
Reasoning with Logical BilatticesOfer Arieli and Arnon AvronDepartment of Computer Science,School of Mathematical SciencesTel-Aviv UniversityRamat-Aviv 69978, Israel.Email: fofera,aag@math.tau.ac.ilAbstract. The notion of bilattice was introduced by Ginsberg, and further examined by Fitting,as a general framework for many applications. In the present paper we develop proof systems,which correspond to bilattices in an essential way. For this goal we introduce the notion of logicalbilattices. We also show how they can be used for e�cient inferences from possibly inconsistentdata. For this we incorporate certain ideas of Kifer and Lozinskii, which happen to suit well thecontext of our work. The outcome are paraconsistent logics with a lot of desirable properties 1.1. IntroductionWhen using multiple-valued logics, it is usual to order the truth values in a latticestructure. In most cases such a partial order intuitively re
ects di�erences in the\measure of truth" that the lattice elements are supposed to represent. There exist,however, other intuitive criteria of ordering that might be useful. Another reason-able ordering might re
ect, for example, di�erences in the amount of knowledgeor in the amount of information that each of these elements exhibits. Obviously,therefore, there might be cases in which two partial orders, each re
ecting a di�er-ent intuitive concept, might be useful. This, for example, has been the case withBelnap's famous four-valued logic [7, 8]. Belnap's logic was generalized in [20],where Ginsberg introduced the notion of bilattices , which are algebraic structuresthat contain two partial orders simultaneously (see de�nition 2.1). His motivationwas to present a general framework for many applications, like truth maintenancesystems and default inferences. The notion was further investigated and appliedfor logic programming and other purposes by Fitting [13, 14, 15, 16, 17, 18].In all of their applications so far, the role of bilattices was algebraic in nature.In this paper we try to carry bilattices to a new stage in their development byconstructing logics (i.e.: consequence relations) which are based on bilattices, aswell as corresponding proof systems. For this purpose we have found it useful tointroduce and investigate the notion of a logical bilattice. (All the known bilatticeswhich were actually proposed for applications in the literature fall under this cat-egory). The general logic of these bilattices turned out to have a very nice prooftheory. We also show how to use logical bilattices in a more speci�c way for non-1 A preliminary version of this paper appears in [1].



2 Ofer Arieli and Arnon Avronmonotonic reasoning and for e�cient inferences from inconsistent data (these were,respectively, the original purposes of Belnap and Ginsberg). For this we incorpo-rate certain ideas from [23]. We show (so we believe) that bilattices provide abetter framework for applying these ideas than the one used in the original paper.The paper is organized as follows: In the next section we introduce and inves-tigate the notion of logical bilattice. In section 3 we investigate (from semanticaland proof-theoretical points of view) the general logic that is naturally associatedwith them. This logic is monotonic and paraconsistent. In section 4 we consider are�ned consequence relation which is shown to be non-monotonic, and very usefulfor reasoning in the presence of inconsistency.2. Logical Bilattices2.1. Bilattices - General BackgroundDe�nition 2.1. A bilattice is a structure B = (B;�t;�k;:) such that B is anon empty set containing at least two elements; (B;�t), (B;�k) are complete2lattices; and : is a unary operation on B that has the following properties:1. if a�t b, then :a�t:b,2. if a�k b, then :a�k :b,3. ::a=a.Following Fitting, we shall use ^ and _ for the lattice operations which corre-spond to �t, and 
, � for those that correspond to �k. While ^ and _ can beassociated with their usual intuitive meanings of \and" and \or", one may under-stand 
 and � as the \consensus" and the \gullibility" (\accept all") operators,respectively; p
 q is the most that p and q can agree on, while p� q accepts thecombined knowledge of p with that of q (see also [15, 18]). A practical applicationof 
 and � is provided, for example, in an implementation of a logic programminglanguage designed for distributed knowledge-bases (see [16] for more details).Note that negation is order preserving w.r.t �k. This re
ects the intuition that�k corrsponds to di�erences in our knowledge about formulae and not to theirdegrees of truth. Hence, while one expects negation to invert the notion of truth,the role of negation w.r.t. �k is somewhat less transparent: we know no more andno less about :p than we know about p (see [20, p.269], and [14, p.239], for furtherdiscussion).2 This is Ginsberg's original de�nition in [20]. Some authors have dropped this requirement ofcompletion. We have retained it since we need it in section 3.5, but apart of that section all ourresults are valid without this assumption. f_jlli.tex; 20/06/1996; 11:19; no v.; p.3



Reasoning with Logical Bilattices 3We will denote by f and by t the least element and the greatest element (respec-tively) of B w.r.t �t, while ? and > will denote the least element and the greatestelement of B w.r.t �k 3. f; t;?, and > are all di�erent by lemma 2.5(a) below,and by the fact that a bilattice contains at least two elements.De�nition 2.2. A bilattice is called distributive [20] if all the twelve possibledistributive laws concerning ^, _, 
, and � hold 4. It is called interlaced [14] ifeach one of ^, _, 
, and � is monotonic with respect to both �t and �k .Lemma 2.3. [14] Every distributive bilattice is interlaced.Example 2.4. Figures 1 and 2 contain double Hasse diagrams of some usefulbilattices. In these diagrams y is an immediate �t-successor of x i� y is on theright side of x, and there is an edge between them; similarly, y is an immediate�k-successor of x i� y is above x, and there is an edge between them.Belnap's FOUR [7, 8], drawn in �gure 1, is the smallest bilattice. It easy tocheck that FOUR is distributive. Ginsberg's DEFAULT (�gure 2) was introducedin [20] as a tool for non-monotonic reasoning. The truth values that have a pre�x\d" in their names are supposed to represent values of default assumptions (dt =true by default; etc.). It easy to verify that :df = dt; :dt = df ; :d> = d>. Thenegations of >; t; f;? are identical to that of FOUR (see lemma 2.5(a) below).This bilattice is not even interlaced 5; NINE (�gure 1), on the other hand, isdistributive, and it contains the default values of DEFAULT . In addition, NINEhas two more truth values, ot and of , where :of=ot and :ot=of .Lemma 2.5. Let B = (B;�t;�k;:) be a bilattice, and let a; b2B.a) [20] :(a b̂) = :a_:b; :(a_b) = :a^:b; :(a
b) = :a
:b; :(a�b) = :a�:b.Also, :f= t; :t=f ; :?=?; :>=>.b) [16] If B is interlaced, then: ?^>=f ; ?_>= t; f
t=?; f�t=>.De�nition 2.6. [20] Let (L,�) be a complete lattice. The structure L�L=(L�L,�t,�k,:) is de�ned as follows:(y1; y2) �t (x1; x2) i� y1�x1 and y2�x2,(y1; y2) �k (x1; x2) i� y1�x1 and y2�x2,:(x1; x2) = (x2; x1).Lemma 2.7. Let (L,�) be a complete lattice. Then:a) [14] L�L is an interlaced bilattice.b) [20] If L is distributive, then so is L�L.3 ? and > could be thought of as representing no information and inconsistent knowledge,respectively.4 In�nitary laws have also been considered in the literature (see, e.g., [17, de�nition 3.3]). Inthis paper we do not use such laws. They might be more useful when we enter more deeply toquanti�cation theory in the future.5 For example, f <t df , while f
d>=d>>t df=df
 d>.f_jlli.tex; 20/06/1996; 11:19; no v.; p.4
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-tu?uf u tu>������@@@@@@������@@@@@@ 6k

-tu?udf u dtuf ud> u tuof u otu>������@@@@@@������@@@@@@������@@@@@@Fig. 1. FOUR and NINE6k
-tu?udf u dtud>uf u tu>������HHHHHHAAAAAA���@@@HHHHHH������@@@���������Fig. 2. DEFAULTL�L was introduced in [20], and later examined by Fitting as a general methodfor constructing bilattices. A truth value (x; y)2L�Lmay intuitively be understoodso that x represents the amount of belief for an assertion, and y is the degree ofbelief against it.Example 2.8. Denote the standard two valued structure f0,1g by TWO. ThenFOUR is isomorphic to TWO�TWO. Similarly, NINE is isomorphic to f�1; 0; 1g�f�1; 0; 1g.We conclude this introductory part by considering another bilattice operation,and a corresponding family of bilattices:f_jlli.tex; 20/06/1996; 11:19; no v.; p.5



Reasoning with Logical Bilattices 5De�nition 2.9. [15] A con
ation, �, is a unary operation on a bilattice B thathas the following properties:1. if a�k b then �a�k�b,2. if a�t b then �a�t�b,3. ��a=a,4. �:a=:� a 6.Lemma 2.10. [15] Let B = (B;�t;�k;:) be a bilattice, and let a; b2B.�(a^b) = �a^�b; �(a_b) = �a_�b; �(a
b) = �a��b; �(a�b) = �a
�b.Also, �f =f ; �t= t; �?=>; �>=?.De�nition 2.11. [18] A bilattice with a con
ation is called classical , if for everyb2B, b_�:b= t 7.Example 2.12. FOUR is a classical bilattice (where \�" is de�ned according tolemma 2.10).Classical bilattices were presented is order to allow analogues of classical tautolo-gies. In particular, in classical bilattices it is really the combination �: that playsthe role of classical negation.2.2. Bifilters and LogicalityOne of the most important component in a many-valued logic is the subset of thedesignated truth values. This subset is used for de�ning validity of formulae anda consequence relation. Frequently, in an algebraic treatment of the subject, theset of the designated values forms a �lter, or even a prime (ultra-) �lter, relativeto some natural ordering of the truth values. Natural analogues for bilattices of�lters, prime �lters, ultra�lters, and set of designated values in general, are thefollowing:De�nition 2.13.a) A bi�lter of a bilattice B=(B;�t;�k) is a nonempty subset F�B, F 6=B, suchthat:a^b2F i� a2F and b2Fa
b2F i� a2F and b2Fb) A bi�lter F is called prime, if it satis�es also:a_b2F i� a2F or b2Fa�b2F i� a2F or b2Fc) Let B be a bilattice with a con
ation. F is an ultrabi�lter in B, if it is a primebi�lter, and b2F i� �:b 62F .6 This requirement is not part of Fitting's original de�nition. Nevertheless, it is usually assumedwhen dealing with bilattices that have con
ation, and useful for our purposes.7 In the original de�nition of classical bilattice, Fitting requires that the bilattice would bedistributive. This requirement is not essential for the present treatment of such bilattices.f_jlli.tex; 20/06/1996; 11:19; no v.; p.6
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Fig. 3. FIVEExample 2.14. FOUR and DEFAULT contain exactly one bi�lter: f>; tg, whichis prime in both, and an ultrabi�lter in FOUR. f>; tg is also the only bi�lter ofFIVE (�gure 3), but it is not prime there: d>_?= t, while d> 62F , and ? 62F .NINE contains two bi�lters: f>; ot; tg, as well as f>; ot; t; of; d>; dtg; both areprime, but neither is an ultrabi�lter.Proposition 2.15. (Basic properties of bi�lters) Let F be a bi�lter of B; Then:a) F is upward-closed w.r.t both �t and �k .b) t;> 2 F , while f;? 62 F .c) In classical bilattices every prime bi�lter is also an ultrabi�lter.Proof: Claim (a) follows immediately from the de�nition of F ; the �rst part of (b)follows from (a), and from the maximality of t and >; the fact that the minimalelements are not in F follows also from (a), since F 6=B. Finally, part (c) obtainssince on the one hand in every classical bilattice b_�:b= t2F , and since F is prime,either b2F or �:b2F . On the other hand, �:b^b=�:(b_�:b)=�:t=f 62F ,therefore �:b^b 62F , and so either b 62F or �:b 62F . 2De�nition 2.16. A logical bilattice is a pair (B;F), in which B is a bilattice, andF is a prime bi�lter on B.In the next section we shall use logical bilattices for de�ning logics in a waywhich is completely analogous to the way Boolean algebras and prime �lters areused in classical logic. The role which TWO has among Boolean algebras is takenhere by FOUR:Theorem 2.17. Let (B;F) be a logical bilattice. Then there exists a uniquehomomorphism h : B ! FOUR, such that h(b)2f>; tg i� b2F .f_jlli.tex; 20/06/1996; 11:19; no v.; p.7



