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Abstract. On the basis of Poincaré and Weyl’s view of predicativity as invariance, we

develop an extensive framework for predicative, type-free first-order set theory in which

Γ0 and much bigger ordinals can be defined as von-Neumann ordinals. This refutes the

accepted view of Γ0 as the “limit of predicativity”.

§1. Introduction.

1.1. What Predicativism, and Why? In [43] the basic historic problem
of the research in foundations of mathematics (FOM) is formulated as follows:

How to reconstruct mathematics on a secure basis, one maximally
immune to rational doubts.

The predicativist program ([24, 11, 12, 48, 50]) has been one of the attempts to
solve this basic problem of FOM. It seeks to establish certainty in mathematics
in a constructive way, but without revolutionizing it or changing its underlying
classical logic (as the intuitionistic program does). The program was initiated by
Poincaré [35, 36, 37, 38]. Its viability was demonstrated by Weyl, who seriously
developed it for the first time in his famous small book “Das Kontinuum” ([51,
53]. Weyl, and then Feferman ([22, 25], have shown that a very large part of
classical analysis can be developed within their predicative systems. Feferman
further argued that predicative mathematics in fact suffices for developing all
the mathematics that is actually indispensable to present-day natural sciences.
Hence the predicativist program has been successful in solving the basic problem
of FOM. (In my opinion it is the only one about which this can truly be said.)

Poincaré’s predicativism started as a reaction to the set-theoretical paradoxes.
However, in the writings of both Poincaré and Weyl, predicativity derives not
so much from the need to avoid paradoxes, but from their definitionist view
that infinite objects, such as sets or functions, exist only in so far as they are
introduced through legitimate definitions:

“No one can describe an infinite set other than by indicating proper-
ties which are characteristic of the elements of the set. And no one
can establish a correspondence among infinitely many things without
indicating a rule, i.e., a relation, which connects the corresponding
objects with one another. The notion that an infinite set is a ‘gather-
ing’ brought together by infinitely many individual arbitrary acts of
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selection, assembled and then surveyed as a whole by consciousness,
is nonsensical.” ([53], P.23)

The implications of the above principle concerning infinite objects depend of
course in a crucial way on the question: What definitions should be accepted
as ‘legitimate’? Therefore it is no wonder that ‘predicativism’ (like ‘construc-
tivism’) becomes a name of a group of approaches to mathematics and its foun-
dations ([24, 12]).1 We emphasize that in this paper we reserve this name solely
to the program as it was initiated by Poincaré and pursued by Weyl. That
program is known nowadays as ‘predicativity given the natural numbers’, since
in addition to the definitionist principle mentioned above, it also accepts the
collection N of the natural numbers as a well understood mathematical concept
that constitutes a set. Moreover, it views the idea of iterating an operation or
a relation a finite number of times as fundamental, and accepts induction on
the natural numbers as a universally valid method of proof.2 Still, even with
this restriction, the word ‘predicative’ has two different interpretations, corre-
sponding to Poincaré’s “two distinct diagnoses of the source of the paradoxes”
([24]; see also [11]). We call them ‘Russell’s predicativity’ and ‘Poincaré-Weyl
predicativity’. This paper is devoted to the second one. However, since it is the
first which is usually identified with predicativism, we discuss it first.

1.2. Russell’s predicativity. Adopting the analysis indicated in Richard’s
paper [39], Poincaré’s first diagnosis was that the definition of Richard’s para-
doxical real number is circular: it uses the totality of all definitions, to which it
already belongs. The corresponding Vicious Circle Principle, VCP, was adopted
by Russel in [40] and in Principia Mathematica [54]. According to the latter, a
vicious circle arises when we assume that “a collection of objects may contain
members which can only be defined in terms of the collection itself”. 3 A clearer
(and stronger) formulation of the VCP has been given by Kreisel in [30]:

“A predicative definition of a set (say, of natural numbers) is required
to use quantification only over ‘previously defined’ totalities; the set
of natural numbers themselves is supposed to be given, or the notion
of ‘finite’ is supposed to be well-defined.”

Kreisel then went on and note that

“The traditional way of making the idea of a predicative definition
explicit is by introducing a ramified hierarchy.”

The idea of ramified hierarchy was introduced and used by Russell in Principia
Mathematica. Later it was generalized by Wang ([47]) and Kreisel. In the second-
order context the generalization is explained in [24] as follows:

“The basic step in that hierarchy consists in passing from a collection
D of subsets of N to a new collection D? by putting a set S in D?

just in case there is a formula ϕ(x) of second-order arithmetic such

1A particularly extreme case can be found in [34]. As noted in [24], what is called there

‘predicative arithmetic’ is actually strictly finitist arithmetic.
2For reasons that will be clarified in Section 3, true predicativity is in our opinion necessarily

‘predicativity given the natural numbers’.
3Chapter II.1 of the second edition; the explanation in the first edition is similar. The term

‘predicative’ is used in Principia Mathematica in a technical different sense.
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that for all n, n ∈ S ↔ (ϕ(n))D, where the superscript ‘D’ indicates
that all second-order quantifiers in ϕ are relativized to range over D.
Then we can define the collections Rα for arbitrary ordinals α by
R0 = ∅, Rα+1 = (Rα)?, and for limit α,Rα =

⋃
β<αRβ .”

This description raises the question: What ordinals α can serve for the purpose
of constructing this ramified hierarchy of Rαs? To answer this, Kreisel proposed
in [29] an autonomous process, where a well-ordering becomes available at some
stage only if it has been defined and recognized (as a well-ordering of ω) at an ear-
lier stage. Without the ‘recognition’ criterion, which introduces proof-theoretic
considerations, we are left with a purely semantic condition that allows to go
up to every well-ordering < ωCK1 (Church-Kleene’s first non-recursive ordinal).
With the recognition condition, Feferman [15] and Schütte [41] independently re-
placed ωCK1 by the much smaller Γ0 (the Feferman-Schütte ordinal). Following
their work, the hierarchies of formal systems up to Γ0 which were developed by
them (on the basis of the intuitive semantics of the Rαs) has become the “canon-
ical reference: one considers predicative any formal system which can be reduced
to a system in that hierarchy” ([11]). Accordingly. Γ0 is almost universally ac-
cepted as the ‘ordinal of predicativity’. An example of the implications of this is
given in [13]: “The fact that the proof-theoretic strength of theories of inductive
definitions exceeds the strength of the whole ramified hierarchy is taken as clear
indication that generalized inductive definitions involve impredicativity.”

Up to now, the only mathematician to reject the ‘Γ0-thesis’ of Feferman and
Schütte has been Weaver, who forcefully attacked this thesis in [49]. Unfor-
tunately, his (in my opinion quite justified) criticism has been almost totally
ignored by the logical community. Nevertheless, as a true predicativist (which
is what I am taking myself to be), it is clear to me that the identification of
predicativity with the ramified systems of Feferman and Schütte cannot be cor-
rect. A first, very simple, problem with it is that no predicativist (and for that
matter — no mathematician) thinks in terms of ramified systems. Moreover:
Feferman admits that “ramified theories are unsuitable as a framework for the
development of analysis” ([24]). Another problem, that was repeatedly noted
by Feferman himself, is that the general notions of well-ordering and ordinal on
which they are based are not predicatively acceptable.4 Third, and most impor-
tant: just the description and understanding of the ramified hierarchy rely on
principles that are not included in the theories in [15] and [42] which are based
on this hierarchy. This is rather clear in case α is a limit ordinal: Rα is actually
defined in this case as

⋃
{R(x) | x ∈ {β | β < α}}. Hence it is based on accepting

4Feferman explicitly wrote in [24] that in his view, a system considered adequate for pred-
icativity “should not be taken to involve the notions of ordinal or well-ordering in any way

that is not already contained in the basic concepts of predicativity”. This is the reason why
over the years he has developed three different characterizations of predicativity that do not
rely on the notion of ordinal. (See [19, 21, 26].) Γ0 is still the proof-theoretical ordinal of the

three corresponding systems. However, this is achieved in each case by imposing unjustified

constrains on the applications of some of the principles on which the systems are based. This
was first observed by Weaver in [49]. In the case of the characterization given in [19] (about

which Feferman admits in [21] that it “may still be considered more persuasive” than the one
given in that paper) this will be clearly shown in the sequel.
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at least some instances of ZF’s axioms of union and replacement.5 However, if
we let R0 = N (which is the predicativist natural starting point, rather then
R0 = ∅), then similar problems exist even if we do not use transfinite ordinals,
but only the natural numbers (as Russell did). Thus already in constructing
elements of R2 we allow quantification over R1. This should mean that R1 is
taken as a “complete totality”. But R1 is not obtained using just “quantification
only over previously defined totalities”, and it is actually unclear what R1 is at
the first place. Usually it is identified with the collection (set?) of arithmetical
subsets of N . If so, then each element of R1 is indeed obtained using just quan-
tification only over N . But this does not mean that so is R1 itself. (For example:
if we identify ordinals with von Neumann’s ordinals, then Γ0 is not predicatively
definable according to the Γ0-thesis, even though each element of Γ0 is.) In fact,
the only reasonable definition of the collection of arithmetical sets I can think of
is the following:

{A | ∃n ∈ N(predicae(n) ∧ ∀k ∈ N(k ∈ A↔ n(k) ∈ True)}
where True is the set of true sentences in the first-order language of PA, and
predicae(n) means that n is a formula with exactly one free variable. (As usual,
we identify here a formula with its Gödel number.) However, this definition relies
on the availability of the set True. which is not arithmetical. It follows that if
R1 is the collection of arithmetical sets then it can only be defined using a set
that at best belongs to some Ri such that i > 1, and so is defined in terms of R1.
This is obviously circular. To construct the ramified hierarchy we have therefore
either to accept in addition to N infinitely many other sets as ‘given’ to us, or to
realize that some hidden predicatively acceptable principles are involved already
in the passage from N to R1. The first option completely goes against the central
ideas of Poincaré and Weyl. So we are left with the second.

Note 1. A close inspection shows that in general, the passage from D to D?

implicitly involves accepting two principles:

• One may use the model-theoretic operation that associates with any formula
ϕ(x) of second-order arithmetic the set {n ∈ N | N |= (ϕ(n))D}.

• One may take as predicatively valid the instance of the replacement axiom
that allows us to construct the image of this model-theoretic operation.

Note 2. Actually, some other indications that the ‘Γ0-thesis’ is wrong are
known. For example, Γ0 is the proof-theoretical ordinal of ATR0, which is one of
the ‘big five’ theories which were studied in reverse mathematics ([45]). Therefore
ATR0 is considered to be locally predicative, i.e. all its theorems are taken to
be predicatively acceptable. In contrast, the proof-theoretical ordinal of the full
theory ATR is the much bigger Γε0 . Hence the Γ0-thesis implies that ATR
is not locally predicative. But the only difference between ATR and ATR0 is
that the single induction axiom of the latter is replaced in the former by the
full induction scheme. However, the induction scheme is universally accepted as

5It is rather strange that there is no attempt in e.g. [24] to justify this obvious use of the
union operation, even though only a few pages before this use is made, it is argued that the

set-theoretical operation of union is not predicatively acceptable. I have never been able to
understand this straightforward incoherence.
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being predicatively justified, and is actually included in the finitary systems of
[15]. Therefore the theorems of ATR should be considered as no less predicatively
acceptable than those of ATR0.

1.3. Poincaré and Weyl’s View of Predicativity as Invariance. As
noted above, a notion of predicativity which is quite different from the Russellian
one was introduced by Poincaré in [37]. This was particularly emphasized in [11]:

“For Poincare impredicative definitions are problematic as they treat
as completed infinite classes which are instead open-ended or incom-
plete by their very nature. Predicative definitions, instead, guarantee
that the classes so defined are stable and invariant.”

In Poincaré own words:

“Hence a distinction between two species of classifications, which are
applicable to the elements of infinite collections: the predicative clas-
sifications, which cannot be disordered by the introduction of new
elements; the non predicative classifications, which are forced to re-
main without end by the introduction of new elements.”

This view of predicativity underlies Weyl’s great work in [51]. A careful reading
of this book and of related papers of Weyl on the subject ([2, 6]) shows that
predicativity as invariance is based in his work on the following principles:6

1. Sets are ‘produced’ genetically, that is: from applying legitimate operations
to sets which are accepted as basic, or had previously been produced.

“If we imagine, as is appropriate for an intuitive understanding,
that the relations and corresponding sets are ‘produced’ geneti-
cally, then this production will ... occur in merely parallel individ-
ual acts (so to speak).” ([53], P.40]

2. Accordingly, the elements of a set are logically prior to that set.
3. Sets are extensional, and the identity of a set is fully determined by the

identity of its elements — sets that have the same elements are identical.
4. There is no single, complete intended universe V of sets. The ‘universe of

sets’ is created in stages, and is always open and growing. To each stage
corresponds what Weyl called a sphere of operation (i.e. a definite universe
of sets equipped with some (finite) collection of predicates and operations)
in which terms and formulas take values.

“Thus, contrary to Cantor’s proposal, no universal scale of infi-
nite ordinal and cardinal numbers applicable to every sphere of
operation can exist.” ([53], P.24)

On the other hand (and in contrast):
“The numbers can (in any sphere of operation) be used to deter-
mine the cardinality of sets” ([53], P.55)

5. The current sphere of operation may be expanded in the future, e.g. by
introducing new legitimate methods of defining sets, which in turn might
produce new sets. The truth values of formulas may then be changed.

6Most, if not all, of these principles have been accepted already by Poincaré himself. See
Section 2 of [27] for an excellent analysis of his views on the subject.
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“If we regard the principles of definition as an ‘open’ system, i.e.,
if we reserve the right to extend them when necessary by making
additions, then in general the question of whether a given function
is continuous must also remain open (though we may attempt to
resolve any delimited question). For a function which, within our
current system, is continuous can lose this property if our princi-
ples of definition are expanded and, accordingly, the real numbers
‘presently’ available are joined by others.” ([53], P.87)

6. Values of terms and truth-values of formulas are always evaluated with
respect to some definite sphere of operation — never with respect to the
whole open ‘universe of sets’. Hence classical logic is accepted as valid. For
example, ¬ϕ∨ϕ is valid in any sphere of operation, even though the truth
value of ϕ may change when the current sphere of operation is expanded.

