Reasoning Inside The Box
Gentzen Calculi for Herbrand Logics

Yoni Zohar
Tel Aviv University

Joint work with Liron Cohen

MUGS
June 7, 2017
Semantically speaking, logic is based on models. FO classical logic: FO structures. Finite model theory: finite FO structures. Herbrand logic: Herbrand FO structures.

Herbrand structures = FO structures with a fixed domain. The domain = the set of closed terms.

Example

<table>
<thead>
<tr>
<th>Language</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>⟨0, s⟩</td>
<td>{0, s(0), s(s(0)), s(s(s(0))), \ldots}</td>
</tr>
<tr>
<td>⟨0, 1, f⟩</td>
<td>{0, 1, f(0), f(1), f(f(1)), \ldots}</td>
</tr>
<tr>
<td>⟨c, d⟩</td>
<td>{c, d}</td>
</tr>
</tbody>
</table>
Herbrand Logic

- Herbrand logic = the logic that is induced by Herbrand structures
- Studied in [Genesereth & Kao’15]

Advantages:

- Natural sub-class of structures
- Simpler than classical FOL
- \mathbb{N} is axiomatizable
- TC is axiomatizable
- MM of SSLP is axiomatizable

Disadvantages:

- Not compact
- Not R.E.
- Inherently incomplete
- \vdash is language-dependent
- No proof theory so far
Main Results

Semantics:
- Decomposition of "Herbrandness"
- General treatment of equality

Proof Theory:
- Infinitary proof systems
 - Soundness
 - Completeness
- Finitary approximations
 - Soundness
 - (Completeness is impossible)
Herbrand Logics

Semantics

- Semi-Herbrand Structures
- Herbrand Structures
- Semi-Herbrand Structures with =
- Herbrand Structures with =

Proof Systems

<table>
<thead>
<tr>
<th>Infinitary Systems</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finitary Systems</td>
<td>Effectiveness</td>
</tr>
</tbody>
</table>
Herbrand and semi-Herbrand Structures

First Order Structures

- $M = \langle D, I \rangle$
- D is a set of elements (domain)
- I is an interpretation function for terms and predicates

Semi-Herbrand Structures

For every $d \in D$ there is $t \in cterms(\mathcal{L})$ s.t. $I(t) = d$

Herbrand Structures

For every $d \in D$ there is a unique $t \in cterms(\mathcal{L})$ s.t. $I(t) = d$

Herbrand Structures (equivalent definition)

- $D = cterms(\mathcal{L})$
- $I(t) = t$ for every $t \in cterms(\mathcal{L})$
Consequence Relations

Let \mathcal{T} be a set of formulas and A a formula

- $\mathcal{T} \vdash_{\text{cla}} A$: every structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{\text{sHer}} A$: every semi-Herbrand structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{\text{Her}} A$: every Herbrand structure that satisfies \mathcal{T} satisfies A

Are these relations different from one another?

Proposition $\vdash_{\text{cla}} \subset \vdash_{\text{sHer}} = \vdash_{\text{Her}}$

Thus, (semi-)Herbrand logic is super-classical.

Example: $\{A\{t\}_x | t \in \text{cterms}(L)\} \not\vdash_{\text{cla}} \forall x A\{t\}_x$

$\vdash_{\text{Her}} \forall x A$
Consequence Relations

Let \mathcal{T} be a set of formulas and A a formula

- $\mathcal{T} \vdash_{\text{cla}} A$: every structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{s\text{Her}} A$: every semi-Herbrand structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{\text{Her}} A$: every Herbrand structure that satisfies \mathcal{T} satisfies A

Are these relations different from one another?

Proposition

$\vdash_{\text{cla}} \not\subseteq \vdash_{s\text{Her}} = \vdash_{\text{Her}}$

Thus, (semi-)Herbrand logic is super-classical.

Example

- $\{ A \{ \frac{t}{x} \} \mid t \in \text{cterms}(\mathcal{L}) \} \vdash_{\text{cla}} \forall xA$
- $\{ A \{ \frac{t}{x} \} \mid t \in \text{cterms}(\mathcal{L}) \} \vdash_{\text{Her}} \forall xA$
Herbrand Logics

Semantics

- Semi-Herbrand Structures
- Herbrand Structures

Proof Systems

- Infinitary
- Finitary

- Completeness
- Effectiveness

Semi-Herbrand Structures with $=$

Herbrand Structures with $=$
Suppose “=” is a predicate symbol of \mathcal{L}.

