A Linearized constraint based approach for modeling signaling networks

This thesis is submitted in partial fulfillment of the requirements towards the M.Sc. degree

Tel-Aviv University
The Blavatnik School of Computer Science

by

Liram Vardi

The research work in this thesis has been carried out under the supervision of Prof. Eytan Ruppin and Prof. Roded Sharan

October, 2011
Acknowledgments

First and foremost, I wish to thank my advisers, Profs. Roded Sharan and Eytan Ruppin: To Roded, for encouraging me to move forward and for his amazing ability to simplify any problem, To Eytan, for motivating and inspiring me, for our fascinating meetings, and for his continual support. Roded and Eytan, you have been amazing guides along the path. You’ve provided me exceptional knowledge and new ways of thinking, and, most of all, you’ve taught me to believe in myself.

I wish to thank Tomer Benyamini and Keren Yizhak for unconditional willingness to help and to advise me, and Matthew Oberhardt for providing helpful feedback.

I especially would like to thank two of my lab members: Shiri Stempler and Omer Eilam for their close friendship.

Finally, I would like to thank my family and Tami Zelovich, for their encouragement and support during my studies.
Abstract

With the unparalleled increase in the availability of biological data over the last couple decades, accurate and computable models are becoming increasingly important for unraveling complex biological phenomena. Past efforts to model signaling networks have utilized various computational methods, including Boolean and constraint-based modeling (CBM) approaches. These approaches are based on solving mixed integer linear programs and, hence, may not scale-up for the analysis of large networks and are not amenable for applications based on sampling the full spectrum of the solution space. Here we propose a new CBM approach that is fully linear and does not involve integer variables, thereby overcoming the aforementioned limitations. We describe a novel optimization procedure for model construction and demonstrate the utility of our approach on a reconstructed model of the human epidermal growth factor receptor (EGFR) pathway, spanning 322 species and 211 connections. We compare our model’s predictions to experimental phosphorylation data and to the predictions inferred via an additional Boolean-based EGFR signaling model. Our results show high prediction accuracy (75%) and high similarity to the Boolean model. Considering the marked computational advantages in terms of scalability and sampling utilization obtained by having a linear model, these results demonstrate the potential promise of this framework for the study of cellular signaling.
Contents

Abstract ... 3

Introduction ... 5
 Modeling cellular signaling ... 5
 Constraints based modeling ... 7
 Previous work on signaling CBM ... 12

Methods .. 15
 Model formulation .. 15
 Model construction procedure .. 20
 Removing spurious stimulation loops .. 21
 Addition of proper exchange reactions .. 24
 Predicting system state ... 26

Results .. 27
 Modeling EGFR signaling .. 27
 Translation of the Boolean model to CBM .. 27
 Comparison to Boolean approaches ... 29

Future Directions ... 35

Discussion ... 36

Bibliography .. 38

Supplementary Materials .. 41
Introduction

Modeling cellular signaling

Working models of cellular signaling are a key to understanding information processing and regulation in cells. On the topological level, many pathways have been mapped in detail and are deposited in large-scale databases such as KEGG (Kanehisa and Goto 2000). However, our understanding of their underlying logic and workings is still in its infancy.

Kinetic models based on differential equations are the current gold standard for modeling network events such as signaling, but as they are practical only in small scale cases and require knowledge of many hard-to-assess parameters, mid- to large-scale signaling models have been developed, the latter mainly focusing on static rather than dynamic descriptions. Such static models include Petri nets (Steggles et al. 2007) and Boolean (logic) networks (Li et al. 2009; Saez-Rodriguez et al. 2009). Recently it has been suggested that the CBM approach could be adopted for exploring the properties of cellular signaling networks (Papin and Palsson 2004b).

Until now, the vast majority of CBM studies in biology have focused on (i) generating genome scale metabolic models for various organisms; and (ii) developing analytical tools to use these models to learn about metabolism, with high level of prediction accuracy for variety of networks responses and phenotypes (Price et al. 2004a).

CBM models have been used in the past to describe signaling networks, mainly employing topological methods of extreme pathways analysis to elucidate central modes of signaling in the networks studied (Papin and Palsson 2004a, b). A recent
study also indicated that the CBM framework can help elucidate combinations of inputs that will create a desirable phenotype or intervention strategies that can help prevent undesirable phenotypes (Dasika et al. 2006).

