers), and require only a constant
number of remote accesses for each access to a critical section. Performance stud-
ies done in these papers have shown that local-spinning algorithms scale well as
contention increases. More recent local-spinning algorithms using objects which
are stronger than atomic registers are presented in [24, 41], these algorithms
have unbounded space complexity. Local-spinning algorithms using only atomic
registers are presented in [4–6, 44], and a local-spinning algorithm using only
non-atomic registers is presented in [7], these algorithms do not satisfy FIFO.

The question whether there exists an adaptive mutual exclusion algorithm
using atomic registers was first raised in [36]. In [35], it is shown that is no such
algorithm when time is measured by counting all accesses to shared registers.
In [10, 14, 37] adaptive algorithms using atomic registers, which do not satisfy
local-spinning, are presented. In [4, 6], local-spinning and adaptive algorithms are
presented. None of these adaptive algorithms satisfy FIFO. In [3], an interesting
technique for collecting information is introduced, which enables to transform
the Bakery algorithm [27] into its corresponding adaptive version. The resulting
FIFO algorithm is adaptive, uses unbounded size registers and does not satisfy
local-spinning. We use this technique to make our algorithms adaptive.

The time complexity of few known adaptive and/or local-spinning non-FIFO
algorithms, and in particular the time complexity of [6], is better than the time
complexity of our adaptive algorithms. This seems to be the prices to be paid
for satisfying the FIFO property. We discuss this issue in details in Section 5.



2 Lamport’s Bakery Algorithm

We first review Lamport’s Bakery algorithm [27]. The algorithm uses a boolean
array choosing[1..n], and an integer array number[1..n] of unbounded size regis-
ters. The entries choosingi and numberi can be read by all the processes but can
be written only by process i. The relation “<” used in the algorithm on ordered
pairs of integers is the lexicographic order relation and is defined by [a, b] < [c, d]
if a < c, or if a = c and b < d. The statement await condition is used as an
abbreviation for while ¬condition do skip. The algorithm is given below.

Algorithm 1. The Bakery Algorithm: process i’s code

Shared variables:
choosing[1..n]: boolean array
number[1..n]: array of type {0, ...,∞}
Initially ∀i : 1 ≤ i ≤ n : choosingi = false and numberi = 0

1 choosingi := true /* beginning of doorway */
2 numberi := 1 + maximum({numberj | 1 ≤ j ≤ n})
3 choosingi := false /* end of doorway */
4 for j = 1 to n do
5 await choosingj = false
6 await (numberj = 0) ∨ ([numberj , j] ≥ [numberi, i])
7 od
8 critical section
9 numberi := 0 /* exit code */

As Lamport has pointed out, the correctness of the Bakery algorithm depends on
how the maximum is computed [28]. We assume a simple correct implementation
in which a process first reads into local memory all the n number registers, one
at a time, and then computes the maximum over these n values.

3 The Black-White Bakery Algorithm

Using only one additional shared bit, called color of type {black, white}, we
bound the amount of space required in the Bakery algorithm, by coloring the
tickets taken with the colors black and white. In the new algorithm, the numbers
of the tickets used can grow only up to n, where n is the number of processes.

The first thing that process i does in its entry section is to take a colored
ticket ticketi = (mycolori, numberi), as follows: i first reads the shared bit color,
and sets its ticket’s color to the value read. Then, it takes a number which is
greater than the numbers of the tickets which have the same color as the color
of its own ticket. Once i has a ticket, it waits until its colored ticket is the lowest
and then it enters its critical section. The order between colored tickets is defined
as follows: If two tickets have different colors, the ticket whose color is different
from the value of the shared bit color is smaller. If two tickets have the same



color, the ticket with the smaller number is smaller. If tickets of two processes
have the same color and the same number then the process with the smaller
identifier enters its critical section first. Next, we explain when the shared color
bit is written. The first thing that a process i does when it leaves its critical
section (i.e., its first step in the exit section) is to set the color bit to a value
which is different from the color of its ticket. This way, i gives priority to waiting
processes that hold tickets with the same color as the color of i’s ticket.