Normal Structures

A structure $M = \langle D, I \rangle$ is normal if $I(=)$ is $\{\langle a, a \rangle \mid a \in D\}$ ("===")

Consequence Relations

- $\mathcal{T} \vdash_{cla} A$: every structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{sHer} A$: every semi-Herbrand structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{Her} A$: every Herbrand structure that satisfies \mathcal{T} satisfies A
Equality

Suppose “=” is a predicate symbol of \mathcal{L}.

Normal Structures

A structure $M = \langle D, I \rangle$ is **normal** if $I(=)$ is $\{\langle a, a \rangle \mid a \in D\}$ ("===")

Consequence Relations

- $\mathcal{T} \vdash \equiv_{\text{cla}} A$: every **normal** structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash \equiv_{\text{sHer}} A$: every **normal** semi-Herbrand structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash \equiv_{\text{Her}} A$: every **normal** Herbrand structure that satisfies \mathcal{T} satisfies A
Suppose “=” is a predicate symbol of \mathcal{L}.

Normal Structures

A structure $M = \langle D, I \rangle$ is **normal** if $I(\bar{=})$ is $\{\langle a, a \rangle \mid a \in D\}$ ("$==$")

Consequence Relations

- $\mathcal{T} \vdash_{cla} A$: every normal structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{sHer} A$: every normal semi-Herbrand structure that satisfies \mathcal{T} satisfies A
- $\mathcal{T} \vdash_{Her} A$: every normal Herbrand structure that satisfies \mathcal{T} satisfies A

Without Equality

$\vdash_{cla} \not\vdash_{sHer} \vdash_{Her}$

With Equality

$\vdash_{cla} \not\vdash_{sHer} \vdash_{Her}$

Example

$\vdash_{Her} c \neq d$, while $\not\vdash_{sHer} c \neq d$.

Yoni Zohar

Gentzen Calculi for Herbrand Logics
Herbrand Logics

Semantics

Semi-Herbrand Structures

\[\uparrow \]

Herbrand Structures

\[\downarrow \]

Semi-Herbrand Structures with \(= \)

\[\downarrow \]

Herbrand Structures with \(= \)

Proof Systems

Infinitary

Completeness

Finitary Systems

Effectiveness

Finitary Systems
Axiomatization of Equality

Equality Formulas

- \textit{Equiv} consists of the following formulas:
 - \(x = x \)
 - \(x = y \supset y = x \)
 - \((x = y \land y = z) \supset x = z \)

- \(\text{Con}(\mathcal{L}) \) consists of the following formulas:
 - \((x_1 = y_1 \land \ldots \land x_n = y_n) \supset (f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)) \)
 - \((x_1 = y_1 \land \ldots \land x_n = y_n) \supset (P(x_1, \ldots, x_n) \supset P(y_1, \ldots, y_n)) \)

Fact

\(\vdash_{=\text{cla}} \approx \vdash_{\text{cla}} \)

Question

Does the same hold for \textit{semi-Herbrand logic}? \textit{Herbrand logic}?

Yes. No.
Axiomatization of Equality

Equality Formulas
- **Equiv** consists of the following formulas:
 - \(x = x \)
 - \(x = y \supset y = x \)
 - \((x = y \land y = z) \supset x = z \)
- **Con(Ł)** consists of the following formulas:
 - \((x_1 = y_1 \land \ldots \land x_n = y_n) \supset (f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)) \)
 - \((x_1 = y_1 \land \ldots \land x_n = y_n) \supset (P(x_1, \ldots, x_n) \supset P(y_1, \ldots, y_n)) \)

Fact
\[
\mathcal{T} \vdash_{cla} A \quad \text{iff} \quad \mathcal{T}, \text{Equiv}, \text{Con(Ł)} \vdash_{cla} A
\]

Question
Does the same hold for semi-Herbrand logic? Herbrand logic?