7. In contrast, the identity of already existing objects (and so the value of
terms) should remain the same even if the current sphere of operation is
expanded. Accordingly, a definition of an object is legitimate (or ‘predica-
tive’) if, and only if, the identity of the object it defines is invariant under
extension. (Because of this principle, there are certain constraints in Weyl’s
system on the use of quantification in definitions. However, there are no
constrains in that system on the use of quantifiers in building formulas.)
Weyl called an object so defined “a definite, self-existent object”. Similarly,
a definition of an operation is legitimate if the results of its applications
depend only on the identity of the arguments, but not on the specific sphere
of operation in which the application is made.

8. Any theory we develop should be true not only in the current sphere of
operation, but in any future one. Hence our current theories impose con-
straints on future spheres of operation. Accordingly, expanding our spheres
of operation and extending our theories are done simultaneously. Moreover:

“Our principles for the formation of derived relations can be for-
mulated as axioms concerning sets and functions; and, in fact,
mathematics will proceed in such a way that it draws the logical
consequences of these axioms.” ([53], p. 44)

9. The predicates of elementhood (∈) and equality (=) are basic.
10. Using ramification in definitions, or classifying sets according to ‘levels’,

should be avoided.
“The temptation to pass beyond the first level of construction must
be resisted; instead, one should try to make the range of con-
structible relations as wide as possible by enlarging the stock of
basic operations.” ([52])

It should be emphasized that according to the last quotation, principle 10 is not
due just to the inconvenience which is caused by using ramified systems. There
is also a direct conflict between Russell’s approach and Weyl’s approach. The
former is based on the view that there are no predicatively legitimate methods of
defining subsets of N beyond those allowed in the construction of the hierarchy
of Rαs (and so the union of the Rαs includes all the predicative subsets of
N). In contrast, Weyl’s approach is based on the open-ended of the class of
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predicatively accepted methods of definitions. Thus already what is called ‘R1’
in the Russellian approach is an open collection according to Weyl’s view. (This
point was missed by Feferman in [20]. Therefore when he discovered that Weyl’s
operation of iteration makes it possible to define non-arithmetical subsets of N
even though in the above quotation Weyl explicitly refuses to go beyond ‘R1’,
Feferman wrongly interpreted this fact as an incoherence in Weyl’s work. See [6]
for further details.)

Note 3. Actually, the invariance criterion has been used by Feferman too
in some of his unramified systems. Thus, IR, the first of the two unramified
second-order locally predicative systems which were given in [15], uses the Hy-
perarithmetic Comprehension Rule ∆1

1-CR. This is justified in [24] as follows:

“The motivation for ∆1
1-CR is the recognizable absoluteness (or in-

variance) of provably ∆1
1 definitions, in the following sense. At each

stage one has recognized certain closure conditions on the ‘open’ uni-
verse of sets, and the definitions D(x) of sets introduced at the next
stage should be independent of what further closure conditions may
be accepted. In the words of Poincaré, the definitions used of ob-
jects in an incomplete totality should not be “disturbed by the in-
troduction of new elements.” Thus if U represents a universe of sets
(subsets of N) satisfying given closure conditions and is extended to
S′ (satisfying the same closure conditions and possibly further ones)
one wants D to be provably invariant or absolute in the sense that
(∀x)[DU (x) ↔ DU ′

(x)]. This requirement is easily seen to hold for
provably ∆1

1 formulas D.”

This passage contains a rather accurate description of the invariance criterion,
but ignores the conflict this criterion has with the Russellian approach, on which
Feferman’s canonical ramified systems are based. (In fact, I have not been able
to find in any of Feferman’s papers an explanation of the connection between
the invariance criterion and the Russellian approach.)

1.4. Predicative Set Theories: Why and How.

1.4.1. Why. Feferman’s systems (and to a lesser degree also Weyl’s system in
[51], as formalized in [6]) have one big drawback: they are practically inaccessible
to the majority of the mathematical community. We believe that the major
reason for this is that those systems do not use the framework of axiomatic set
theory, which is almost universally accepted as the basic framework that provides
the foundations of mathematics. What is more: Feferman’s systems are by far
more complicated in comparison to impredicative axiomatic set theories like ZF,
which are currently used for developing the whole of present day mathematics.

Another reason to prefer the set-theoretical framework is that some of its
principles are anyway underlying the constructions on which the second-order
ramified systems of Feferman and Schütte are based. Thus we have seen in Sec-
tion 1.2 that the construction of the hierarchy of Rαs uses instances of the union
and replacement axioms of ZF. But in what cases is such a use predicatively
justified? It seems to me that developing predicative set theories is the only
way to answer such questions. What is more, the notion of ordinal, which is
crucial for the ramified systems but is also very problematic in their context, is
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not problematic at all in the set-theoretical one. There one can use the notion
of von Neumann ordinals, and those are defined by a simple, absolute formula.

Finally, it is worth noting that predicativism was born as a reaction to the
set-theoretical paradoxes, and was intended to provide a satisfactory solution to
them. So (at least in my opinion) it should be most natural to develop predicative
mathematics in the framework in which it has started.

Note 4. Locally predicative (in the sense of being proof-theoretically re-
ducible to the systems of [15]) set theories have already been introduced by
Feferman in [16, 18]. We shall say more about them in Section 4.3.

1.4.2. How. In the case of pure set theories, the main principle of the predica-
tivity as invariance view of Poincaré and Weyl can be expressed as follows: a set
exists if and only if can be determined by an invariant definition. Accordingly,
the main two features of the system PW which is developed in the sequel are:

(I) Any existence claim which is made in one of those axioms of PW whose
purpose is to allow the expansion of the sphere of operation is actually an
existence and uniqueness claim. In other words: positive occurrences of the
quantifier ∃ in such an axiom are in the form ∃!. (This, of course, rules out
the axiom of choice, as well as the axiom of ∆0-collection of Kripke-Platek
set theory as given in [9].)

(II) Following Principles 1 and 7 in Section 1.3, any definition of a set which
is made in PW is invariant. This is ensured by employing a syntactically
defined invariance relation � between formulas and finite sets of variables.

Note 5. Principle (I) is not applicable to general validities like logically valid
formulas or instances of ∈-induction. A trivial example is given by ∀x¬ϕ∨∃xϕ,
where ϕ is arbitrary. In general theorems of PW of this sort cannot be used for
introducing new sets, or for providing absolute identification of existing ones.

The following other important features of PW also directly correspond to the
principles of Weyl and Poincaré that were described in Section 1.3:

1. Like in ZF, and unlike in the systems of Weyl and Feferman, our system
has a single type (or ‘category’, in Weyl’s terminology) of objects: sets.
(This corresponds to Principle 10 in Section 1.3.)

2. Like in most of Feferman’s systems, PW is practically not really a single
theory, but involves many theories, all of them first-order. In each stage of
working within it, we do have a single theory T, but we have two options
how to proceed: We may simply derive new theorems in T, but we may
also move to a strictly stronger theory T? in an expanded language.7 (This
feature of PW implements Principles 4,5, and 8 in Section 1.3.)

3. The logic of all theories in PW is classical logic. (Principle 6 in Section 1.3.)
4. The initial language of the system includes just two predicate symbols: =

and ∈ (Principle 9 in Section 1.3) and a constant ω for the set of natural
numbers (taken to be the finite von Neumann ordinals). The inclusion of

7Practical work with any ordinary first-order theory T also always involves the use of the
procedure of extension by definitions (see e.g. [44]), which also allows moving from T to an

extension T? in an expanded language. However, this T? is a conservative extension of T,
and is no more than just an equivalent variant of it. This is not the situation in PW.
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the latter is actually not essential, but it reflects well the central place that
the natural numbers have in the predicativism of Poincaré and Weyl.

5. The following axiom and axiom schema are included in all theories in PW:
• The axiom of extensionality (Principle 3 in Section 1.3);
• Comprehension for invariant formulas (Principle 7 in Section 1.3);
• ∈-induction (which implements the vague Principle 2 in Section 1.3).8

6. Our main method of extending a given predicative set theory T to a stronger
predicative set theory T? is by adding a new symbol to the signature of T,
together with an axiom that defines it. (In addition, we include of course
in T? all the instances in the extended language of the axiom schemas of
T.) Such an extension is done by applying one of the syntactic methods
that PW provides for this purpose.

7. As usual, extending T by a operation symbol is allowed only if T proves
some corresponding existence and uniqueness conditions. Still, the exten-
sion is usually not conservative.

8. Adding an n-ary predicate symbol P is allowed only if its defining axiom im-
plies its absoluteness. Similarly, adding an n-ary operation symbol F is al-
lowed only if its defining axiom implies that the formula y = F (x1, . . . , xn)
is invariant with respect to y in case y, x1, . . . , xn are distinct.

Note 6. In designing PW we have adopted two additional principles:

• Platonists should be able to accept any theory in our framework. In partic-
ular: every theory in our framework is a subsystem (of some extension by
definitions) of ZF. This principle immediately rules out, e.g. Axiom VIII
(Enumerability) of the system PS1E from [18] and the Axiom of Countabil-
ity of the system ATRSet

0 from [45], which say that every set is countable.9

• Every rule or axiom of PW is a very close counterpart of some rule or axiom
that was used by Feferman in one of his predicative (or locally predicative)
systems. Hence PW should be accepted as predicative by anyone who
accepts those system of Feferman’s as predicative.

Note 7. Among the axioms of ZFC, PW completely rejects the axiom of
powerset and the axiom of choice, and it restricts the axiom schema of separation
to the case in which the separating condition is absolute. It also accepts only
special cases of the axiom schema of replacement. In our opinion, these are
properties that should be shared by any predicative set theory.

1.5. The Structure of the Paper. Section 2 explains our notations and
terminology. In Section 3 we establish the predicativity of the set of natural
numbers, using a rather weak subsystem of PW. PW itself is precisely defined,
justified, and compared with Feferman’s Systems in Section 4. Section 5 includes
important examples of the power of PW. Section 6 develops in PW the fun-
damentals of the theory of von Neumann ordinals. Section 7 includes the main
results of this paper: it shows that PW provides terms which define Γ0 and much
bigger ordinals, and that it can prove the main properties of those ordinals. We
conclude in Section 8 with some remarks and directions for further research.

8In Section 4.2 we shall discuss the justification of full ∈-induction in greater detail.
9Another reason to reject these axioms is that the notion of being countable is not absolute.

Recall that Weyl rejected the idea of assigning different cardinalities to infinite sets.
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§2. Terminology and Notations.

2.1. The Difference Between Operations and Functions. In standard
textbooks on first-order theory it is common to refer to the symbols in a signature
of a first-order language as ‘relation symbols’ and ‘function symbols’. We cannot
use this terminology here, since we reserve the words ‘relation’ and ‘function’ to
their official meaning in set theory, that is: to sets of pairs satisfying certain
conditions. Instead, we use the name ‘predicate’ for any relation that is not
a set (like the predicates ∈ or =), and we use the name ‘operation’ for any
‘function’ that is not a set (like the operation of union on sets or the operation
of addition on ordinals).10 Accordingly, the symbols of a first-order signature are
divided in this paper into predicate symbols, operation symbols, and constants.
The latter may actually be viewed as operations with arity 0, except that they
should always be interpreted as sets.

2.2. Notations. We use small letters from the beginning of the Latin al-
phabet as variables in the metalanguage for sets, and i, j, k, l,m, n as special
variables for natural numbers (in both the metalanguage and the formal lan-
guage). t and s will serve as variables (in the metalanguage) for terms, and
ϕ,ψ, θ, A,B,C as variables for formulas. In all cases the variables may be deco-
rated with subscripts or superscripts. We denote by Fv(ϕ) (Fv(t)) the set of free
variables of ϕ (of t). When we denote a formula by ϕ(x1, . . . , xn) it means that
{x1, . . . , xn} ⊆ Fv(ϕ). On the other hand when we write ϕ(~y, x) it means that
~y = 〈y1, . . . , yn〉 for some n (whose identity may be obtained from the context or
it does not matter); the variables x, y1, . . . , yn are all distinct from each other;
and Fv(ϕ) = {x, y1, . . . , yn}.

The substitution of a term t for a free variable y in a formula ϕ (a term s)
is denoted by ϕ{t/y} (s{t/y}). However, when we denote a formula by ϕ(y)
(ϕ(x, y), ϕ(~x, y)) we might simply write ϕ(t) (ϕ(x, t), ϕ(~x, t)) instead.

Given a first-order signature σ, we take a structure for σ to be a pair M =
〈D, I〉, where D 6= ∅ is the domain of M and I is its interpretaton function. If
r is one of the symbols in σ we shall usually write rI instead of I(r). If ν is
an assignment of elements of D to variables of the language, x1, . . . , xn are n
distinct variables, and ~a ∈ Dn, we denote by ν{~x := ~a} the assignment which is
obtained from ν by assigning ai to xi (i = 1, . . . , n). We denote by νM[t] the
element of D that ν assigns according to I to the term t of σ. Similarly, if f
is an operation symbol of σ then we use in the metalanguage square brackets
to denote applications of f I to arguments in D. Thus, if f is n-ary, and ν is
an assignment in D, then νM[f(t1, . . . , tn)] = f I [νM[t1], . . . , νM[tn]]. We write
M, ν |= ϕ in case ν satisfies in M the formula ϕ of σ. If Fv(ϕ) = {x1, . . . , xn},
and ν[xi] = ai (i = 1, . . . , n) then we might write insteadM |= ϕ(〈a1, . . . , an〉).

Finally, when we refer in the metalanguage to the collection of things that
satisfy a certain condition C we shall denote it by [x | C(x)], reserving the
notation {x |ϕ(x)} for being used in our formal system. Moreover, in case there
is a danger of confusion, we shall use ‘:’ in the metalanguage instead of ‘∈’.
(Recall that the latter is a basic symbol of the language of our system.)

10Thus, what are usually called ‘the rudimentary functions’ ([28, 14]) are called here ‘the
rudimentary operations’.
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§3. The Predicativity of the Natural Numbers. Our system PW in-
cludes a constant ω for the natural numbers. Before presenting PW in the next
section, we would like to justify this inclusion. We do that by:

1. Providing a bounded formula N(x) in the language of set theory that defines
when x is a natural number (i.e. a finite von Neumann ordinal).

2. Present a basic predicative set theory VBS, in which one can show that
N(x) is adequate for the task. This is done by proving in it all the properties
that one expects from a formula that defines the natural numbers;

3. Give an intuitive proof in the metalanguage that the formula N(x) is in-
variant, and so it may be used for defining a new set.