Here we take this computational framework one step forward. Previous signaling CBM studies included a combination of linear programming (LP) and the use of integer variables. The latter is NP-hard and one of the Karp's 21 NP-complete problems (Karp et al. 1974) and therefore a significant disadvantage is the inability to computationally contend with large and multivariate systems. Furthermore, due to the non-convexity of these mixed integer systems, uniform sampling of the entire solution space to provide an unbiased assessment of reaction network states is impossible (Price et al. 2004a; Price et al. 2004b). As an alternative, we provide a purely linear CBM formulation and a detailed automatic reconstruction procedure to translate a static signaling network to a working signaling model. We demonstrate our approach in a model reconstruction of one of the most studied systems in mammalian cell signaling: the epidermal growth factor receptor (EGFR). We show that we compare favorably to the state-of-the-art Boolean (logic) model on an experimentally-derived validation data set (Samaga et al. 2009), while enjoying some of the inherent modeling and analysis advantages associated with having a linearized CBM framework.
Constraints based modeling

Constraint-based modeling (CBM) imposes the set of suitable constraints on the space of possible biochemical behaviors and allows filtering out behaviors that are not biologically feasible in a large-scale manner. CBM was previously shown to successfully predict various metabolic phenotypes, including growth rates, nutrient uptake rates, by-product secretion rates, gene essentiality, and intracellular fluxes, etc (Price et al. 2004a). The essence of the CBM mathematical representation is the underline biochemical reactions, while the major role of CBM model is to identify the system metabolic steady state. The metabolic state is represented by a feasible flux distribution through all reactions in the network (i.e., a vector of steady-state flux rates), denoted as \(\nu \in \mathbb{R}^{|R|} \) (where R is the reactions set in the network). While metabolic networks have a straightforward definition for chemical reaction, signaling CBM requires a more subtle approach. The signaling network interactions can be separated into mass-flow reactions (which more resemble metabolic ones) and to another type which is signaling CBM unique: signal-flow interactions. Mass flow interactions are chemical reactions in which the participating components are actually consumed or produced during the reactions. However, in signal flow interactions, certain species (e.g. proteins) are not consumed during the interaction, they are recycled and therefore mediate the signal transfer continuously, until they are degraded. The interaction itself can be positive or negative, as we will explain later. Traditional CBM of metabolic networks has only considered mass flow interactions, therefore, a signaling CBM framework has to define a set of rules for
the implementation of signal-flow interactions (Dasika et al. 2006; Lee et al. 2008; Li et al. 2009).

The CBM constraints can be dived into the following:

1) **Mass balance constraints** – impose the metabolic steady-state during which there is no accumulation or depletion of species within the network. Therefore, the production rate of each species should be equal to its consumption rate. This is mathematically formulated by the stoichiometric matrix (denoted by $S \in \mathbb{R}^{M \times |R|}$; M is the number of species), which represents both the topology of the network and the stoichiometry of the biochemical reactions (proportions of substances involved in the reactions; see figure 1). Each row in this matrix represents a species and each column a reaction where represents the stoichiometric coefficient of species i in reaction j. The mass balance constraint is therefore enforced by the equation: $S \nu = 0$ (figure 2.1).

2) **Thermodynamic constraints** – limit the directionality of many biochemical reactions based on thermodynamic considerations, leading to non-negative fluxes for these reactions (i.e. $\nu_j \geq 0$ for each reaction j for which thermodynamic information is available, see figure 2.2).

3) **Max capacity constraints** – limit the upper bound flux level in each reaction (i.e. $\nu_j \leq V_{max}$ for each reaction j), enforcing, for instance, the enzyme capacity in reaction j for some V_{max} bound (figure 2.3).
4) **Stimulation availability constraints** – allow the definition of different *ligand* combinations as a signal initiator by imposing constraints on the maximal and minimal allowed uptake rates of the relevant ligands.

5) **Activation and Inhibition constraints** - As part of the signal-flow interactions in the network, there are species which their presentence is required for none-negative flux (e.g. activation interaction), or the inverse case, enforces zero flux (e.g. inhibition interactions) throw others affected reactions. The mathematical representation of those "non-standard" CBM reactions is not trivial and varies between the different approaches. Previews works has used Mixed Integer Linear Programming (MILP), mostly on the inhibition interaction (Dasika et al. 2006). In this thesis work, I developed a novel pure linear formulation for those interactions.

Constraints 1-4 define a feasible convex and linear flux distribution solution space. Our formulation for constraint 5 preserves the convexity of the solution space. This space can be explored in several main ways:

1) **Solution space characterization methods.** One method allows the identifying the solution space’s extreme pathways, one can characterize the edges of a convex space (Papin et al. 2003). Any point inside the solution space can be represented as a non-negative linear combination of extreme pathways.

2) **Due to the convexity and linearity of the solution space, it can be explored by solving a linear programming (LP) problem.** Therefore, flux variability analysis (FVA) is used to determine the feasible range of each reaction independently within the solution space by formulating an LP problem to minimize or
maximize the flux through the reaction of interest (Mahadevan and Schilling 2003).