Reasoning with Logical Bilattices 7Proof: It is immediate that the only function h : B ! FOUR that satis�es thecondition, and is also an homomorphism w.r.t negation, is the following one:h(b) def= 8>><>>: > if b2F and :b2Ft if b2F and :b 62Ff if b 62F and :b2F? if b 62F and :b 62FThis entails uniqueness. For existence, note �rst that h is obviously an homomor-phism w.r.t :. It remains to show that it is also a homomorphism w.r.t ^;_;
,and �.a) The case of ^:1. Suppose that a^b2F and :(a^b)2F . Then a2F and b2F . In addition,:(a^b)2F , hence :a_:b2F , and so :a2F or :b2F (since F is prime).It follows that fa;:ag�F or fb;:bg�F , hence either h(a)=> or h(b)=>.Since both h(a) and h(b) are in f>; tg, and >^>=>^t=>, it follows thath(a)^h(b)=>=h(a^b).2. If a^b 2 F but :(a^b) 62 F , then a 2 F and b 2 F , but :a_:b 62 F , andso neither :a nor :b are in F . It follows that h(a) = h(b) = t, so this timeh(a)^h(b)= t=h(a^b).3. Suppose that a^b 62F and :(a^b)2F . Then either :a2F or :b2F . Assume,e.g., that :a2F . If a 62F then h(a)=f and so h(a)^h(b)=f=h(a^b). If, onthe other hand, a2F , then h(a)=>. In addition b 62F (otherwise we wouldhave a^b2F), and so h(b)2ff;?g. Since in FOUR >^f=>^?=f , in thiscase h(a)^h(b)=f=h(a^b).4. Suppose that a^b 62 F and :(a^b) 62 F . Then :a 62 F , :b 62 F and eithera 62 F or b 62 F . It follows that either h(a) = ? or h(b) = ?. Assume, e.g.,the former. Since :b 62 F , then h(b) 2 ft;?g. But since ?^ t = ?^? = ?,h(a)^h(b)=?=h(a^b) in this case.b) The case of _:Since a_b=:(:a^:b), this case follows from the previous one.c) The case of 
:1. If a
b 2 F and :(a
b) 2 F , then since :(a
b) = :a
:b, we have thata; b;:a;:b2F , hence h(a)=h(b)=>, and so h(a)
h(b)=>
>=>=h(a
b).2. If a
b2F and :(a
b) 62F , then a2F , b2F , and either :a 62F or :b 62F .It follows that both h(a) and h(b) are in f>; tg, and at least one of them is t.hence, h(a)
h(b)= t=h(a
b). f_jlli.tex; 20/06/1996; 11:19; no v.; p.8



8 Ofer Arieli and Arnon Avron3. The case that a
b 62F and :(a
b)2F is similar to the previous one.4. If a
b 62F and :(a
b) 62F then either a 62F or b 62F , and also either :a 62For :b 62 F . Assume, e.g., that a 62 F . If also :a 62 F , then h(a) = ?, and soh(a)
h(b)=?=h(a
b). If, on the other hand, :a2F , then :b 62F , and sowe get that h(a)= f , and h(b)2ft;?g. Since in FOUR f
t= f
?=?, wehave again that h(a)
h(b)=?=h(a
b).d) The case of �:1. Assume that a�b2F and :(a�b)2F . Then a2F or b2F . Assume, e.g.,that a2 F ; then h(a)2 f>; tg. If in addition :a 2 F , then h(a) =>, and soh(a)�h(b) =>= h(a�b). Otherwise, :b2 F , and so h(b)2 f>; fg. Since inFOUR, >�>=>�t=>�f = t�f =>, we have that h(a)�h(b)=>=h(a�b).2. If a�b2F and :(a�b) 62F , then a2F or b2F , and neither :a nor :b are inF . It follows that h(a), h(b) are both in ft;?g, and at least on of then is t.Hence, h(a)�h(b)= t=h(a�b).3. The case that a�b 62F and :(a�b)2F is similar to the previous one.4. If a�b 62F and :(a�b) 62F , then a;:a; b;:b are all not in F , and so h(a)=h(b)=?. It follows that h(a)�h(b)=?=h(a�b). 2Note: For Boolean algebras we have, in fact, a weaker theorem: given x from aBoolean algebra B, and a �lter F�B s.t. x 62F, we have an homomorphism hx :B!TWO w.r.t :;^;_ s.t. hx(x) 62F(TWO), and hx(y)2F(TWO) for every y2F.In our case, the same h is good for all x. On the other hand, in Boolean algebraswe have the property that if x; y2B and x 6= y, then there is an homomorphismh :B!TWO which separates them. This further implies that equalities which holdin TWO are valid in any Boolean algebra. Logical bilattices and FOUR, in contrast,do not enjoy this property. Thus, the distributive law â (b_c)=(â b)_(â c) is validin FOUR, but not in every logical bilattice in general (take, e.g., DEFAULT ).De�nition 2.18. An ultralogical bilattice is a pair (B;F), where B is a bilatticewith a con
ation, and F is an ultrabi�lter on B.As it follows from proposition 2.15(c), ultralogical bilattices are natural exten-sions of Fitting's notion of classical bilattices. Also, thay have several similar prop-erties to those of logical bilattices. The next proposition is one such an instance(cf. theorem 2.17):Proposition 2.19. Let (B;F) be an ultralogical bilattice. Then there exists aunique homomorphism h : B ! FOUR, such that h(b)2f>; tg i� b2F .Proof: Similar to that of theorem 2.17. The only extra thing that we need to checkis the case of con
ation. Again, we shall examine the four possible cases:f_jlli.tex; 20/06/1996; 11:19; no v.; p.9



Reasoning with Logical Bilattices 91. h(b) = > ) b 2 F , :b 2 F ) �:b 62 F , �::b 62 F ) :�b 62 F , �b 62 F )h(�b)=?=�h(b).2. h(b) = t ) b 2 F , :b 62 F ) �:b 62 F , �::b 2 F ) :�b 62 F , �b 2 F )h(�b)= t=�h(b).3. h(b) = f ) b 62 F , :b 2 F ) �:b 2 F , �::b 62 F ) :�b 2 F , �b 62 F )h(�b)=f=�h(b).4. h(b) = ? ) b 62 F , :b 62 F ) �:b 2 F , �::b 2 F ) :�b 2 F , �b 2 F )h(�b)=>=�h(b). 2Since ultralogical bilattices seems to be quite rare 8, we shall concentrate inwhat follows on logical bilattices.Next we discuss the existence of bi�lters and prime bi�lters, concentrating onan important special case:De�nition 2.20. Let B be a bilattice. De�ne:� Dk(B) def= f x j x �k t g (designated values of B w.r.t �k)� Dt(B) def= f x j x �t > g (designated values of B w.r.t �t)Intuitively, each element of Dk(B) represents a truth value which is known tobe \at least true" ([8, p.36]). Hence it seems that Dk(B) is a particulary naturalcandidate to play the role of the set of the designated values of B.Example 2.21.a) Dk(FOUR) = Dt(FOUR) = f>; tg.b) Dk(FIVE) = Dt(FIVE) = f>; tg.c) Dk(DEFAULT ) = Dt(DEFAULT ) = f>; tg.d) Dk(NINE) = Dt(NINE) = f>; ot; tg.e) Dk(L�L) = Dt(L�L) = f (sup(L); x) j x 2 L g.Proposition 2.22. (Basic properties of Dk(B) and Dt(B))a) t;> 2 Dk(B), while f;? 62 Dk(B). The same is true for Dt(B).b) Dk(B)[ Dt(B) � F .Proof: The �rst part concerning Dk(B) of (a) is obvious. To see that f 62Dk(B),assume the countrary. Then f�k t and so also :f�k :t, which means that t�k f ,hence f= t. This entails that B contains just one element, but this contradicts thede�nition of a bilattice. An even simpler argumenet holds for ?. Claim (b) followsimmediately from proposition 2.15. 28 Even NINE with either one of its two prime bi�lters is not ultralogical bilattice.f_jlli.tex; 20/06/1996; 11:19; no v.; p.10



10 Ofer Arieli and Arnon AvronProposition 2.23. If Dk(B)=Dt(B), then Dk(B) is the smallest bi�lter (i.e: it iscontained in any other bi�lter).Proof: For every a; b 2 B, a^b 2 Dt(B) i� a^b �t >, i� a �t > and b �t >, i�a2Dt(B) and b2Dt(B). Similarly, a
b2Dk(B) i� a2Dk(B) and b2Dk(B). Hence,if Dk(B)=Dt(B) then Dk(B) is a bi�lter of B. That Dk(B) is the smallest bi�lterin this case follows from proposition 2.22(b). 2Notation 2.24.a)We shall sometimes write D(B) instead ofDk(B) or Dt(B) when Dk(B) = Dt(B).b) The pair (B;D(B)), when de�ned, will be denoted by hBi.Proposition 2.25. Let B be an interlaced bilattice. Then:a) Dk(B)=Dt(B).b) fb;:bg�D(B) i� b = >.Proof: Suppose that B is interlaced. Then:a) b�t> ) b^>=> ) b^>�k t ) b_(b^>)�k b_t ) b�k t: Similarly,b �k t ) b
 t = t ) b
 t �t > ) b� (b
 t) �t b�> ) b �t >. HenceDk(B) = Dt(B).b) If b=>, then b= :b=> �k t, hence fb;:bg 2 Dk(B). The other direction: iffb;:bg2Dk(B), then b�k t and :b�k t, hance b�k t and b=::b�k :t= f , andso b�k t�f => (see lemma 2.5(b)). But > is the greatest element w.r.t �k , henceb=>. 2Corollary 2.26. For every interlaced bilattice B, hBi is de�ned (In particular,hL�Li is de�ned for every complete lattice L).Proof: Follows from section (a) of the last proposition, and from proposition 2.23.2From the last corollary it follows that if B is interlaced, then hBi is a logical bilat-tice i� D(B) is prime. In fact, hBi is logical bilattice in all the examples whichwere actually used in the literature for constructive purposes. This is true even forhDEFAULT i, although it is not interlaced. hFIVEi, in contrast, is not a logicalbilattice.We next provide a su�cient and necessary conditions for D(B) to be prime in aparticularly important case. It will follow that logical bilattices are very common,and easily constructed:Proposition 2.27. If L is a complete lattice, then hL�Li is a logical bilattice i�sup(L) is join irreducible (i.e.: if a_b = sup(L), then a=sup(L) or b=sup(L)).f_jlli.tex; 20/06/1996; 11:19; no v.; p.11



