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Abstract. We study the question of when a given set of derivable rules
in some basic analytic propositional sequent calculus forms itself an an-
alytic calculus. First, a general syntactic criterion for analyticity in the
family of pure sequent calculi is presented. Next, given a basic calculus
admitting this criterion, we provide a method to construct weaker pure
calculi by collecting simple derivable rules of the basic calculus. The ob-
tained calculi are analytic-by-construction. While the criterion and the
method are completely syntactic, our proofs are semantic, based on in-
terpretation of sequent calculi via non-deterministic valuation functions.
In particular, this method captures calculi for a wide variety of para-
consistent logics, as well as some extensions of Gurevich and Neeman’s
primal infon logic.

1 Introduction

Proof theory reveals a wide mosaic of possibilities for sub-classical logics. These
are logics that are strictly contained (as consequence relations) in classical logic.
Thus, by choosing a subset of axioms and derivation rules that are derivable in
(some proof system for) classical logic, one easily obtains a (proof system for
a) sub-classical logic. Various important and useful non-classical logics can be
formalized in this way, with the most prominent example being intuitionistic
logic. In general, the resulting logics come at first with no semantics. They
might be also unusable for computational purposes, since the new calculi might
not be analytic: it is often the case that proofs of some formula ϕ must contain
formulas that are not subformulas of ϕ. This is evident within the framework of
Hilbert-style calculi, that are rarely analytic. But, even for Gentzen-type sequent
calculi, where the initial proof system for classical logic LK is analytic, there is
no guarantee that an arbitrary collection of classically derivable sequent rules
constitutes an analytic sequent calculus.

In this paper, we focus on a general family of relatively simple sequent calculi
for propositional logics, called pure sequent calculi (originally studied in [2]),
of which (the propositional fragment of) LK is the prototype example. Our
contribution is twofold. First, we generalize the coherence condition from [4] to
provide a decidable sufficient syntactic criterion for analyticity of a given pure
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sequent calculus. Here we employ a general concept of analyticity, based on a
parametrized notion of a subformula, that shares the attractive features with the
usual subformula property. This criterion is useful in many cases, e.g. for proving
the analyticity of a sequent calculus for the logic of first-degree entailment [1],
and of course, the analyticity of the propositional fragment of LK. Second, we
show that calculi admitting this criterion can be utilized for constructing other
analytic sequent calculi. Taking a basic calculus B, we present a method for
obtaining other analytic-by-construction sub-calculi of B, by collecting derivable
rules of B that have a certain “safe” form.

The proposed method is general enough to capture a wide variety of known
sequent calculi for sub-classical logics. This includes:

– A large family of sequent calculi for propositional paraconsistent logics, orig-
inated from philosophical motivations, and obtained by replacing the usual
left introduction rule of negation with weaker rules, each of which is derivable
in LK.

– A sequent calculus for primal logic (without quotations) from [7], as well as
some natural extensions of it. This calculus originated from practical compu-
tational motivations, aiming to allow efficient proof search. It is obtained by
replacing the usual right introduction rule of implication with a weaker rule,
and discarding the rule for introducing disjunction on the left hand-side.

Our approach is semantic: We formulate and use a semantic property of sequent
calculi that is equivalent to analyticity. The semantics, however, plays a role only
in our arguments, while the actual use of the proposed methods includes only
syntactic considerations.

Related Work. The family of pure sequent calculi was defined in [2]. The se-
mantics for these calculi which lies in the basis of our proofs, is similar to the
one in [10] (and takes its inspiration from [6]). Nevertheless, [10] investigates
translations of derivability in analytic pure calculi to the classical satisfiability
problem, leaving open the tasks of constructing analytic calculi, and checking
whether a given calculus is analytic. In this paper we aim to fill this gap, by
providing simple sufficient conditions (that hold in various known cases) for an-
alyticity. Furthermore, we note that the notion of analyticity employed in [10]
is generalized in the current paper: (1) here we also consider derivations from
assumptions (also known as “non-logical axioms”); and (2) we use a more gen-
eral parametrized notion of a subformula. A particular well-behaved subfamily
of pure calculi, called canonical calculi was studied in [4]. For these calculi, it
was shown that analyticity and cut-admissibility are equivalent, and both were
precisely characterized by a simple and decidable coherence criterion. However,
various useful pure calculi (some of which are included in examples below) are
not canonical, and still their analyticity can be shown using the results of the
current paper. Finally, the general framework of [11] allows one to encode all
pure calculi in linear logic, and use linear logic to reason about them. Among
the pure calculi, it is again only the canonical ones for which a decidable criterion
for cut-admissibility is given in [11].



2 Pure Sequent Calculi

In what follows, we assume a propositional language for classical logic, that
consists of a countably infinite set of atomic variables At = {p1, p2, . . .}, the
binary connectives ∧, ∨ and ⊃, the unary connective ¬, and the nullary con-
nectives > and ⊥. A sequent is a pair 〈Γ,∆〉 (denoted by Γ ⇒ ∆) where
Γ and ∆ are finite sets of formulas. We employ the standard sequent nota-
tions, e.g. when writing expressions like Γ, ψ ⇒ ∆ or ⇒ ψ. The union of
sequents is defined by (Γ1 ⇒ ∆1) ∪ (Γ2 ⇒ ∆2) = Γ1 ∪ Γ2 ⇒ ∆1 ∪ ∆2.
For a sequent Γ ⇒ ∆, frm(Γ ⇒ ∆) = Γ ∪ ∆. This notation is naturally
extended to sets of sequents. Given a set F of formulas, we say that a se-
quent s is an F-sequent if frm(s) ⊆ F . A substitution is a function from At
to the set of formulas. A substitution σ is naturally extended to compound for-
mulas by σ(�(ψ1, . . . , ψn)) = �(σ(ψ1), . . . , σ(ψn)) for every compound formula
�(ψ1, . . . , ψn). Substitutions are also naturally extended to sets of formulas, se-
quents and sets of sequents.