Yes. No.
Equality in Herbrand Logics

semi-Herbrand Logic

\[\mathcal{T} \vdash_{sHer} A \iff \mathcal{T}, \text{Equiv}, \text{Con}(\mathcal{L}) \vdash_{sHer} A \]

Herbrand Logic

\[\mathcal{T} \vdash_{cla} A \iff \mathcal{T}, \text{Equiv}, \text{Con}(\mathcal{L}) \vdash_{cla} A \]

For Herbrand structures, **inequalities** are also needed (surprise surprise?)
Equality in Herbrand Logics

semi-Herbrand Logic

\[\mathcal{T} \vdash_{s\text{Her}} A \iff \mathcal{T}, \text{Equiv}, \text{Con}(\mathcal{L}) \vdash_{s\text{Her}} A \]

Herbrand Logic

\[\mathcal{T} \vdash_{\text{cla}} A \iff \mathcal{T}, \text{Equiv}, \text{Con}(\mathcal{L}) \vdash_{\text{cla}} A \]

Inequality Formulas

\(\text{inEq}(\mathcal{L}) \) consists of the following formulas:

- \(f(x_1, \ldots, y_n) \neq g(y_1, \ldots, y_n) \) for every distinct \(f \) and \(g \)
- \(x_i \neq y_i \supset f(\ldots, x_i, \ldots) \neq f(\ldots, y_i, \ldots) \)

Herbrand Logic

\[\mathcal{T} \vdash_{\text{Her}} A \iff \mathcal{T}, \text{Equiv}, \text{Con}(\mathcal{L}), \text{inEq}(\mathcal{L}) \vdash_{\text{Her}} A \]

Yoni Zohar

Gentzen Calculi for Herbrand Logics
Equality in Herbrand Logics

semi-Herbrand Logic

\[\mathcal{T} \vdash_{sHer} \ A \quad \text{iff} \quad \mathcal{T}, \ \text{Equiv}, \ \text{Con}(\mathcal{L}) \vdash_{sHer} \ A \]

Herbrand Logic

\[\mathcal{T} \vdash_{cla} \ A \quad \text{iff} \quad \mathcal{T}, \ \text{Equiv}, \ \text{Con}(\mathcal{L}) \vdash_{cla} \ A \]

Inequality Formulas

\(\text{inEq}(\mathcal{L}) \) consists of the following formulas:

- \(f(x_1, \ldots, y_n) \neq g(y_1, \ldots, y_n) \) for every distinct \(f \) and \(g \)
- \(x_i \neq y_i \supset f(\ldots, x_i, \ldots) \neq f(\ldots, y_i, \ldots) \)

Herbrand Logic

\[\mathcal{T} \vdash_{Her} \ A \quad \text{iff} \quad \mathcal{T}, \ x = x, \ \text{inEq}(\mathcal{L}) \vdash_{Her} \ A \]
Example: Natural Numbers

Inequality Formulas

\(inEq(\mathcal{L}) \) consists of the following formulas:

- \(f(x_1, \ldots, y_n) \neq g(y_1, \ldots, y_n) \) for every distinct \(f \) and \(g \)
- \(x_i \neq y_i \supset f(\ldots, x_i, \ldots) \neq f(\ldots, y_i, \ldots) \)

Herbrand Logic

\(\mathcal{T} \models_{Her} A \) iff \(\mathcal{T}, x = x, inEq(\mathcal{L}) \models_{Her} A \)

Example (Relational PA without Induction)

- \(\forall x. equal(x, x) \)
- \(\forall x. (\neg equal(0, s(x)) \land \neg equal(s(x), 0)) \)
- \(\forall x. \forall y. (\neg equal(x, y) \Rightarrow \neg equal(s(x), s(y))) \)
Example: Natural Numbers

Inequality Formulas

\(inEq(\mathcal{L}) \) consists of the following formulas:
- \(f(x_1, \ldots, y_n) \neq g(y_1, \ldots, y_n) \) for every distinct \(f \) and \(g \)
- \(x_i \neq y_i \supset f(\ldots, x_i, \ldots) \neq f(\ldots, y_i, \ldots) \)

Herbrand Logic

\(T \models_{\text{Her}} A \iff T, x = x, inEq(\mathcal{L}) \models_{\text{Her}} A \)

Example (Relational PA without Induction)

\[
\forall x.\text{equal}(x,x) \\
\forall x. (\neg \text{equal}(0,s(x)) \land \neg \text{equal}(s(x),0)) \\
\forall x. \forall y. (\neg \text{equal}(x,y) \Rightarrow \neg \text{equal}(s(x),s(y)))
\]