3) Optimization methods – are popular when an objective function can be defined on the LP problem, therefore allow a solution space reduction to the optimal solution space only. In the signaling CBM the objective function, for instance, can be maximization of some phenotype reaction. The most popular optimization method is Flux Balance Analysis (FBA) (Orth et al. 2010).

4) Sampling - Common questions require the exploration of the solution space, which is derived from the system constraints. Moreover, in many cases there is no predefined objective function that can serve as an indicator to the general system state (For instance, growth rate reaction). Therefore, uniform random sampling of the space of feasible flux distributions which is satisfying the stoichiometric mass-balance, allows the unbiased appraisal of its contents (Price et al. 2004a). Importantly, this analysis tool requires a convex solution space (Papin and Palsson 2004a, b).
Figure 1: Constraint-based modeling. This figure illustrated the translation process from mass-flow network to a stoichiometric matrix. Subfigure "b" taken from (Joyce and Palsson 2007)

Figure 2: The CBM Solution space. The subfigures illustrate constrains 1-3 respectively. The mass balance constraint (1) generates subspace of $\nu \in \mathbb{R}^n$. By enforcing the reactions thermodynamic direction (2), a convex cone is derived and finally is bounded by the max capacity constraint (3). This space convexity is derived by the linearity of the model.
Previous work on signaling CBM

The study of CBM modeling of signaling networks has been pioneered already a few years ago by the Palsson lab (Papin and Palsson 2004a; Papin et al. 2004). Those modeling framework were mainly consternated on stoichiometric formalism by describing signaling networks as system of chemical reactions. Each chemical transformation (e.g. synthesis, degradation, phosphorylation, etc) was translated to a chemical formulation of reaction. The stoichiometric formalism enforces explicit and chemically consistent accounting of the underlying chemical reactions that constitute the signaling network. In order to capture all the chemical modifications in the network but also to preserve the mass-flow throws the reactions, each component state of in the network (e.g. dimerized, phosphorylated) must be represented as an independent chemical entity (Papin and Palsson 2004b). The analysis of this topological model was based mostly on extreme pathways analysis to elucidate central modes of signaling in the studied network. As explained in the last section, extreme pathways are the minimal set of conically independent basis vectors that completely characterize the fundamental functional states of a given reaction network (Papin et al. 2003).

However, extreme pathways analysis is becoming computationally impractical in large-scale, mass-balanced networks (Yeung et al. 2007). Such large-scale network was recently published, including the map of the toll-like receptor (TLR), which is a very comprehensive and is interpreted along 652 components and 444 reactions (Oda and Kitano 2006). Knowing the above limitation, a CBM model of the TLR network was reconstructed and was analyzed by using FBA to simplify the mesh of
the network reactions into input-output pathways, which show different patterns of signal activation control (Li et al. 2009).

However, signaling networks are more complicated than the metabolic parallel ones because the regulatory factor expressed under the signal cascade. In other words, many chemical transformations in the signal pathways are either activated or repressed by chemical entities present in the system, and the TLR CBM model did not explicitly address to this feature.

While the model of "activation" interaction is quiet simple, due to the nature of the chemical reaction to produce a "flow" throw the system, the linkage between productions of some chemical entity to the suppression of another reaction, is not trivial. An interesting and pioneer work of (Dasika et al. 2006) tried to meet the challenge by suggesting new formulation which is based on mix integers LP for inhibition interactions. Briefly, special binary variable was assigned to each one of the model reaction and acts as an on/off switch. The variable Y_i was placed along with the flux constraint $0 \leq v_i \leq Y_i V_{max}$ and ensures that the flux level in ith reaction (v_i) is set to zero if $Y_i = 0$ (inhibited) or between 0 and V_{max} if $Y_i = 1$ (Not inhibited). Following suit, the study has shown, in principle that the CBM framework can serve as a useful computational platform for elucidating a minimal set of inputs which can derive some "desired" output and also can help in designing new therapeutic intervention strategies.

Although that this framework has solved the inhibition formulation problem, there were few problems following the integration of integer variables in the CBM
framework: First, the use of Integer variables is not computational scalable in multivariable network and therefore limited the use of this framework to analysis large-scales networks, such as the TLR. Second, using of integer variables is introduced non-linear constraints into the system and therefore impairs the convexity of the solution space (Price et al. 2004a; Price et al. 2004b). Therefore uniform sampling of the entire solution space to provide an unbiased assessment of reaction network states is impossible.