We start by presenting VBS.11 The axioms of this system include the Ex-
tensionality axiom [Ext] and the ∈-induction axiom schema [∈-ind] from Sec-
tion 4.1.4 below, as well as the following four elementary instances of the general
predicative comprehension scheme:

1. Empty Set ([Em]):
∃Z∀x(x ∈ Z ↔ x 6= x)

2. Pairing ([Pa]):

∀x∀y∀∃Z∀w(w ∈ Z ↔ w = x ∨ w = y)

3. Union ([U]):

∀x∃Z∀w(w ∈ Z ↔ ∃y(y ∈ x ∧ w ∈ y))

4. Difference ([D]):

∀x∀y∃Z∀w(w ∈ Z ↔ w ∈ x ∧ w 6∈ y)

Note 8. It is easy to see that the structure 〈HF,∈〉, where HF (which is
identical to Vω) is the set of the hereditarily finite sets, forms the minimal model
of VBS. Moreover, 〈Vα,∈〉 is a model of VBS whenever α is a limit ordinal.12

In order to present the formula N(x) it is convenient (though not really nec-
essary) to use the usual procedure of extension by definitions, and develop VBS
in an enriched language in which the four axioms above are replaced by:13

1. [Em]: ∀x(x 6∈ ∅)
2. [Pa]: ∀x∀y∀w(w ∈ {x, y} ↔ w = x ∨ w = y)
3. [U]: ∀x∀w(w ∈

⋃
x↔ ∃y(y ∈ x ∧ w ∈ y))

4. [D]: ∀x∀y∀w(w ∈ x− y ↔ w ∈ x ∧ w 6∈ y)

Note 9. In general, one should be careful when applying the extension by
definitions procedure to theories with axioms schemas, since the extension of such
a schema to the expanded language involves the addition of infinitely many new
axioms besides those that are allowed by the procedure. This is not a problem
in cases like we have here, where every axiom schema is pure in the sense that no

11For the material of this section a much weaker system would suffice. However, we need

the full power of VBS for developing the basic theory of ordinals in Section 6.
12From our predicativist point of view, Vα is not a set in case α > ω, but only a class. By

this we mean that there is an absolute formula ϕ(α, x) that defines the predicate ‘x ∈ Vα’.
13These applications of the extension by definitions procedure are permissible also according

to the restricted version of this procedure which is allowed in PW.
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constraint is imposed on the formulas to which it may be applied. Therefore we
may assume that every instance of [∈−ind] in the expanded language is an axiom
of VBS. However, one should be cautious about the issue of being conservative
when the procedure is applied in more complicated cases, like in case we have
[∈−ind] restricted to some class of formulas (e.g. bounded formulas).

Proposition 1. For every n ≥ 0:

`VBS ∀x0∀x1 ∈ x0∀x2 ∈ x1 · · · ∀xn ∈ xn−1.x0 6∈ xn
Proof. We do the case n = 2 (which trivially implies the cases n = 0 and n = 1).
The proof for any other n is similar.

Given x0, to show that ∀x1 ∈ x0∀x2 ∈ x1.x0 6∈ x2, we may assume (using
[∈−ind] ) that (?) ∀y0 ∈ x0∀y1 ∈ y0∀y2 ∈ y1.y0 6∈ y2. Suppose now that there
are x1 and x2 such that: x1 ∈ x0 ∧ x2 ∈ x1 ∧ x0 ∈ x2 Since x1 ∈ x0, we may
apply (?) with y0 = x1, y1 = x2, and y2 = x0, to get that x1 6∈ x0, which is a
contradiction. So no such x1 and x2 exist. 2

We are ready to introduce our definition of the notion of a natural number:

Definition 1.

1. S(x) := x ∪ {x} (where {x} = {x, x}).
2. N(x) := ∀y ∈ S(x)(y = ∅ ∨ ∃z ∈ x.y = S(z))

Note 10. Officially, N(x) is the following formula:

∀y((y ∈ x ∨ y = x)→ (∀z(z 6∈ y) ∨ ∃z ∈ x∀w(w ∈ y ↔ (w ∈ z ∨ w = z))))

Proposition 2. Let 0 := ∅. The following are provable in VBS:

1. N(0).
2. ∀x(N(x)↔ N(S(x))).
3. S(x) 6= 0
4. S(x) = S(y)→ x = y

Proof. 1. and 3. are trivial. 4. easily follows from Proposition 1. We show 2.

• Suppose that N(x). We show that N(S(x)), i.e. that

∀y ∈ S(S(x))(y = 0 ∨ ∃z ∈ S(x).y = S(z))

So let y ∈ S(S(x)). We show that y = 0 ∨ ∃z ∈ S(x).y = S(z). Since we
assume N(x), this is obvious in case y ∈ S(x), because every z ∈ x is also
in S(x). There remains the case y = S(x), but this case is trivial, since
x ∈ S(x) (and so x is an element z in S(x) such that y = S(z)).

• Suppose that N(S(x)), i.e.

∀y ∈ S(S(x))(y = 0 ∨ ∃z ∈ S(x).y = S(z))

We show that N(x). So let y ∈ S(x). We show that y = 0∨∃z ∈ x.y = S(z).
Suppose that the first disjunct fails, i.e. y 6= 0. Since S(x) ⊆ S(S(x)),
our assumption implies that there is z ∈ S(x) such that y = S(z). It is
impossible that z = x, since in this case we would get that S(x) ∈ S(x).
Hence z ∈ x, and we are done. 2

Proposition 3. `VBS ϕ{0/x} ∧ ∀x(ϕ→ ϕ{S(x)/x})→ ∀x(N(x)→ ϕ)
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Proof. Assume (I) ϕ{0/x} ∧ ∀x(ϕ → ϕ{S(x)/x}). To show ∀x(N(x) → ϕ), it
suffices by [∈−ind] to show that ∀x(∀y ∈ x(N(y) → ϕ{y/x}) → (N(x) → ϕ)).
So assume that (II) ∀y ∈ x(N(y) → ϕ{y/x}) and (III) N(x). We show ϕ. If
x = 0 then this is implied by (I). If not, then it follows from (III) that there is
z ∈ x such that x = S(z). Hence (II) entails that N(z) → ϕ{z/x}. But N(z)
follows from (III) by the second item of Proposition 2. Therefore ϕ{z/x}. From
this ϕ (which is equivalent to ϕ{S(z)/x}) follows by (I). 2

Proposition 4. Let <:=∈. The following are provable in VBS:

1. x 6< 0
2. x < S(y)↔ x < y ∨ x = y
3. N(x) ∧ y < x→ N(y)

Proof. The first two items are trivial. We prove the third by induction on x
(i.e. by using Proposition 3). So let ϕ := ∀y(N(x)∧ y < x→ N(y)). Obviously,
`VBS ϕ{0/x}. We show that `VBS ∀x(ϕ → ϕ{S(x)/x}). So assume ϕ(x) and
that N(S(x)) and y < S(x). By Proposition 2, the first assumption implies that
N(x). Hence y = x implies that N(y). Otherwise y < x, and so the induction
hypothesis implies that N(y). 2

Finally we show that N(x) (intuitively) defines an invariant collection. Since
this is an intuitive theorem in the meta-language, the proof is intuitive too. Still,
it employs only predicatively acceptable principles.

Proposition 5. Let M1 and M2 be transitive models of VBS (in the usual
sense of set theory) such that M1 ⊆M2. Then:

ω2 = [x :M2 | M2 |= N(x)] = [x :M1 | M1 |= N(x)] = ω1

Proof. The fact that N(x) is bounded (and so absolute) implies that ω1 ⊆ ω2.
For the converse, we show that ∀a ∈ M2((M2 |= N(a)) → (a ∈ M1 ∧M1 |=
N(a))). So let a ∈ M2, and assume that M2 |= N(a). By [∈−ind] we may
assume also that ∀b ∈ a((M2 |= N(b)) → (b ∈ M1 ∧ M1 |= N(b))). Since
M2 |= N(a), either a = ∅, or there exists b ∈ a such that M2 |= a = S(b). In
the first case a ∈ M1 holds trivially. So assume the second case. Then item
2 of Proposition 2 implies that M2 |= N(b). Hence the induction hypothesis
implies that b ∈ M1 ∧M1 |= N(b). Again by Proposition 2, this entails that
S(b) ∈M1 ∧M1 |= N(S(b)). Hence a ∈M1 ∧M1 |= N(a). 2

§4. The System PW.

4.1. A Description of the System. The language of the system PW is a
one-sorted first-order language with equality. Like in any first-order language,
it has infinitely many variables, taken here to be v0, v1, . . . , with letters from
the end of the alphabet to vary over them. All other components of the system
(terms, formulas, the invariance relation �, Σ-formulas, predicate and operation
symbols, axioms, rules and proofs) are simultaneously generated as described
below. (Note that in the formulation of the last rule [Unif] there is a use of the
formula Fun, the operation Dom, and the term f(x). They are all introduced
in Section 5.1 without using [Unif]. Fun(f) says that f is a function. Dom(f)
and f(x) have their usual meaning.)
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4.1.1. Predicate Symbols and Operation Symbols.

1. = and ∈ are binary predicate symbols.
2. If ϕ � ∅ and Fv(ϕ) = {v0, . . .,vn} then Pϕ is an n+ 1 predicate symbol.
3. If ϕ is Σ and Fv(ϕ) = {v0, . . .,vn} then Fϕ is an n-ary operation symbol.

4.1.2. Terms.

1. Every variable is a term.
2. The constant ω is a term. (A constant is a 0-ary operation symbol.)
3. F (t1, . . .,tn) is a term if F is an n-ary operation, and t1, . . .,tn are terms.

4.1.3. Formulas.

1. P (t1, . . .,tn) is a formula if P is an n-ary predicate, t1, . . .,tn are terms.
2. The formulas are closed under ¬, ∧, ∨ and →.
3. If ϕ is a formula and x is a variables, then ∃xϕ and ∀xϕ are formulas.

4.1.4. Axioms.

1. [Fol]: Every formula which is valid in first-order logic with equality.14

2. [Ext] (Extensionality): ∀z(z ∈ x↔ z ∈ y)→ x = y.
3. [Comp] (�-Comprehension): ∃!Z∀x(x ∈ Z ↔ ϕ), provided that ϕ � {x}.
4. [∈-ind] (∈-induction): (∀x(∀y(y ∈ x→ ϕ{y/x})→ ϕ))→ ∀xϕ.
5. [Inf] (Infinity): ∀x(x ∈ ω ↔ N(x)), where N(x) is presented in Note 10.
6. [PrI] Pϕ(v0, . . .,vn)↔ ϕ (provided that ϕ is as in 4.1.1).

4.1.5. Rules.

1. [MP]: From ϕ and ϕ→ ψ infer ψ.
2. [Gen]: From `PW ϕ infer `PW ∀xϕ.
3. [OpI] From `PW ∀v1 · · · ∀vn∃!v0ϕ infer `PW Fϕ(v1, . . .,vn) = v0 ↔ ϕ (pro-

vided that ϕ is as in 4.1.1, i.e. ϕ is Σ and Fv(ϕ) = {v0, . . .,vn}).
4. [Unif] (Unification Rule for Operations):

`PW ∀y1∀y2(ϕ{y1/y} ∧ ϕ{y2/y} → y1 = y2)

`PW ∀x ∈ Z∃yϕ→ ∃!f(Fun(f) ∧Dom(f) = Z ∧ ∀x ∈ Zϕ{f(x)/y})
Provided ϕ is Σ, x and y are distinct variables in Fv(ϕ), and Z 6∈ Fv(ϕ).

4.1.6. The invariance relation �.

1. t ∈ s � ∅ and t = s � ∅.
2. ϕ � {x} if ϕ ∈ {x 6= x, x = t, t = x, x ∈ t} and x 6∈ Fv(t).
3. Pϕ(t0, . . .,tn) � X if ϕ{t0/v0, . . .,tn/vn} � X.
4. ¬ϕ � ∅ if ϕ � ∅.
5. ϕ ∨ ψ � X if ϕ � X and ψ � X.
6. ϕ ∧ ψ � X ∪ Y if ϕ � X, ψ � Y and Y ∩ Fv(ϕ) = ∅.
7. ∃yϕ � X − {y} if y ∈ X and ϕ � X.

4.1.7. Σ-formulas.

1. If ϕ � ∅ then ϕ is Σ. Such formulas are called absolute.
2. If ϕ and ψ are Σ then so are ϕ ∨ ψ and ϕ ∧ ψ.
3. If ϕ is Σ then so is ∃xϕ.
4. If ϕ � {y1, . . .,yk}, and ψ is Σ, then ∀y1 · · · ∀yk(ϕ→ ψ) is Σ.

14Instead, we can of course choose any standard axiomatization of this logic.
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Note 11. In the formulation above we have used the quantifier ∃! in [Comp]
and in [Ext]. This was done according to Principle (I) of Section 1.4.2. However,
in both cases we can actually use the simpler connective ∃. In the case of
[Comp] this is due to the axiom [Ext], while in the case of [Unif] it follows from
the premise of that rule.

Note 12. Like in the system PZF from [5], the predicativity of definitions
of sets is ensured PW by using an appropriate syntactic invariance relation �
between a formula ϕ and subsets of Fv(ϕ). Relations of this sort provide a
common generalization of the set-theoretical notion of absoluteness ([14]), and
the notion of domain independence used in database theory ([46, 1]). They have
originally been introduced in [3, 4] in order to provide a unified theory of con-
structions and operations as they are used in different branches of mathematics
and computer science, including set theory, computability theory, and database
theory. Further important theorems about them can be found in [8]. 15

Note 13. It is easy to show by induction that if ϕ � X and Y ⊆ X then
ϕ � Y . Therefore we have not included this important condition from [8] in
our present definition of �, but we shall use it freely in what follows. Another
important condition which we shall treat as if it included in the definition of �
is that ∀x1 · · · ∀xn(ϕ→ ψ) � ∅ if ϕ � {x1, . . .,xn} and ψ � ∅. The reason is that
every consequence of this condition can easily be derived without it (because
∀x1 · · · ∀xn(ϕ→ ψ) is logically equivalent to ¬∃x1 · · · ∀xn(ϕ ∧ ¬ψ).)

Note 14. The clauses in the definition of Σ-formulas are taken from [4]. This
definition is a straightforward generalization of the usual definition of Σ-formulas.
In particular: it includes all the formulas which are called ‘essentially existential
HF -formulas’ in [17]. From Theorem 4.1 of [17] it follows that every persistent
formula is equivalent in PW to a Σ-formula, but we shall not use this fact here.

Note 15.

1. The fact that [PrI] applies only to absolute formulas ensures (together with
Note 13) that P (t1, . . .,tn) � ∅ whenever P is a predicate.

2. Actually, the use of [PrI] does not really increase the power of PW, and so
we can omit it from PW. However, it is very convenient to include it.