Reasoning with Logical Bilattices 11Proof: Denote the suprimum of L by rL. Then:(() Assume that rL is join irreducible. Since L�L is interlaced, then by corollary2.26,D(L�L) is a bi�lter. It remains to show that it is also a prime bi�lter. Indeed,(x1; x2)_(y1; y2)2D(L�L) i� (x1_Ly1; x2^Ly2)2D(L�L) i� (x1_Ly1)=rL (seeexample 2.21(e)), i� x1=rL or y1=rL, i� (x1; x2)2D(L�L) or (y1; y2)2D(L�L).The proof in the case of � is similar.()) Assume that L�L is prime, and that x_y =rL for x; y2L. Take arbitraryz2L. Then, (x; z)_(y; z)= (x_y; z)= (rL; z)2D(L�L), hence (x; z)2D(L�L)or (y; z)2D(L�L). It follows that x=rL or y=rL (by example 2.21(e) again).2 Corollary 2.28.a) hFOURi ( � hf0; 1g�f0; 1gi ) and hNINEi ( � hf�1; 0; 1g�f�1; 0; 1gi ) areboth logical bilattices.b) More generally, if L is a chain, or if sup(L) has a unique predecessor, thenhL�Li is a logical bilattice.3. The Basic Logic of Logical Bilattices3.1. Syntax and SemanticsWe shall �rst treat the propositional case.De�nition 3.1.a) The language BL (Bilattice-based Language) is the standard propositional lan-guage over f^;_;:;
;�g.b) BL� is BL together with a unary connective, �, for con
ation.c)BL(4) (BL�(4)) is BL (BL�) enriched with the propositional constants ff; t;?;>g.d) Let (B;F) be a logical bilattice. BL(B) is BL enriched with a propositional con-stant for each element in B. We shall usually employ the same symbol and namefor each b2B and its corresponding propositional constant.Given a bilattice B = (B;�t;�k;:), perhaps with con
ation, the semanticnotion of a valuation in B for sentences in BL(B) is de�ned in the obvious way.The associated logics are also de�ned in the most natural way:De�nition 3.2.a) Let (B;F) be a logical bilattice. � j=BL(B;F) � (where �;� are �nite sets offormulae in BL(B)) i� for every valuation � such that �( )2F for every  2 �,there exists some �2� such that �(�)2F as well.b) Suppose that all the sentences in �[� are in the language BL (resp. in BL(4)).Then � j=BL� (resp. � j=BL(4)�), i� � j=BL(B;F)� for every (B;F).f_jlli.tex; 20/06/1996; 11:19; no v.; p.12



12 Ofer Arieli and Arnon AvronTwo important properties of j=BL are given in the following proposition:Proposition 3.3.a) j=BL has no tautologies.b) j=BL is paraconsistent: p;:p 6j=BLq.Proof:a) Let  be any sentence in BL, and suppose that � is a valuation (in FOUR, say)that assigns all the propositional variables in  the value ?. Then �( ) = ? aswell, so  is not valid.b) Set, e.g., �(p)=> and �(q)=f . 2Note that the �rst part of the last proposition fails in BL(4), since both t and> are valid.Our next theorem is an easy consequence of theorem 2.17. It shows that inorder to check consequence in any logical bilattice, it is su�cient to check it inhFOURi.Theorem 3.4. Let � and � be �nite sets of formulae in BL (in BL(4)). Then� j=BL� (� j=BL(4)�) i� � j=hFOURi�. 9Proof: One direction is trivial. For the other, suppose that for some logical bilat-tice (B;F), � 6j=BL(B;F)�, where �;� in BL(4). Let � be an assignment in B suchthat �( )2F if  2�, and �( ) 62F if  2�. Then h��, where h is the homomor-phism de�ned in theorem 2.17, is easily seen to be a valuation in FOUR with thesame properties, hence � 6j=hFOURi�. 2The next proposition, which provides a semi-CNF for formulae, will be neededlater.Proposition 3.5. Let (B;F) be a logical bilattice. For every sentence  in BL(B)one can construct a sentence  0, so that  0 is a ^-conjunction of _-disjunction ofliterals, and for every � over B, �( )2F i� �( 0)2F . If  is in BL(4) then thesame  0 is good for every logical bilattice (B;F).Proof: From the properties of negation it is obvious that for every sentence  wecan �nd a sentence  0 in a negation normal form (i.e. in  0 the negation precedesonly propositional variables), s.t. �( ) = �( 0) for every valuation �. It su�ces,therefore, to prove the proposition for sentences in a negation normal form. Thisis done by an induction on the number of operations in  (negation excluded): thecase where  is literal is obvious. If  = 1^ 2 or  = 1
 2, take  0= 01^ 02.9 There is a related, weaker theorem (10.5) in [18].f_jlli.tex; 20/06/1996; 11:19; no v.; p.13



Reasoning with Logical Bilattices 13Then for every �, �( )2F i� �( 1)2F and �( 2)2F , i� �( 01)2F and �( 02)2F ,i� �( 01^ 02)2F , i� �( 0)2F . Finally, suppose that  = 1_ 2 or  = 1� 2. Let 01=  011^ 021^ :::^ 0n1 and  02 = 012^ 022^ :::^ 0m2 (where  0ji are _-disjunctionof literals). Let  0=V1�i�n;1�j�m( 0i1W 0j2). Assume that �( )2F . Then either�( 1) 2 F or �( 2) 2 F . Assume, e.g., the former. Then �( 0i1) 2 F for every1� i�n, hence �( 0i1_ 0j2)2F for every i; j, and so �( 0)2F . For the converse,assume that �( ) 62F . Then both �( 1) and �( 2) are not in F , hence �( 0i1) and�( 0j2) are not in F for some i; j, and so �( 0i1_ 0j2) 62F . It follows that �( 0) 62F . 2Notes:1.  and  0 above are not equivalent, i.e: there may be some valuation �, s.t.�( ) 6=�( 0). All the proposition claims is that  and  0 are true with respectto the same valuations. 102. We could, of course, use 
 and � (or 
 and _, etc.) instead of ^ and _,without any change in the proof.3.2. Proof TheorySince j=BL does not have valid formulae, it cannot have a Hilbert-type represen-tation. However, there is a nice Gentzen-type formulation, which we shall callGBL (GBL(4)):The System GBL:Axioms: �;  )  ;�Ruls: Exchange, Contraction, and the following logical rules:[^)] �;  ; �) ��;  ^ �) � � ) �;  �) �; ��) �;  ^ � [)^][:^)] �;: ) � �;:�) ��;:( ^ �)) � �) �;: ;:��) �;:( ^ �) [):^][_)] �;  ) � �; �) ��;  _ �) � � ) �;  ; ��) �;  _ � [)_][:_)] �;: ;:�) ��;:( _ �)) � �) �;: �) �;:��) �;:( _ �) [):_]10 The situation is in some sense analogous to that of Skolemizing and satis�ability in �rstorder classical logic; The Skolemized version of a sentence is satis�able i� the original sentence issatis�able, but the two sentences are not equivalent.f_jlli.tex; 20/06/1996; 11:19; no v.; p.14



14 Ofer Arieli and Arnon Avron[
)] �;  ; �) ��;  
 �) � �) �;  �) �; ��) �;  
 � [)
][:
)] �;: ;:�) ��;:( 
 �)) � �) �;: �) �;:��) �;:( 
 �) [):
][�)] �;  ) � �; �) ��;  � �) � �) �;  ; ��) �;  � � [)�][:�)] �;: ) � �;:�) ��;:( � �)) � �) �;: ;:��) �;:( � �) [):�][:: )] �;  ) ��;:: ) � �) �;  �) �;:: [)::]In GBL(4) the following axioms are also included:�;:t) � �) �; t�; f ) � �) �;:f�;? ) � �) �;>�;:? ) � � ) �;:>The positive rules for ^ and 
 are identical. Both behave as classical conjunc-tion. The di�erence is with respect to the negations of p^q and p
q. Unlike theconjunction of classical logic, the negation of p
q is equivalent to :p
:q. Thisfollows from the fact that p�k q i� :p�k :q. The di�erence between _ and � issimilar.De�nition 3.6. � follows from � in GBL (notation: � `GBL �) if � ) � isprovable in GBL.Theorem 3.7.a) (Soundness and Completeness) � j=BL� i� �`GBL�.b) (Cut Elimination) If �1`GBL�1;  and �2;  `GBL�2, then �1;�2`GBL�1;�2.Proof: The soundness part is easy, and is left to the reader. We prove completenessand cut-elimination together by showing that if �)� has no cut-free proof then� 6j=BL�. The proof is by an induction on the complexity of the sequent �)�:� The base step: Suppose that �)� consists only of literals. If � and � havea literal in common then �)� is obviously valid (and is provable without cut),while if � and � have no literal in common, then consider the following assignment� in FOUR: f_jlli.tex; 20/06/1996; 11:19; no v.; p.15