The induction scheme is **valid** in Herbrand structures!
Herbrand Logics

Semantics

- Semi-Herbrand Structures
- Herbrand Structures
- Semi-Herbrand Structures with =
- Herbrand Structures with =

Proof Systems

- Infinitary
- Completeness
- Effectiveness
- Finitary Systems
- Finitary Systems
Herbrand Logics

Semantics

Thinking inside the box

No nameless elements

Proof Theory

Reasoning inside the box

No free variables

Yoni Zohar

Gentzen Calculi for Herbrand Logics
What Are Sequents?

- Sequents have the form $\Gamma \Rightarrow \Delta$, where Γ and Δ are finite sets of formulas.
- Intuition:

$$\begin{align*}
A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m & \iff A_1 \land \cdots \land A_n \rightarrow B_1 \lor \cdots \lor B_m
\end{align*}$$

- Special instance 1: Δ has one element: $\Gamma \Rightarrow A$
- Special instance 2: Γ is empty: $\Rightarrow A$

Example

- $A, B \Rightarrow A \land B$
- $A \Rightarrow A \lor B$
- $\Rightarrow A \lor \neg A$
- $A, \neg A \Rightarrow$
- $\Rightarrow A, \neg A$
- $A \Rightarrow A, B, C$
Sequent Calculus for Classical Logic \textbf{LK}

\(\Gamma\) and \(\Delta\) are finite sets of formulas

Proof trees are finite

\[(id)\]
\[\frac{\Gamma, A \Rightarrow A, \Delta}{\Gamma, A \Rightarrow A, \Delta}\]

\[(\text{cut})\]
\[\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}\]

\[(W \Rightarrow)\]
\[\frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta}\]

\[(\Rightarrow W)\]
\[\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta}\]

\[\neg \Rightarrow \]
\[\frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta}\]

\[\neg \Rightarrow \]
\[\frac{\Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \neg A, \Delta}\]

\[\wedge \Rightarrow \]
\[\frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \wedge B \Rightarrow \Delta}\]

\[\Rightarrow \wedge \]
\[\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \wedge B, \Delta}\]

\[\vee \Rightarrow \]
\[\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \vee B \Rightarrow \Delta}\]

\[\Rightarrow \vee \]
\[\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \vee B, \Delta}\]

\[\supset \Rightarrow \]
\[\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \supset B \Rightarrow \Delta}\]

\[\Rightarrow \supset \]
\[\frac{\Gamma \Rightarrow A, \Delta \quad \Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \supset B, \Delta}\]

Yoni Zohar

Gentzen Calculi for Herbrand Logics
Sequent Calculus for Classical Logic \(\text{LK} \)

\(\Gamma \) and \(\Delta \) are finite sets of formulas

Proof trees are finite

\[
\begin{align*}
(\forall \Rightarrow) & \quad \frac{\Gamma, A \{ \frac{t}{x} \} \Rightarrow \Delta}{\Gamma, \forall x A \Rightarrow \Delta} \\
(\Rightarrow \forall) & \quad \frac{\Gamma \Rightarrow A \{ \frac{y}{x} \}, \Delta}{\Gamma \Rightarrow \forall x A, \Delta \quad \text{y is fresh}} \\
(\exists \Rightarrow) & \quad \frac{\Gamma, A \{ \frac{y}{x} \} \Rightarrow \Delta \quad \text{y is fresh}}{\Gamma \Rightarrow \exists x A, \Delta} \\
(\Rightarrow \exists) & \quad \frac{\Gamma \Rightarrow A \{ \frac{t}{x} \}, \Delta}{\Gamma \Rightarrow \exists x A, \Delta}
\end{align*}
\]
Sequent Calculus for Herbrand Logic G_{Her}