We focus on a general family of relatively simple sequent calculi, called pure
sequent calculi. Roughly speaking, these are propositional fully-structural calculi
(calculi that include the structural rules: exchange, contraction and weakening),1

whose derivation rules do not enforce any limitations on the context formulas
(following [2], the adjective “pure” stands for this requirement). We note that
additive applications are employed (i.e., all premises share one context sequent),
rather than multiplicative ones. In the context of this paper, this is just a matter
of taste, since the two options are obviously equivalent when all structural rules
are available.

Definition 1. A pure rule is a pair 〈S, s〉 (denoted by S / s) where S is a set
of sequents and s is a sequent. The elements of S are called the premises of the
rule and s is called the conclusion of the rule. The set S of premises of a pure
rule is usually written without set braces, and its elements are separated by “;”.

Definition 2. An application of a pure rule s1, . . . , sn / s is a pair of the form

〈{σ(s1) ∪ c, . . . , σ(sn) ∪ c} , σ(s) ∪ c〉 (denoted by
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
) where

σ is a substitution and c is a sequent (called a context sequent). The sequents
σ(si) ∪ c are called the premises of the application and σ(s) ∪ c is called the
conclusion of the application.

Note that every application of a pure rule is itself a pure rule. Moreover, every
pure rule is an application of itself, obtained by taking the identity substitution
and the empty context sequent. This duality will be exploited when we expand
analytic calculi with new rules in the form of applications of other rules.

1 Exchange and contraction are implicitly included, since sequents are taken to be
pairs of sets.



Definition 3. A pure calculus is a finite set of pure rules. A proof in a pure
calculus G is defined as usual, where in addition to applications of the pure
rules of G, the following standard schemes may be used:

(weak)
Γ ⇒ ∆

Γ,Γ ′ ⇒ ∆′, ∆
(id)

Γ, ψ ⇒ ψ,∆
(cut)

Γ ⇒ ψ,∆ Γ, ψ ⇒ ∆

Γ ⇒ ∆

Given a pure calculus G, a set F of formulas, a set of F-sequents S and an
F-sequent s, we write S `FG s if there is a proof of s from S in G consisting only
of F-sequents. When F is the set of all formulas, we write `G instead of `FG.

In what follows, all rules and calculi are pure. There are many sequent calculi
for non-classical logics (admitting cut-elimination) that fall in this framework.
These include calculi for three and four-valued logics, various calculi for para-
consistent logics, and all canonical sequent systems [3,4,6].

Example 1. The propositional fragment of Gentzen’s fundamental calculus for
classical logic can be directly presented as a pure calculus, denoted henceforth
by LK. It consists of the following rules:

(⊥ ⇒) ∅ /⊥ ⇒ (⇒ >) ∅ / ⇒ >
(¬ ⇒) ⇒ p1 /¬p1 ⇒ (⇒ ¬) p1 ⇒ / ⇒ ¬p1
(∧ ⇒) p1, p2 ⇒ / p1 ∧ p2 ⇒ (⇒ ∧) ⇒ p1;⇒ p2 / ⇒ p1 ∧ p2
(∨ ⇒) p1 ⇒; p2 ⇒ / p1 ∨ p2 ⇒ (⇒ ∨) ⇒ p1, p2 / ⇒ p1 ∨ p2
(⊃⇒) ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ (⇒⊃) p1 ⇒ p2 / ⇒ p1 ⊃ p2

Example 2. The calculus from [3] for da Costa’s historical paraconsistent logic
C1 can be directly presented as a pure calculus, that we call GC1

. It consists of
the rules of LK except for (¬ ⇒) that is replaced by the following rules:

p1 ⇒ /¬¬p1 ⇒
⇒ p1;⇒ ¬p1 /¬(p1 ∧ ¬p1)⇒ ¬p1 ⇒;¬p2 ⇒ /¬(p1 ∧ p2)⇒
¬p1 ⇒; p2,¬p2 ⇒ /¬(p1 ∨ p2)⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ∨ p2)⇒
p1 ⇒; p2,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ p1,¬p1 ⇒;¬p2 ⇒ /¬(p1 ⊃ p2)⇒

The following properties of pure calculi will be particularly useful below:

Proposition 1. Let G be a calculus, F a set of formulas, S a set of F-sequents,
and s an F-sequent. Suppose that S `FG s. Then, the following hold:

1. σ(S) `σ(F)
G σ(s) for every substitution σ.

2. {s′ ∪ c | s′ ∈ S} `FG s ∪ c for every F-sequent c.

2.1 Analyticity

Analyticity is a crucial property of proof systems. In the case of fully-structural
propositional sequent calculi it usually implies their decidability and consistency
(the fact that the empty sequent is not derivable). Roughly speaking, a calculus
is analytic if whenever a sequent s is provable in it from a set S of sequents, s can
be proven using only the “syntactic material available inside s and S”. Usually,



this “material” is taken to consist of all subformulas occurring in s. Next, we
introduce a generalized analyticity property, based on a parametrized notion of
a subformula in which negation plays a special role.

Definition 4. Let k ≥ 0. A formula ϕ is an immediate k-subformula of a for-
mula ψ if either ψ = ¬ϕ, or ψ = ϕ1]ϕ2 and ϕ = ¬mϕi for some formulas ϕ1, ϕ2,
] ∈ {∧,∨,⊃}, 0 ≤ m ≤ k and i ∈ {1, 2}.2 The k-subformula relation is the reflex-
ive transitive closure of the immediate k-subformula relation. A k-subformula ϕ
of a formula ψ is called proper if ϕ 6= ψ. We denote the set of k-subformulas of a
formula ψ by subk(ψ). This notation is naturally extended to sets of formulas,
sequents and sets of sequents.

