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Shared variable concurrent programs

• Dijkstra

– Programs should be insensitive to relative execution speeds

• Brinch Hansen / Hoare

– Shared variables should be encapsulated and their access controlled

– Monitors

• Compiler could check if encapsulation violated for variables

• Solo operating system written almost entirely with safe primitives

• But  what about the heap?  Needed for multi-user OSes

• Owicki & Gries / Jones

– Limit interference through shared state with predicates / relations

• O’Hearn

– Concurrent separation logic: encapsulation checking for the heap

• “Size” of shared state can change

• “Topology” of access control still fixed
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Locks in the heap — Why?
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typedef struct NODE {

int Val;

struct NODE* Next;

} NODE;

LOCK lock;

NODE* head;

locate_coarse(int e) {

NODE *prev, *curr;

acquire(lock);

prev = head;

curr = prev->Next;

while (curr->Val < e) {

prev = curr;

curr = prev->Next;

}

return (prev, curr);

}

typedef struct NODE {

LOCK Lock;

int Val;

struct NODE* Next;

} NODE;

NODE* head;

locate_hand_over_hand(int e) {

NODE *prev, *curr;

prev = head;

acquire(prev);

curr = prev->Next;

acquire(curr);

while (curr->Val < e) {

release(prev);

prev = curr;

curr = prev->Next;

acquire(curr);

}

return (prev, curr);

}

non-empty, last 
value is +1

non-empty, last 
value is +1



Optimistic / Idealistic

• syntactically determined critical 
regions

(More) Realistic

• semantically determined critical 
regions
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Resources & CCRs vs locks

resource r

with r do
...

od

if (flag > 0) {

acquire(l);

}
...

if (flag > 0) {

release(l);

}



Optimistic / Idealistic

• bounded numbers of resources

(More) Realistic

• unbounded numbers of locks
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Locks on the stack vs locks in the heap

resource r

with r do
...

od

l = new LOCK;
...

init(l);
...

acquire(l);
...

release(l);
...

finalize(l);
...

delete l;



Optimistic / Idealistic

• bounded numbers of processes

(More) Realistic

• unbounded numbers of 
threads

Josh Berdine — Local Reasoning about Storable Locks 6

Parallel composition vs
dynamic thread creation

(while b do (P1 k P2)) k P3 for (i = 0; i < n; i++) {

t[i] = fork(proc, i);

}
...

for (i = 0; i < n; i++) {

join(t[i]);

}



Objective

• Program logics for analysis and verification of multithreaded heap-

manipulating programs

• Goal: ease static access control

– Allow unboundedly-many locks and threads

– That live in the heap (to exploit indirection)

• but also aim to:

– Retain local reasoning

– Enable automation in program analysis

– Treat more realistic programming language constructs
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This talk

• Logic for storable locks and threads

– Local reasoning preserved

– Storable locks as resources

• Not only technical difficulties:

– Storable locks “make theoreticians wince” (Richard Bornat)

– Russell’s paradox is lurking nearby:

heaps → locks → resource invariants → heaps

– Analogous to stored procedures: Landin’s “knots in the store”
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Outline

• First one top-level parallel composition: C1 k  k Cn

• Then dynamic thread creation

• Simplification: no shared mutable variables

– shared mutable heap

– global pre-initialized constants

– local variables of threads

• General cases and details:

Technical report MSR-TR-2007-39
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Concurrent separation logic [O’Hearn04]

• A Floyd/Hoare-style program logic

• Assertion language: ∗ splits the state into disjoint parts

• Proof system:

• Allows for local reasoning

• Processes access shared resources

• Synchronization via conditional critical regions:
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fPg C fQg
fP¤Rg C fQ¤Rg

fP1g C1 fQ1g fP2g C2 fQ2g
fP1¤P2g C1kC2 fQ1¤Q2g

with r when b do C to be replaced



Concurrent separation logic

• Program state partitioned into (disjoint) substates owned by the 

different processes and locks

• Processes may access only parts of the state that they own

• Process interaction mediated using resource invariants

• Key in achieving local reasoning:

– reasoning about each process in isolation

– using the sequential semantics
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Reasoning informally
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locate_coarse(int e) {

NODE *prev, *curr;

acquire(lock);

“have (exclusive access to) head list”
prev = head;

“head has a Next”
curr = prev->Next;

“curr has a Val”
while (curr->Val < e) {

prev = curr;

“curr has a Next”
curr = prev->Next;

}

return (prev, curr);

}

locate_hand_over_hand(int e) {

NODE *prev, *curr;

prev = head;

acquire(prev);

“have (exclusive access to) prev node”
curr = prev->Next;