Γ and Δ are finite sets of closed formulas

Proof trees are of finite height

\[
\Gamma, A \{ \frac{t}{x} \} \Rightarrow \Delta \\
\Gamma, \forall x A \Rightarrow \Delta
\]
t is closed

\[
\Gamma \Rightarrow A \{ \frac{y}{x} \}, \Delta \\
\Gamma \Rightarrow \forall x A, \Delta
\]
y is fresh

\[
\Gamma, A \{ \frac{y}{x} \} \Rightarrow \Delta \\
\Gamma, \forall x A \Rightarrow \Delta
\]
y is fresh

\[
\Gamma \Rightarrow A \{ \frac{t}{x} \}, \Delta \\
\Gamma \Rightarrow \exists x A, \Delta
\]
t is closed

\[
\Gamma \Rightarrow A \{ \frac{t}{x} \}, \Delta \\
\Gamma \Rightarrow \forall x A, \Delta
\]
\[
\Gamma \Rightarrow \exists x A \Rightarrow \Delta
\]
\[
\Gamma, \forall x A \Rightarrow \Delta
\]
\[
\Gamma, \exists x A \Rightarrow \Delta
\]

Yoni Zohar

Gentzen Calculi for Herbrand Logics
Intuition Behind G_{Her}

\[
\frac{\{\Gamma \Rightarrow A \{\frac{t}{x}\}, \Delta \mid t \in cterms(\mathcal{L})\}}{\Gamma \Rightarrow \forall x A, \Delta}
\]

We have seen that:

- \{A \{\frac{t}{x}\} \mid t \in cterms(\mathcal{L})\} \vdash_{\text{cla}} \forall x A
- \{A \{\frac{t}{x}\} \mid t \in cterms(\mathcal{L})\} \vdash_{\text{Her}} \forall x A

This is known as the \textit{\(\omega\)-rule}.

It suffices to add this rule to characterize Herbrand semantics.
We have seen that:

\[\{ \Rightarrow A \{ \frac{t}{x} \} \mid t \in cterms(\mathcal{L}) \} \Rightarrow \forall x A \]

This is known as the \(\omega \)-rule.

It suffices to add this rule to characterize Herbrand semantics.
Intuition Behind G_{Her}

$$\{ \Rightarrow A \{ \frac{t}{x} \} \mid t \in cterms(\mathcal{L}) \} \Rightarrow \forall x A$$

ω-rule

- We have seen that:
 - $\{ A \{ \frac{t}{x} \} \mid t \in cterms(\mathcal{L}) \} \vdash_{\text{cl}a} \forall x A$
 - $\{ A \{ \frac{t}{x} \} \mid t \in cterms(\mathcal{L}) \} \vdash_{\text{Her}} \forall x A$

- This is known as the ω-rule
- It suffices to add this rule to characterize Herbrand semantics

Theorem (soundness and completeness)

$\mathcal{T} \vdash_{\text{Her}} A$ iff the sequent $\mathcal{T} \Rightarrow A$ is derivable in G_{Her}.

Bonus

The system is also complete for $\vdash_{s\text{Her}}$.

Yoni Zohar
Gentzen Calculi for Herbrand Logics
Herbrand Logics

Semantics

- Semi-Herbrand Structures
- Herbrand Structures
- Semi-Herbrand Structures with $=\quad$
- Herbrand Structures with $=$

Proof Systems

- Infinitary G_{Her}
- Finitary
Rules for Equality: Systems G_{sHer_\equiv} and G_{Her_\equiv}

- $G_{sHer_\equiv} = G_{Her} + (\Rightarrow=) + (paramodulation)$
- $G_{Her_\equiv} = G_{Her} + (\Rightarrow=) + (\Rightarrow\Rightarrow)$

(paramodulation) \[\frac{\Gamma \Rightarrow A, \Delta}{\Gamma, s = t \Rightarrow, A', \Delta} \quad s, t \in cterms(\mathcal{L}) \]

(A’ is obtained from A by replacing s by t)

(\Rightarrow=) \[\frac{\Gamma \Rightarrow t = t, \Delta}{\Gamma \Rightarrow} \quad t \in cterms(\mathcal{L}) \]

(\Rightarrow\Rightarrow) \[\frac{\Gamma, s = t \Rightarrow \Delta}{\Gamma, s \neq t \not\in cterms(\mathcal{L})} \]

Theorem (soundness and completeness)

- $\mathcal{T} \vdash_{sHer} A$ iff the sequent $\mathcal{T} \Rightarrow A$ is derivable in G_{sHer_\equiv}.
- $\mathcal{T} \vdash_{Her} A$ iff the sequent $\mathcal{T} \Rightarrow A$ is derivable in G_{Her_\equiv}.
Herbrand Logics