Definition 5. A calculus G is called k-analytic if S `G s entails S `sub
k(S∪{s})

G s
for every set S of sequents and sequent s.

0-subformulas are usual subformulas, and thus 0-analyticity amounts to the
usual (global) subformula property of sequent calculi. Note that k-analyticity
(for any k) ensures the decidability and consistency of a calculus. The following
propositions will be useful in the sequel.

Proposition 2. If a formula ϕ is a (proper) k-subformula of a formula ψ, then
σ(ϕ) is a (proper) k-subformula of σ(ψ) for every substitution σ. Consequently,
σ(subk(ψ)) ⊆ subk(σ(ψ)) for every formula ψ and substitution σ.

Proposition 3. Suppose that a calculus G′ is obtained from a calculus G by
one of the following:

1. Replacing some rule S /Γ ⇒ ψ,∆ by S;ψ ⇒ /Γ ⇒ ∆.
2. Replacing some rule S /Γ, ψ ⇒ ∆ by S;⇒ ψ /Γ ⇒ ∆.
3. Replacing two rules of the form S;Γ ⇒ ∆/s and S;Γ ′ ⇒ ∆′ / s by the rule

S;Γ ∪ Γ ′ ⇒ ∆ ∪∆′ / s, given that Γ ∪ Γ ′ ∪∆ ∪∆′ ⊆ subk(S ∪ {s}).

Then `G′=`G and G′ is k-analytic iff G is k-analytic.

Proposition 4. Let G′ be a calculus obtained from a calculus G by adding a

premise s′ to some rule r = S / s of G. Suppose that S `sub
k(frm(r))

G′ s′. Then, G′

is k-analytic iff G is k-analytic.3

Proof. Suppose that S = {s1, . . . , sn} and let S′ = S ∪ {s′}. To show that G′

is k-analytic iff G is k-analytic, we prove that S0 `FG′ s0 iff S0 `FG s0 for every
set F of formulas that is closed under k-subformulas, set S0 of F-sequents, and
F-sequent s0:
(⇒): Trivially, a proof in G′ is also a proof in G with some redundant sequents.

(⇐): Suppose S0 `FG s0. Let r̂ =
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
be an application of

2 ¬mϕ is inductively defined by: ¬0ϕ = ϕ, and ¬m+1ϕ = ¬¬mϕ.
3 frm is extended to pure rules and their applications in the obvious way, e.g.
frm(S / s) = frm(S) ∪ frm(s).



r in the proof of s0 from S0, such that frm(r̂) ⊆ F . Since S `sub
k(frm(S / s))

G′ s′,

by Proposition 1, we have σ(S) `σ(sub
k(frm(S / s)))

G′ σ(s′). Since frm(r̂) ⊆ F and

F is closed under k-subformulas, subk(σ(frm(S / s))) ⊆ F . By Proposition 2,
σ(subk(frm(S / s))) ⊆ F . Hence σ(S) `FG′ σ(s′). In addition, frm(c) ⊆ F , and
hence by Proposition 1, {σ(si) ∪ c | 1 ≤ i ≤ n} `FG′ σ(s′)∪ c. Hence we may add
σ(s′) ∪ c to the premises of r̂, and obtain an application of S′ / s that consists
only of formulas in F . This can be done for every application of S / s, and hence
S0 `FG′ s0. ut

3 Sufficient Criterion for Analyticity

In this section we generalize the coherence condition from [4], and show that the
generalized condition entails analyticity.

Definition 6. A rule r is called k-closed if its conclusion has the form ⇒ ϕ or
ϕ ⇒, and its premises consist only of proper k-subformulas of ϕ. A calculus is
called k-closed if it consists only of k-closed rules.

Notation 1. Given a k-closed rule r, we denote by ϕr the formula that appears
in the conclusion of r.

The calculus LK (Example 1) is 0-closed (and hence it is k-closed for any
k). For example, the rule r = (⇒⊃) of LK is 0-closed and ϕr = p1 ⊃ p2. The
calculus GC1

(Example 2) is 1-closed.

Definition 7. A k-closed calculus G is called (cut)-guarded if for every two
rules of G of the forms S1 / ⇒ ϕ1 and S2 /ϕ2 ⇒, and substitutions σ1, σ2
such that σ1(ϕ1) = σ2(ϕ2), we have that the empty sequent is derivable from
σ1(S1) ∪ σ2(S2) using only (cut).

Note that it is decidable whether a given calculus is (cut)-guarded or not.
Indeed, for each pair of rules S1 / ⇒ ϕ1 and S2 /ϕ2 ⇒, one can first rename
the atomic variables so that no atomic variable occurs in both rules, and then it
suffices to check the above condition for the most general unifier of ϕ1 and ϕ2.

Theorem 1. Every (cut)-guarded k-closed calculus is k-analytic.

This theorem is obtained as a corollary of Theorem 2 below. Next, we present
some examples of applications of it.

Example 3. LK is (cut)-guarded and 0-closed, and hence it is 0-analytic. Simi-
larly, every canonical system (as defined in [4]) in the language of classical logic
is 0-closed, and hence every (cut)-guarded canonical system is 0-analytic.

Example 4. The quotations-free fragment of the calculus from [5] for primal
infon logic (see [7]) can be directly presented as a pure calculus, that we call
P. It consists of the rules (∧ ⇒), (⇒ ∧), (⇒ ∨), (⊃⇒), (⇒ >) and (⊥ ⇒)
of LK, together with the rule ⇒ p2 / ⇒ p1 ⊃ p2. Clearly, P is 0-closed and
(cut)-guarded. By Theorem 1, it is 0-analytic.