Reasoning with Logical Bilattices 15�(p) def= 8>><>>: > if both p and :p are in �? if both p and :p are in �t if (p2� and :p 62�) or (p 62� and :p2�)f if (p 62� and :p2�) or (p2� and :p 62�)Obviously, this is a well de�ned valuation, which gives all the literals in � valuesin f>; tg, and all the literals in � values in f?; fg. Hence � refutes � ) � inhFOURi. Hence, � 6j=BL�.� The induction step: The crucial observation is that all the rules of the systemGBL are reversible, both semantically and proof-theoretically (a direct demonstra-tion in the proof-theoretical case requires cuts). There are many cases to considerhere. We shall treat in deltail only the case in which a sentence of the form  ^�is in �[�. Before doing so we note that the case in which a sentence of the form: belongs to � [ � should be split into the subcases  = :�,  = �1^�2, etc.(The case in which  =:p where p is atomic was already taken care of in the basestep).(i) Suppose that  ^� 2 �, i.e.: � = �0;  ^�. Consider the sequent �0;  ; �)�.By induction hypothesis, either �0;  ; �)� is provable without a cut (and then�0;  ^�)� is provable without cut, using [^)]), or else there is a valuation thatrefutes �0;  ; �)�. In the latter case the same valuation refutes �0;  ^�)� aswell.(ii) Suppose that  ^�2�, i.e.: �=�0;  ^�. Consider the sequents �)�0;  and�)�0; �. Again, either both have cut-free proofs, and then �)�0;  ^� also hasa proof without a cut (using [)^]), or there is an assignment that refutes eithersequent, and the same assignment refutes �)�0;  ^� as well. 2Notes:1. It is obvious from the proof that we can delete contraction from the list of therules, and restrict the axioms to the case that �;�;  ; and � contains onlyliterals.2. The f^;_;:g fragment of GBL was called \the basic f^;_;:g system" in [4],and was introduced there following a di�erent motivation. It had generallybeen known as the system of \�rst degree entailments" in relevance logic (see[2, 11]), since it is well known that  1; : : : ;  n ) �1; : : : ; �m is provable in it, i� 1^ : : :^ n ! �1_ : : :_�m is provable in the system R (or E) of Anderson andBelnap, i� �( 1^ : : :^ n) �t �(�1_ : : :_�m) for every valuation � in FOUR.It is not di�cult to show that this fragment of GBL is valid in any distributivelattice with an involution (\valid" { in the sense that  1; : : : ;  n ) �1; : : : ; �mis provable in GBL if �( 1)̂ : : : �̂( n) �t �(�1)_: : :_�(�m) for every valuation�). Hence we have an alternative soundness and completeness theorem relativeto these structures. f_jlli.tex; 20/06/1996; 11:19; no v.; p.16



16 Ofer Arieli and Arnon Avron3. In [5] it is shown that if we add �;: ;  ) � as an axiom to the f^;_;:g(or f^;_;:; f; tg) fragment of GBL, we get a sound and complete system forKleene 3-valued logic, while if we add � ) �;  ;: we get one of the basicthree-valued paraconsistent logics (Also known as basic J3 { see, e.g., chapterIX of [12] as well as [27, 28, 3, 29]). By adding both axioms, we get classicallogic.4. In order to add a con
ation to GBS one needs to expand it with addition-al rules for the left and right combination of � with ^;_;
;� and � (10new rules altogether). These rules are the duals of the corresponding rules ofnegation. For example,[�^)] �;� ;��;) ��;�( ^ �)) � [�
)] �;� ) � �;��) ��;�( 
 �)) �In addition, one should add four more rules for the combination of negationand con
ation:[�:)] �;) �;  �;�: ) � [)�:] �;  ) �� ) �;�: [:�)] �;) �;  �;:� ) � [)�:] �;  ) ��) �;:� Using theorem 2.19 it is straightforward to extend the proof of theorem 3.7to the case of ultralogical bilattices and the resulting systems. Note that inthe presence of con
ation we do have provable sequents of the form �) and)�.5. In order to get a sound and complete system for BL(B) for any logical bilatticeB, we have to add axioms to GBL for every b2B, according to the homomor-phism h of theorem 2.17. For example, if for some b2B h(b)= t, then we add�)�; b and �;:b)�.For the single-conclusioned fragment of j=BL we have a stronger result:De�nition 3.8. GBLI (Intuitionistic GBL) is the system obtained from GBL byallowing a sequent to have exactly one formula to the r.h.s of ), and by replacingthe rules which have more than one formula on their r.h.s (or empty r.h.s) by thecorresponding intuitionistic rules. GBLI (4) is de�ned similarly 11.For example, in GBLI , [)_] is replaced with the following two rules:�)  �)  _ � �) ��)  _ �In case of BL(4), all the axioms of the form b ) (where b 2 ff;:t;?;:?g) arereplaced by b)  for arbitrary  .11 Note that :: ) obtains in both new systems, so the analogy with intuitionistic logic isnot perfect. f_jlli.tex; 20/06/1996; 11:19; no v.; p.17



Reasoning with Logical Bilattices 17Theorem 3.9. � j=BL i� �`GBLI  . A similar result holds for BL(4).Proof: We start with two lemmas:Lemma 3.9a: Suppose that `GBL �)�, where � is not empty, and � consistsonly of literals. Then `GBLI �) for some  in � (note that if � is empty, then`GBLI �) for every  ).Proof of Lemma 3.9a: By an easy induction on the length of a cut-free proof of�)� in GBL: It is trivial in the case where �)� is an axiom. For the inductionstep we use the fact that since � consists of literals, all the rules employed are r.h.srules. We will prove the case of the rules for _ as an example:� Suppose that �=�0; �_� and �)� was inferred from �)�0; �; � . By inductionhypothesis either `GBLI �)�, or `GBLI �)� , or `GBLI �) , for some  2�0. Inthe third case we are done, while in the �rst two we infer `GBLI �)�_� using theintuitionistic rules for introduction of _.� Suppose that � = �0;:(�_�) and �) � was inferred from �) �0;:� and� ) �0;:� . By induction hypothesis either `GBLI � )  , for some  2 �0, inwhich case we are done, or both `GBLI �):� and `GBLI �):� . In this case,�):(� _ �) follows immediately by [):_].Lemma 3.9b: For every � there exist sets �i (i = 1 : : :n) s.t:1. For every i, �i consists of literals.2. For every �, `GBL�)� i� for every i, `GBL�i)�.3. For every � there is a cut-free proof of �)� from �i)� (i = 1 : : :n), where� is the r.h.s of all the sequents involved, and the only rules used are l.h.s rules.Proof of lemma 3.9b: By induction on the complexity of �, using the fact thatall the l.h.s rules of GBL are reversible, and their active formulae belong to thel.h.s of the premises.Proof of theorem 3.9: Assume that `GBL�) . Then `GBL�i) for the �i'sgiven in lemma 3.9b. Lemma 3.9a implies, then, that `GBLI �i) (i = 1 : : :n).The third property of �1; : : :�n in lemma 3.9b implies that `GBLI �)  , sinceGBLI and GBL have the same l.h.s rules. 2Notice that the last theorem is still true if we add �;  ;: ) � to the axiomsof GBL, and �;  ;: ) � to the axioms of GBLI . In contrast, the theorem failsif we add �)�;  ;: as an axiom, or the classical introduction rules of :, orimplication with the classical rules. That is why classical logic is not a conservativeextension of intuitionistic logic. This is also the reason why the theorem fails forthe conservative extension of GBL with the implication we introduce in the forth-f_jlli.tex; 20/06/1996; 11:19; no v.; p.18



18 Ofer Arieli and Arnon Avroncomming sections.We end this subsection with two other fundamental properties of j=BL:Theorem 3.10. (Monotonicity and Compactness) Let �;� be arbitrary sets offormulae in BL (possibly in�nite). De�ne � j=BL � exactly as in the �nite case.Then � j=BL � i� there exist �nite sets �0;�0 such that �0 � �, �0 � �, and�0 j=BL�0 (i� `GBL �0)�0).Proof: Suppose that �;� are sets for which no such �0;�0 exist. Construct arefuting � in FOUR as follows: �rst, extend the pair (�;�) to a maximal pair(��;��) with the same property. Then, for any  , either  2�� or  2�� (Other-wise, (��[f g;��) and (��;��[f g) do not have the property, and so there are�nite �0���, and �0��� such that �0;  j=BL�0 and there are �nite �00���, and�00��� such that �00 j=BL ;�00. It follows that �0[�00 j=BL�0[�00, contradictingthe de�nition of (��;��) ).De�ne � from the set of all sentences to FOUR as follows:�( ) def= 8>><>>: > if  2�� and : 2��t if  2�� and : 2��f if  2�� and : 2��? if  2�� and : 2��Obviously, �( )2 D(FOUR) for all  2 ��, while �( ) 62 D(FOUR) if  2��. Itremains to show that � is indeed a valuation (i.e. it respects the operations). Wewill prove the case of ^, leaving the other cases to the reader. For this, we �rstnote the following facts:1. If  2�� or �2��, then  ^�2��(Since  ^� j=BL and  ^� j=BL�,  ^� cannot be in ��)2. If  2 ��, then  ^ �2 �� (2��) i� �2 �� (2��). Similarly, If �2 ��, then ^ �2�� (2��) i�  2�� (2��).(Suppose that  2 ��. If also � 2 ��, then  ^� cannot be in ��, since ; � j=BL ^�, So  ^�2�� as well. If, on the other hand, �2��, then also ^�2��, by (1) ).3. If : 2�� or :�2��, then :( ^�)2�� (similar to (1)).4. If : 2�� then :( ^�)2�� i� :�2�� (similar to (2)).Using (1)-(4), it is straightforward to check that �( ^�) = �( )^�(�) for every ; �. For example, if �( ) = f then  2 �� and : 2 ��, thus, by (1) and (3), ^�2�� and :( ^�)2��. Hence �( ^�)=f=�( )^�(�) in this case. The othercases are handled similarly. 2 f_jlli.tex; 20/06/1996; 11:19; no v.; p.19



Reasoning with Logical Bilattices 19Theorem 3.11. (Interpulation) Suppose that �1;�2 ) �1;�2 is provable inBL(4). Then there exists a sentence  such that both �1 ) �1;  and  ;�2 ) �2are provable in BL(4), and  contains only atomic formulae which are common to�1 ) �1 and to �2 ) �2. In particular,  ) � i�  and � have an interpolant.Proof: By Maehera's method (see [33, chapter 1]). 23.3. The Symmetric Consequence RelationThe consequence relation, j=BL, as de�ned above, meets the symmetry conditionsfor :;^;_ as de�ned in [5]. It follows from the discussion there that it is possible tode�ne an associated symmetric consequence relation, j=sBL, for which proposition3.13 below will be valid:De�nition 3.12. The symmetric version, j=sBL, of j=BL, is de�ned as follows: 1; : : : ;  n j=sBL�1; : : : ; �m if:a) for every 1�j�m,  1; : : : ;  n;:�1; : : : ;:�j�1;:�j+1; : : : ;:�m j=BL�j ,b) for every 1� i�n,  1; : : : ;  i�1;  i+1; : : : ;  n;:�1; : : : ;:�m j=BL: i.Proposition 3.13. j=sBL has the following properties:a) j=sBL is a consequence relation in the extended sense of [4, 5]. In other words: j=sBL for every formula  , and if �1 j=sBL�1;  and �2;  j=sBL�2 (where �1, �2,�1 and �2 are multisets of formulae) then �1;�2 j=sBL�1;�2.b) If � j=sBL , then � j=BL .c) : is an internal negation with respect to j=sBL, i.e.: � j=sBL ;� i� �;: j=sBL�,and �;  j=sBL� i� � j=sBL: ;�.d) j=sBL is the maximal single-conclusioned consequence relation having properties(a)-(c).e) ^ and _ are, respectively, combining conjunction and disjunction for j=sBL:� j=sBL �̂;� i� � j=sBL ;� and � j=sBL�;�. Similarly, �;  _� j=sBL� i� �;  j=sBL�and �; � j=sBL�.f) j=BL and j=sBL have the same logical theorems. In other words, for any  , j=BL i� j=sBL 12.12 For the case of j=BL, but not j=BL(4), this holds in fact vacuously. The situation is di�erent,though, for the stronger language introduced below.f_jlli.tex; 20/06/1996; 11:19; no v.; p.20