“curr has a Lock”
acquire(curr);

“have curr node”
while (curr->Val < e) {

“prev is locked by this thread”
release(prev);

“don’t have prev node any more”
prev = curr;

curr = prev->Next;

“curr has a Lock”
acquire(curr);

“have curr node”
}

return (prev, curr);

}

Need to know this even without 
owning curr node:

So ownership of a node comes 
with knowledge that the Next 

node has a Lock



Approach

• Lock ! resource invariant

– lock ! sort  A(¢, ¢)

– sort  A(·, ·) ! resource invariant IA(¢, ¢)

– first parameter – address of the lock

• Example:

• Knots in the store cut by indirection through A(¢, ¢)
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struct R {

LOCK Lock;

int Data;

};

IR(l; v)
¢
= l:Data7!v



Assertion language

• Handles: 

– ensures that the lock at the address E exists and has the sort A and 

parameters 

– gives permission to acquire the lock

– can be split among threads:

•

• < 1 – can acquire the lock

• = 1 – can finalize the lock

• Locked-facts: 

– lock E is held by the thread owning

– ensures the existence of the lock
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A(E; ~F)

~F

1A(E; ~F) = 1
2
A(E; ~F) ¤ 1

2
A(E; ~F)

LockedA(E; ~F)

LockedA(E; ~F)



Axioms

fE 7! g init
A;~F

(E) fA(E; ~F) ¤ LockedA(E; ~F)g
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fA(E; ~F) ¤ LockedA(E; ~F)g finalize(E) fE 7! g

f¼A(E; ~F)g acquire(E) f¼A(E; ~F) ¤ LockedA(E; ~F) ¤ IA(E; ~F)g

fLockedA(E; ~F) ¤ IA(E; ~F)g release(E) femphg



A simple example

struct R {

LOCK Lock;

int Data;

} *x;

// IR(l)
¢
= l:Data 7!

initialize() {

femphg

x = new R;

fx 7! ¤ x:Data 7! g

initR(x);

fx:Data 7! ¤R(x)

¤ LockedR(x)g

x->Data = 0;

fx:Data 7!0 ¤R(x)

¤ LockedR(x)g

release(x);

fR(x)g

}
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thread() {

f1
2
R(x)g

acquire(x);

fx:Data 7! ¤ 1
2
R(x)

¤ LockedR(x)g

x->Data++;

fx:Data 7! ¤ 1
2
R(x)

¤ LockedR(x)g

release(x);

f1
2
R(x)g

}

cleanup() {

fR(x)g

acquire(x);

fx:Data 7! ¤R(x)

¤ LockedR(x)g

finalize(x);

fx 7! ¤ x:Data 7! g

delete x;

femphg

}



Assertion language model

• Semantic domains:

– each program proof associates each sort with an invariant:

• Satisfaction relation : (s, h) ²k ©

¤ adds up permissions for locks and their values:
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U ¤ k = k; U ¤U = U; k ¤ j unde¯ned

(s; h) j=k E 7!F , h = [[[E]]s : Cell([[F ]]s)]

(s; h) j=k ¼A(E) , h = [[[E]]s : Lock(A;U; [[¼]]s)] ^ [[¼]]s>0

(s; h) j=k LockedA(E) , h = [[[E]]s : Lock(A;k; 0)]

Stacks = Vars *¯n Values

Heaps = Locations *¯n

(Cell(Values) [ Lock(Sorts£ LockValues£ LockPerms))

fU;0;1; : : : ; ng [0; 1]

IA(~E) : Sorts !Values+ !P(Stacks£Heaps)



Semantics of programs
• pc 2 {1,…,n} ! ProgPoint

• F µ ProgPoint £ Command £ ProgPoint

• !S is the least relation satisfying:
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Flies in the ointment

• Consider invariants:

• with code:

• Postcondition has forgotten that locks x and y exist!

• Logic may not detect a memory leak

• Formulating soundness becomes non-trivial
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IA(x; y)
¢
= B(y; x) IB(x; y)

¢
= A(y; x)

fx7! ¤ y 7! g

initA;y(x);

initB;x(y);

fA(x; y) ¤ LockedA(x; y) ¤B(y; x) ¤ LockedB(y; x)g

release(x);

fA(x; y) ¤ LockedB(y; x)g

release(y);

femphg



Soundness (cheating version)

• Usual interleaving-based operational semantics

• Program C1 k k Cn

•

• Resource invariants are precise

– Unambiguously pick out an area of the heap

• Theorem:

• Cheat: statement about ¾0/¾f uses information about free locks in ¾0/¾f
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` fPkg Ck fQkg

If ¾0 2

µ
n
~
k=1

[[Pk]]
k

¶
¤ (~finvariants for free locks in ¾0g),

then the program is \safe"

and ¾f 2

µ
n
~
k=1

[[Qk]]
k

¶
¤ (~finvariants for free locks in ¾fg)

[[©]]
k

= f(s; h) : (s; h) j=k ©g



Closure

• How can we find all free locks allocated in a state from a set p?