Remark 1. For the intended application of primal infon logic as a logic for access
control, it is necessary to extend the language with quotations (i.e., unary con-
nectives of the form “q said”), and add appropriate inference rules for them.
Following [10], we note that the 0-analyticity of any given pure calculus entails
the subformula property for its extension with quotations.

Example 5. The paper [8] investigates a hierarchy of weak double negations, by
presenting an infinite set

{
L2n+2 | n ∈ N

}
of calculi. For example, the calculus

L4, that captures the relevance logic of first-degree entailment (see [1]), can be
obtained by augmenting LK \ {(¬ ⇒), (⇒ ¬)} with the following rules:

p1,¬p2 ⇒ /¬(p1 ⊃ p2)⇒ ⇒ p1;⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)
¬p1 ⇒;¬p2 ⇒ /¬(p1 ∧ p2)⇒ ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)
¬p1,¬p2 ⇒ /¬(p1 ∨ p2)⇒ ⇒ ¬p1;⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)
p1 ⇒ /¬¬p1 ⇒ ⇒ p1 / ⇒ ¬¬p1

This calculus is (cut)-guarded and 1-closed, and hence, by Theorem 1, it is 1-
analytic. Moreover, it can be easily observed that each L2n+2 is (cut)-guarded
and (n+ 1)-closed, and thus by Theorem 1, each L2n+2 is (n+ 1)-analytic.

4 Constructing Analytic Calculi

Theorem 1 allows us to prove that many calculi are k-analytic, by observing
that they are k-closed and (cut)-guarded. However, this criterion is not nec-
essary. For example, GC1

from Example 2 is 1-analytic (this can be shown
as a consequence of cut-elimination), but it is not (cut)-guarded. Indeed, for
the rules p1 ⇒ / ⇒ ¬p1 and p1 ⇒ /¬¬p1 ⇒, and the substitutions σ1, σ2 with
σ1(p1) = ¬p1 and σ2(p1) = p1, we have σ1(¬p1) = σ2(¬¬p1), but the empty
sequent is not provable from {(¬p1 ⇒), (p1 ⇒)} only with (cut). In order to cap-
ture GC1 and other useful calculi, we introduce a more general method to prove
analyticity. More precisely, we present a method for constructing k-analytic cal-
culi by joining applications of rules of a certain basic (cut)-guarded k-closed
calculus.

In what follows B denotes an arbitrary k-closed (cut)-guarded calculus, that
serves as a basic calculus.

Definition 8. An application of a rule s1, . . . , sn / s is called k-safe if it has the

form
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
for some substitution σ and sequent c, such that c

consists only of proper k-subformulas of formulas that occur in σ(s).

Example 6. The following are 0-safe, 1-safe and 2-safe applications of the rule
(⊃⇒) of LK (respectively):

p1 ⇒ p1 ∧ p2 p1, p2 ⇒
p1, (p1 ∧ p2) ⊃ p2 ⇒

¬p1 ⇒ p1 ∧ p2 ¬p1, p2 ⇒
¬p1, (p1 ∧ p2) ⊃ p2 ⇒

¬¬p3 ⇒ p1 ∧ p2,¬(p1 ∧ p2) ¬¬p3, p2 ⊃ p3 ⇒ ¬(p1 ∧ p2)

¬¬p3, (p1 ∧ p2) ⊃ (p2 ⊃ p3)⇒ ¬(p1 ∧ p2)



Proposition 5. Consider a k-closed rule r = s1, . . . , sn / s, and a k-safe appli-

cation of r, r̂ =
σ(s1) ∪ c, . . . , σ(sn) ∪ c

σ(s) ∪ c
. Then all formulas in subk(σ(si) ∪ c)

are proper k-subformulas of σ(ϕr) (and thus subk(frm(r̂)) ⊆ subk(σ(ϕr))).

Proof. Let ψ ∈ subk(σ(si) ∪ c) and let ϕ ∈ σ(frm(si)) ∪ frm(c) such that ψ
is a k-subformula of ϕ. We show that ϕ is a proper k-subformula of σ(ϕr).
Since ψ is a k-subformula of ϕ, it follows that ψ is also a proper k-subformula
of σ(ϕr). If ϕ = σ(ϕ′) for some ϕ′ ∈ frm(si), then since r is k-closed, ϕ′ is
a proper k-subformula of ϕr. By Proposition 2, ϕ is a proper k-subformula of
σ(ϕr). Otherwise, ϕ ∈ frm(c), and since r̂ is k-safe, ϕ is a proper k-subformula
of σ(ϕr). ut

Theorem 2. Every calculus that consists solely of k-safe applications of rules
of B is k-analytic.

Theorem 2 will be proved in the next section. First, observe that Theorem 1
is obtained as a corollary:

Proof (of Theorem 1). Every rule of B is a trivial k-safe application of itself,
and hence by Theorem 2, B itself is k-analytic. ut

Before proving Theorem 2, we present some consequences and examples of it.
For these examples, we take the basic calculus B to be LK (that is (cut)-guarded
and k-closed for every k).

Example 7. A sequent calculus GP1 for the atomic paraconsistent logic P1 from
[12] can be constructed using Theorem 2.4 Begin with LK \ {(¬ ⇒)}, and add
the following 0-safe applications of (¬ ⇒) to allow left-introduction of negation
for compound formulas:
⇒ ¬p1 /¬¬p1 ⇒ ⇒ p1 ∧ p2 /¬(p1 ∧ p2)⇒
⇒ p1 ∨ p2 /¬(p1 ∨ p2)⇒ ⇒ p1 ⊃ p2 /¬(p1 ⊃ p2)⇒

Note that the context sequent c is empty in each of these applications. By The-
orem 2, this calculus is 0-analytic. In GP1

we have 6`GP1
p1,¬p1 ⇒ p2, but

`GP1
ϕ,¬ϕ⇒ ψ for every compound formula ϕ and formula ψ. Note that GP1

is also 0-closed and (cut)-guarded, and hence its analyticity directly follows from
Theorem 1.