20 Ofer Arieli and Arnon Avrong) From  j=sBL� and � j=sBL it follows that �( ) j=sBL�(�) and �(�) j=sBL�( )for every scheme � (The proof is by induction on the complexity of �).Notes:1. Similar symmetric versions, with similar properties, can be given, of course,to the other consequence relations de�ned in the previous section.2. The converse of property (b) above does not hold (unless � is empty, asin property (f)). Thus, p; q j=BL p but p; q 6j=sBL p (which shows also thatj=sBL is non-monotonic). Hence the single-conclusioned fragment of j=sBL isstrictly weaker then that of j=BL. Thus, j=sBL can be used to express strongerconnections than those allowed by j=BL.3. Both weakening and contraction fail for j=sBL. We have already seen an exam-ple for the failure of weakening. As for contraction, we note that j=sBL : _ ;: _  , but 6j=sBL : _  13. This demonstrates great similarity with lin-ear logic ([21]). In fact, : behaves exactly as linear negation, while ^ and _corresponds to the \additives" of linear logic. In the next subsection we willintroduce connectives which correspond to the \multiplicatives" of linear logicas well. On the other hand, there is nothing in linear logic which correspondsto either 
 or � 14.4. Property (g) above fails for j=BL. Thus, p_q j=BL p�q, and p�q j=BL p_q,but :(p�q) 6j=BL :(p_q). Moreover, for the implication � we introduce inthe next section, we have that p � p j=BL q � q and q � q j=BL p � p, while:(p � p) 6j=BL :(q � q). For the fragment of f:;^;_g we do have (g) as anadmissible rule. In other words, if  and � are in this fragment, and it isactually the case that  j=BL � and � j=BL  , then �( ) j=BL �(�). Thisfollows (using induction on the complexity of �) from the fact that for such  and �, if  j=BL � then :� j=BL: . However, this rule is not derivable: from )� and �) one cannot infer in GBL : ):�.3.4. Implication Connectives3.4.1. Weak ImplicationAs we have noted, j=BL and j=sBL correspond to di�erent degrees of entailmentbetween premises and conclusions. Being consequence relations they can be used,however, only as separated frameworks for making conclusions. It would be muchmore convenient to be able to treat them within one framework. For this we needappropriate implication connectives , which would correspond to those consequence13 This can directly be seen from the de�nition of j=sBL. It can also be inferred from 3.13(b),using only the fact that 6j=BL: _ .14 Clearly not the connectives which have the same notations in [21]!f_jlli.tex; 20/06/1996; 11:19; no v.; p.21



Reasoning with Logical Bilattices 21relations. In general, the existence of an appropriate implication connective is amajor requirement for a logic. First of all, it allows us to reduce questions ofdeducibility to questions of theoremhood, and to express the various consequencerelations among sentences by other sentences of the language. Moreover, higherorder rules (like: \if  entails � then not-� entails that not- ") can be expressedonly if we have a corresponding implication in our disposal. If more than oneconsequence relation is relevant, the use of corresponding implication connectivesallow us also to express higher-order connections among those relations.Unfortunately, the language BL, rich as it is, lacks an appropriate general impli-cation connectives (this is clear from the fact that it has no tautologies). We cantry to use : _� as expressing implication of � by  (henceforth we shall use ;for this connective), but this is not adequate, since both modus ponens and thededuction theorem fail for this connective. The natural thing to do, therefore, isto enrich the language of BL so that this problem will be eliminated. Again, [5]provides a clue how to get implication connectives that correspond to both j=BLand j=sBL, by adding only one connective. What we need is an internal implication,�, for j=BL, which satis�es the symmetry conditions for implication:� �;  j=BL�;� i� � j=BL � �;�.� If �;  ;:� j=BL� then �;:( � �) j=BL�.� If � j=BL ;� and � j=BL:�;�, then � j=BL:( � �);�.These conditions can easily be translated into rules of a sequential calculus.Therefore, it is easier to start by extending the language and the proof system,then to look for an appropriate semantics.De�nition 3.14.a) BL�; BL�(4); BL�(B) are the extensions of the various languages de�ned abovewith the connective �.b) GBL� (GBL�(4)) is obtained from GBL (GBL(4)) by the additions of the fol-lowing rules:[�)] �)  ;� �; �) ��;  � �) � �;  ) �;��)  � �;� [)�][:�)] �;  ;:�) ��;:( � �)) � �)  ;� �) :�;��) :( � �);� [):�]c) �`GBL�� i� �) � is provable in GBL�.
f_jlli.tex; 20/06/1996; 11:19; no v.; p.22



22 Ofer Arieli and Arnon AvronWe turn now to the semantics of �:De�nition 3.15.a) Given a logical bilatice (B;F), the operation � is de�ned as follows: 15a � b def= � b if a2Ft if a 62Fb) Using part (a), the consequence relation j=BL (j=BL(4)) is extended to j=BL�(j=BL�(4)) in the language BL� (BL�(4)) in the obvious way.Proposition 3.16. Both modus ponens and the deduction theorem are valid for� in j=BL� (j=BL�(4)).Proof: Easy, and is left to the reader. 2Proposition 3.17. Theorem 2.17 is still valid when � is allowed: if (B;F) is a log-ical bilattice, then there exists a unique homomorphizm (relative to :;^;_;
;�;and �) h : B ! FOUR, s.t. h(b)2f>; tg i� b2F .Proof: Almost identical to that of theorem 2.17. We only have to check that h asde�ned there is an homomorphism w.r.t � also. Well, if a2F , then a� b= b, soh(a�b)=h(b)=h(a)�h(b), since h(a)2f>; tg when a2F . On the other hand, ifa 62F , then a�b= t and so h(a�b)=h(t)= t. But since in this case h(a)2f?; fg,then h(a)�h(b) is also t, no matter what h(b) is. 2Proposition 3.18. Let � and � be �nite sets of formulae in BL (in BL(4)). Then� j=BL�� (� j=BL�(4)�) i� � j=hFOURi�.Proof: Identical to the proof of theorem 3.4, using the previous proposition insteadof theorem 2.17. 2Note: In contrast to theorem 3.4, proposition 3.5 fails for BL�. Thus, p � p isalways valid (i.e.: always has a value in F), while the language of f:;^;_;
;�gcontains no such formula. The same argument shows also the following proposi-tion:Proposition 3.19. BL� is a proper extension of BL.Theorem 3.20.a) (Soundness, Completeness) � j=BL�� i� �`GBL�� (similarly for GBL�(4)) 16.b) The Cut Elimination Theorem is valid for GBL� and for GBL�(4).15 Note that unlike the operations we delt with so far, � is de�ned only for logical bilattices.16 It is not di�cult to check that in FOUR our de�nition of � is the only possible de�nition forwhich this is true. f_jlli.tex; 20/06/1996; 11:19; no v.; p.23



Reasoning with Logical Bilattices 23Proof: Soundness is easy, and is again left to the reader. The combined proof ofcompleteness and cut-elimination is identical to that in the case of j=BL (theorem3.7). We only have to check that all the rules of � are again reversible, both prooftheoretically and semantically. We do this here for the case of [:�)]: First, weobserve that it is easy to show that  ;:�):( ��) is provable, and so it is valid(by soundness). Hence, if �;:( ��))� is valid (provable), then a cut (which isa valid rule) with  ;:�):( ��) gives that �;  ;:�)� is also valid (provable).2 Corollary 3.21.a) GBL� is a conservative extension of GBL.b) GBL� is still paraconsistent.c) The f^;_;�g-part of j=BL� is identical of that of classical logic.Proof:a) This is direct implication of cut-elimination. It also a corollary of the soundnessand completeness results for both.b) We still have that p;:p 6j=GBL� q.c) The f^;_;�g-part of GBL� is identical to that of the usual Gentzen-type sys-tem of classical logic. By cut-elimination, this part of the system is complete forthe corresponding fragment of j=BL� 17. 2Other properties of j=BL which can be generalized to j=BL� are compactnessand interpolation:Theorem 3.22. j=BL� enjoys compactness, monotonicity, and interpolation.Proof: Identical to these of theorems 3.10 and 3.11. The only necessary additionto the proof of 3.10 is showing that � as de�ned there is a valuation also withrespect to � (i.e.: �( ��) = �( )� �(�)). We leave this to the reader (compareto the proof of proposition 3.17). 2On the other hand, theorem 3.9 cannot be extended to j=BL� . This is obviousfrom the fact that the f^;_;�g-fragment of GBL� is identical to the classical one,and so it is strictly stronger than its intuitionistic version (Thus, ( ��)� `GBL� , but ( ��)� 6`GBLI  ).We have already noted that unlike j=BL, j=BL� does have valid formulae. Thisfact, together with the existence of an internal implication, indicate that for j=BL�it might be possible to provide a sound and complete Hilbert-type representation.This indeed is the case: 1817 From part (c) of the corollary it follows that the critical connective of GBL is negation.18 In the formulae below the association of nested implications should be taken to the right.f_jlli.tex; 20/06/1996; 11:19; no v.; p.24



24 Ofer Arieli and Arnon AvronThe System HBLDe�ned Connective:  � � def= ( � �) ^ (� �  )Inference Rule:   � ��Axioms: [�1]  � � �  [�2] ( � � � �) � ( � �) � ( � �)[�3] (( � �) �  ) �  [^�]  ^ � �   ^ � � �[�^]  � � �  ^ �[
�]  
 � �   
 � � �[�
]  � � �  
 �[�_]  �  _ � � �  _ �[_�] ( � �) � (� � �) � ( _ � � �)[��]  �  � � � �  � �[��] ( � �) � (� � �) � ( � � � �)[:^] :( ^ �) � : _ :�[:_] :( _ �) � : ^ :�[:
] :( 
 �) � : 
 :�[:�] :( � �) � : � :�[:�] :( � �) �  ^ :�[::] :: �  Note: Again we note the critical role of negation in this system.f_jlli.tex; 20/06/1996; 11:19; no v.; p.25