Until the value of the color bit is first changed, all the tickets have the same
color, say white. The first process to enter its critical section flips the value
of the color bit (i.e., changes it to black), and hence the color of all the new
tickets taken thereafter (until the color bit is modified again) is black. Next, all
the processes which hold white colored tickets enter and then exit their critical
sections one at a time until there are no processes holding white tickets in the
system. Only then the process with the lowest black ticket is allowed to enter its
critical section, and when it exits it changes to white the value of the color bit,
which gives priority to the processes with black tickets, and so on.

Three data structures are used: (1) a single shared bit named color, (2) a
boolean array choosing[1..n], and (3) an array with n entries where each entry
is a colored ticket which ranges over {black, white}×{0, ..., n}. We use mycolori

and numberi to designate the first and second components, respectively, of the
ordered pair stored in the ith entry.

Algorithm 2. The Black-White Bakery Algorithm: process i’s code

Shared variables:
color: a bit of type {black, white}
choosing[1..n]: boolean array
(mycolor, number)[1..n]: array of type {black, white} × {0, ..., n}
Initially ∀i : 1 ≤ i ≤ n : choosingi = false and numberi = 0,
the initial values of all the other variables are immaterial.

1 choosingi := true /* beginning of doorway */
2 mycolori := color
3 numberi := 1 + max({numberj | (1 ≤ j ≤ n) ∧ (mycolorj = mycolori)})
4 choosingi := false /* end of doorway */
5 for j = 1 to n do
6 await choosingj = false
7 if mycolorj = mycolori

8 then await (numberj = 0) ∨ ([numberj , j] ≥ [numberi, i]) ∨
(mycolorj 6= mycolori)

9 else await (numberj = 0) ∨ (mycolori 6= color) ∨
(mycolorj = mycolori) fi

10 od
11 critical section
12 if mycolori = black then color := white else color := black fi
13 numberi := 0



In line 1, process i indicates that it is contending for the critical section by
setting its choosing bit to true. Then it takes a colored ticket by first “taking”
a color (step 2) and then taking a number which is greater by one than the
numbers of the tickets with the same color as its own (step 3). For computing
the maximum, we assume a simple implementation in which a process first reads
into local memory all the n tickets, one at a time atomically, and then computes
the maximum over numbers of the tickets with the same color as its own.

After passing the doorway, process i waits in the for loop (lines 5–10), until
it has the lowest colored ticket and then it enters its critical section. We notice
that each one of the three terms in each of the two await statements is evaluated
separately. In case processes i and j have tickets of the same color (line 8), i
waits until it notices that either (1) j is not competing any more, (2) i has a
smaller number, or (3) j has reentered its entry section. (If two processes have
the same number then the process with the smaller identifier enters first.) In
case processes i and j have tickets with different colors (line 9), i waits until
it notices that either (1) j is not competing any more, (2) i has priority over j
because i’s color is different than the value of the color bit, or (3) j has reentered
its entry section.

In the exit code (line 12), i sets the color bit to a value which is different than
the color of its ticket, and sets its ticket number to 0 (line 13). The algorithm is
also correct if we replace the order of lines 11 and 12, allowing process i to write
the color bit immediately before it enters its critical section. We observe that
the order of lines 12 and 13 is crucial for correctness; and that without the third
clause in the await statement in line 9 the algorithm can deadlock. Although
the color bit is not a purely single-writer registers, there is at most one write
operation pending on it at any time.

The following lemma captures the effect of the tickets’ colors on the order in
which processes enter their critical sections. For lack of space all the proofs are
omitted from this abstract.

Lemma 1. Assume that at time t, the value of the color bit is c ∈ {black, white}.
Then, any process which at time t is in its entry section and holds a ticket with
a color different than c must enter its critical section before any process with a
ticket of color c can enter its critical section.

For example, if the value of the color bit is white, then no process with a white
ticket can enter its critical section until all the processes which hold black tickets
enter their critical sections. The following corollary follows immediately from
Lemma 1.

