Certain and Possible XPath Answers

Sara Cohen, Hebrew University

Querying of data sources culled from the Web, by naive users, is quite a difficult chore. This paper introduces a novel approach to ease the process of querying XML documents. Instead of specifying a query, the user simply marks positive examples X^+ of nodes that fit her information need. She may also mark negative examples X^- of undesirable nodes. A deductive method, to suggest additional nodes that will interest the user, is discussed in this talk.

To be precise, a node y is a certain answer if every query returning all positive examples X^+, and not returning any negative example from X^-, must also return y. Similarly, y is a possible answer if there exists a query returning X^+ and y, while not returning any node in X^-. Thus, y is likely to be of interest to the user if y is a certain answer, and unlikely to be of interest if y is not even a possible answer. The complexity of finding certain and possible answers, with respect to various classes of XPath, is considered. It is shown that for a wide variety of XPath queries (including child and descendant axes, wildcards, branching and attribute constraints), certain and possible answers can be found efficiently, provided that X^+ and X^- are of bounded size. To prove this result a novel algorithm is developed.