These limitations were the prime source of my motivation in developing a pure linear computational framework for signaling CBM. In this thesis I suggest a novel automatic procedure which is capable for translation of any topologic large – scale signaling map to a working CBM model and among others, the framework is based on linear approximation for the inhibition problem.
Methods

Model formulation

Our framework is reminiscent of a constraint-based model (CBM) of metabolism. The latter is represented by a four-tuple, \((M, R, S, L)\), in which \(M\) denotes a set of metabolites, \(R\) denotes a set of biochemical reactions, \(S \in \mathbb{R}^{[M \times [R]}\) denotes reactions’ stoichiometry, and \(L \in \mathbb{R}^{[R]}\) denotes constraints on reactions’ directionality. The stoichiometry is represented by a stoichiometric matrix, \(S\), in which \(S_{i,j}\) represents the stoichiometric coefficient of metabolite \(i\) in reaction \(j\). A feasible flux distribution within a metabolic network model is a vector \(v \in \mathbb{R}^{[R]}\), satisfying mass-balance \((Sv = 0)\), and directionality constraints \((L \leq v)\). A metabolic network model is considered consistent if it can activate all of its reactions—that is, for each reaction \(r_i \in \mathbb{R}\) there exists a feasible flux distribution such that \(|v_i| > 0\) (Jerby et al. 2010).

In our case, we define the set \(M\) as the signaling species, and the set \(R\) as the network’s allowable chemical reactions, including phosphorylation, binding, dimerization, cleavage, and degradation of specific species in combinations dictated by the biology of the system. For instance, to model the binding of protein \(x\) to protein \(y\) we define a new species \(xy\) and a reaction \(r\):

\[
 r: x + y \rightarrow xy \quad x, y, xy \in M \quad r \in R
\]
Following (Dasika et al. 2006), we impose a steady state assumption where the species concentrations remain constant, represented by the constraints \(\sum_{j=1}^{n} s_{ij} j = 0, \forall i \in M. \)

Our model differs the most from that of Dasika et al. in the representation of inhibition constraints; While that of Dasika et al. relies on integer constraints, our representation is fully linear. Formally, we define activators as all the species that are necessary to carry out some chemical transformation (Dasika et al. 2006). Unlike “regular” reactants, activators do not function as integral components of a reaction, and usually are not consumed during the transformation. Consider the chemical transformation \(A \rightarrow B, \) which is activated by a chemical entity \(C. \) As \(C \) is not consumed by the reaction, it should be both a substrate and a product. Similarly to (Dasika et al. 2006), \(C \) is duplicated to \(C^R \) and \(C^P, \) for "reactant" and "product", respectively; an artificial direct reaction is then added between the two copies of \(C. \)

Rather than modeling the conditional activation of the reaction by incorporating the activator into the reaction to tie between the activator and the regulated reaction, as in (Dasika et al. 2006), we reformulate this conditioning using constraints on the fluxes of the two reactions involved:

\[
\begin{align*}
\text{a) } & A \xrightarrow{v_{AB}} B, \quad 0 \leq v_{AB} \leq v_{max} \\
\text{b) } & C^R \xrightarrow{v_C} C^P, \quad 0 \leq v_C \leq v_{max} \\
\text{c) } & v_{AB} \leq v_C
\end{align*}
\]

Constraint (c) forces a zero flux on \(A \rightarrow B \) in a case \(v_C = 0. \) In the general case, there may be more than one activator. Thus, we define \(R_{act} \) as the set of the
reactions which lead to the production of one of the activator species of the \(i \)th reaction \((i \in R) \). This constraint is formulated as:

\[
0 \leq V_i \leq \sum_{j \in R_{\text{act}}} V_j
\]

Inhibition is modeled differently from activation since it requires a conditional ability to shut down a reaction. In (Dasika et al. 2006) it was suggested to express inhibition using binary variables. Here we suggest a novel linear approximation implementing this requirement. Consider again the chemical transformation \(A \rightarrow B \), and assume that species \(C \) is one of its suppressors. The presence of \(C \) should force a zero flux though the inhibited reaction; we model this using the following constraints:

a) \(A \xrightarrow{V_{AB}} B, \quad 0 \leq V_{AB} \leq V_{\text{max}} \)

b) \(C^R \xrightarrow{V_C} C^P, \quad 0 \leq V_C \leq \frac{V_{\text{max}}}{\alpha_C}, \quad 1 \leq \alpha_C \leq V_{\text{max}} \)

c) \(0 \leq V_{AB} + \alpha_C V_C \leq V_{\text{max}} \)