Corollary 1. Assume that at time t, the value of the color bit has changed from
c ∈ {black, white} to the other value. Then, at time t, every process that is in
its entry section has a ticket of color c.

The following theorem states the main properties of the algorithm.

Theorem 1. The Black-White Bakery Algorithm satisfies mutual exclusion,
deadlock-freedom, FIFO, and uses finite number of bounded size registers (each
of size one bit or log(2n + 2) bits).



4 Adaptive FIFO Algorithm with Bounded Space

In [3], a new object, called an active set was introduced, together with an im-
plementation which is wait-free, adaptive and uses only bounded number of
bounded size atomic registers. Notice that wait-freedom implies local spinning,
as a wait-free implementation must also be spinning-free. The authors of [3], have
shown how to transform the Bakery algorithm into its corresponding adaptive
version using the active set object. We use the same efficient transformation.

Active set: An active set S object supports the following operations:

– join(S): which adds the id of the executing process to the set S. That is,
when process i executes this operation the effect is to execute, S := S ∪ {i}.

– leave(S): which removes the id of the executing process from the set S. That
is, when process i executes this operation the effect is to execute, S := S−{i}.

– getset(S): which returns the current set of active processes. More formally,
the following two conditions must be satisfied,
• the set returned includes all the processes that have finished their last
join(S) before the current getset(S) has started, and did not start
leave(S) in the time interval between their last join(S) and the end of
the current getset(S).

• the set returned does not includes all the processes that have finished
their last leave(S) before the current getset(S) has started, and did
not start join(S) in the time interval between their last leave(S) and
the end of the current getset(S).

The implementation in [3] of the active set object is both wait-free and adaptive
w.r.t. the number of steps required. That is, the number of steps depends only on
the number of active processes – the number of processes that finished join(S)
and have not yet started leave(S). Next we transform the Black-white Bakery
algorithm into its corresponding adaptive version. The basic idea is to use an
active set object in order to identify the active processes and then to ignore
the other processes. The code of the adaptive Black-White Bakery algorithm
(Algorithm 3) is shown on the next page.

For computing the maximum, we assume that a process first reads into local
memory only the tickets of processes in S, one at a time atomically, and then
computes the maximum over numbers of the tickets with the same color as its
own. Algorithm 3 is adaptive only if we assume that spinning on a variable while
its value does not change, is counted only as one operation (i.e., only remote un-
cached accesses are counted.) In the next section we modify the algorithm so
that it is adaptive even without the above assumption.

In order to be able to formally claim that Algorithm 3 is adaptive, we need
to formally define time complexity. As discussed in the introduction, for certain
shared memory systems, it makes sense to distinguish between remote and local
access to shared memory. Shared registers may be locally-accessible as a result
of coherent caching, or when using distributed shared memory where shared
memory is physically distributed among the processors.



Algorithm 3.The Adaptive Black-White Bakery Algorithm: i’s code

Shared variables:
S: adaptive active set, initially S = ∅

color: a bit of type {black, white}
choosing[1..n]: boolean array
(mycolor, number)[1..n]: array of type {black, white} × {0, ..., n}
Initially ∀i : 1 ≤ i ≤ n : choosingi = false and numberi = 0,
the initial values of all the other variables are immaterial.

/* beginning of doorway */

1 join(S) /* S := S ∪ {i} */

2 choosingi := true

3 localS := getset(S)− {i} /* reads S into local variable */

4 mycolori := color

5 numberi := 1 + max({numberj | (j ∈ localS) ∧ (mycolorj = mycolori)})
6 choosingi := false

7 localS := getset(S)− {i} /* reads S into local variable */

/* end of doorway */

8 for every j ∈ localS do
9 await choosingj = false
10 if mycolorj = mycolori

11 then await (numberj = 0) ∨ ([numberj , j] ≥ [numberi, i]) ∨
(mycolorj 6= mycolori)

12 else await (numberj = 0) ∨ (mycolori 6= color) ∨
(mycolorj = mycolori) fi

13 od
14 critical section
15 if mycolori = black then color := white else color := black fi
16 numberi := 0
17 leave(S) /* S := S − {i} */

Remote access: We define a remote access by process p as an attempt to access
a memory location that does not physically resides on p’s local memory. The
remote memory location can either reside in a central shared memory or in
some other process’ memory.