Note 16. It should be emphasized that [MP] is the only rule of derivation
of PW. All the rest are only rules of proof. This means that they can be
applied only in assumptions-free deductions (i.e. pure deductions from axioms).
It follows that the deduction theorem obtains for PW: to show Γ `PW (ϕ→ ψ)
it suffices to prove that Γ, ϕ `PW ψ. However, while using this theorem in order
to show that Γ `PW (ϕ→ ψ), one should be careful not to rely on a proof of ψ
from Γ, ϕ in which [Gen],[OpI] or [Unif] is applied to a formula which depends
on an assumption in Γ, ϕ. (As usual, in the case of [Gen] one may actually infer
in a derivation ∀xϕ from ϕ in case x is not free in any of the assumptions on
which ϕ depends in that derivation.)

15Following standard terminology in database theory ([46]), we have used in our previous
papers the name “safety relations” for this type of relations.
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4.2. Justification of the System. From the non-logical axioms and rules
of PW, [Ext] needs no justification, [PrI] was justified in Note 15, and [Inf] in
Section 3. It remains to justify the other non-logical axioms and rules of PW.

4.2.1. [Comp] and [OpI]. Since invariance is our major criterion for predica-
tivity, we start by showing that PW satisfies this criterion according to a precise
notion of invariance which is adequate for the present context.

Obviously, talking about invariance of definitions of sets and operations, when
we expand one sphere of operationM1 to a bigger oneM2, can make sense only
if the identities of the elements ofM1 are preserved inM2. Since in the context
of set theory we take the identity of a set to be fully determined by the identity
of its elements, this means that the same objects should belong to an element a
of M1 in both M1 and M2. Accordingly we define:

Definition 2. Let M1 = 〈D1, I1〉 and M2 = 〈D2, I2〉 be structures for sig-
natures that contain ∈, and let both be models of [Ext]. M2 is an ∈-extension
of M1 if D1 ⊆ D2, and the following holds for every element a of D1:

[x : D1 | x ∈I1 a] = [x : D2 | x ∈I2 a]

Note 17. From a platonic point of view, if ∈I1 and ∈I2 are both the ‘real’ ∈
of V , then M2 is an ∈-extension of M1 iff D1 is a transitive subset of D2.

Definition 3. Let e be a term or a formula or an operation symbol of PW.

1. σe is the minimal signature σ that satisfies the following conditions:
• It includes ∈ and =.
• It includes all the predicate symbols and operation symbols (including

constants) that occur in e;
• If either Pψ or Fψ is in σ, then so are all the predicate symbols and

operation symbols that occur in ψ.
2. e is legal if the premise of [OpI] obtains whenever Fϕ is in σe.
3. For legal e, PWe is the set of all theorem of PW in the language of σe.

Definition 4. Let e be legal. A structure M = 〈D, I〉 is adequate for e if:

• M is a structure for a signature that contains σe;
• M is a model of PWe;

Note 18. Actually, we would have liked to include in the definition of ade-
quacy the demand that ∈I is well-founded, in the strong intuitive sense of this no-
tion. By Proposition 5, this would force the structure 〈[a ∈ D | M |= N(a)],∈I〉
to be isomorphic to 〈N , <〉, where N is the structure of the natural numbers.
Unfortunately, defining either ‘well-founded’ or ‘isomorphic’ in a predicatively
appropriate way is problematic. (We return to this issue in Section 4.2.2.) To
avoid the complications involved, we keep the above weak notion of adequacy,
but explicitly include in the next definition an unproblematic weak corollary of
demanding 〈[a ∈ D | M |= N(a)],∈I〉 to be isomorphic to 〈N , <〉.

Definition 5. For legal e, 〈M1,M2〉 is an e-pair if:

• M1 and M2 are adequate for e.
• M2 is an ∈-extension of M1.
• [a ∈ D2 | M2 |= N(a)] = [a ∈ D1 | M1 |= N(a)]
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Definition 6.

1. A legal term t of PW is invariant if νM1
[t] = νM2

[t] whenever 〈M1,M2〉
is a t-pair, and ν is an assignment in M1.

2. A legal n-ary operation F of PW is invariant if

FM1 [a1, . . .,an] = FM2 [a1, . . .,an]

whenever 〈M1,M2〉 is an F -pair, and a1, . . .,an are elements of M1.
3. A legal formula ϕ of PW such that {x1, . . .,xn} ⊆ Fv(ϕ) is invariant with

respect to {x1, . . .,xn} if the following holds for every assignment ν inM1:

[~a : Dn2 | M2, ν{~x := ~a} |= ϕ] = [~a : Dn1 | M1, ν{~x := ~a} |= ϕ]

4. A legal formula ϕ of PW is persistent ifM1, ν |= ϕ implies thatM2, ν |= ϕ
as well whenever 〈M1,M2〉 is a ϕ-pair, and ν is an assignment in M1.

Note 19. The definition of invariability of formulas can also be formulated
as follows: a legal formula ϕ of PW such that Fv(ϕ) = {x1, . . .,xn, y1, . . .,yk} is
invariant with respect to {x1, . . .,xn} if the following holds whenever 〈M1,M2〉
is a ϕ-pair, and c1 . . . , ck are are elements of M1:

[~a : Dn2 | M2 |= ϕ(~a_~c)] = [~a : Dn1 | M1 |= ϕ(~a_~c)]

(where 〈a1, . . .,an〉_〈c1, . . .,ck〉 = 〈a1, . . .,an, c1, . . .,ck〉.)

Note 20. Identifying 〈〉 with ∅, we get that in case n = 0, the collection
[~a : Dn | M |= ϕ(~a_~c)] is either 1 (= {∅}) or 0 (= ∅), depending on whether
M |= ϕ(~c) or not. Hence invariance with respect to ∅ is simply absoluteness.

Convention. From now on, when we talk about terms, we shall mean legal
terms. The same convention applies to formulas and operation symbols.

Theorem 1.

1. Every term t of PW is invariant.
2. Every operation F of PW is invariant.
3. If ϕ � {x1, . . .,xn} in PW then ϕ is invariant with respect to {x1, . . .,xn}.
4. Every Σ-formula of PW is persistent.

Proof. We prove all parts simultaneously, using induction on the complexity of
e, where e is a term or a formula or an operation symbol of PW. Nevertheless,
to facilitate reading and understanding, we split the various induction steps into
groups that correspond to the four parts of the theorem.

In what follows we assume that for every e we consider, 〈M1,M2〉 is an e-pair
(M1 = 〈D1, I1〉, M2 = 〈D2, I2〉), and ν is an assignment in D1.

operations: Suppose that e is the n-ary operation symbol Fϕ. For conve-
nience of presentation, assume that n = 1. Let a : D1, and let b = F I1ϕ [a].
Since M1 is a model of PWe, the legality of Fϕ and the rule [OpI] imply
that M1 |= ϕ(〈a, b〉). Since ϕ should be a Σ-formula, the induction hy-
pothesis for ϕ implies that M2 |= ϕ(〈a, b〉) too. Since M2 is a model of
PWe, this in turn implies (with the help of [OpI]) that b = F I2ϕ [a] as well.

Terms:
• The case where e is a variable is trivial.
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• The case e = ω is immediate from the third item of Definition 5.
• Suppose that e is the term Fϕ(s1, . . .,sn). Then

νM1 [e] = F I1ϕ [νM1 [s1], . . .,νM1 [sn]] νM2 [e] = F I2ϕ [νM2 [s1], . . .,νM2 [sn]]

Now from the induction hypothesis for ϕ we get:

F I1ϕ [νM1 [s1], . . .,νM1 [sn]] = F I2ϕ [νM1 [s1], . . .,νM1 [sn]]

while from the induction hypotheses for s1, . . .,sn we get that

F I2ϕ [νM1 [s1], . . .,νM1 [sn]] = F I2ϕ [νM2 [s1], . . .,νM2 [sn]]

It follows that νM1
[e] = νM2

[e].
The invariance relation �:

• – To show the absoluteness (invariance with respect to ∅) of s ∈ t,
let ν be an assignment in M1. Assume first that M1, ν |= s ∈ t.
Then νM1

[s] ∈I1 νM1
[t]. It follows by the induction hypotheses

for s and t and the fact that M2 is an ∈-extension of M1 that
νM2

[s] ∈I2 νM2
[t] too. Hence M2, ν |= s ∈ t. The proof of the

converse (i.e. that ifM2, ν |= s ∈ t thenM1, ν |= s ∈ t) is similar.
– We leave the simpler proof that s = t is absolute to the reader.

• – That x 6= x is invariant with respect to x follows from the fact that
for every M = 〈D, I〉 and ν, [a : D | M, ν{x := a} |= x 6= x] = ∅.

– Let e be the formula x = t, where x 6∈ Fv(t). Then the collection
[a ∈ D1 | M1, ν{x := a} |= x = t] is the singleton of νM1

[t], while
[a ∈ D2 | M2, ν{x := a} |= x = t] is the singleton of νM2 [t]. Hence
the induction hypothesis for t implies that the two sets are equal.

– Let e be the formula x ∈ t, where x 6∈ Fv(t). Then

[a ∈ D1 | M1, ν{x := a} |= x ∈ t] = [a ∈ D1 | a ∈M1 νM1
[t]]

[a ∈ D2 | M2, ν{x := a} |= x ∈ t] = [a ∈ D2 | a ∈M1 νM2 [t]]

Since νM1
[t] = νM2

[t] by the induction hypothesis for t, these two
equations and the fact that M2 is an ∈-extension of M1 imply:

[a ∈ D1 | M1, ν{x := a} |= x ∈ t] = [a ∈ D2 | M2, ν{x := a} |= x ∈ t]

• The case e = Pϕ(t1, . . .,tn) is immediate from the induction hypothesis
for ϕ, and the ϕ-instance of [PrI] (which belongs to PWe, of course).
• The proof that if ϕ is absolute then so is ¬ϕ is left to the reader.
• Let e be ϕ ∨ ψ, where ϕ � {x1, . . .,xn} and ψ � {x1, . . .,xn}. Then

the collection [~a ∈ Dn1 | M1, ν{~x := ~a} |= ϕ ∨ ψ] is the union of
[~a ∈ Dn1 | M1, ν{~x := ~a} |= ϕ] and [~a ∈ Dn1 | M1, ν{~x := ~a} |= ψ].
A similar equation holds for [~a ∈ Dn2 | M2, ν{~x := ~a} |= ϕ ∨ ψ] The
equality of these two collections follows therefore from the induction
hypotheses for ϕ and ψ.
• Let e be θ = ϕ ∧ ψ, where ϕ � X, ψ � Y , and Y ∩ Fv(ϕ) = ∅.

To simplify notation, assume that Fv(ϕ) = {x, z}, Fv(ψ) = {x, y, z},
X = {x}, Y = {y}. For c ∈ D1, let Z(c) = [a ∈ D2 | M2 |= ϕ(a, c)}.
Since ϕ � X, Z(c) = [a ∈ D1 | M1 |= ϕ(a, c)] as well (by the induction
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hypothesis for ϕ). Hence Z(c) ⊆ D1. By the induction hypothesis for
ψ, this and the fact that ψ � Y imply that if d ∈ Z(c) then

[b ∈ D2 | M2 |= ψ(d, b, c)] = [b ∈ D1 | M1 |= ψ(d, b, c)]

Denote this set by W (c, d). Now both [〈a, b〉 ∈ D2
2 | M2 |= θ(a, b, c)]

and [〈a, b〉 ∈ D2
1 | M1 |= θ(a, b, c)] equal

⋃
d∈Z(c){d} ×W (c, d). Hence

these two sets are the same (for every c ∈ D1).
• We leave the case e = ∃yϕ where ϕ � X to the reader.

Σ-formulas:
• Invariance implies persistence. Hence if ϕ is absolute then it is persis-

tent by what we have shown above.
• It is well known that persistence of formulas is closed under disjunction,

conjunction, and existential quantification, so we leave to the reader
the standard proofs of these cases.
• Suppose that θ is ∀x(ϕ → ψ), where ϕ � {x} and ψ is a Σ-formula.

By the induction hypothesis for ϕ and ψ, ϕ is invariant with respect
to x, and ψ is persistent. We show that θ is persistent too. So let ν be
an assignment in M1 such that M1, ν |= θ. We show that M2, ν |= θ.
So let a ∈ D2. We should show that M2, ν{x := a} |= ϕ→ ψ. This is
certainly true in caseM2, ν{x := a} 6|= ϕ. So assume thatM2, ν{x :=
a} |= ϕ. Then the invariability of ϕ with respect to x implies that
a ∈ D1, ν{x := a} is an assignment in D1, and M1, ν{x := a} |= ϕ.
Since M1, ν |= θ, also M1, ν{x := a} |= ϕ → ψ. It follows that
M1, ν{x := a} |= ψ. This implies that M2, ν{x := a} |= ψ, since ψ is
persistent. It follows that M2, ν{x := a} |= ϕ→ ψ in this case too. 2

Clearly, Theorem 1 directly justifies [Comp]. As for [OpI], its premise ensures
that Fϕ can be introduced using the usual procedure of extension by definitions.
That the resulting operation is invariant follows again from Theorem 1.

4.2.2. [∈-ind]. That [∈-ind] is predicatively valid should be obvious: In any
sphere of operation, the empty set is the starting building block of all sets, every
other set A is formed from the elements of A, and those elements are logically
prior to A. Therefore in any sphere of operation, a property that the empty set
has and is inherited by a set from its elements should necessarily hold for all
sets. Hence [∈-ind] is valid in any acceptable sphere of operation.

Another way to look at the matter is by asking what properties the basic
predicate ∈ should have according to the predicativist view of sets. Since pred-
icatively accepted sets are constructed bottom-up, it should be clear that the
‘well-foundedness’ of ∈ should be one of those properties. But only the general,
open-ended scheme of [∈-ind] fully exploits what we really have in mind when
we say that ∈ should be well founded. (In contrast, the intuitive absoluteness
of the well-foundness of ∈ is not fully captured by any of the standard formal
definitions of this notion.16 For example: whether any subset of a given set A
has a minimal element depends on what subsets of A are available, while the
existence of a descending ∈-chain of elements of A depends on what sequences
of elements of A are available.)

16As observed by Weaver in [48], some of those definitions are not predicatively equivalent.
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Another point of view that might be taken here is that of a modest platonist
who looks at the predicative spheres of operation. As was emphasized in Note 6,
we restrict ourselves to predicative subsystems (of some extension by definitions)
of ZF. In the latter (and even in ZFC) it is impossible to define a set which
have elements that form an infinite descending chain with respect to ∈. Hence
this certainly cannot be done in more constrained predicative systems.