Constraint (c) forces an inverse correlation between the fluxes through the reactions in (a) and (b). Hence, \(\alpha_C \) is controlling the inhibition "intensity" of the inhibitor \(C \) on the "inhibited" reaction \(A \rightarrow B \), and setting its value may be guided by biological knowledge (figure 3). For instance, if the inhibition relation between the two species is a physical interaction (i.e. species \(C \) inhibits \(A \) as long as it attached to it), then it would be reasonable to assume that \(\alpha_C \) is around 1, as one unit of \(C \) is capable of silencing only one unit of \(A \). In contrast, if \(C \) is a kinase protein and one unit is capable of phosphorylating a significant number of targets proteins, then \(\alpha_C \) should
be close to V_{max}. In the absence of additional information, our default setting for the ith inhibitor is $\alpha_i = V_{max}$.
Figure 3. This figure presents the functional effects of the inhibition parameter. It is controlling the inhibition "intensity" of the inhibitor C (v_C) on the "inhibited" reaction $A \rightarrow B$ (v_{ab}). α determines the decline rate of flux v_{ab} as a function of the growth in flux v_C. α_C is fixed on a value between 1 (blue) to v_{max} (red), and in the absence of prior biological information, the default inhibition intensity is fixed to v_{max} (max suppression).

<table>
<thead>
<tr>
<th>Reaction substrates</th>
<th>Reaction products</th>
<th>Activators</th>
<th>Inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligand, A</td>
<td>C</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>D, E</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>Phenotype</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 4. The Construction procedure. This figure demonstrates the translation of a "toy signaling network" to a list of reaction equations. Those equations will be used for model assembling according to the linear formulation.
Model construction procedure

In the following sections we present a detailed automatic procedure for reconstruction of a *consistent* CBM model based on any topological signaling network. The procedure takes as input a list of equations with their activators and inhibitors, as illustrated in figure 4, and then reconstructs a CBM model based on the linear formulation previously presented. We used CellDesigner ver 4.0 (Funahashi et al. 2003) to read, review and visualize the EGFR network (Results), and translated it to a CBM model implemented in MATLAB, with the help of libSBML (Bornstein et al. 2008).

Second, the procedure applies an algorithm to detect and neutralize feedback loops that promote spurious stimulations (i.e. that allow stimulus in the absence of ligand). This algorithm requires prior definition of the network *inputs* set: stimulus initiators, or ligands.

The third step will be to generate a set of inward and outward flow reactions (i.e. *exchange reactions*) for some inner network species—these reactions are needed for preservation of the steady state assumption. Therefore, we describe a novel optimization procedure for rigorous selection of proper exchange reactions.
Removing spurious stimulation loops

Positive and negative feedback loops are common and intrinsic features of signaling networks. Such loops, which have significant biological meaning and therefore should not be ignored in a modeling framework, are able computationally to carry non-zero flux at steady state (Papin and Palsson 2004a). We distinguish between two types of cycles: "harmful" cycles which may induce spurious signal activation without the presence of the proper stimulation (e.g. the ligand), and "harmless" loops that have no disruptive effect on the model's predictions. Figure 5 illustrates examples for both harmful and harmless loops, based on interactions from (Oda et al. 2005). We wish to eliminate only the harmful loops; our strategy for doing so is to remove “non-essential” edges, i.e., to refrain from removals that will fragment the connectivity between internal species and therefore cut off potential signaling pathways, but rather cut loops in the edges that will not create such disruptions on the network, and will rather specifically target the recycling species.

Our loop removal procedure is based on a Depth-First Search (DFS) algorithm (Cormen 2001), a classical method in which one of its applications is identify cycles in graph. The algorithm requires prior definition of the network’s "stimulation" species set, which we define as inputs. Briefly, we perform a DFS from each stimulating species (Figure 6a). In each step, products of the reaction are colored in gray (same as in the original DFS algorithm, Figure 6b). Note that an edge to an already visited gray species indicates that this reaction closes a cycle (Figure 6b). In practice, this "feedback" reaction neutralizes the necessity of a stimulus to initiate signal transduction in a steady-state. To eliminate this harmful cycle, the arc pointing to
the gray species should be removed (figure 6c). Since each (hyper-) edge can have more than a single source or target, we avoid a second revisit of a reaction through another source by marking reactions as well upon visiting them (Figure 6d).

Figure 5. Examples of harmful and harmless feedback loops. This figure introduces two ways to activate Apoptosis (Oda et al. 2005). In (a) there is an example of a harmful loop. In steady state, the internal non-zero flux (in red) is “activating” NOD1 without any stimulation, because the loop fully recovers the initial NOD1 species and therefore requires no net input of that biologically necessary substrate. In contrast, (b) depicts a harmless loop. The reaction between FADD and pro-caspase9 completely depends on the input stimulation (in blue). In (c), removal of the marked edge will guide Apoptosis only upon an external stimulation, and remedy the problem introduced in (a).
Figure 6. Illustration of the loop removal procedure. The algorithm starts from an input (a). In each subsequent step, newly discovered species are painted in gray (b) and examined reactions are marked (in red). In (c), a reaction with an arc to a product which is already marked in gray is discovered. Therefore, the arc (and only it) will be removed. In (d), the last step of the algorithm is illustrated.