In some cases, k-safe applications of rules of B turn out to have premises
that are already derivable. For example, suppose we would like to augment the
calculus P from Example 4 with the rule ⊥ ⇒ p1 / ⇒ ⊥ ⊃ p1, which is a 0-safe
application of (⇒⊃). Since the sequent ⊥ ⇒ p1 is provable in P, it is a redundant
premise. In this case, one can add the rule ∅ / ⇒ ⊥ ⊃ p1 directly. The following
proposition is used for omitting redundant premises in the examples below.

4 GP1 is equivalent to a sequent calculus for P1 given by Arnon Avron in an unpub-
lished manuscript.



Proposition 6. Let G1 be a k-analytic calculus, and G2 be a calculus that
consist solely of k-safe applications of rules of B. Suppose that G1 ∪ G2 is a
k-analytic calculus, and that `G1

s for every premise s of a rule of G2. Let
G3 = {∅ / s | S / s ∈ G2}. Then G1 ∪G3 is k-analytic.

Proof. Let S / s ∈ G2 and s′ ∈ S. Since G1 is k-analytic and `G1
s′, we have

`sub
k(s′)

G1
s′. By Proposition 5, subk(s′) ⊆ subk(s). Therefore, `sub

k(s)
G1

s′, and so

`sub
k(s)

G1∪G3
s′. By repeatedly applying Proposition 4, since G1 ∪G2 is k-analytic,

we obtain that G1 ∪G3 is k-analytic as well. ut

Example 8. The calculus GC1 from Example 2 is 1-analytic. Using Proposi-
tion 6, we construct a 1-analytic equivalent calculus that we call G′C1

. Let
G1 = LK \ {(¬ ⇒)}. G′C1

is obtained by augmenting G1 with the following
rules:
∅ /¬¬p1 ⇒ p1
∅ / p1,¬p1,¬(p1 ∧ ¬p1)⇒ ∅ /¬(p1 ∧ p2)⇒ ¬p1,¬p2
∅ /¬(p1 ∨ p2)⇒ ¬p1, p2 ∅ /¬(p1 ∨ p2)⇒ ¬p1,¬p2
∅ /¬(p1 ∨ p2)⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2)⇒ p1, p2
∅ /¬(p1 ⊃ p2)⇒ p1,¬p2 ∅ /¬(p1 ⊃ p2)⇒ ¬p1,¬p2

Every rule in this list has the form ∅ / s, where s is the conclusion of a 1-
safe application of the rule (¬ ⇒) of LK, whose premises are all provable
in G1. For example, the sequent ¬(p1 ∧ p2) ⇒ ¬p1,¬p2 is the conclusion of
⇒ p1 ∧ p2,¬p1,¬p2
¬(p1 ∧ p2)⇒ ¬p1,¬p2

, which is a 1-safe application of the rule (¬ ⇒) of LK,

and its premise ⇒ p1 ∧ p2,¬p1,¬p2 is derivable in G1. By Theorem 2, augment-
ing G1 with these applications results in a 1-analytic calculus. G′C1

is obtained
by discarding their premises, and its 1-analyticity is guaranteed by Proposi-
tion 6. Using Proposition 3, it is easy to see that G′C1

is equivalent to GC1
, and

furthermore, the 1-analyticity of G′C1
entails the 1-analyticity of GC1

.

Example 9. The calculus P from Example 4 enjoys a linear time decision pro-
cedure (see, e.g., [7]). As shown in [10], it is possible to augment P with ad-
ditional rules in order to make it somewhat closer to LK, without compromis-
ing the linear time complexity.5 Such extension is obtained as follows. Begin
with a calculus G0 that consists of the rules (∧ ⇒), (⇒ ∧), (⇒ ∨), (⊃⇒),
(⇒ >) and (⊥ ⇒) of LK. Add the rule p2, p1 ⇒ p2 / p2 ⇒ p1 ⊃ p2 to ob-
tain a calculus that we call P′. This rule is a 0-safe application of the rule
(⇒⊃) of LK. Now, add the following set of rules to recover some natural
properties of the classical connectives (none of these rules is derivable in P′):
∅ / ⇒ ⊥ ⊃ p1 ∅ / p1 ∨ p1 ⇒ p1 ∅ / ⇒ p1 ⊃ p1
∅ /⊥ ∨ p1 ⇒ p1 ∅ / p1,¬p1 ⇒ ∅ / ⇒ (p1 ∧ p2) ⊃ p1
∅ / p1 ∨ ⊥ ⇒ p1 ∅ / p1 ∨ (p1 ∧ p2)⇒ p1 ∅ / ⇒ (p1 ∧ p2) ⊃ p2
∅ / (p1 ∧ p2) ∨ p1 ⇒ p1 ∅ / ⇒ p2 ⊃ (p1 ⊃ p2)
Every rule in this list has the form ∅ / s, where s is the conclusion of a 0-safe

5 A manual ad-hoc proof of analyticity of the extended calculus was needed in [10].



application of a rule of LK, whose premises are all derivable in P′. For exam-
ple, the sequent ⇒ p2 ⊃ (p1 ⊃ p2) is the conclusion of the 0-safe application
p2 ⇒ p1 ⊃ p2
⇒ p2 ⊃ (p1 ⊃ p2)

of (⇒⊃), and its premise p2 ⇒ p1 ⊃ p2 is derivable in P′. By

Theorem 2, augmenting P′ with these applications results in a 0-analytic calcu-
lus. By Proposition 6, 0-analyticity is preserved when discarding their premises.
Using Proposition 6 again, we may also discard the premise p2, p1 ⇒ p2 of the
rule p2, p1 ⇒ p2 / p2 ⇒ p1 ⊃ p2. Using Proposition 3, it is easy to see that we
may replace the new rule ∅ / p2 ⇒ p1 ⊃ p2 by ⇒ p2 / ⇒ p1 ⊃ p2, which is the
original right introduction rule of implication in P.