Here it is worth noting that the predicativist conception of sets that underlies
PW and the platonist cumulative one have a lot in common. According to
both, all sets are created in stages, where the latter can be taken to be the
von Neumann’s ordinals. (According to predicativists the “creation” is done by
using legitimate definitions, while for platonists this can also be done by methods
that go beyond what actual people can use.) Moreover: as we are going to see,
both predicativists and platonists associate with every set A which is available
to the former the same stage (called rank(A)) in which it first becomes available
(even though the platonist set Vα is available to predicativists only for α ≤ ω).
It seems to me obvious that this view of sets that predicativists and platonists
share dictates for both the validity of [∈-ind].

Two related notes:

1. Gerhard Jäger has raised two objections against accepting full [∈-ind] as a
predicatively accepted principle:
• [∈-ind] is a minimality condition on the universe and thus leads to an

inherent vicious circle.
I do not share this view. In my opinion, [∈-ind] is not a minimality
condition, but only a constraint that our spheres of operation should re-
spect. These are two different things. What is more: I believe (though
this belief is not reflected in the present paper) that not all forms
of ‘circularity’ should be rejected from the invariance point of view.
Thus, although one might claim that all sorts of recursive definitions
are inherently circular, some forms of them, like primitive recursive
definitions, are certainly predicatively acceptable.
In any case, the same argument can be raised against accepting the
scheme of induction on the natural numbers. However this general
scheme was accepted and used Weyl in [51] (see [2, 6]), and in fact it is
accepted as predicative by almost everyone interested in the subject.
• In the form ∃xϕ[x]→ ∃x(ϕ[x] ∧ (∀y ∈ x)(¬ϕ[y]) the scheme of [∈-ind]

claims the existence of a set, without presenting an explicit definition
of this set, and without ensuring that its identity is invariant.
This issue has already been dealt with above in Note 5. As was empha-
sized there, every predicative system which is based on classical logic
proves pure existential propositions of this sort, and there is nothing
impredicative about that, as long as such propositions are understood
and used in an appropriate way.

2. Although this is not really an acceptable argument for the predicative valid-
ity of [∈-ind], it is still interesting to note that Feferman himself included
this scheme in the predicative set theories he constructed in [18]. This
clearly implies that he saw this scheme as predicatively valid. In response
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one may argue that Feferman justified his set theories in [18] only by re-
ducing them to what he did in [15]. However, Feferman did not take his set
theories out of the blue; actually he too was led to them by pursuing the
invariance criterion. (See also [17].) Hence the fact that he included [∈-ind]
already in the system PS0, which is by far the weakest system studied in
[18], is telling. Moreover: Feferman explicitly said about the system PS
that he studied in [16] (Note the name of that paper!) that an ideal predica-
tivist can recognize as correct any particular axiom and rule of inference of
that system. Since any instance of [∈-ind] can be derived from the axioms
and rules of PS, this means that according to Feferman a predicativist can
recognize as correct any instance of [∈-ind].

A final remark: personally, I have no doubt that the answer to the question
whether [∈-ind] is predicatively valid is positive, and that the arguments given
above for this answer should be convincing (and would be accepted as such by
Weyl and even Feferman). However, this question is not a mathematical one, and
so some people might have different views on this point. Since I see debates on
the exact meaning of a given word as useless, I simply take such conflicting views
as indicating that like ‘predicativity’ in general, also ‘predicativity as invariance’
is a family of approaches to the foundations of mathematics. I would be quite
happy to call mine ‘predicativity given that ∈ is well-founded’.

4.2.3. [Unif]. Let ϕ be Σ. For convenience, let Fv(ϕ) = {x, y}. Suppose that
at a certain point of working in PW we have reached a stage s in which the
premise of [Unif] has been derived. Then from that point on it is valid in any
sphere of operation that we reach. Let a be an object in some such sphere of
operation. If ∀x ∈ Z∃yϕ is false for Z := a in every sphere of operation that
includes a which is reached at stage s or later, then certainly the corresponding
conclusion of [Unif] is valid in all such spheres. Otherwise there is a stage s′ in
which ∀x ∈ Z∃yϕ is true for Z := a. Since ϕ is Σ, so is ∀x ∈ Z∃yϕ. Hence
Theorem 1 implies that ∀x ∈ Z∃yϕ remains true for Z := a at any stage from s′

on. This and the validity of the premise of [Unif] in the sphere of operation M
of each such stage imply that the collection of pairs 〈c, d〉 such that c ∈ a and
〈c, d〉 satisfies ϕ in M forms (‘in V’) a function f on a. From the fact that ϕ is
Σ it again follows that as a collection of pairs f remains invariant. Therefore f
is entitled to be added at some stage to the sphere of operation of that stage,
and from that point the corresponding instance of [Unif] remains valid.

Note 21. The only justification given by Feferman in [19] for the version of
[Unif] which is used in his auxiliary system ∃/P is that he does not believe there
can be a real dispute about it. This argument is not very convincing. I believe
that the least Feferman should have done here is to explain why the rule of proof
[Unif] cannot simply be replaced by an axiom stating that the premise of the
rule implies its conclusion (both without the ‘`PW ’ in front). Why could there
be a real dispute about this implication, but not about the rule? The answer
is clear from the argument given above: For the truth of the conclusion of the
rule for some a in some M such that ∀x ∈ Z∃yϕ holds in M for Z := a, it is
crucial that the premise of the rule (i.e. the unicity condition) remains valid in
any sphere of operation that containsM; its truth just atM itself is insufficient.
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4.3. Comparison with Feferman’s Systems. The design of PW has a lot
in common (and was greatly influenced) by the second-order system P + ∃/P
for predicative analysis that Feferman has developed in [19]. In particular:

• In practice, neither PW nor P + ∃/P has a signature which is fixed in
advance, and the method of repeatedly extending the language and adding
new corresponding axioms is an essential component of the work in both.

• The definitions of both systems involve a simultaneous recursive construc-
tion of their sets of symbols, terms, formulas, axioms and rules.

• The two special rules of PW, [OpI] and [Unif], which (as is shown below)
give this system its strong power (far beyond that of the systems RSTω
and PZF investigated in [5, 7, 10]), respectively generalize to set theory
the following two rules from [19]:

Functional defining rule: This rule allows to infer

`P ∀v1∀v0(ϕ(v1, v0)↔ v0 = Fϕ(v1))

from the premises `P ∀v1∀v2∀v3(ϕ(v1, v2) ∧ ϕ(v1, v3) → v2 = v3) and
`∃/P ∀v1∃v0ϕ(v1, v0), provided that ϕ is a formula in which quantifica-
tion is made only over the lowest type N (implying that ϕ is absolute).

Unification rule: This rule allows to infer

`∃/P ∀v1 ∈ N∃v0ϕ(v1, v0)→ ∃f∀v1 ∈ Nϕ(v1, f(v1))

from `P ∀v1 ∈ N∀v2∀v3(ϕ(v1, v2) ∧ ϕ(v1, v3) → v2 = v3), provided
that ϕ is a formula in which quantification is made only over N.

It should be noted that a preliminary version, called [F], of a combination
of [OpI] and [Unif] appears already in the last section of [15], where pred-
icativity at higher types is discussed. In case ϕ is a Σ-formula, it allows to
infer ∃f∀x∀y(ϕ(x, y) ↔ y = f(x)) from the formula ∀x∃!yϕ(x, y) in case
ϕ is a Σ-formula. (Note that unlike in the present context of type-free set
theory, in [F] the variable f is of type higher than that of x.) The rule [F]
was then implicitly split in [19] into the two rules described above.

Nevertheless, there are also important differences between PW and P + ∃/P :

1. PW is a single system. In contrast, P + ∃/P is a combination of two
different ones: P and ∃/P . P is taken to be the major one, while the
stronger system ∃/P is taken to be only an auxiliary system, which is
needed for the precise definition of P . The connection between these two
systems involves some choices for which no justification is given in [19].
(See Weaver’s criticism, with which I fully agree, in Section 1.6 of [49].)
We believe, in fact (though we have not tried to show), that with different
(but still predicatively justified) choices, P + ∃/P can be strengthened to
a single theory which is as strong as PW.

2. P and ∃/P are based on an extensive system of types, which has types of
all finite levels (but actually uses only those of levels 0, 1 and 2). PW, in
contrast, is a type-free, single-sorted set theory.

3. Unlike PW, which is is purely first-order, P and ∃/P have second-order
variables in addition to the first-order ones. In the case of ∃/P it is even
allowed (under certain conditions) to quantify on them. Moreover, both
systems employ specific second-order rules, like substitution of terms, and
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even (again under certain conditions) of formulas, for second-order vari-
ables. (No rule of substitution is needed in the case of PW.)

4. The set of natural numbers is taken as given in P . In PW it is defined.
5. In general, PW is significantly simpler then P + ∃/P , having simpler lan-

guage and less rules.

Other systems of Feferman which are obviously related to PW are the pure set
theories PSi and PSiE (i = 0, 1) which were introduced in [18]. (See Note 4.)
Like PW, they too are intuitively motivated by the invariance criterion, and so
Σ-formulas and absolute formulas play an important role in their formulation.
Accordingly, those systems are less restricted than the second-order systems
of [15]. Thus the union operation is allowed in them, although it is taken as
impredicative in most of Feferman’s papers. On the other hand, unlike PW,
none of those systems respects our principle (I) from Section 1.4.2, since their
axiomatizations include purely existential principles. An example is given by the
Σ-reflection rule, which allows to infer ∃aψ(a) from ψ in case ψ is a Σ-formula
(where ψ(a) is obtained from ψ by restricting each quantifier in it to a). PSiE
(i = 0, 1) violates Principle (II) (from Section 1.4.2) as well, since it includes an
axiom that says that every set is enumerable. Another very significant point of
difference is due to the fact (shown in [18]) that PS1 and PS1E has a minimum
model consisting of all sets constructible before Γ0. In contrast, the results of
Section 7 below imply than any transitive model of PW should contain Γ0. It
follows that although the predicativity of the systems in [18] is dubious, in some
important sense they are all weaker than PW. Another drawback of them is
that the choice of some of their axioms and rules seems to be rather ad-hoc.17

§5. Some Examples of the Power of PW.

5.1. Abstraction Terms and RST. Let Fv(ϕ) = {x, v1, . . .,vn} (n ≥ 0),
and suppose that ϕ � {x}. Using [Comp], this entails:

`PW ∀v1 · · · ∀vn∃!v0∀x(x ∈ v0 ↔ ϕ)

Since the formula ϕ? := ∀x(x ∈ v0 ↔ ϕ) is Σ,18 an application of [OpI] yields:

`PW Fϕ?(v1, . . .,vn) = v0 ↔ ∀x(x ∈ v0 ↔ ϕ(x, v1, . . .,vn))

Henceforth we shall write {x | ϕ(x, v1, . . .,vn)} instead of Fϕ?(v1, . . .,vn) (where
ϕ? is defined from ϕ as above), and call this an abstraction term. Obviously,
`PW ∀x(x ∈ {x | ϕ} ↔ ϕ). It follows that PW is an extension of the theory
RST from [5]. By the results of that paper, this implies that every rudimentary
operation is definable in PW. Here are some examples of terms available in
RST, and so in PW:

• ∅ =Df {x | x 6= x}
• {t1, . . .,tn} =Df {x | x = t1 ∨ . . . ∨ x = tn}
• 〈t, s〉 =Df {{t}, {t, s}}
• {x ∈ t | ϕ} =Df {x | x ∈ t ∧ ϕ}, provided ϕ � ∅
• {t(x) | x ∈ s} =Df {y | ∃x.x ∈ s ∧ y = t}

17More information about the relations between the axioms and rules of PW and those of
PS1 is given in Note 22.

18More precisely: the logically equivalent formula ∀x ∈ v0ϕ(x) ∧ ∀x(ϕ(x) → x ∈ v0) is Σ.
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•
⋃
t =Df {x | ∃y.y ∈ t ∧ x ∈ y}

• s× t =Df {x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉}
• ιxϕ =Df

⋃
{x | ϕ} (provided ϕ � {x})

• λx ∈ s.t =Df {〈x, t〉 | x ∈ s}
• f(x) =Df ιy.∃z∃v(z ∈ f ∧ v ∈ z ∧ y ∈ v ∧ z = 〈x, y〉)
• Dom(f) = {x ∈

⋃
f | ∃y ∈

⋃⋃
f.〈x, y〉 ∈ f}

• Im(f) = {x ∈
⋃
f | ∃y ∈

⋃⋃
f.〈y, x〉 ∈ f}

• f � s =Df {〈x, f(x)〉 | x ∈ s} (where x is new)

The following are examples of easy related theorems of RST:

• ∃!xϕ(x)→ ∀x(ϕ(x)↔ x = ιxϕ(x)) (if ϕ � {x})
• u ∈ s→ (λx ∈ s.t)u = t{u/x} (if u is free for x in t)
• Fun(f)→ (〈x, y〉 ∈ f ↔ y = f(x)), where Fun(f) is the following absolute

formula (which says that f is a function):

∀z ∈ f∃x∃y(z = 〈x, y〉) ∧ ∀x∀y1∀y2(〈x, y1〉 ∈ f ∧ 〈x, y2〉 ∈ f → y1 = y2)

5.2. Explicit Definitions and the Extended [OpI].

5.2.1. Explicit Definitions. Explicit definitions of operations are particularly
simple case of applying [OpI]:

Proposition 6. Let t be a term of PW such that Fv(t) = {v1, . . .,vn}. Then
PW has an operation F such that `PW ∀v1 · · · ∀vnF (v1, . . .,vn) = t.

Proof. F = Fϕ, where ϕ is v0 = t. 2

5.2.2. The Extended [OpI]. The use of [OpI] can be made more effective with
the help of the following proposition:

Proposition 7. For 1 ≤ i ≤ k, let ϕi and ψi be formulas of PW such that
ϕi ∈ Σ, Fv(ϕi) = {v0, v1, . . ., vn}, ψi � ∅, and Fv(ψi) ⊆ {v1, . . .,vn}. Suppose
that for every 1 ≤ i, j ≤ k such that i 6= j we have that `PW ¬(ψi ∧ ψj) and
that `PW ∀v1, . . .,∀vn(ψi → ∃!v0ϕi). Then PW has an operation F such that
for every 1 ≤ i ≤ k: `PW ∀v1 · · · ∀vn(ψi → ϕi{F (v1, . . .,vn)/v0}).