Semantics

Semi-Herbrand Structures

Herbrand Structures

Semi-Herbrand Structures with $=$

Herbrand Structures with $=$

Proof Systems

Infinitary

G_{Her}

Finitary

$G_{\text{sHer}=}$

$G_{\text{Her}=}$
Herbrand Logics

Semantics

- Thinking inside the box
- No nameless elements

Proof Theory

- Reasoning inside the box
- No free variables

Yoni Zohar

Gentzen Calculi for Herbrand Logics
Herbrand Logics

Semantics

Thinking inside the box

No nameless elements

Proof Theory

Peeking outside the box

free variables
Γ and Δ are finite sets of closed formulas.

Proof trees are of finite height.

Sequent Calculus for Herbrand Logic G_{Her}

$\forall \Rightarrow$

- \[
\Gamma, A \{ \frac{t}{x} \}, \Delta \Rightarrow \Delta \quad \text{t is closed}
\]
- \[
\Gamma, \forall x A \Rightarrow \Delta
\]

$\forall \Rightarrow_H$

- \[
\Gamma \Rightarrow A \{ \frac{y}{x} \}, \Delta \quad y \text{ is fresh}
\]
- \[
\Gamma \Rightarrow \forall x A, \Delta
\]

$\exists \Rightarrow$

- \[
\Gamma, A \{ \frac{y}{x} \} \Rightarrow \Delta \quad y \text{ is fresh}
\]
- \[
\Gamma, \exists x A \Rightarrow \Delta
\]

$\exists \Rightarrow_H$

- \[
\Gamma \Rightarrow A \{ \frac{t}{x} \}, \Delta \quad t \in \text{cterms}(\mathcal{L})
\]
- \[
\Gamma \Rightarrow \forall x A, \Delta
\]

$\Rightarrow \forall$

- \[
\Gamma \Rightarrow A \{ \frac{t}{x} \}, \Delta \quad t \text{ is closed}
\]
- \[
\Gamma \Rightarrow \exists x A, \Delta
\]
Sequent Calculus for Herbrand Logic $G^{\text{IND}}_{\text{Her}}$

\[\Gamma \text{ and } \Delta \text{ are finite sets of formulas} \]

\[\text{Proof trees are finite} \]

\[\begin{align*}
(\forall \Rightarrow) & \quad \Gamma, A \{ \frac{t}{x} \} \Rightarrow \Delta \\
& \quad \Gamma, \forall x A \Rightarrow \Delta \\
\quad & \quad \Gamma \Rightarrow A \{ \frac{y}{x} \}, \Delta \quad \text{y is fresh} \\
& \quad \Gamma \Rightarrow \forall x A, \Delta \\
(\exists \Rightarrow) & \quad \Gamma, A \{ \frac{y}{x} \} \Rightarrow \Delta \\
& \quad \Gamma, \exists x A \Rightarrow \Delta \\
\quad & \quad \Gamma \Rightarrow A \{ \frac{t}{x} \}, \Delta \\
& \quad \Gamma \Rightarrow \exists x A, \Delta \quad (\Rightarrow \forall)_{\text{IND}} \text{ induction rule} \\
\quad & \quad (\Rightarrow \exists)_{\text{IND}} \text{ induction rule} \\
\end{align*} \]
Effective Systems: \(\forall \)

\[
(\Rightarrow \forall)_H \quad \frac{\{ \Rightarrow A \{ \frac{t}{x} \} \mid t \in cterms(\mathcal{L}) \}}{\Rightarrow \forall xA}
\]

\[\Rightarrow \]

\[
(\Rightarrow \forall)_{IND} \quad \frac{\{ A \{ \frac{x}{x} \} \Rightarrow A \{ \frac{f(x)}{x} \} \mid f \in func(\mathcal{L}) \}}{\Rightarrow \forall xA}
\]