5 Proof of Theorem 2

This section is devoted to prove Theorem 2. Our proof relies on a semantic
interpretation of pure calculi, that gives rise to a semantic characterization of
analyticity, as was shown in [10]. Note that we have to slightly strengthen the
soundness and completeness theorem given in [10] in order to cover derivations
with assumptions (i.e. S `FG s for non-empty set S).

Definition 9. A bivaluation is a function v from some set dom(v) of formulas
to {0, 1}. A bivaluation v is extended to dom(v)-sequents by: v(Γ ⇒ ∆) = 1 iff
v(ϕ) = 0 for some ϕ ∈ Γ or v(ϕ) = 1 for some ϕ ∈ ∆. v is extended to sets of
dom(v)-sequents by: v(S) = min {v(s) | s ∈ S}, where min ∅ = 1. Given a set
F of formulas, by an F-bivaluation we refer to a bivaluation v with dom(v) = F .
A bivaluation v whose domain dom(v) is the set of all formulas is called full.

Definition 10. A bivaluation v respects a rule S / s if v(σ(S)) ≤ v(σ(s)) for
every substitution σ such that σ(frm(S / s)) ⊆ dom(v). v is called G-legal for a
calculus G if it respects all rules of G.

Example 10. A {p1,¬¬p1}-bivaluation v respects the rule p1 ⇒ /¬¬p1 ⇒ iff
either v(p1) = v(¬¬p1) = 0 or v(p1) = 1. Note that LK-legal bivaluations are
exactly usual classical valuation functions.

Theorem 3 (Soundness and Completeness). Let G be a calculus, F be a
set of formulas, S be a set of F-sequents, and s be an F-sequent. Then, S `FG s
iff v(S) ≤ v(s) for every G-legal F-bivaluation v.

Proof. Soundness Assume S `FG s and let v be a G-legal F-bivaluation such
that v(S) = 1. We prove that v(s) = 1 by induction on the length of the
proof of s from S in G:
1. If s ∈ S or s is a conclusion of an application of (cut), (weak) or (id),

then this is obvious.
2. If s is the conclusion of an application of a rule of G, then there ex-

ist s1, . . . , sn / s0 ∈ G, an F-sequent c and a substitution σ such that
σ(frm({s1, . . . , sn, s0})) ⊆ F , s = σ(s0)∪ c, and S `FG σ(si)∪ c for every
1 ≤ i ≤ n. If v(c) = 1, then v(σ(s0) ∪ c) = 1. Otherwise, by the induc-
tion hypothesis, v(σ(si)) = 1 for every 1 ≤ i ≤ n. Since v is G-legal,
v(σ(s0)) = 1, and hence v(s) = v(σ(s0) ∪ c) = 1.



Completeness Assume S 6`FG s. We prove that there exists a G-legal F-
bivaluation v such that v(S) = 1 and v(s) = 0. Define an ω-F-sequent
to be a pair 〈L,R〉 (denoted by L ⇒ R) such that L and R are (possibly
infinite) subsets of F . We write S `FG L ⇒ R if there exist finite Γ ⊆ L
and ∆ ⊆ R such that S `FG Γ ⇒ ∆. All other definitions for sequents are
naturally extended to ω-sequents. It is straightforward to extend s to an
ω-F-sequent L∗ ⇒ R∗ that has the following properties:
– Γ ′ ⊆ L∗ and ∆′ ⊆ R∗ where s = Γ ′ ⇒ ∆′.
– S 6`FG L∗ ⇒ R∗.
– S `FG L∗ ⇒ R∗, ψ for every ψ ∈ F \R∗.
– S `FG L∗, ψ ⇒ R∗ for every ψ ∈ F \ L∗.

Since the identity axiom (id) is available, we obviously have L∗ ∩ R∗ = ∅.
Similarly, using (cut), it can be shown that F = frm(L∗ ⇒ R∗). Hence L∗

and R∗ partition F . Define an F-bivaluation v by: v(ψ) = 1 if ψ ∈ L∗, and
v(ψ) = 0 if ψ ∈ R∗. Clearly, v(L∗ ⇒ R∗) = 0 and therefore v(s) = 0. We
prove that v(S) = 1 and that v is G-legal. Let Γ ⇒ ∆ ∈ S. Obviously,
S `FG Γ ⇒ ∆. Since S 6`FG L∗ ⇒ R∗, we have either Γ 6⊆ L∗ or ∆ 6⊆ R∗. If
there exists ϕ ∈ Γ \ L∗, then ϕ ∈ R∗ and hence v(ϕ) = 0. Otherwise, there
exists ϕ ∈ ∆ \ R∗, and hence ϕ ∈ L∗, which means that v(ϕ) = 1. Either
way, v(Γ ⇒ ∆) = 1.
Let S0 / s0 ∈ G and σ be a substitution such that σ(frm(S0 / s0)) ⊆ F .
We assume that v(σ(S0)) = 1, and prove that v(σ(s0)) = 1. Suppose that
S0 = {Γ1 ⇒ ∆1, . . . , Γn ⇒ ∆n}. We construct the following sequent Γ ⇒ ∆:
For every 1 ≤ i ≤ n, there exists either ψi ∈ Γi such that v(σ(ψi)) = 0 or
ψi ∈ ∆i such that v(σ(ψi)) = 1. If the first option holds, we add σ(ψi) to ∆.
If the second option holds, we add σ(ψi) to Γ . Clearly, v(σ(Γ ⇒ ∆)) = 0.
In addition, Γ ⊆ L∗ and ∆ ⊆ R∗. Now, for every 1 ≤ i ≤ n, using (id) and
(weak), we get that S `FG σ(Γi ⇒ ∆i) ∪ (Γ ⇒ ∆). Applying S0 / s0 with
Γ ⇒ ∆ as a context sequent, we get that S `FG σ(s0) ∪ (Γ ⇒ ∆). Since
Γ ⊆ L∗ and ∆ ⊆ R∗, S `FG σ(s0) ∪ (L∗ ⇒ R∗). Let σ(s0) = Γ0 ⇒ ∆0. It
follows that either Γ0 6⊆ L∗ or ∆0 6⊆ R∗. Hence, v(ψ) = 0 for some ψ ∈ Γ0