Proof. F =Fθ, where θ=(ψ1 ∧ϕ1)∨ · · · ∨(ψk ∧ϕk)∨(¬(ψ1 ∧ · · ·ψk)∧ v0 = 0).2

We shall call the principle stated in Proposition 7 the extended [OpI].

Example 1. Let ϕ be the following Σ-formula (where we write y, x, n instead
of v0, v1, v2, respectively).

∃f(Fun(f) ∧Dom(f) = S(n) ∧ f(0) = x ∧ f(n) = y ∧ ∀i ∈ n.f(i+ 1) =
⋃
f(i)

An induction on n shows that `PW ∀x∀n(n ∈ ω → ∃!yϕ). Hence the Extended
[OpI] implies that `PW ∀x∀n(n ∈ ω → ϕ{H(x, n)/y}) for some operation H
of PW. Let RTC(x) = ∪{H(n, x) | n ∈ ω}. Then RTC(x) represents in PW
the reflexive-transitive closure of x, and so TC(x) = RTC(x) − {x} represents
the transitive closure of x. Hence the relation ∈? (the transitive closure of ∈) is
definable in PW by y ∈? x =Df y ∈ TC(x).
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5.3. Transitive Closures and PZF. Let ψ be a formula of PW such that
{x, y} ⊆ Fv(ψ), and ψ � {y}. Define ϕ like in Example 1, replacing the conjunct
∀i ∈ n.f(i+ 1) =

⋃
f(i) by ∀i ∈ n.f(i+ 1) = {y | ∃z ∈ f(i).ψ{z/x}}. Following

exactly the same procedure as in Example 1, we construct in PW an operation
TCψ such that TCψ(x, y) := y ∈ TCψ(x) is true iff there is a finite ψ-chain that
connects y to x. Hence this formula is semantically equivalent to the formula
(TCx,yψ)(x, y) of PZF. Moreover: like the latter, TCψ(x, y) � {y}. It is also
easy to prove in PW that TCψ(x, y) has all the properties that (TCx,yψ)(x, y)
has in PZF according to Section 3.3 of [5]. It follows that PW contains PZF.

5.4. The Use of ∆-formulas.

Definition 7. A formula ϕ is a ∆-formula if both ϕ and ¬ϕ are equivalent
in PW to Σ-formulas.

Proposition 8. Let ϕ be a ∆-formula, Fv(ϕ) = {v1, . . .,vn}. Then PW has
an n-ary predicate Rϕ such that `PW Rϕ(v1, . . .,vn)↔ ϕ.

Proof. Let ψ := (ϕ∧v0 = 1)∨ (¬ϕ∧v0 = 0). Obviously, `PW ∀v1 · · · ∀vn∃!v0ψ,
and ψ is equivalent in PW to a ∆-formula ψ?. Therefore by [OpI] we get:

`PW ∀v1 · · · ∀vn(ϕ ∧ Fψ?(v1, . . .,vn) = 1) ∨ (¬ϕ ∧ Fψ?(v1, . . .,vn) = 0)

It follows that `PW ϕ ↔ Fψ?(v1, . . .,vn) = 1. Let ϕ? := Fψ?(v1, . . .,vn) = 1.
Then ϕ? is absolute. Hence we may apply [PrI] to it. Take Rϕ to be Pϕ? . 2

Corollary 1. PW has a predicate Tr which defines in it truth in N of
formulas in the first-order language of PA.

Proof. It is well known that truth in N for that language is definable by a
∆-formula, and it is not difficult to see that the main properties of truth are
derivable in PW for the corresponding predicate that Proposition 8 provides. 2

Corollary 2. Let ϕ be a ∆-formula, Fv(ϕ) = {v1, . . .,vn}. Then:

`PW ∀a∃Z∀v1 · · · ∀vn(〈v1, . . .,vn〉 ∈ Z ↔ 〈v1, . . .,vn〉 ∈ a ∧ ϕ)

Note 22. The stronger form of [PrI] given by Proposition 8 appears as an
admissible procedure in [18]. (See (ii) on p. 18 there). However, its direct use for
getting new instances of nonlogical schemas of the theory PS1 considered there
is explicitly forbidden — in sharp contrast to its use here. Corollary 2 provides
what is called in [16] the ‘predicative separation rule’. Both the procedure and
the rule are obvious counterparts of [HCR] (also called [∆1

1-CR] in, e.g., [24])
— the hyperarithmetic comprehension rule, which is used in [15] as the basis
of the progression of theories HCα, as well as in the single arithmetic second-
order theory IR, which is introduced there, and is supposed to prove exactly the
second order arithmetic formulas which can be proved by predicative means.

5.5. Predicative Set-theoretic Recursion.

Theorem 2. Let F be an (n + 2)-ary operation of PW. Then PW has an
(n+ 1)-ary operation G such that

`PW ∀z1 · · · ∀zn∀x.G(z1, . . .,zn, x) = F (z1, . . .,zn, x,G�TC(x))

(where by G�y we mean the function λu ∈ y.G(z1, . . .,zn, u)).
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Proof. For simplicity of the presentation, we prove the case n = 0. We freely
use (here and later) facts about provability in PW that can easily be seen.

Define a formula ϕ such that Fv(ϕ) = {x, f} by:

ϕ := Fun(f) ∧Dom(f) = RTC(x) ∧ ∀z ∈ RTC(x).f(z) = F (z, f �TC(z))

Next we show that ϕ has the following properties.

1. ϕ is absolute.

This easily follows from Example 1.
2. `PW ϕ(x, f) ∧ z ∈ RTC(x)→ ϕ(z, f �RTC(z))

This follows from `PW z ∈ x→ RTC(z) ⊆ RTC(x) and ϕ’s definition.
3. `PW ϕ(x, f1) ∧ ϕ(x, f2)→ f1 = f2

The proof is by ∈-induction on x, using the previous item and the fact
that `PW RTC(x) = {x} ∪

⋃
{RTC(z) | z ∈ x}.

4. `PW ϕ(x1, f1) ∧ ϕ(x2, f2) ∧ z ∈ RTC(x1) ∩RTC(x2)→ f1(z) = f2(z)

This follows from the previous two items and the definition of ϕ.
5. `PW ∀x∃fϕ(x, f)

The proof is by an ∈-induction (in PW) on x. So assume (in PW) that
∀z ∈ TC(x)∃gϕ(z, g). Using an application of [Unif] (which is justified by
items 1 and 3), it follows from this assumption that there is a function g
such that Dom(g) = TC(x) and ϕ(z, g(z)) holds for every z ∈ TC(x). Let
f? =

⋃
{g(z) | z ∈ TC(x)}. From item 4 it follows that f? is a function

whose domain is TC(x). Let f = f?∪{〈x, F (x, f?)〉}. It is straightforward
to verify that ϕ(x, f).

Define ψ(x, y) = ∃f.ϕ(x, f) ∧ f(x) = y. From items 3 and 5 it follows that
`PW ∀x∃!yψ(x, y), while item 1 implies that ψ is a Σ-formula. Therefore by
applying [OpI] we get an operation G such that `PW ψ{G(x)/y}. Obviously, G
has the required property. 2

Example 2. From Theorem 2 it follows that PW has a unary operation rank
such that `PW rank(x) =

⋃
{S(rank(y)) | y ∈ x}. Obviously, Platonists assign

to any set which predicativists construct the same rank as the predicativists do.

§6. Ordinals in PW. The notion of an ordinal as a type of some well-order R
is totally impredicative. Therefore like in ZF (and unlike Feferman or Schütte),
we identify here the notion of an ordinal with that of a von Neumann’s ordinal.

6.1. Basic Theory of Ordinals.

Definition 8.

• Tra(x) := ∀y ∈ x∀z ∈ y.z ∈ x (x is transitive).
• Lin(x) := ∀y ∈ x∀z ∈ x.y ∈ z ∨ y = z ∨ z ∈ y (x is linear).
• On(x) := Tra(x) ∧ Lin(x) (x is an ordinal).

As usual, we use small Greek letters to vary over ordinals (writing e.g. ∃αϕ
instead of ∃x(On(x) ∧ ϕ) and ∀αϕ instead of ∀x(On(x) → ϕ)). We shall also
frequently write α < β instead of α ∈ β and α ≤ β instead of α ∈ β ∨ α = β.

Proposition 9. The following are provable already in VBS:
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1. On(α) ∧ β ∈ α→ On(β)
2. On(∅)
3. On(α)↔ On(S(α))
4. α ≤ β ↔ α ⊆ β
5. α ≤ β ↔ α ∈ S(β)
6. α = ∅ ∨ ∅ ∈ α.
7. β ∈ α→ (α = S(β) ∨ S(β) ∈ α).
8. β ∈ α ∨ α = β ∨ α ∈ β
9. Every transitive set of ordinals is an ordinal.

10. Every set A of ordinals has a supremum supA.
11. If α 6= 0 then α = supα ∨ α = S(supα) (and not both). In the first case α

is called a limit ordinal, in the second — a successor.
12. Every non-empty set A of ordinals has a minimal element minA.

Proof. All the proofs are standard, and are left for the reader. We just note
that none of the proofs requires the full power of the ∈-induction schema of
VBS; ∈-induction limited to absolute formulas suffices. (The latter principle is
equivalent to the foundation axiom of ZF.) 2

From now on, we leave to the readers most of the proofs of claims about prov-
ability in PW in case the proofs in PW are practically just the standard ones,
and their availability in PW can easily be checked. (This does not include, of
course, any proof which makes use of [PrI], [OpI], or [Unif].)

Proposition 10. The principle of transfinite induction on ordinals is avail-
able in PW: `PW ∀α(∀β < αϕ(β)→ ϕ(α))→ ∀αϕ(α).

6.2. Operations on Ordinals.

Theorem 3. Let F be an (n + 2)-ary operation in PW. Then PW has an
(n+ 1)-ary operation G such that

`PW ∀~z∀α.G(~z, α) = F (~z, α, λξ ∈ α.G(~z, ξ))

Proof. Immediate from Theorem 2, since `PW On(α)→ TC(α) = α. 2

Once we have the ability to use transfinite recursion on ordinals, we can intro-
duce the standard binary operations of addition (α+ β), multiplication (α× β)
and exponentiation (αβ) in the usual way, and prove their main properties using
transfinite induction. One particularly important such property is given in the
next definition and proposition.

Definition 9. An ordinal α is additive principal if ξ+α = α for every ξ < α.

Proposition 11. `PW α is additive principal iff α = ωξ for some ξ < α.

In the sequel we shall also need the following theorem about ω-sequences.

Theorem 4. Suppose that (∗) `PW ψ(α, β1) ∧ ψ(α, β2) → β1 = β2, where
ψ(α, β) is a Σ-formula. Then the following is a theorem of PW:

∀α∃βψ(α, β)→ ∀γ∃!f(Fun(f)∧Dom(f)=ω∧f(0)=γ∧∀n ∈ ωψ(f(n), f(n+ 1)))
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Proof. The proof of the uniqueness of f is standard, and is left to the reader.
For the existence of f , let θ(~z, x, n, h) be the following Σ-formula:

Fun(h)∧Dom(h) = S(n)∧h(0) = γ∧∀k < n[On(h(S(k)))∧ψ(~ξ, h(k), h(S(k)))]

Using (∗), an easy induction on k shows that

`PW θ(~ξ, γ, n, h1) ∧ θ(~ξ, γ, n, h2)→ ∀k < S(n) h1(k) = h2(k)

Hence (∗∗) `PW θ(~ξ, γ, n, h1) ∧ θ(~ξ, γ, n, h2)→ h1 = h2.

Since θ is a Σ-formula, it follows from (∗∗) by [Unif] that

`PW ∀n ∈ ω∃h θ(~ξ, γ, n, h)→ ∃g[Fun(g) ∧Dom(g) = ω ∧ ∀n ∈ ωθ(~ξ, γ, n, g(n))]

On the other hand, it is straightforward to prove in PW by induction on n

that ∀α∃βψ(~ξ, α, β) → ∀n ∈ ω∃h θ(~ξ, γ, n, h). Given γ, the assumption that

∀α∃βψ(~ξ, α, β) implies therefore in PW that there exists a function g such that

Dom(g) = ω and θ(~ξ, γ, n, g(n)) holds for every n ∈ ω. It is easy now to verify

(assuming ∀α∃βψ(~ξ, α, β)) that λn ∈ w.g(n)(n) has the required properties. 2

6.3. Ordering Functions.

Definition 10. A function f is an ordering function of a set B of ordinals,
(in symbols: Ord(f,B)) if:

• Dom(f) is an ordinal.
• Im(f) = B.
• f is (strictly) monotonic: If β < γ then f(β) < f(γ).

Proposition 12. PW proves that if f is a strictly monotonic function such
that Dom(f) is an ordinal, then α ≤ f(α) for every α ∈ Dom(f).

Proof. By transfinite induction on α. 2

Notation. f [X] =Df {f(x) | x ∈ X}.

Proposition 13. PW proves that every set B of ordinals has a unique or-
dering function f .

Proof. The proof of uniqueness is standard, and is left for the reader.
To prove the existence of f , we first introduce the following abbreviations:

ϕ(X, g) := ∀x ∈ X.On(x) ∧ Fun(g)

ξ0 = max{S(supX), S(sup{x ∈ Im(g) | On(x)})}
ψ := (ξ ∈ X∨ξ > supX)∧ξ 6∈ Im(g)∧∀β < ξ((β ∈ X∨β > supX)→ β ∈ Im(g))

It is easy to see that

`PW ϕ(X, g)→ ((ξ0 ∈ X ∨ ξ0 > sup X) ∧ ξ0 6∈ Im(g))

Using items 10 and 12 of Proposition 9, this implies:

`PW ∀X∀g(ϕ(X, g)→ ∃!ξψ(X, g, ξ))

Since ϕ is absolute, and ψ is in Σ (and even absolute), an application of the
extended [OpI] (Section 5.2.2) provides therefore an operation F such that

`PW ∀X∀g(ϕ(X, g)→ ψ(X, g, F (X, g)))
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It easily follows from that by Theorem 3 that PW has an operation G such that

`PW ∀X∀ξ((∀x ∈ X.On(x))→ G(X, ξ) = F (X,λτ ∈ ξ.G(X, τ))

Suppose now that B is a set of ordinals. Then it follows from the last two the-
orems of PW shown above that ∀ξψ(B, λτ ∈ ξ.G(B, τ), G(B, ξ)). It is straight-
forward to show that for every ordinal ξ, λτ ∈ ξ.G(B, τ) is strictly mono-
tonic. It follows by Proposition 12 that G(B,S(supB)) ≥ S(supB), and so
G(B,S(supB) 6∈ B. Let β be the minimal ordinal such that G(B, β) 6∈ B. It is
not difficult to see that λτ ∈ β.G(X, τ) is an ordering function of B. 2

§7. The Operations φ and Γ. Recall (see [42]) that the binary operation
φ is defined by φ(α, β) = φα(β), where φ0(β) = ωβ , and for α > 0, φα(β) is
the βth ordinal γ such that φξ(γ) = γ for every ξ < α. The unary operation
Γ on ordinals is then defined by letting Γ(β) be the βth ordinal γ such that
φ(γ, 0) = γ. In particular: Γ0 is the first fixed-point of the operation λα.φ(α, 0).