Example

\(func(\mathcal{L}) = \{0, s\} \)

\[
\Rightarrow A \{ \frac{0}{x} \} \quad A \{ \frac{x}{x} \} \Rightarrow A \{ \frac{s(x)}{x} \}
\]

\[\Rightarrow \forall xA\]
Effective Systems: \(\forall \)

\[
(\Rightarrow \forall)_H \quad \frac{\Rightarrow \forall A \{ \frac{t}{x} \} \mid t \in cterms(\mathcal{L})}{\Rightarrow \forall xA}
\]

\[
(\Rightarrow \forall)_{IND} \quad \frac{\{ A \{ \frac{x_1}{x} \}, \ldots, A \{ \frac{x_n}{x} \} \Rightarrow A \{ \frac{f(x_1, \ldots, x_n)}{x} \} \mid f \in \text{func}(\mathcal{L}) \}}{\Rightarrow \forall xA}
\]

Example

\(func(\mathcal{L}) = \{0, s\} \)

\[
\Rightarrow A \{ \frac{0}{x} \} \quad A \{ \frac{x}{x} \} \Rightarrow A \{ \frac{s(x)}{x} \}
\]

\[
\Rightarrow \forall xA
\]
\[(\Rightarrow=) \quad \frac{\Gamma \Rightarrow t = t, \Delta}{t \in \text{cterms}(\mathcal{L})} \quad \xrightarrow{\sim} \quad (\Rightarrow=)_{\text{IND}} \quad \frac{\Gamma \Rightarrow x = x, \Delta}{\Gamma \Rightarrow x = x, \Delta} \]

\[(\text{paramodulation}) \quad \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, s = t \Rightarrow, A', \Delta} \quad s, t \in \text{cterms}(\mathcal{L})\]
Effective Systems: equality (2)

\[(\Rightarrow) \quad \Gamma, s = t \Rightarrow \Delta \quad s \neq t \in cterms(\mathcal{L}) \]

\[\sim \sim \Rightarrow\]

\[(\Rightarrow)_1 \quad \Gamma, f(x_1, \ldots, x_n) = g(y_1, \ldots, y_m) \Rightarrow \Delta \quad f \neq g \in func(\mathcal{L})\]

\[(\Rightarrow)_2 \quad \Gamma, x_i = y_i \Rightarrow \Delta \quad \Gamma, f(\ldots, x_i, \ldots) = f(\ldots, y_i, \ldots) \Rightarrow \Delta\]
(⇒⇒) \[\frac{s = t}{s \neq t \in cterms(\mathcal{L})} \]

(⇒⇒) \[\frac{f(x_1, \ldots, x_n) = g(y_1, \ldots, y_m)}{f \neq g \in func(\mathcal{L})} \]

(⇒⇒) \[\frac{x_i = y_i}{f(\ldots, x_i, \ldots) = f(\ldots, y_i, \ldots)} \]
Effective Systems: equality (2)

\[(\Rightarrow) \quad \frac{s = t}{s \neq t \in cterms(\mathcal{L})}\]

\[\sim\sim\]

\[(\Rightarrow)_1 \quad \frac{f(x_1, \ldots, x_n) = g(y_1, \ldots, y_m)}{f \neq g \in func(\mathcal{L})}\]

\[(\Rightarrow)_2 \quad \frac{x_i = y_i}{f(\ldots, x_i, \ldots) = f(\ldots, y_i, \ldots)}\]

Example

\[func(\mathcal{L}) = \{0, s\}\]

\[(\Rightarrow)_1 \quad \frac{0 = s(x)}{}\]
Effective Systems: equality (2)

\[
(=\Rightarrow) \quad \frac{s = t}{s \neq t \in cterms(\mathcal{L})}
\]

\[
\sim\sim\sim
\]

\[
(=\Rightarrow)_1 \quad \frac{f(x_1, \ldots, x_n) = g(y_1, \ldots, y_m)}{f \neq g \in func(\mathcal{L})}
\]

\[
(=\Rightarrow)_2 \quad \frac{x_i = y_i}{f(\ldots, x_i, \ldots) = f(\ldots, y_i, \ldots)}
\]

Example

\[func(\mathcal{L}) = \{0, s\}\]

\[
(=\Rightarrow)_2 \quad \frac{x = y}{s(x) = s(y)}
\]
Soundness Theorem

- \(G_{\text{Her}} \)
- \(G_{\text{shHer}} = G_{\text{Her}} + (\Rightarrow=)_{\text{IND}} + (\text{paramodulation}) \)
- \(G_{\text{Her}} = G_{\text{shHer}} + (\Rightarrow_1 + (\Rightarrow_2) \)

Theorem (soundness)

- \(\mathcal{T} \vdash_{\text{Her}} A \) whenever the sequent \(\mathcal{T} \Rightarrow A \) is derivable in \(G_{\text{Her}} \).
- \(\mathcal{T} \vdash_{\text{shHer}} A \) whenever the sequent \(\mathcal{T} \Rightarrow A \) is derivable in \(G_{\text{shHer}} \).
- \(\mathcal{T} \vdash_{\text{Her}} A \) whenever the sequent \(\mathcal{T} \Rightarrow A \) is derivable in \(G_{\text{Her}} \).