Figure 7. Choosing a minimal exchange reaction set. The figure illustrates the exchange reaction construction procedure. First, input and output reactions are added to each species. Then, the optimization procedure suggests some minimal selection for an exchange reaction set for a consistent model.
Addition of proper exchange reactions

One of the requirements in CBM reconstruction is the addition of suitable "exchange reactions," which are needed to maintain the steady-state and mass-balance constraints. In other words, those reactions allow substrates absorption into the system and by-products secretion (Duarte et al. 2004), enabling the flux flow through the network without the accumulation of metabolites.

Inputs of stimulus ligands are a subgroup of the model’s exchange reactions set. They are unique among reactions in that they operate conditionally, depending on the presence of stimulus. To prevent confusion between input reactions of ligand to some input exchange reaction to inner species, we qualify input as refers only to input of stimulus or ligand.

To choose the exchange reactions in a rigorous way, we aim to find a set of inward and outward reactions that will allow all the internal reactions in the model to have non-zero fluxes through them, thereby ensuring that the model is consistent (figure 7). For this step the inhibitions constraints are ignored, since they conflict with none-zero fluxes constraints for each internal reaction and therefore have no feasible solution. Formally, we define R_{ex} and R_{in} as the sets of all exchange and internal reactions, respectively. Then, we solve the following mixed-integer linear program to minimize the number of exchange reactions that are included in the final model. We emphasize that Integer variables serve exclusively in the preprocessing "model-building" stage, and that simulations with the final model will be purely linear.
\[
\min \sum_{i \in R_{\text{ex}}} W_i Y_i
\]

s.t.

1) \[S v = 0\]

2) \[0 \leq V_i \leq Y_i V_{\text{max}}, \quad i \in R_{\text{ex}}\]

3) \[Y_i \in \{0,1\}, \quad i \in R_{\text{ex}}\]

4) \[1 \leq V_j \leq V_{\text{max}}, \quad j \in R_{\text{in}}\]

In this formulation, constraint (1) represents mass-balance. Constraints (2) and (3) define the integer variables for inclusion of each exchange reaction, and constraint (4) forces non-zero flux through internal reactions. The \(W_i\) weights allow prioritization of the reactions. In practice we set each \(W_i\) to 1 (default value) but if we wish to minimize the selection of incoming exchange reaction to some species groups (for instance, phosphorylated or in complex proteins), we may impose a higher \(W_i\) to each \(i\)th species in those groups.
Predicting system state

Since our formulation is based on purely linear constraints, it allows an unbiased sampling of feasible flux distributions given a particular set of inputs. Specifically, by sampling the space of feasible flux distributions and satisfying stoichiometric mass-balance (Price et al. 2004a) and model inhibition/activation constraints across N sampled solutions, we can compute the activation state of groups of species that we define as readouts or "experimentally observed" species under given stimulation.

We define a condition as a combination of model stimulations (i.e., the set of ligands for which input flux is allowed) with an additional possible combination of external perturbations of some inner network proteins (i.e. setting to zero the upper bounds of reactions that produce certain proteins).

Under each condition, we sample the solution space N time, and isolate for each readout species the flux of their activation reaction (i.e. the reaction that produces the species' active formation). Then, a two-Sample T-test is conducted in order to determine if the mean flux of each activation reaction is significantly different (with p-value ≤ 0.01) under the tested condition versus in the “lack of stimulus” condition. We found that to achieve robust statistics, $N = 10^3$ is sufficient.
Results

Modeling EGFR signaling

We demonstrate our modeling framework on a large-scale map constructed by (Oda et al. 2005) of the epidermal growth factor receptor (EGFR) signaling pathway. EGFR is a central system regulating growth, survival, proliferation, and differentiations in mammalian cells (Samaga et al. 2009). The map contains 211 reactions and 322 species (including proteins, ions, simple molecules, oligomers, genes and RNAs).

Translation of the Boolean model to CBM

A Boolean model of the EGFR signaling system, based mostly on Oda et al. map, was recently published. In order to validate the basic functionality of our new framework, we compared our model predictions to competitive Boolean model (Samaga et al. 2009) combined (Oda et al. 2005) sub network with additional literature knowledge, therefore for that sake of a reliable comparison between the two approaches, I created a CBM model with is fully based on the (Samaga et al) species and its logic interactions. The Boolean model contains 104 species and 204 interactions.