7.1. The Binary Operation φ.

Definition 11. The absolute formula ψφ(δ, α, f) is the conjunction of the
following absolute formulas:

1. On(α) ∧On(δ)
2. Fun(f) ∧Dom(f) = α
3. ∀ξ ∈ α(Fun(f(ξ)) ∧On(Dom(f(ξ))) ∧ ∀τ ∈ Dom(f(ξ))On(f(ξ)(τ)))
4. α > 0→ (Dom(f(0)) = δ ∧ ∀τ < δ(f(0)(τ) = ωτ ))
5. ∀ξ(0<ξ<α→ Ord(f(ξ), {τ ∈ δ |∀η < ξ(τ ∈ Dom(f(η)) ∧ f(η)(τ) = τ)})

Proposition 14. `PW ψφ(δ, α, f1) ∧ ψφ(δ, α, f2)→ f1 = f2

Proof. Suppose that ψφ(δ, α, f1) and ψφ(δ, α, f2). Then Dom(f1) = Dom(f2) =
α. We show that f1(ξ) = f2(ξ) for every ξ ∈ α. For this we use an induction on
ξ. The claim is obvious for ξ = 0. So assume that ξ > 0 and that f1(η) = f2(η)
for every η ∈ ξ. By the definition of ψφ, this implies that both f1(ξ) and f2(ξ)
are the ordering functions of the same set of ordinals. Hence f1(ξ) = f2(ξ). 2

Lemma 1. `PW ξ < α ∧ ψφ(δ, α, f)→ ψφ(δ, ξ, f � ξ).

Proof. Immediate from the definition of ψφ. 2

Proposition 15. `PW ∀δ∀α∃!f ψφ(δ, α, f).

Proof. If α = 0 then f = ∅ is the only f such that ψφ(δ, α, f). So assume that
α > 0. Since ψφ is absolute, it follows by [Unif] from Proposition 14 that

(?) `PW ∀ξ ∈ α∃fψφ(δ, ξ, f)→ ∃!g(Fun(g)∧Dom(g) = α∧∀ξ ∈ αψφ(δ, ξ, g(ξ)))

Now let δ be an ordinal. By Proposition 14, it suffices to prove in PW that
∀α∃fψφ(δ, α, f). For this we use an induction on α. The claim is obvious in
case α = 0 or α = 1. So assume that α > 1 and that ∀ξ ∈ α∃fψφ(δ, ξ, f).
Using (?), this implies that there is a function g such that Dom(g) = α and
∀ξ ∈ αψφ(δ, ξ, g(ξ)). Now we have two cases to consider:

• α = S(ξ0) for some ξ0. then we let f = g(ξ0) ∪ {〈ξ0, o〉}, where o is the
ordering function of {τ ∈ δ |∀η < ξ0(τ ∈ Dom(f(η)) ∧ f(η)(τ) = τ)}).

• α is a limit ordinal. Then for ξ < α let f(ξ) = g(S(ξ))(ξ).
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Using Lemma 1, it is straightforward to verify in both cases that ψφ(δ, α, f). 2

Proposition 15 allows us to apply [OpI] and introduce in PW a new operation
symbol Fφ together with:

AXIOMFφ : f = Fφ(δ, α)↔ ψφ(δ, α, f)

In other words: for any two ordinals α and δ, Fφ(δ, α) is the unique function
that has the properties 2.–5. from Definition 11.

Some other important properties of Fφ are given in the next proposition.

Proposition 16. The following are theorems of PW:

1. If α > 0 and β < δ then Fφ(δ, α)(0)(β) = ωβ.
2. If α1 < α2 then Fφ(δ, α1) = Fφ(δ, α2) � α1.
3. If δ1 < δ2 then for every ξ < α: Dom(Fφ(δ1, α)(ξ)) is an initial segment of
Dom(Fφ(δ2, α)(ξ)), and Fφ(δ1, α)(ξ) = Fφ(δ2, α)(ξ) � Dom(Fφ(δ1, α)(ξ)).

4. If ξ1 < ξ2 Then for every β2 ∈ Dom(Fφ(δ, α)(ξ2)) there exists β1 ≥ β2 such
that β1 ∈ Dom(Fφ(δ, α)(ξ1)), and Fφ(δ, α)(ξ2)(β2) = Fφ(δ, α)(ξ1)(β1).

5. If ξ < α and β ∈ Dom(Fφ(δ, α)(ξ)) then there exists η < δ such that
Fφ(δ, α)(ξ)(β) = ωη. In particular: Fφ(δ, α)(ξ)(β) > 0.

6. If ξ < α and β ∈ Dom(Fφ(δ, α)(ξ)) then Fφ(δ, α)(ξ)(β) ≥ max(ξ, β).

Proof.

1. Immediate from AXIOMFφ and Definition 11.
2. Immediate from AXIOMFφ and Lemma 1.
3. Induction on ξ. The claim is obvious for ξ = 0 by the first item. Now sup-

pose that ξ > 0, and that for every η < ξ it holds that Dom(Fφ(δ1, α)(η)) is
an initial segment of Dom(Fφ(δ2, α)(η)), and Fφ(δ1, α)(η) = Fφ(δ2, α)(η) �
Dom(Fφ(δ1, α)(η)). For i = 1, 2 let

Ai = {τ ∈ δi | ∀η < ξ(τ ∈ Dom(Fφ(δi, α)(η)) ∧ Fφ(δi, α)(η)(τ) = τ)}

Then A1 = A2 ∩ δ1 by our induction hypothesis. Since Fφ(δi, α)(ξ) is the
ordering function of Ai (i = 1, 2), this implies the claim for ξ.

4. Immediate from the fact that Fφ(δ, α)(ξ2) is the ordering function of a
certain subset of Im(Fφ(δ, α)(ξ1)).

5. Immediate from the previous item and the fact that Fφ(δ, α)(0)(η) = ωη.
6. That Fφ(δ, α)(ξ)(β) ≥ β follows from Proposition 12 in case ξ > 0, and

from the fact that ωβ > β in case ξ = 0.
That Fφ(δ, α)(ξ)(β) ≥ ξ is shown by induction on ξ. It is certainly true

if ξ = 0. Suppose that ξ > 0. Let η < ξ. Then item 3 of this proposition
and the induction hypothesis for η together imply that η ≤ Fφ(δ, α)(ξ)(β).
Since this is true for every η < ξ, it follows that ξ ≤ Fφ(δ, α)(ξ)(β). 2

Next we introduce a ternary Σ-formula that expresses (as we show below) the
graph of the binary operation φ on ordinals.

Definition 12. ϕφ(α, β, γ) is the following Σ-formula:

∃δ(β ∈ Dom(Fφ(δ, S(α))(α)) ∧ Fφ(δ, S(α))(α)(β) = γ)

Proposition 17. `PW ϕφ(α, β, γ)→ (α ≤ γ ∧ β ≤ γ).
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Proof. This follows from the last item of Proposition 16. 2

Proposition 18. `PW ϕφ(α, β, γ1) ∧ ϕφ(α, β, γ2)→ γ1 = γ2.

Proof. Suppose that ϕφ(α, β, γ1) and ϕφ(α, β, γ2). Then there exist δ1 and
δ2 such that β ∈ Dom(Fφ(δ1, S(α))(α)) ∧ Fφ(δ1, S(α))(α)(β) = γ1, and also
β ∈ Dom(Fφ(δ2, S(α))(α))∧Fφ(δ2, S(α))(α)(β) = γ2. Without loss in generality,
we may assume that δ1 ≤ δ2. Then it follows from item 3 of Proposition 16 that
Fφ(δ2, S(α))(α)(β) = γ1. Hence γ1 = γ2. 2

To follow the proof of the next theorem, it would be helpful to remember that
the intend meaning of the formula ‘ϕφ(α, β, γ)’ of PW is ‘φ(α, β) = γ’ (which
at present is a formula only in the metalanguage of PW).

Theorem 5. `PW ∀α∀β∃!γϕφ(α, β, γ)

Proof. The uniqueness part follows from Proposition 18. We prove the existence
part by using an ∈-induction on α in PW to simultaneously show:

(a) ∀β∃γϕφ(α, β, γ)
(b) ∀β∀γ([Fun(f)∧Fun(g)∧Dom(f) = Dom(g) = ω∧∀n ∈ ωϕφ(α, f(n), g(n))
∧β=sup{f(n) |n ∈ ω} ∧ γ = sup{g(n) | n ∈ ω}]→ ϕφ(α, β, γ))

The case α = 0 is easy, since `PW ϕφ(0, β, γ)↔ ωβ = γ.
Now fix some α > 0, and assume that (a) and (b) are true for every ξ ∈ α. In

particular, we have that ∀ξ ∈ α∀β∃γϕφ(ξ, β, γ). This implies:

(1) ∀β∀ξ ∈ α∃γϕφ(ξ, β, γ)

Using Proposition 18, an application of [Unif] yields:

(2) `PW ∀ξ ∈ α∃γϕφ(ξ, β, γ))→∃!f(Fun(f)∧Dom(f)=α∧∀ξ ∈ αϕφ(ξ, β, f(ξ)))

From (1) and (2) we get:

(3) ∀β∃!f(Fun(f) ∧Dom(f) = α ∧ ∀ξ ∈ αϕφ(ξ, β, f(ξ)))

Let θ(β, τ) be the following formula:

θ := ∃f(Dom(f) = α ∧ ∀η ∈ αϕφ(η, β, f(η)) ∧ τ = sup{f(η) | η ∈ α})
Then θ is in Σ, and (3) implies that the following holds for the given α:

(4) ∀β∃!τθ
Next we show that for every ordinal β there exists a bigger ordinal γ such that
ϕφ(ξ, γ, γ) holds for every ξ ∈ α. So fix an ordinal β. From (4) it follows
by Theorem 4 that there exists an ω-sequence g such that g(0) = β + 1, and
θ{g(n), g(n + 1)} for every n ∈ ω. Let γ = sup{g(n) | n ∈ ω}. Then g(n) ≤ γ
for every n ∈ ω. Hence β < γ (since β < g(0)). We show that ϕφ(ξ, γ, γ)
for ξ < α. So fix ξ ∈ α. (1) implies that ∀n ∈ ω∃γ′ϕφ(ξ, g(n), γ′). Using
Proposition 18 and an application of [Unif], this yields a function d such that
ϕφ(ξ, g(n), d(n)) for every n ∈ ω. Let D = sup{d(n) | n ∈ ω}. Part (b) of the
induction hypothesis entails that ϕφ(ξ, γ,D). Hence γ ≤ D by Proposition 17.
On the other hand, the fact that θ{g(n), g(n+1)} implies that there is a function
f such that Dom(f) = α and for every η < α, ϕφ(η, g(n), f(η))∧g(n+1) ≥ f(η).
In particular: (i) ϕφ(ξ, g(n), f(ξ)) and (ii) g(n + 1) ≥ f(ξ). By Proposition 18,
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(i) entails that f(ξ) = d(n). Hence (ii) implies that d(n) ≤ g(n+ 1). This is true
for every n ∈ ω. Hence D ≤ γ. It follows that D = γ, implying that ϕφ(ξ, γ, γ).

Now we prove (a) for α, i.e. that for every β there is γ such that ϕφ(α, β, γ).
We do this by induction on β. So suppose that ∀η < β∃γϕφ(α, η, γ). Using
Proposition 18 and [Unif], this provides a function h with domain β such that
∀η < βϕφ(α, η, h(η)). Let γ0 be the least ordinal γ such that ϕφ(ξ, γ, γ) for every
ξ ∈ α, and γ > sup{h(η) | η < β}. (γ0 exists by the claim we have just proved.)
By definition, the first property of γ0 means that:

(6) ∀ξ < α∃δ(γ0 ∈ Dom(Fφ(δ, S(ξ))(ξ)) ∧ Fφ(δ, S(ξ))(ξ)(γ0) = γ0)

By the second item of Proposition 16, this implies:

(7) ∀ξ < α∃δ(γ0 ∈ Dom(Fφ(δ, S(α))(ξ)) ∧ Fφ(δ, S(α))(ξ)(γ0) = γ0)

Let A(ξ, δ) := γ0 ∈ Dom(Fφ(δ, S(α))(ξ)) ∧ Fφ(δ, S(α))(ξ)(γ0) = γ0, and let
B(ξ, δ) := A ∧ ∀δ′ < δ¬A{δ′/δ}. (7) implies that ∀ξ < α∃δ B(ξ, δ). Obviously,
`PW B(ξ, δ1) ∧ B(ξ, δ2) → δ1 = δ2. Since B is absolute (because A is), we can
use [Unif] in order to infer from the last two facts that there is a function b
such that ∀ξ < αB(ξ, b(ξ)). This, in turn, implies that ∀ξ < αA(ξ, b(ξ)). Let
δ0 = sup{b(ξ) | ξ < α}. By the third item of Proposition 16, we get from the
last claim and the definition of A that:

(8) ∀ξ < α(γ0 ∈ Dom(Fφ(δ0, S(α))(ξ)) ∧ Fφ(δ0, S(α))(ξ)(γ0) = γ0)

Now, by AXIOMFφ and Definition 11(5), we have that Im(Fφ(δ0, S(α))(α))
is {τ ∈ δ0 | ∀η < α(τ ∈ Dom(Fφ(δ0, S(α))(η)) ∧ Fφ(δ0, S(α))(η)(τ) = τ)}.
Hence (8) implies that γ0 ∈ Im(Fφ(δ0, S(α))(α)). It follows that there exists
β′ in Dom(Fφ(δ0, S(α))(α)) such that Fφ(δ, S(α))(α)(β′) = γ0. But for every
η < β, γ0 > h(η). Since ∀η < βϕφ(α, η, h(η)), this and Proposition 18 imply
that ∀τ∀η < β(ϕφ(α, η, τ) → τ < γ0). By definition of ϕφ, this means that
∀δ∀η < βFφ(δ0, S(α))(α)(η) < γ0. In particular: Fφ(δ0, S(α))(α)(η) < γ0 for
every η < β. Therefore β′ ≥ β. It follows that β ∈ Dom(Fφ(δ0, S(α))(α)) as
well (by the definition of an ordering function). Let γ = Fφ(δ0, S(α))(α)(β).
Then ϕφ(α, β, γ).