Properties

- \(G_{\text{Her}}, G_{\text{shHer}} \) and \(G_{\text{Her}} \) are finite whenever \(\text{func}(\mathcal{L}) \) is
- Strictly stronger than \(\text{LK} \)
- Full \((\Rightarrow) \) is derivable in \(G_{\text{Her}} \) using \((\Rightarrow_1) \) and \((\Rightarrow_2) \)
Herbrand Logics

Semantics

- Semi-Herbrand Structures
- Herbrand Structures
- Semi-Herbrand Structures with $=$
- Herbrand Structures with $=$

Proof Systems

- Infinitary
 - G_{Her}
 - $G_{\text{IND}_{\text{Her}}}$
- Finitary
 - $G_{\text{Her}_=}$
 - $G_{\text{IND}_{\text{Her}_=}}$
 - $G_{\text{sHer}_=}$
 - $G_{\text{IND}_{\text{sHer}_=}}$
Intuitionistic Herbrand Logic

- Herbrand logic carries **definitional** content
- Intuitionistic logic carries **computational** content
- Can the two be combined?

- An idea: Kripke models with Herbrand structures in each world
- Problem:
 - Domains are allowed to expand in intuitionistic logic
 - Domains are fixed in Herbrand logic
- Possible Resolutions:
 - Settle with CD (compromising intuitionism)
 - Semi-Herbrand structures (compromising Herbrandness)
 - A middle ground: Each world has a different language
Transitive Closure (TC)

- TC of a binary relation R is the minimal transitive relation that contains R
- TC Logic = FOL + TC Operator
- TC Logic is stronger than FOL and weaker than SOL

Example

<table>
<thead>
<tr>
<th>Relation</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successor</td>
<td>$<$</td>
</tr>
<tr>
<td>Edge</td>
<td>Path</td>
</tr>
<tr>
<td>Parent</td>
<td>Predecessor</td>
</tr>
<tr>
<td>Tomorrow</td>
<td>Future</td>
</tr>
</tbody>
</table>

Perhaps $TC \approx Herbrand$?
Herbrand Logic and The Transitive Closure

Herbrand Logic can express TC

Definition of helper relation qq:

$$\forall x.\forall z.(qq(x,z,0) \iff p(x,z))$$
$$\forall x.\forall z.(qq(x,z,s(n)) \iff qq(x,z,n) \lor \exists y.(qq(x,y,n) \land qq(y,z,n)))$$

Definition of q in terms of qq:

$$\forall x.\forall z.(q(x,z) \iff \exists n.qq(x,z,n))$$

But what about TC Operator?

TC can express “Herbrandness”

$$\forall w. \bigvee_{c \in \text{const}(\mathcal{L})} \left(\left(\bigvee_{f \in \text{func}(\mathcal{L})} y = f(x) \right)^* (c, w) \right)$$

But what about general functions?

Yoni Zohar Gentzen Calculi for Herbrand Logics
Conclusions

We have seen:

- A modular definition of Herbrand semantics
- Infinitary proof systems
- Finitary approximations

Future work:

- Applications
- Proof theoretical properties
- Semantics for the effective systems
- Transitive Closure
Conclusions

We have seen:

- A **modular** definition of Herbrand semantics
- Infinitary proof systems
- Finitary approximations

Future work:

- Applications
- Proof theoretical properties
- Semantics for the effective systems
- Transitive Closure

Thank you!
Proof Systems

- Infinitary proof systems
 - Consistency Proofs [Schutte’51, Pohlers’09]
 - Basis for practical subsystems [Feferman’62, Baker’93]
- Finitary approximations
 - Sound proof search
 - Algorithm for above applications