or v(ψ) = 1 for some ψ ∈ ∆0. Therefore, v(σ(s0)) = 1. ut

Using the theorem above, we formulate a semantic property of calculi that
is equivalent to k-analyticity.

Definition 11. A calculus G is called semantically k-analytic if every G-legal
bivaluation v can be extended to a G-legal full bivaluation, provided that dom(v)
is finite and closed under k-subformulas.

Theorem 4. A calculus G is k-analytic iff it is semantically k-analytic.

Proof. If G is not k-analytic, then there is a set S of sequents and a sequent s

such that S `G s and S 6`sub
k(S∪{s})

G s. Hence, there exists finite S′ ⊆ S such that

S′ `G s, and S′ 6`sub
k(S′∪{s})

G s. According to Theorem 3, there exists a G-legal

subk(S′ ∪{s})-bivaluation v such that v(S′) = 1 and v(s) = 0, and u(S′) ≤ u(s)



for every G-legal full bivaluation u. Therefore, v cannot be extended to a G-legal
full bivaluation. In addition, dom(v) = subk(S′ ∪ {s}) is finite and closed under
k-subformulas.

For the converse, suppose that v is a G-legal bivaluation, dom(v) is finite
and closed under k-subformulas, and v cannot be extended to a G-legal full
bivaluation. Let Γ = {ψ ∈ dom(v) | v(ψ) = 1}, ∆ = {ψ ∈ dom(v) | v(ψ) = 0},
and s = Γ ⇒ ∆. Then dom(v) = subk(s) and v(s) = 0. We show that u(s) = 1
for every G-legal full bivaluation u. Indeed, every such u does not extend v.
Hence there is some ψ ∈ dom(v) such that u(ψ) 6= v(ψ). Then, u(ψ) = 0 if

ψ ∈ Γ , and u(ψ) = 1 if ψ ∈ ∆. In either case, u(s) = 1. By Theorem 3, 6`sub
k(s)

G s
and `G s. ut

We use the semantic characterization of analyticity given in Theorem 4 to
prove Theorem 2. Thus, we provide a method for extending bivaluations whose
domains are finite and closed under k-subformulas.

This method is iterative: in each step we extend a given bivaluation v with
a truth value for a single formula ψ, such that dom(v) ∪ {ψ} is closed under
k-subformulas. We call such formulas k-addable:

Definition 12. A formula ψ is called k-addable to a bivaluation v if dom(v)
contains all proper k-subformulas of ψ.

The extension of partial bivaluations is determined according to the basic
calculus B, as given in the following definition:

Definition 13. Let v be a bivaluation and ψ be a formula. The dom(v)∪ {ψ}-
bivaluation vψB is defined as follows: 1) vψB(ϕ) = v(ϕ) for every ϕ ∈ dom(v).

2) If ψ /∈ dom(v): vψB(ψ) = 1 iff there exist a rule of the form S / ⇒ ϕ in B and
a substitution σ such that σ(frm(S)) ⊆ dom(v), σ(ϕ) = ψ and v(σ(S)) = 1.

If the above extension method “works” for a given calculus G, we say that
G is B-k-analytic. Formally, this is defined as follows.

Definition 14. A calculus G is called B-k-analytic if vψB is G-legal for every
G-legal bivaluation v whose domain is finite and closed under k-subformulas and
formula ψ that is k-addable to v.

Proposition 7. Every B-k-analytic calculus is k-analytic.

Proof. Let G be a B-k analytic calculus. By Theorem 4, it suffices to prove that
G is semantically k-analytic. Let v be a G-legal bivaluation whose domain is
finite and closed under k-subformulas. We extend v to a G-legal full bivaluation
v′. It is a routine matter to enumerate all formulas and obtain an infinite sequence
ψ1, ψ2, . . . such that: a) If ψi ∈ dom(v) and ψj /∈ dom(v) then i < j. b) If ψi is a
k-subformula of ψj then i ≤ j. We define a sequence of bivaluations v0, v1, . . . as

follows: v0 = v, and vi = vi−1
ψi

B for every i > 0. dom(vi) = dom(v)∪{ψ1, . . . , ψi}
for every i, and therefore each ψi is k-addable to vi−1. Since G is B-k-analytic,



each vi is G-legal. The full bivaluation v′ is defined by v′(ψi) = vi(ψi) for
every i > 0. In order to see that v′ is G-legal, let S / s ∈ G and let σ be
a substitution. Let j = max {i | ψi ∈ σ(frm(S / s))}. Then v′(ψ) = vj(ψ) for
every ψ ∈ σ(frm(S / s)). Recall that vj is G-legal, and therefore we have that
v′(σ(S)) = vj(σ(S)) ≤ vj(σ(s)) = v′(σ(s)). ut

Next, we prove that B-k-analyticity is preserved when a calculus is aug-
mented with one k-safe application of a rule of B.