Reasoning with Logical Bilattices 25Theorem 3.23. GBL� and HBL are equivalent. In particular:a)  1; : : : ;  n `GBL� �1; : : : ; �m i� `HBL  1^; : : : ;^ n � �1_; : : : ;_�m (or just�1_; : : : ;_�m in case that n=0).b) Let � be any set of sentences, and  { a sentence. Then � `HBL  i� everyvaluation � in FOUR, which gives all the sentences in � designated values, doesthe same to  .Proof: It is possible to prove (a) purely proof theoretically. This is easy but tedious(the well-known fact that every f^;_;�g-classical tautology is provable from thecorresponding fragment of HBL can shorten things a lot, though). Part (b) followsthen from the completeness and the compactness of GBL�. Alternatively, one canprove (b) �rst (and then (a) is an immediate corollary). For this, assume that� 6`HBL . Extend � to a maximal theory ��, such that �� 6`HBL . By the deductiontheorem for � (which obviously obtains here), and from the maximality of ��,�� 6`HBL� i� ��`HBL�� . Hence, if � is any sentence, then if �� 6`HBL �� , then�� `HBL ( � �)�  and so �� `HBL  by [� 3]; a contradiction. It follows that��`HBL �� for every � , and so for every � and � :(*) if �� 6`HBL� then ��`HBL��� .De�ne now a valuation � as follows:�(�) def= 8>><>>: > if �� `HBL � and �� `HBL :�? if �� 6`HBL � and �� 6`HBL :�t if �� `HBL � and �� 6`HBL :�f if �� 6`HBL � and �� `HBL :�Obviously, �(�) is designated whenever �� `HBL �, while �( ) is not. It remainsto show that � is actually a valuation. We shall show that �(���)=�(�)��(�),and that �(�_�)=�(�)_�(�), leaving the other cases for the reader.To show that �(�_�) = �(�)_�(�), we note �rst that axioms [� _] and [_ �],together with the above characterization (*) of the non-theorems of ��, imply that�� `HBL �_� i� either �� `HBL �, or �� `HBL � . Axiom [:_], on the other hand,entails that �� `HBL :(�_�) i� both �� `HBL :�, and �� `HBL :� . From thesefacts the desired equation easily follows.In showing that �(���)=�(�)��(�), we destinguish between two cases:case 1: �(�)2 ff;?g. This means, on the one hand, that �(�)� �(�) = t. On theother hand, it is equivalent to �� 6`HBL �. By (*) above, and by axiom [:�] thisentails that ��`HBL��� but �� 6`HBL:(���). Hence �(���)= t=�(�)��(�).case 2: �(�)2ft;>g. Then �(�)��(�)=�(�). In addition, it means that ��`HBL�,and so (by axioms [�1] and [:�]), ��`HBL��� i� ��`HBL� , and ��`HBL:(���)i� ��`HBL:� . It follows that �(���)=�(�) too. 2Corollary 3.24. HBL is well-axiomatized: a complete and sound axiomatizationof every fragment of j=BL� , which includes �, is given by the axioms of HBL whichmention only the connectives of that fragment.f_jlli.tex; 20/06/1996; 11:19; no v.; p.26



26 Ofer Arieli and Arnon AvronProof: The above proof shows, as it is, the completeness of the axioms whichmention only f_;�;:g for the corresponding fragment. All the other cases inwhich : is included are similar. If : is not included, then the system is identicalto the system for positive classical logic, which is known to have this property 19. 2Note: The f:;^;_;�g-fragment of GBL� and HBL were called in [5] the \basicsystems". Again, it is shown there that by adding �) �;  ;: to GBL�, andeither : _ or ( ��)�(: ��)�� to HBL, we get complete proof systems forthe full three-valued logic of ft; f;?g. This logic is an extension of Kleene three-valued logic, which is equivalent to the logic of LPF ([6, 22]). If, on the other hand,we add �;  ;: )� to GBL� and : � ( ��) to HBL, we get complete proofsystems for the three-valued logic of ft; f;>g (also known as J3 { see note (3) aftertheorem 3.7).3.4.2. Strong ImplicationThe implication connective � has two drawbacks: the main one is that even in case �� and �� are both valid,  and � might not be equivalent (in the sense thatone can be substituted for the other in any context). For example, if  = :(���)and � = � ^:�, then both  � � and ��  are valid, but : � :� is not. Thesecond disadvantage is that  �� may be true, its conclusion false, without thisentailing that the premise is also false (for example: ?�f = t).This drawbacks of � are, in fact, drawbacks of j=BL� , the consequence relationon which it is based. What we can do, however, using the general theory developedin [5], is to de�ne in j=BL� an implication connective, which corresponds to j=sBL�and does not su�er from these disadvantages.De�nition 3.25. (strong implication) 20�  ! � def= ( � �) ^ (:� � : )�  $ � def= ( ! �)^ (�!  )Proposition 3.26. j=sBL� has all the properties stated for j=sBL in proposition3.13. In addition, ! is an internal implication for it: �;  j=sBL�� i� � j=sBL�  !�(in particular,  ;  !� j=sBL��).Proof: These are all immediate consequences of the general theory in [5], and thefact that :;^ and � satisfy in j=BL� their corresponding symmetry conditions asde�ned there (basically this means that the relevant rules of GBL� are valid). 2Proposition 3.27. Let  ; �; � be formulae in BL�, and � { any evaluation inFOUR. Then:19 Note that without : there is no di�erence between ^ and 
, and no di�erence between _and �.20 In this de�nition too, the role of negation is critical.f_jlli.tex; 20/06/1996; 11:19; no v.; p.27



Reasoning with Logical Bilattices 27a) �( ! �) 2 D(FOUR), i� �( ) �t �(�).b) �( $ �) 2 D(FOUR), i� �( ) = �(�).Proof: Left to the reader. 2Corollary 3.28.  $ � j=BL��( )$ �(�) for every scheme �. In other words,$ is a congruence connective.Proof: Immediate from part (b) of the last proposition, and from the fact thatj=BL� is the same as j=hFOURi. 2Proposition 3.27 provides us with an easy method of checking validity or inva-lidity of sentences containing !. Using this method it is straightforward to checkthe next two propositions:Proposition 3.29. The following are valid in j=BL� (j=BL�(4)): !  ( ! �)! (�! �)! ( ! �)( ! �! �)! �!  ! �( ! �)!  !  ! � ^ �!  ;  ^ �! �( ! �)^ ( ! �)!  ! � ^ � 
 �!  ;  
 �! �( ! �)
 ( ! �)!  ! �
 � !  _ � ; �!  _ �( ! �)_ (�! �)!  _ �! � !  � � ; �!  � �( ! �)� (�! �)!  � �! � $ :: ( ! �)$ (:�! : ) ^ (� _ �)$ ( ^ �) _ ( ^ �) 
 (�� �)$ ( 
 �)� ( 
 �) f_jlli.tex; 20/06/1996; 11:19; no v.; p.28



28 Ofer Arieli and Arnon Avron:( ^ �)$ : _ :�:( _ �)$ : ^ :�:( 
 �)$ : 
 :�:( � �)$ : � :�Proposition 3.30. The following are not valid in j=BL� (j=BL�(4)): ! �!  ( !  ! �)!  ! �: !  ! � ! �!  ^ � ! �!  
 �Notes:1. If we compare the list above with the usual formal system for the relevancelogic R ([2, 11]), we see that the only axiom of R which is not valid for thisinterpretation of! is the contraction axiom: ( ! !�)!  !�. It is worthnoting that the omission of this axiom is also the main di�erence between thelinear logic of Girard (see [21]) and the usual relevance logics. In fact, the lasttwo propositions are true for linear logic as well (with the exception of theconverse of contraction, the distributive schemes, and the parts concerning 
and �, of course), if we interprate : and! as linear negation and implication(respectively), and ^;_ as the \additives". Note, however, that the \mix" (or\mingle") axiom  ! ! is valid.2. On ft; f;?g,! is exactly Lukasiewicz implication ([26, 34]), while on ft; f;>git is Sobocinski implication ([30]), which is the implication of RM3 - thestrongest logic in the family of relevance logics.3. By using !, we can sometimes translate \annotated atomic formulae" fromSubrahmanian's annotated logic (see [31, 32, 10, 23, 24]): The translation of : b to BL(4) when b 2 FOUR, and when the partial order in the (semi)latticeis �t, is simply b! .Proposition 3.31. j=BL� ( ��)$ �_( !( !�))Proof: This can easily be checked in FOUR. 2
f_jlli.tex; 20/06/1996; 11:19; no v.; p.29



Reasoning with Logical Bilattices 29The last proposition means that it is possible to choose ! rather than � asthe primitive implication of the language. We prefer the latter, though, since theintuitive meaning of both is then clearer. Also, the corresponding proof systemsare much simpler if we follow this choice. Using !, on the other hand, is moreconvenient for relating our logic to other known logics, as we have just seen.Our next proposition brings us back to the relations between our logic andrelevance logic:Proposition 3.32. Let  and � be in the language of f:;^;_g; then the followingassertions are equivalent:a)  j=BL�b)  j=sBL�c) j=BL  ��d) j=BL  !�e) j=R  !�Proof: That  j=BL � i� j=R  ! � was noted already after theorem 3.7. Thatj=BL  � � i�  j=BL � is an instance of the deduction theorem for �. Similarly,the equivalence of j=BL  ! � and  j=sBL � follows from the deduction theoremfor ! relative to j=sBL, and the fact that j=BL  i� j=sBL  . Finally, j=BL  !� i��( )�t�(�) for every valuation � in FOUR, and it is well known (see [2, 11]) thatif  and � are in the f:;^;_g-language, then `R  ! � under exactly the samecircumstances. 2We end this subsection with a short demonstration of the potential use of j=BL�as well as of its various implication connectives. Recall that we are using ; todenote the implication of the classical calculus (i.e:  ; � = : _ �).Example 3.33. Consider the following knowledge-base:bird(tweety); fly(tweety)penguin(tweety) � bird(tweety)penguin(tweety)! :fly(tweety)bird(tweety)Note that we are using di�erent implication connectives according to the strengthwe attach to each entailment: Penguins never 
y. This is a characteristic feature ofpenguins, and there are no exceptions to that, hence we use the strongest implica-tion (!) in the third assertion in order to express this fact. The second assertionstates that every penguin is a bird. Again, there are no exceptions to that fact.Still, penguins are not typical birds, thus they shouldn't inherit all the propertiesf_jlli.tex; 20/06/1996; 11:19; no v.; p.30



30 Ofer Arieli and Arnon Avronwe expect birds to have. The use of a weaker implication (�) forces us, indeed, toinfer that something is a bird whenever we know that it is a penguin, but it doesnot forces us to infer that it has every property of a bird. Finally, the �rst asser-tion states only a default feature of birds, hence we attach the weakest implication(;) to it. Indeed, since from  and  ; � we cannot infer � (by j=BL) withoutmore information, the �rst assertion does not cause automatic inference of 
yingabilities just from the fact that something is a bird. It does give, however, strongconnection between the two facts.The above knowledge-base does not allow us to infer whether tweety is a penguinor not (as it should be), and if it can 
y or not (which is less satisfactory; we shallreturn to it in the next section). However, if we add to the knowledge-base anextra assumption, penguin(tweety), we can infer :fly(tweety) but we still cannotinfer fly(tweety), as should be expected.3.5. Adding QuantifiersSo far we have concentrated on propositional languages and systems. The justi�ca-tion for this is that the main ideas and innovations are all on this level. Extendingour notions and results to �rst order languages can be done in a rather standardway. We can take 8, for example, as a generalization of ^. Having then an appro-priate structure D, and an assignment � of values to variables and truth valuesto atomic formula, we let �(8x (x)) be inf�tf�( (d) j d2Dg. Here we are using,of course, the fact that we assume B to be a complete lattice relative to �t. Thecorresponding Gentzen-type rules are then:[8)] �;  (s)) ��; 8x (x)) � �)  (y);��) 8x (x);� [)8][:8)] �;: (y)) ��;:8x (x)) � �) : (s);��) :8x (x);� [):8]In these rules we assume, as usual, that the variable y does not appear free in� or in �. Corresponding soundness and completeness as well as cut eliminationtheorems can be proved relative to FOUR with no great di�culties. We omit herethe details. We just note that one can introduce also, in the obvious way, quanti�erswhich correspond to 
 and �.4. A More Subtle Consequence Relationj=BL should be taken as a �rst approximation of what can be safely inferred whenwe have a classically inconsistent knowledge-base; this safety is its main advantage.The disadvantage is that j=BL is somewhat \over cautious". Thus, in example 3.33f_jlli.tex; 20/06/1996; 11:19; no v.; p.31