The discreet logic (Boolean) approach describes each species activation by Boolean function. Each of one those functions is assembled from three operations: conjunction (AND), disjunction (OR) and negation (NOT). The interaction list is translated as follow:

1) The activation functions in the Boolean model are arranged in Sum of Products (SOP) canonical form which is a disjunction (OR) of minterms (e.g.
logical AND of set of variables). Therefore each minterm in the activation function of some species X will be translated to a separate reaction which produces species X.

2) If some species X has N minterms in its activation function, its CBM representation will be N separated reactions which lead to species X production.

3) Species with negation (NOT) relationship in some minterm, will be defined as an inhibitor of the minterm corresponding reaction.
Comparison to Boolean approaches

In order to validate basic functionality of our method, we first compared the performance of our algorithm against that of a Boolean modeling approach (Hyduke and Palsson 2010) that was recently applied to the EGFR system (Samaga et al. 2009), in accuracy of predicting phenotypes of an in vivo phosphorylation dataset. The Boolean approach represents each node in the network using one of two possible states – active and inactive. The state of a node is derived from its "ancestors" in the network. While the Boolean formulation can effectively describe activation and inhibition rules, the linear model, as discussed above, is amenable to an assortment of tools that provide efficient and powerful model analysis options (Price et al. 2004a). We applied both methods to the original model of (Oda et al. 2005) and constructed two versions of the EGFR system. In the first one, we omitted the additional species and reactions that were added in (Samaga et al. 2009), and in the second one, we translated the full interaction list, taken from (Samaga et al. 2009). We compare the two methods in their ability to predict the phenotypes of a phosphorylation experimental data set, in which cells of the hepatocarcinoma cell line HepG2 were treated with a variety of drugs and growth factor alpha (TGFα) (Samaga et al. 2009), and the phosphorylation states of several proteins included in the EGFR network were measured. We use the normalized readout data supplied in (Samaga et al. 2009), in which the activation states of 11 proteins are given binary values and assessed under 38 experimental conditions. Each condition represents a combination of stimulations (i.e., input ligands) and external perturbations of some inner network proteins. Our model is based purely on (Oda et al. 2005) while the
original Boolean model has integrated additional literature knowledge. As a result, on the first version we were able to test only 31 conditions and to monitor the activation states of only 7 proteins, while on the second one we tested the full conditions list and monitored all readout proteins.

On the first set of the tested conditions, we predicted the activation state of the 7 readouts (Methods). The Boolean model predicted correctly 68.7% of the states, while our approach achieved an accuracy rate of 75% (Figure 8). We assumed that the difference in performance is due to the difference between the model of Oda et al. that we used and that of Samaga et al., as described above. Therefore we validated this hypothesis by constructing a model which is fully based on Samaga et al. Indeed, by converting the logical interaction list, we got 100% similarity rate between the two models in the most runs. Nevertheless, focusing on prediction errors that are common to both models it is possible to test the potential advantages of the linear formulation over the binary one, as its continuous representation may include useful information that is missing in the binary, discrete Boolean realization.

For instance, under some conditions the protein PI3K is inhibited and shown in Figure 10; this inhibition affects the activation level of Mek1/2 (on the fully based Samaga et al. network). Thus, While PI3k is not necessary for the MEK12 activation, it clearly affects it. Examination of the flux level on MEK12 activation reaction points out that PI3K inhibition has a negative effect on MEK12 (Figure 9-10). Another example is the protein Creb. In comparison to stimulation with "no inhibition" (condition 6), p38 or Pi3k inhibition (conditions 8-9, respectively, figure 9) has a minor effect on Creb activation (figure 11). Yet, we can notice that PI3k has a more
decided influence (375.65 under PI3k versus 367.72). Network examination confirmed that PI3k is indeed located higher upstream to Creb than P38, therefore its inhibition effects on more pathways which lead eventually to Creb activation. Such insights can be easily gleaned only from a continuous framework, such as those generate by a CBM approach.
Figure 8. Performance evaluation. This table describes the simulations results on HepG2 cells (Samaga et al. 2009). Each row represents a condition; there are two columns for each readout, representing the predictions of the CBM and Boolean models. Dark green: predicted correctly inactive. Light green: predicted correctly active. Dark red: predicted incorrectly inactive. Light red: predicted incorrectly active. Black: On the tested condition, the readout was externally inhibited; therefore its measurement is not relevant.
Figure 9. The examined species fluxes in their activation reactions (odd columns) versus the experimental data (even columns). The conditions are ordered as in Figure 8. Each column is colored by the values gradient (from yellow to green). The black squares are irrelevant due to experimental inhibition. Conditions with inhibited PI3K are marked with red and with inhibited P38, in blue.
Figure 10. Activation level of MEK12. This figure presents the fluxes level of MEK12 under 38 conditions in sorted order. Each data point represents flux level of MEK12 under some condition. Some of the conditions are sampled under PI3K inhibition (red) and some are not (blue). The green and red line represents the Boolean prediction (active\inactive).