Theorem 5. Let G be a B-k-analytic calculus, and G′ be a calculus obtained
by augmenting G with a k-safe application r̂ of a rule r of B. Then G′ is B-k-
analytic.

Proof. Suppose r = S / s with S = {s1, . . . , sn}, and r̂ = Ŝ / ŝ. Let α be a
substitution and c be a sequent such that Ŝ = {α(s1) ∪ c, . . . , α(sn) ∪ c} and
ŝ = α(s) ∪ c. Now, let v be a G′-legal bivaluation whose domain is finite and
closed under k-subformulas, and ψ be a formula that is k-addable to v. We prove
that the bivaluation vψB is G′-legal. Let S0 / s0 ∈ G′ and σ be a substitution

such that σ(frm(S0 / s0)) ⊆ dom(vψB). We show that vψB(σ(S0)) ≤ vψB(σ(s0)). If
S0 / s0 ∈ G then this holds since G is B-k-analytic. If ψ /∈ σ(frm(S0 / s0)) or
ψ ∈ dom(v) then this holds since v is G′-legal. Assume now that S0 / s0 = r̂,
ψ ∈ σ(frm(S0 / s0)) and ψ /∈ dom(v).

We first prove that ψ = σ(α(ϕr)). Otherwise, σ(α(ϕr)) ∈ dom(v). By
Proposition 5, frm(r̂) ⊆ subk(α(ϕr)), and by Proposition 2, we also have that
σ(subk(α(ϕr))) ⊆ subk(σ(α(ϕr))), and hence σ(frm(r̂)) ⊆ subk(σ(α(ϕr))). Since
dom(v) is closed under k-subformulas and σ(α(ϕr)) ∈ dom(v), we have that
subk(σ(α(ϕr))) ⊆ dom(v), and hence σ(frm(r̂)) ⊆ dom(v). Since ψ ∈ σ(frm(r̂)),
it follows that ψ ∈ dom(v), which is a contradiction.

Similarly, we show that σ(frm(Ŝ)) ⊆ dom(v). Indeed, let ϕ ∈ σ(frm(Ŝ))
and let ϕ′ ∈ frm(Ŝ) such that ϕ = σ(ϕ′). By Proposition 5, ϕ′ is a proper k-
subformula of α(ϕr), and hence by Proposition 2, ϕ is a proper k-subformula of

ψ = σ(α(ϕr)). In particular, ϕ 6= ψ. Since σ(frm(Ŝ)) ⊆ dom(vψB), it follows that
ϕ ∈ dom(v).

Now suppose vψB(σ(α(si) ∪ c)) = 1 for every 1 ≤ i ≤ n. We prove that

vψB(σ(α(s) ∪ c)) = 1. If vψB(σ(c)) = 1 then we are clearly done. Suppose other-

wise. Then we have vψB(σ(α(S))) = 1. We prove that vψB(σ(α(s))) = 1 (it would

then follow that vψB(σ(α(s) ∪ c)) = 1). Since σ(frm(Ŝ)) ⊆ dom(v), we also have
σ(α(frm(S))) ⊆ dom(v). Hence, v(σ(α(S))) = 1. We distinguish two cases. If s
is ⇒ ϕr then since σ(α(frm(S))) ⊆ dom(v), σ(α(ϕr)) = ψ and v(σ(α(S))) = 1,

by Definition 13, we have vψB(ψ) = 1, and so vψB(σ(α(s))) = 1. Otherwise s

is ϕr ⇒. To prove that vψB(σ(α(s))) = 1, we show that vψB(ψ) = 0. By Defi-
nition 13, it suffices to prove that for every rule of the form S′ / ⇒ ϕ′ in B
and substitution σ′ such that σ′(frm(S′)) ⊆ dom(v) and σ′(ϕ′) = ψ, we have
v(σ′(S′)) = 0. Let S′ / ⇒ ϕ′ and σ′ as above. Since B is (cut)-guarded, the
empty sequent is derivable from σ(α(S)) ∪ σ′(S′) using only (cut). It easily



follows that σ(α(S)), σ′(S′) `dom(v)
G′ ⇒. By Theorem 3, since v is G′-legal and

v(σ(α(S))) = 1, we must have v(σ′(S′)) = 0. ut

Finally, we obtain Theorem 2 as a corollary:

Proof (of Theorem 2). Let G be a calculus that consists solely of k-safe appli-
cations of rules of B. Begin with the empty calculus and add the rules of G one
by one. The empty calculus is clearly B-k-analytic, and by Theorem 5, in each
step we obtain a B-k-analytic calculus. By Proposition 7, G is k-analytic. ut

6 Further Research

While we focused on the language of classical logic for the sake of simplicity and
clarity, the definitions and results of this paper can be straightforwardly adapted
for arbitrary propositional languages. In addition, the following extensions and
questions naturally arise and are left for a future work. First, unlike the case
of canonical calculi [4], the relations between cut-elimination and analyticity in
pure calculi are still unclear. We plan to apply semantic methods (see, e.g., [9])
to investigate cut-elimination in pure calculi. Second, while this paper studies
only pure calculi, that have a simple semantic interpretation, we believe that a
similar approach can be useful for more complicated families of sequent calculi.
In particular, the family of basic sequent calculi that was studied in [9], and
has a Kripke-style semantic interpretation, is an interesting subject for a similar
investigation of analyticity. Lastly, it will be interesting and useful to extend
the current method also for many-sided sequents (using many-valued valuation
functions), as well as for calculi for first-order logics.
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