– Take ¾ 2 p

– Conjoin to ¾ resource invariants for all locks with value U in ¾

– and set the value of these locks to 0

– Do the same for every state obtained in this way…

• Definition:

The resulting states without locks with value U form the closure of p: h p i

• Example: hR(x)i where IR(l) = (l:Data-)

• Example: hB(y,x)i where IB(x,y) = A(y,x) and IA(x,y) = B(y,x)

• Are we guaranteed to add invariants for all free locks in this way?

• No! – Due to self-contained sets of locks
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Admissibility of resource invariants

• Admissibility disallows self-contained sets of locks

• If resource invariants are admissible, closure finds all free locks

• Definition:

Resource invariants for lock sorts     are admissible if there do not exist:

– a non-empty set L of lock sorts from     with parameters

– a state ¾ 2 ~{invariants for all locks in L}

such that the permission associated with the every lock from L in ¾ is 1

• Examples:

– is admissible

– is not
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L

L

fIR(l)
¢
= l:Data7! g

fIA(x; y)
¢
= B(y; x); IB(x; y)

¢
= A(y; x)g



Soundness

• Usual interleaving-based operational semantics

• Program C1 k k Cn

•

• Resource invariants are precise

• Theorem:
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` fPkg Ck fQkg

Suppose that

² either resource invariants are admissible

² or one of Qk is intuitionistic (does not notice heap extension)

If ¾0 2

¿
n
~
k=1

[[Pk]]
k

À
, then the program is \safe"

and ¾f 2

¿
n
~
k=1

[[Qk]]
k

À



Dynamic thread creation

• Programs:

• Two new commands:                        and 

• Assertion language: thread handles 

– thread running f with identifier E exists

– gives permission to join it

– only one thread can join any given thread

• Satisfaction relation: (s, h, t) ²k ©

– t – thread pool
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let f1() =C1; : : : ; fn() =Cn in C

x = fork(f) join(E)

tidf(E)



Axioms for fork and join

• Need to give up the precondition of the thread at fork:

• and receive the postcondition at join:

where

• Other axioms adjusted accordingly
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¡; fPgf()fQg ` fPgx = fork(f)femph ^ tidf(x)g

¡; fPgf()fQg ` femph ^ tidf(E)gjoin(E)fQg

fv(fP;Qg)µGlobalConsts



Soundness

• Proof of the program                                                             :

where 

• Technical issues:

– Soundness conditions:

• Pk are precise

• Pk and Qk have an empty lockset (no lock in a state satisfying them has a value 

other than U)

– Same circularity problem as with locks: tidf ! Qf ! tidf

– Admissibility, closure, and soundness can be generalized
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let f1() =C1; : : : ; fn() =Cn in C

¡ ` fP1g C1 fQ1g
...

¡ ` fPng Cn fQng

¡ ` fPg C fQg

¡ = fP1g f() fQ1g; : : : ;fPng f() fQng



Compared to
concurrent separation logic

• Original concurrent separation logic can reason about storable locks:

– represent them as cells storing the identifier of the thread owning the lock

– build a global invariant of memory as a whole

• Drawbacks:

– lots of auxiliary state ⇒ horrible proofs

– reasoning is not modular

– automation is infeasible
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Compared to RGSep [Vafeiadis+07]

• RGSep – Combination of Jones’ rely-guarantee and separation logic

– Locks not treated natively

– Uses rely-guarantee to simplify reasoning about the global invariant

– (+) Reasoning about complex fined-grained concurrency algorithms

– (–) Awkward reasoning about programs that allocate and deallocate many 

simple data structures

• One fancy pre-allocated data structure vs many dynamically allocated 

simpler ones

• We’d like both at once
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Summary

• Proposed a Floyd/Hoare-style program logic for

– concurrent, heap-manipulating programs that:

– allows local reasoning about unboundedly-many storable locks and threads

• i.e., more realistic concurrent programming primitives

– is strong enough to prove some examples published as challenges

• piece  of multicasting code

• lock-coupling list operations

– is set up to found a program analysis

• thread-local fixed-point semantics is an analysis scheme

– is sound via a reasonably lightweight mechanism for cutting recursive knots 

in the heap

• using only a simple semantics

• Want a semantic analysis of admissibility of resource invariants
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