Next, we define when remote access causes communication.

Communication: Two models are possible,

1. Distributed Shared Memory (DSM) Model: Any remote access causes com-
munication;

2. Coherent Caching (CC) Model: A remote access to register r causes commu-
nication if (the value of) r is not (the same as the value) in the cache. That



is, communication is caused only by a remote write access that overwrites a
different process’ value or by the first remote read access by a process that
detects a value written by a different process.

It is important to notice that spinning on a remote variable while its value does
not change, is counted only as one remote operation that causes communication
in the CC model, while it is counted as many operations that causes commu-
nication in the DSM model. Next we define time complexity. This complexity
measure is defined with respect to either the DSM Model or the CC model, and
whenever it is used, we will say explicitly which model is assumed.

Time complexity: The maximum number of remote accesses which cause com-
munication that a process, say p, may need to perform in its entry and exit sec-
tions in order to enter and exit its critical section since p started executing the
code of its entry section.

Theorem 2. Algorithm 3 satisfies mutual exclusion, deadlock-freedom, FIFO,
uses finite number of bounded size registers, and is adaptive w.r.t. time complex-
ity in the CC model.

Algorithm 3 is adaptive in the CC model, even if it is assumed that every write
access causes communication. The Bakery algorithm uses single-writer safe reg-
isters. Our adaptive algorithm requires using multi-writer registers and atomic
registers. The following results show that this is unavoidable.

Theorem 3 (Anderson and Kim [7]). There is no adaptive mutual exclusion
algorithms, in both the CC and the DSM models, if registers accesses are non-
atomic.

Theorem 4. There is no adaptive mutual exclusion algorithm, in both the CC
and the DSM models, using only single-writer registers.

Algorithm 3 is not adaptive w.r.t. time complexity in the DSM model, and it
does not satisfy local-spinning. This is due to the fact that in Algorithm 3 two
processes may spin on the same shared variable. Our next algorithm satisfies
these two additional properties: (1) it is adaptive also w.r.t. time complexity in
the DSM model, and (2) it satisfies local-spinning.

5 Adaptive and Local-spinning Black-White Bakery Alg.

We modify Algorithm 3, so that the new algorithm is: (1) adaptive w.r.t. time
complexity in the DSM model, (2) satisfies local-spinning, (3) satisfies FIFO,
and (4) uses bounded space. In Algorithm 3, process i may need to busy-wait
for another process, say j, in one of two cases:

1. Process i might need to wait until the value of choosingj changes (line 9).
2. Process i has lower priority than j and hence i has to wait until j exits its

critical section.



Algorithm 3 does not satisfy local-spinning since in each one of these two cases
process i waits by spinning on remote registers. To overcome this difficulty, in
Algorithm 4, process i uses two new single-reader shared bits, spin.ch[i, j] and
spin.nu[i, j], which are both assumed to be locally accessible for process i.

1. In the first case, instead of spinning on choosingj , process i spins locally on
spin.ch[i, j], waiting for j to notify it that the value of choosingj has been
changed. Process j notifies i of such a change by writing into spin.ch[i, j].

2. In the second case, instead of waiting for j to exit its critical section by spin-
ning on the variables numberj , color and mycolorj , process i spins locally
on spin.nu[i, j], waiting for j to notify it that j has exited its critical section.
Process j notifies i when it exits by writing into spin.nu[i, j].

To implement all the (single-reader) spin bits, we use the two dimensional arrays
spin.ch and spin.nu. To keep the algorithm adaptive we use one active set S
which records at any moment the set of active processes. As in Algorithm 3, a
process uses S in order to know which processes are concurrent with it when it
either takes a number or when it compares its ticket with the tickets of the other
active processes. In addition, in Algorithm 4, the adaptive active set S is used to
know which are the waiting processes that need to be notified of a change in one
of the shared variables. The code of the adaptive and local-spinning Black-White
Bakery algorithm (Algorithm 4) is shown on the next page.