Reasoning with Logical Bilattices 31we would have liked to be able to infer fly(tweety) from the original knowledge-base, before the new information, penguin(tweety), is added to it. We cannot dothis, of course, since j=BL is monotonic.There is more than one way of introducing other consequence relations, whichare less cautious, and enjoy non-monotonicity; we present here one example. Theidea is taken from a paper of Kifer and Lozinskii (see [23]). Their idea, basically,is to order models of a given knowledge-base in a way that somehow re
ects theirdegree of consistency, and then take into account only the models which are max-imal w.r.t this order. The main di�erence is that they were using just ordinary(semi)lattices, in which the partial order relation corresponds, intuitively, to our�k . Hence, no direct interpretation of the standard logical connectives (^;_) wasavailable to them. They were forced, therefore, to use an unnatural language, inwhich the atomic formulae are of the form p : b (where p is an atomic formulaof the basic language, and b { a value from the semilattice).  : b is meaningless,however, for nonatomic  . The use of bilattices allows us to give the standard log-ical language a direct interpretation, and so gives a meaning to every annotatedformula. On the other hand, by using F we can dispense with annotated formulaealtogether, as we do below 21.De�nition 4.1. Let B = (B;�t;�k;:) be a logical bilattice. A subset I of B iscalled an inconsistency set, if it has the following properties:a) b 2 I i� :b 2 I.b) b 2 F \ I i� b 2 F and :b 2 F 22.Notes:1. From (b), always >2I. Also, from (b), t 62I, and so, from (a), f 62I.2. As for ?, both I [ f?g and I n f?g are inconsistency sets in case I is. Now,on one hand, in every bilattice, :?=? (proposition 2.5), so ? has some fea-tures that may be associated with inconsistent elements. On the other hand,? intuitively re
ects no knowledge at all about the assertions it represents;in particular, one might not take such assertions to be inconsistent. We shallusually prefer, therefore, to take ? as consistent (see also the note after propo-sition 4.13).Example 4.2. The following are all inconsistency sets:a) I1=fb j b 2 F and :b 2 Fg.b) I2=fb j b = :bg.c) I3=fb j b = :b ; b 6= ?g.I1 is the minimal possible inconsistency set in every in every (B;F). In case that21 Despite the fact that this method of using \annotated" atomic formulae is quite common, itis still arti�cial from a logical point of view, since semantic notions interfere within the syntax.22 In [23] the inconsistent values are de�ned quite di�erently; see there for the details.f_jlli.tex; 20/06/1996; 11:19; no v.; p.32



32 Ofer Arieli and Arnon AvronB in interlaced, and F=D(B), I1 is just f>g (see proposition 2.25). I2 and I3 arealways inconsistency sets in case B is interlaced, and F=D(B). There are, however,other cases in which they are inconsistency sets, for example in DEFAULT .We �x henceforth some logical bilattice (B;F), and an inconsistency subset Iof it. Unless otherwise stated, all the de�nitions below will be relative to (B;F)and I. We will refer to the members of I (the members of BnI) as the inconsistent(consistent) truth values of B.Notation 4.3.a) A(�) denotes the set of the atomic formulae that appear in some formula of �.b) For a valuation M of �, denote: IM (�)=fp2A(�) j M(p)2Ig.De�nition 4.4. Let � and � be two sets of formulae, and M;N { models of �.a) M is more consistent model of � than N , if the set of the atomic formulaein A(�) that are assigned under M values from I, is properly contained in thecorresponding set of N (i.e: IM (�)�IN (�)).b) M is a most consistent model of � (mcm, in short), if there is no other modelof � which is more consistent than M .c) � j=con � if every mcm of � is a model of some formula of �.Example 4.5. Let's return to the knowledge-base KB of example 3.33. TakeF = ft;>g and B { any bilattice in which this F is a prime bi�lter (e.g: FOUR,DEFAULT ). Let I be any inconsistency set in B (obviously, F\I=f>g). Relativeto (B;F) and I, this knowledge-base has exactly one mcm, and it takes values inft; fg. Hence, if  is in the language f:;^;_;�g, then KB j=con  i�  followsclassically from KB. Thus (unlike the in case of j=BL!):KB j=con bird(tweety); KB j=con :penguin(tweety); KB j=con fly(tweety);KB 6j=con:bird(tweety); KB 6j=con penguin(tweety); KB 6j=con :fly(tweety):Now, consider again what happens when we add penguin(tweety) to KB: Thenew knowledge-base, KB0, has two mcms, M1 and M2, where:M1(bird(tweety)) = t; M1(penguin(tweety)) = >; M1(fly(tweety)) = >;M2(bird(tweety)) = >; M2(penguin(tweety)) = t; M2(fly(tweety)) = f:This time, therefore,KB0 j=con bird(tweety); KB0 j=con penguin(tweety); KB0 j=con :fly(tweety);KB0 6j=con :bird(tweety); KB0 6j=con :penguin(tweety); KB0 6j=con fly(tweety):It follows that j=con is a non-monotonic consequence relation, which seems tobehave according to our expectations. 2f_jlli.tex; 20/06/1996; 11:19; no v.; p.33



Reasoning with Logical Bilattices 33Some important properties of j=con are summarized below:Proposition 4.6. If � j=BL� then � j=con�.Proof: If every model of � satis�es some formula of �, then obviously every mcmof � does so. 2Proposition 4.7. j=con is non-monotonic.Proof: Consider, e.g., � = fp;:p_ qg. In every mcm, M , p and q must haveconsistent values (since the valuation that assigns t to each one of them, is anmcm of �). Also, M(p) 2 F , since M is a model of �. If M(:p) 2 F also, thenM(p)2F \ I (from de�nition 4.1(b)), so M(p) is inconsistent. Hence M(:p) 62F .ButM(:p_q)2F , hence M(q)2F . So, � j=con q in every (B;F) and I. Obviously,however, �;:p 6j=con q (take, e.g., M s.t. M(p)=>, and M(q)=f). 2Proposition 4.8. j=con is paraconsistent:p;:p 6j=con q, and even p_q;:(p_q) 6j=conq.Proof: Consider any valuation that assigns p the value >, and assigns q the valuef . 2Proposition 4.9. If � and  are in the language of f:;^;_;�; f; tg, and � j=con  ,then  classically follows from �.Proof: The crucial property of the language here is that if all the atomic formu-lae get values in ff; tg, then so does any formula in the language. Now, if � isclassically consistent, then it has a model in ft; fg, and so all its mcms assign themembers of A(�) consistent values. Hence, if � j=con , then every model of � thatassigns the members of A(�) consistent values, is a model of  . In particular, everymodel of � that assigns the members of A(f�;  g) classical values (i.e.: ft; fg), isa model of  , and so  follows classically from �. If � is classically inconsistent,then any � follows from it classically (in particular  ). 2.A partial converse for consistent theories is given in the next proposition:Proposition 4.10. Let � be a classically consistent set in the language of f:;^;_; f; tg,and let  be a sentence in the same language, which classically follows from �.Then there exist sentences � and � , such that:1)  is classically equivalent to �,2) � is a tautology,3)  j=BL(4)�^� and �^� j=BL(4) ,4) � j=con �: f_jlli.tex; 20/06/1996; 11:19; no v.; p.34



34 Ofer Arieli and Arnon AvronProof: Let  0 be a sentence like in proposition 3.5.  0 can be written in the form�^� , where � is the conjunction of all the conjuncts in  0 which are tautologies(i.e.: contains some atomic formula and its negation as disjuncts), and � is theconjunction of the other conjuncts of  0 (if either set of conjuncts is empty, wetake it to be t). � and � obviously satisfy properties (2) and (3). Since classical logicis an extension of j=BL(4) w.r.t. the language under consideration,  is classicallyequivalent to �^� , and so to � (since � is a tautology). It remains to prove (4). Itis easy to see that � j=con �1^ : : :^�n i� � j=con �i for every i= 1: : :n. Hence, (4)follows from the following lemma:Lemma 4.11. Let � be a classically consistent set in the language off:;^;_; f; tg, and  { a clause that does not contain any pair of an atomic formulaand its negation. If  follows classically from �, then � j=con  .Proof: We will show that if � 6j=con  , then there is a classical model of �, whichis not a model of  . Indeed, let M be an mcm of � s.t. M( ) 62 F . Consider thevaluation M 0, de�ned as follows:M 0(p) def= 8>>>><>>>>: t if M(p)2F , and p2A(�;  ).f if M(:p)2F , and p2A(�;  ).t if M(p) 62F , M(:p) 62F , and :p appears as a literal in  .f if M(p) 62F , M(:p) 62F , and p appears as a literal in  .t otherwiseExactly as in the proof of proposition 4.9, the fact that � is classically consis-tent entails thatM(p) is consistent for every p in A(�). Hence there cannot be anyp in A(�) s.t. both M(p) and M(:p) are in F (otherwise, from (b) in de�nition4.1, M(p)2 I). On the other hand, if p2 A( ) then either p or :p is a disjunctof  . Since M( ) 62 F , this implies that either M(p) 62 F , or M(:p) 62 F . Thesetwo facts and our explicit assumption on  imply that M 0 above is well de�ned.Obviously, M 0 is a classical valuation. Now, by proposition 3.5, there is a set ofclauses �0, s.t. A(�) = A(�0), every model of � is also a model of �0, and vice-versa. Since M is a model of �, it is also a model of �0. Hence, for every clause� 2 �0 with literals li (i= 1 : : :n), there is at least one literal, li, s.t. M(li) 2 F .From the de�nition of M 0, M 0(li)2F as well, thus M 0 is a model of �0. Hence M 0is a model of � as well. On the other hand, M 0( ) = f , since for every literal lithat appears in  , M 0(li) = f . Indeed, without a loss of generality, suppose thatli = :p. Since M( ) 62 F , also M(:p) 62 F . If M(p) 2 F , then M 0(p) = t, and soM 0(li)=M 0(:p)=:M 0(p)=:t=f . If M(p) 62F , then since :p appears as a literalin  ,M 0(p)= t in this case as well, and againM 0(li)=f .M 0 is, therefore, a classicalmodel of �, which is not a model of  . Hence  does not follow classically from �. 2Note: The crucial lemma 4.11 does not hold under stronger assumptions:a) If we allow the appearance of � in �, then consider hFOURi with I = f>g,f_jlli.tex; 20/06/1996; 11:19; no v.; p.35