Figure 11. PI3K inhibition vs. P38. In this figure, each data point indicates the activation level of Creb protein. The red point is a stimulation condition with PI3K inhibition and the blue one is with P38 inhibition. The other conditions are marked with green. This comparison demonstrates that PI3K has more decisive effect on Creb activation level, then P38.
Future Directions

Modeling and analysis of large scale signaling systems by a CBM framework has been already proposed in the past and potential benefits were discussed (Dasika et al. 2006; Papin and Palsson 2004b), but until this work, there was no real attempt to objectively compare between this pioneered framework to the Boolean logic, which is one of the leading formalisms available today for genome-scale analysis of signaling networks (Hyduke and Palsson 2010).

The main contribution of this work was presentation of linear scalable formalisms for signaling modeling and proofs its efficiency by conducting a comparison against parallel non-linear CBM model and experimental data. Hence, a possible future work could take a network of interest and utilize this linear framework as a computational tool for the design of an experimental system that identifies interesting "case studies". Then, one can test those computational predications experimentally, and subsequently refine the model as needed.

For instance, an interesting goal of future work employing our approach could try to predict the response of normal and cancerous cells to different cell signals under different genomic contexts. Different genomic contexts can be gene knock-outs which are occurring in cancer and have known disrupt effect on the system operation and these genes KOs can be implemented by different available model reactions. This will open the possibility of choosing the right combination of drugs capable of targeting cancerous cells.
Discussion

We devised a novel approach for modeling genome-scale signaling networks based on constraint-based modeling (Dasika et al. 2006). The novelty of our formulation is the utilization of purely linear constraints, without relying on Integer programming in the modeling stage. The approach also supports graded constraints and variable strengths of activation and inhibition, which enable accurate capture of otherwise elusive phenotypes. Thus, our modeling approach allows the scale-up to large multi-variable networks. Our basic CBM formulation can be used to efficiently solve diversified optimization problems, relying on the existing tool-box for the analysis of genome-scale metabolism.

We introduce a comprehensive translation procedure to a signaling constraint-based model, which can serve to reconstruct a working model for any given signaling system. The proposed procedure removes harmful feedback loops which can generate spurious predictions, and rigorously chooses a minimal set of internal exchange reactions which is needed to maintain the mass-balance CBM provision.

Having automatically constructed a linearized version of a given signaling network, we model the network effects of any given input condition by sampling the full spectrum of the resulting solution space derived from the given stimulation and/or perturbation. Even though our framework embodies strictly linear approximations in its run time, we show that it can be used to efficiently and accurately predict the in silico current state of the network species.
We demonstrate the reconstruction process by a translation of a detailed EGFR/ErbB map (Oda et al. 2005) to a constraint based model. We used a previous Boolean logic model and related phosphorylation data (Samaga et al. 2009) to validate the ability of our linear framework to model this system. Importantly, we show the power of uniform sampling of the solution space in providing informative predictions, emphasizing the utility of a linearized signaling CBM approach.

Our simulation scheme, combined with all others optimization machinery of CBM models, can be recruited to cope with host of key questions, such as identify system perturbations as potential drugs targets with minimal influence on the other network species, marking new potential unknown interactions between system proteins in order to narrow experimental work and suggest new signaling pathways using extant CBM gap filling technologies (Satish Kumar et al. 2007).
Bibliography

Supplementary Materials

S. Table 1: Excel file which contains the model description of the EGFR CBM model that is based full on (Oda et al. 2005) model. The file contains the model reactions and metabolites.

See http://www.cs.tau.ac.il/~liramvar/EGFR_model_based_oda_et_al.xlsx

S. Table 2: Excel file which contains the model description of the CBM model which is fully based on (Samaga et al. 2009) model. The Boolean model interaction list has been translated to CBM model. The file contains the model reactions and metabolites.

See http://www.cs.tau.ac.il/~liramvar/EGFR_model_based_boolean.xlsx

S. Model files: This link follows to a zip file which contains the mat file of the both models: The original EGFR model which is based on (Oda et al. 2005) and the one which is based on (Samaga et al. 2009).

See http://www.cs.tau.ac.il/~liramvar/models_mat_file.zip