Theorem 5. Algorithm 4 satisfies mutual exclusion, deadlock-freedom, FIFO,
uses finite number of bounded size registers, is adaptive w.r.t. time complexity
in the DSM model, and satisfies local-spinning.

The time complexity in the CC model of both Algorithms 3 and Algorithm 4,
is dominated by the complexity of the active set, and is O(max(k, comp.S)),
where k is the point contention and comp.S is the step complexity of the ac-
tive set. Since Algorithm 3 does not satisfy local-spinning its time complexity in
the DSM model is unbounded, however, the time complexity of Algorithm 4 is
O(max(k, comp.S)) also in the DSM model. The step complexity of the active
set implementation from [3] is O(k4). However, a more efficient implementation
exists which has only O(k2) step complexity [11, 23]. (This is an implementation
of collect which is a stronger version of active set.) Thus, using this implemen-
tation, the time complexity of Algorithm 4 is O(k2) for both the CC and DSM
model, where k is the point contention. As already mentioned, few other adaptive
algorithms which do not satisfy FIFO have better time complexity.

The time complexity of the algorithm in [6] is O(min(k, log n)) for both the
CC and DSM model, where k is point contention (this is also its system response
time). The time complexity of the algorithm in [4] is O(min(k2, k log n)) for both
the CC and DSM model, however here k is interval contention. The time com-
plexity of the algorithm in [3] is O(k4) for the CC mode, and since it does not
satisfy local-spinning its time complexity in the DSM model is unbounded. The
time complexity of the algorithm in [14] for the CC model is O(N), however its
system response time is O(k). In [10], it is assumed that busy-waiting is counted



as a single operation (even if the value of the lock changes several times while
waiting). The step complexity of the algorithm in [10] is O(k) and its system
response time is O(log k). The system response time of the algorithm in [37]
(which works for infinitely many processes) is O(k).

Algorithm 4. The Adaptive and Local-spinning Black-White Bakery
Algorithm: process i’s code

Shared variables:
S: adaptive active set, initially S = ∅
spin.ch[1..n, 1..n]: two dimensional boolean array /*spin on choosing*/
spin.nu[1..n, 1..n]: two dimensional boolean array /* spin on number */
color: a bit of type {black, white}
choosing[1..n]: boolean array
(mycolor, number)[1..n]: array of type {black, white} × {0, ..., n}
Initially ∀i : 1 ≤ i ≤ n : choosingi = false and numberi = 0,
the initial values of all the other variables are immaterial.

/* beginning of doorway */
1 join(S) /* S := S ∪ {i} */
2 choosingi := true
3 localS := getset(S)− {i} /* reads S into local variable */
4 mycolori := color
5 numberi := 1 + max({numberj | (j ∈ localS) ∧ (mycolorj = mycolori)})
6 choosingi := false
7 localS := getset(S)− {i} /* notifyAll that choosingi has changed */
8 for every j ∈ localS do spin.ch[j, i] := false od

/* end of doorway */
9 for every j ∈ localS do
10 spin.ch[i, j] := true /* waits until choosingi = false */
11 if choosingj = true then await spin.ch[i, j] = false fi
12 spin.nu[i, j] := true /* writes first to avoid race cond. */
13 if mycolorj = mycolori /* waits until i has priority over j */
14 then if (numberj = 0) ∨ ([numberj , j] ≥ [numberi, i]) ∨

(mycolorj 6= mycolori)
15 then skip else await spin.nu[i, j] = false fi
16 else if (numberj = 0) ∨ (mycolori 6= color) ∨ (mycolorj = mycolori)
17 then skip else await spin.nu[i, j] = false fi
18 fi
19 od
20 critical section
21 if mycolori = black then color := white else color := black fi
22 numberi := 0
23 leave(S) /* S := S − {i} */
24 localS := getset(S) /* notifyAll of i’s exit */
25 for every j ∈ localS do spin.nu[j, i] := false od
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