Finally, we prove that α satisfies (b) too. So let f and g be functions whose
domain is ω, and suppose that ∀n ∈ ωϕφ(α, f(n), g(n)), β = sup{f(n) | n ∈ ω}
and γ = sup{g(n) | n ∈ ω}. Then ∀n ∈ ω∃δ(Fφ(δ, S(α))(α)(f(n)) = g(n)).
With the help of the method used above to infer (8) from (7), we can infer
from this that there exists δ such that ∀n ∈ ω(Fφ(δ, S(α))(α)(f(n)) = g(n)).
Since ψφ(δ, S(α), Fφ(δ, S(α))) by AXIOMFφ , and 0 < α < S(α), this implies
that Ord(Fφ(δ, S(α))(α), {τ ∈ δ | ∀ξ < αFφ(δ, S(α))(ξ)(τ) = τ}. It follows
that for every n ∈ ω we have that ∀ξ < αFφ(δ, S(α))(ξ)(g(n)) = g(n). By
item 2 of Proposition 16 this implies that ∀ξ < αFφ(δ, S(ξ))(ξ)(g(n)) = g(n),
and so also ∀ξ < αϕφ(ξ, g(n), g(n)) (by the definition of ϕφ). Hence the in-
duction hypothesis for ξ < α entails that ∀ξ < αϕφ(ξ, γ, γ). It follows that
∀ξ < α∃δ′(Fφ(δ′, S(ξ))(ξ)(γ) = γ). Applying again the method used to infer (8)
from (7), we get from that an ordinal δ such that ∀ξ < α(Fφ(δ, S(ξ))(ξ)(γ) = γ).
Therefore ∀ξ < α(Fφ(δ, S(α))(ξ)(γ) = γ) (by the second item of Proposition 16).
It follows that γ ∈ Im(c), where c = Fφ(δ, S(α))(α). Hence γ = c(β′) for some
β′. Since c is monotonic, and γ ≥ g(n) for every n ∈ ω, β′ ≥ f(n) for every n ∈ ω,
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and so β′ ≥ β. It follows that β is in the domain of c, and so γ = c(β′) ≥ c(β).
On the other hand, c(β) ≥ c(f(n)) = g(n) for every n ∈ ω, and so c(β) ≥ γ.
Hence c(β) = γ, and so ϕφ(α, β, γ). 2

Theorem 5 allows us to apply [OpI] and introduce in PW a new operation
symbol φ together with the following axiom:

AXIOMφ: γ = φ(α, β)↔ φ(α, β, γ)

The standard characteristic properties of φ are given in the next proposition.

Proposition 19. The following are theorems of PW:

1. β1 < β2 → φ(α, β1) < φ(α, β2)
2. φ(0, β) = ωβ.
3. α > 0→ ∀γ(∃β(γ = φ(α, β))↔ ∀ξ < α(φ(ξ, γ) = γ))

Proof.

1. Let φ(α, β1) = γ1, φ(α, β2) = γ2. Then ϕφ(α, β1, γ1) and ϕφ(α, β2, γ2).
Hence there exist δ1 and δ2 such that Fφ(δi, S(α))(α)(βi) = γi for i =
1, 2. Without loss in generality, we may assume that δ1 ≤ δ2. Then it
follows from item 3 of Proposition 16 that Fφ(δ2, S(α))(α)(β1) = γ1. Since
Fφ(δ2, S(α))(α) is an ordering function, it follows that γ1 < γ2.

2. Immediate from the first item of Proposition 16 (and Theorem 5).
3. Suppose first that γ = φ(α, β). Then ϕφ(α, β, γ), and so there exists
δ such that Fφ(δ, s(α))(α)(β) = γ. Therefore it follows by AXIOMFφ

and Definition 11 that Fφ(δ, S(α))(ξ)(γ) = γ for every ξ < α. Hence
Fφ(δ, S(ξ))(ξ)(γ) = γ for every ξ < α, by the second item of Proposition 16.
It follows that ϕφ(ξ, γ, γ), and so φ(ξ, γ) = γ, for every ξ < α.

For the converse, let φ(ξ, γ) = γ (i.e. ϕφ(ξ, γ, γ)) for every ξ < α. We can
show that this implies that there exists δ such that γ ∈ Im(Fφ(δ, s(α))(α)))
exactly as we show the same implication for γ0 at the proof of Theorem 5.
This means that there is β such that Fφ(δ, s(α))(α))(β) = γ. Hence, by
definition, ϕφ(α, β, γ), and so there exists β such that φ(α, β) = γ. 2

Corollary 3. The following are theorems of PW:

1. φ(ξ, φ(α, β)) = φ(α, β) for every ξ < α.
2. α > 0→ ∀γ < φ(α, β)((∀ξ < αφ(ξ, γ) = γ)→ ∃β′ < βφ(α, β′) = γ).
3. Let α > 0, and suppose that the following three conditions are satisfied:

(a) φ(ξ, γ) = γ for every ξ < α;
(b) φ(α, β′) < γ for every β′ < β;
(c) ∀γ′ < γ[(∀ξ < αφ(ξ, γ′) = γ′)→ ∃β′ < βφ(α, β′) = γ′]
Then φ(α, β) = γ.

Proof. Easily follows from Proposition 19. 2

Proposition 20. `PW α ≤ φ(α, β) ∧ β ≤ φ(α, β).

Proof. Immediate from Proposition 17.

Corollary 4. PW proves that for every ordinal α > 0 and for every ordinal
γ such that ∀ξ < α φ(ξ, γ) = γ there exists β ≤ γ such that φ(α, β) = γ.
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Proof. γ < φ(α, S(γ)) by Proposition 20. Hence the claim follows from item 2
of Corollary 3. 2

Once we have proved Proposition 19, all of φ’s main properties (as given. e.g.,
at Chapter V of [42]) can predicatively be derived using the standard proofs. As
an example, we present here the full proof of the following well-know result.

Proposition 21. `PW ∀A(A 6= ∅ → ∀α φ(α, sup A) = sup{φ(α, β) | β ∈ A})

Proof. The claim is obviously true for α = ∅. So assume that α > 0. Using
∈-induction on α, we show that φ(α, β) = γ, where γ = sup{φ(α, τ) | τ ∈ A}
and β = sup A. We do that by showing that the three conditions given in item
3 of Corollary 3 are satisfied.

• Let ξ < α. Then φ(ξ, γ) = sup{φ(ξ, φ(α, τ)) | τ ∈ A} by the induction
hypothesis for ξ. Hence φ(ξ, γ) = γ by item 1 of Corollary 3.

• Let β′ < β. Then there exists τ ∈ A such that β′ < τ . It follows by item 1
of Proposition 19 that φ(α, β′) < φ(α, τ) ≤ γ.

• Let γ′<γ, and suppose that φ(ξ, γ′) = γ′ for every ξ < α. We show that
there exists β′<β such that φ(α, β′) = γ′. Since γ′ < γ, there exists β? ∈ A
(and so β? ≤ β) such that γ′ < φ(α, β?). Hence item 2 of Corollary 3 implies
that there exists β′ < β? ≤ β such that φ(α, β′) = γ′. 2

7.2. Γ0 and the Operation Γ. Once the operation φ becomes available, it
is almost a routine matter to introduce in PW the operation Γ as well.

Proposition 22. `PW α > 0→ (φ(α, 0) = α↔ ∀ξ < αφ(ξ, α) = α).

Proof. The implication from left to right follows from item 1 of Corollary 3. Its
converse follows from the assumption that 0 < α. 2

Theorem 6. `PW ∀α∃β(β > α ∧ φ(β, 0) = β).

Proof. Given an ordinal α, we use Theorem 4 to define a function f on ω
by letting f(0) = S(α), and f(n + 1) = φ(f(n), 0) for every n ∈ ω. Then
f(n) ≤ f(n + 1) by Proposition 20. Let β = sup{f(n) | n ∈ ω}. Obviously,
β > α. We show that also φ(β, 0) = β. By Proposition 22 it suffices to show
that φ(γ, β) = β for every γ < β. So let γ < β. Then there exists k ∈ ω such
that γ < f(n) for every n > k. Hence φ(γ, f(n)) = f(n) for every n > k by item
1 of Corollary 3. It follows by Proposition 21 that φ(γ, β) = β. 2

Theorem 7. PW has an operation Γ such that PW proves the following:

1. ∀α∀β(β > α→ Γ(β) > Γ(α)).
2. ∀α φ(Γ(α), 0) = Γ(α).
3. ∀α∀γ(Γ(α) > γ ∧ φ(γ, 0) = γ → ∃β < α γ = Γ(β)).

Proof. Using the basic properties of ordinals, Theorem 6 implies that

`PW ∀α∃!β(β > α ∧ φ(β, 0) = β ∧ ∀γ(γ < β ∧ φ(γ, 0) = γ → γ ≤ α))

Therefore it follows from [OpI] that PW has an operation G such that

`PW G(α) > α ∧ φ(G(α), 0) = G(α) ∧ ∀γ(γ < G(α) ∧ φ(γ, 0) = γ → γ ≤ α)
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We can now use recursion to introduce an operation Γ as follows:

Γ(α) =

 G(0) α = 0
G(Γ(β)) α = S(β)
sup{Γ(β) | β < α} α is a limit ordinal

It is obvious that Γ has property 1. To show that Γ has property 2, we use an
∈-induction on α. This is obviously true in case α = 0 or α is a successor ordinal.
So assume that α is a limit ordinal, By Proposition 22 and Proposition 20, it
suffices to show that φ(τ,Γ(α)) ≤ Γ(α) for all τ < Γ(α). So let τ < Γ(α). Since
α is a limit ordinal, the definition of Γ(α) implies that there is β < α such that
τ < Γ(β). By induction hypothesis and Corollary 3, for every such β it holds
that φ(τ,Γ(β)) = Γ(β) and so φ(τ,Γ(β)) < Γ(α). By Proposition 21, this implies
that φ(τ,Γ(α)) ≤ Γ(α).

Finally, we prove that Γ has property 3 by an ∈-induction on α. So suppose
that Γ(α) > γ and φ(γ, 0) = γ. There are three cases to consider:

• The case α = 0 is trivial, since by definition of G, there is no γ such that
Γ(0) > γ and φ(γ, 0) = γ.

• Suppose that α = S(ξ) for some ξ. Then Γ(α) = G(Γ(ξ)). It follows
that γ < G(Γ(ξ)). By the properties of G, this implies that γ ≤ Γ(ξ). If
γ = Γ(ξ) we are done. Otherwise we apply the induction hypothesis to ξ,
and get β < ξ < α such that γ = Γ(β).

• Suppose that α is a limit ordinal. Then by definition of Γ, γ < Γ(α) implies
that γ < Γ(ξ) for some ξ < α. By applying the induction hypothesis to ξ
we get β < ξ < α such that γ = Γ(β). 2

Corollary 5. `PW φ(γ, 0) = γ → ∃β(γ = Γ(β))

Proof. Together with the first item of Theorem 7, Proposition 12 implies that
γ ≤ Γ(γ) < Γ(S(γ)). Hence the claim follows from item 3 of that theorem. 2

Corollary 6. Feferman-Schütte’s ordinal Γ(0) (usually denoted Γ0) is de-
finable by a term of PW. So are much bigger ordinals, like Γ(Γ0).

Note 23. It is not difficult to define in PW a relation R on ω such that PW
proves that 〈ω,R〉 is isomorphic to 〈Γ0,∈〉. This can be done, e.g., by using the
recursive well-ordering of the natural numbers which is constructed in [42] (with
the help of notations for the ordinals smaller than Γ0.)

§8. Conclusion and Further Research. As recalled by Feferman in [24],
Kreisel criticized in [31] existing proof theory for “the lack of a clear and con-
vincing analysis of the choice of methods of proof,” and took as his ultimate aim
“the discovery of objective criteria for such a choice”. In this paper we have
done exactly this for predicative set theory, using invariance of definitions and
statements as our main criterion, following by this the ideas of Poincaré and
Weyl. What is more, we have shown that the power of predicative reasoning
goes well beyond the accepted Γ0 limit given to it by Feferman and Schütte.

At this point it should be emphasized that we are not claiming that the pred-
icative system PW which is developed in this paper is in any way complete
for predicative set theory. Given Weyl’s views about the open-ended nature of
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predicativity (which are adopted and followed in this paper), it is hard to believe
that such a complete system exists — even from the point of view of a Platonist
who tries to determine “from the outside” the extension and limit of predicative
reasoning (as Feferman explicitly tried to do in [15]). Thus, in this paper we
have deliberately confined ourselves only to methods that were accepted in one
way or another by Feferman in some of his systems. However, there is no reason
to continue to do so in future predicative extensions of PW. One obvious direc-
tion here is to investigate what sorts of inductive definitions of operations and
predicates are predicatively acceptable. (Note that PW allows to introduce new
predicate symbols only via explicit definitions, but there is no reason to forbid
predicative implicit definitions of predicates, as long as the invariance condition
is observed.) According to the principles which guide us in this work, such a
definition should be acceptable whenever it uniquely and invariantly determines
in our framework the predicate or operation which it defines. This mean that an
inductive definition which uniquely determines only some minimal predicate or
operation is not acceptable. In contrast, an example of an implicit definition of
a predicate that should be acceptable is the following inductive characterization
of ∈?, the transitive closure of ∈: y ∈? x↔ y ∈ x ∨ ∃z ∈ x.y ∈ z.

Another important goal for further research is to develop mathematics in PW
(or in a predicative extension of it) in a way which is as natural as possible.
Significant work in this direction has started in [7], and is extended and corrected
in the Ph.D thesis of Nissan Levy [33]. (See also [32] for a part of his work.)

Finally, two interesting technical questions concerning PW, which we have
not tried to answer yet, are:

• What is the proof-theoretic ordinal of PW?
• What is the minimal ordinal (from a platonistic point of view) that is not

definable by a term of PW? (Given a set theory S, we call such an ordinal
the set-theoretical ordinal of S.)
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[35] H. Poincaré, Les mathématiques et la logique, Revue de Métaphysique et de Morale,

vol. 13 (1905), pp. 813–835.
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