Reasoning with Logical Bilattices 35and � = fp� q; p� :qg,  = :p.  follows classically from �, but the valuationM , where M(p)=?, and M(q)= t, is an example of an mcm of �, which is not amodel of  .b) If  contains a literal and its negation, then consider again hFOURi withI = f>g. This time, p_:p follows classically from q, but q 6j=con p_:p (consider,e.g., M(q)= t;M(p)=?) 23.As we have already shown, j=con is non-monotonic. We next show that inaddition it satis�es some properties that one might like a non-monotonic logicto have:De�nition 4.12. [25] : A plausibility logic is a logic that satis�es the followingconditions (for �nite �;�):Inclusion: �;  ) .Right Monotonicity: If �)�, then �) ;�.Cautious Left Monotonicity: If �) and �)�, then �;  )� 24.Cautious Cut: If �;  1; : : : ;  n)� and �) i;� for i=1 : : :n, then �)�.Proposition 4.13. j=con satis�es Inclusion, Right Monotonicity, and CautiousLeft Monotonicity. j=con also satis�es Cautious Cut i� there exists � 2B s.t. � 62I[F[fb j :b2Fg, and the language is BL(4) (Hence j=con is a plausibility logicunder these conditions) 25.Proof: Inclusion and Right Monotonicity follow immediately from the de�nitionof j=con.Proof of Cautious Left Monotonicity:Assume that � j=con  , � j=con�, and let M be any mcm of f�;  g. We will showthat M is also a mcm of �. Since � j=con�, this will imply that M satis�es someformula in �, and so �;  j=con�. Now,M is certainly a model of �. Assume that itis not an mcm of �. Then there is a model of � that is strictly more consistent thanM . Since � is �nite, there is an mcm N of �, which is strictly more consistent thanM ; and so IN(�)� IM(�). Consider the valuation N 0 that is de�ned as follows:N 0(p)=N(p) for every p2A(�) and N 0(p)=b otherwise, where b is any consistenttruth value. Obviously, N 0 is an mcm of �. Since � j=con , N 0 is a model of f�;  g.Now, IN 0(�;  ) = IN 0(�) = IN (�) � IM (�) � IM(�;  ). Hence N 0 is a model off�;  g, which is more consistent than M . This contradicts the fact that M is an23 One can replace here fqg by fq; q_pg, if one wishes A( ) to be a subset of A(�).24 This rule was �rst proposed in [19].25 In proposition 4.10 of [1] the bilattice under consideration should have been interlaced, and�=? (these assumptions were used there for the proof of the Cautious Cut). Here we prove theproposition for any logical bilattice, and for � as de�ned above, which may be di�erent from ?.f_jlli.tex; 20/06/1996; 11:19; no v.; p.36



36 Ofer Arieli and Arnon Avronmcm of f�;  g.Proof of Cautious Cut under the speci�ed conditions:Assume that �;  1; : : : ;  n j=con � and � j=con  i;� for i = 1 : : :n. Let M be anmcm of �. We will show that M is a model of some formula of �. For this, de�neanother valuation, M 0, by:M 0(p) def= �M(p) if p2A(�)� otherwiseObviously,M 0(�)=M(�) for every � s.t. A(�)�A(�). Hence M 0 is also an mcm of�. Thus,M 0 is either a model of some �2�, orM 0 is a model of  1; : : : ;  n. SinceM 0(p)2I implies that p2A(�), and since M 0 is an mcm of �,M 0 is necessarily anmcm of f�;  1; : : : ;  ng in the second case. Hence, again, M 0 is a model of some� 2 �. It follows that in either cases M 0(�) 2 F for some � 2 �. It remains toshow thatM(�)2F whenever M 0(�)2F . Indeed, by proposition 3.5 there exists aformula �0, which is a conjunction of disjunctions of literals, s.t. for every valuation�, �(�)2F i� �(�0)2F . IfM 0(�)2F , thenM 0(�0)2F also, soM 0(D)2F for everyconjunct D of �0. Now, M 0(D)2 F i� there is a literal l 2D s.t. M 0(l)2F . Butsince l is a literal, it is obvious that M 0(l)2F only if M 0(l) 6= � and M 0(:l) 6= �,so M(l)=M 0(l). Hence M(l)2F as well. It follows that M(D)2F also, and soM(�0)2F , implying that M(�)2F .To show the necessity of the conditions we note that:1) If � is in the language, then for every B, F , and I: q j=con q_p, q; q_p j=con (p�:q)_(:p�:q), but q 6j=con (p�:q)_(:p�:q) (take a valuation M , s.t. M(q)= tand M(p)=>).2) If B=I[F[fb j :b2Fg, then q j=con q_p and q; q_p j=con p_:p, but q 6j=con p_:p(consider M , s.t.M(q)= t and M(p)=?). 2Note: If ? 62 I (see note 2 after de�nition 4.1) then the condition for CautiousCut is satis�ed for �=?.The crucial point in the counterexamples given in the last proof, is that the cutformula contain atomic formula that does not appear in A(�). In fact, it is easyto show that otherwise the rule is valid with no extra assumption:De�nition 4.14. (Analytic Cautious Cut)If �;  1; : : : ;  n j=con � and � j=con  i;� for i= 1 : : :n, and if A(f 1; : : : ;  ng) �A(�), then � j=con�.Proposition 4.15. Analytic Cautious Cut is valid rule for j=con.Proof: Let M be any mcm of �. We will show thatM is a model of some formulain �. If not, then M is a model of  i (i=1 : : :n), since � j=con i;�. Hence M is amodel of f�;  1; : : : ng. It is obviously an mcm of this set, since any model which isf_jlli.tex; 20/06/1996; 11:19; no v.; p.37



Reasoning with Logical Bilattices 37more consistent than M w.r.t f�;  1; : : : ng, is also a more consistent model thanM w.r.t � (using the fact that A(f 1; : : : ;  ng)�A(�)). Since �;  1; : : : ;  n j=con�,M is a model of some formula of � after all. 2Proposition 4.16. All the rules of GBL are valid for j=con.Proof: The validity of Exchange and Contraction is immediate from the de�nitionof j=con . The introduction rules on the right, as well as their inverses, are valid forexactly the same reasons that they are valid in j=BL. The rules [^)] and [
)] arevalid, since the models of f�;  ; �g, f�;  ^�g, and f�;  
�g, are the same, hencethe mcms of these sets are also the same. Similar argument works for [::)]. Therules [_ )] and [�)] are proved in [25] to be valid in every plausibility logic,which satis�es [)_], [)�], and their converses. The proof there does not use infact the full power of Cautious Cut, but only that of Analytic Cautious Cut. Forthe reader convenience, we repeat the arguments, adjusted to our logic, for thecase of [�)]:(1) �;  )  ; � Inclusion and Right Monotonicity.(2) �;  )  � � (1), [)�].(3) �;  ) � Hypothesis.(4) �;  ;  � �) � (2), (3), Left Cautious Monotonicity.(5) �;  ;  � �) �;� (4), Right Monotonicity.(6) �;  � �)  � � Inclusion.(7) �;  � �)  ; � (6), Inverse rule of [)�].(8) �;  � �)  ; �;� (7), Right Monotonicity.(9) �;  � �) �;� (5), (8), Analytic Cautious Cut.(10) �; �;  � �) � Proved like (4), exchanging the roles of  and �.(11) �;  � �) � (9), (10), Analytic Cautious Cut.Finally, [:^)], [:_)], [:
)], and [:�)] all follow from lemma 2.5(a), togeth-er with the previous observations. 2Some other nice properties that are true in every plausibility logic which satis�es[)_], [)�], and their converses, are listed in the next proposition (see [25]):Proposition 4.17. Let �;� be sets of formulae, and  ; �; � { formulae in BL.Then: Left Equivalence: �;  j=con � �; � j=con  �;  j=con ��; � j=con �Right equivalence: �;  j=con � �; � j=con  � j=con  ;�� j=con �;�Loop:  j=con � � j=con � � j=con   j=con �f_jlli.tex; 20/06/1996; 11:19; no v.; p.38



38 Ofer Arieli and Arnon Avron j=con �  _ � j=con   _ � j=con �  j=con �  � � j=con   � � j=con �� _ � j=con �  _ � j=con   _ � j=con  � � � j=con �  � � j=con   � � j=con  As we have shown, j=con has a lot of desirable properties. We should mention,however, that j=con is not closed under substitutions. In other words: it is sensitiveto the choice of the atomic formulae. Thus, although :p; p_q j=con q, when p andq are atomic, it is not true in general that : ;  _� j=con� (take, e.g., B=FOUR, =:(:p^p), and �=q). This, however, is unavoidable when one wants to achieveboth lemma 4.11 and proposition 4.8 above.5. Conclusion and Further WorkBilattices have had an extensive use in several areas, most notably in logic pro-gramming, but their role so far was mainly semantic in nature. We develop a realnotion of logic based on bilattices, giving associated consequence relations andcorresponding proof systems. These consequence relations are strongly related tonon-monotonic reasoning, and especially to reasoning in the presence of inconsis-tent data.This, however, is not the end of the work. The basic languages mentioned hereare, as their name suggests, only basic. It seems that additional connectives arerequired in order to get more expressive languages. Such languages should be ableto describe more precisely the speci�c bilattice under consideration. One wouldlike, for example, to express in a knowledge-base over DEFAULT that a certainformula is considered to be true by default, or that the result of f
t should beconsidered as d> rather than ?. This can be achieved, e.g., by de�ning a connec-tive that re
ects equivalences in formula assignments, or by de�ning some kind ofanalogue to the \:"-connective of annotated logic. The guard connective, investi-gated in [18], might also be considered.The consequence relations are also a matter for further examination. As wehave shown (theorem 3.4), the basic consequence relation, j=BL, is no more thanthe logic of FOUR. Nevertheless, it is obviously desirable to take advantage ofthe availability of other values in the bilattice under consideration, for examplethe default values fdf; dtg of DEFAULT . Considering j=con was a �rst step, sincewe take into account not just the designated elements of the bilattice, but alsothose that were considered as inconsistent. For j=con FOUR is no longer a singlerepresentative of all the logical bilattices. For example, by taking B to be FOURwith the inconsistency set I=fb2B j b=:bg, we have that q; p�:q j=con :p, andf_jlli.tex; 20/06/1996; 11:19; no v.; p.39



Reasoning with Logical Bilattices 39p_q j=con :p_p, while if we take B to be DEFAULT with the same de�nition ofinconsistency set, these consequences are no longer valid. j=con seems to be, how-ever, somewhat too crude, since it treats uniformly the whole set of atoms that areassigned inconsistent values under a given valuation. As a result, the preferencesamong the valuations are due to \global" considerations rather than pointwiseones. A future work should seek for a re�nment of this relation, which might aswell re
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