
Local Reasoning about Storable Locks
and Threads

Josh Berdine
Microsoft Research

Joint work with Alexey Gotsman (Cambridge),

Byron Cook (MSR), Noam Rinetzky and Mooly Sagiv (Tel Aviv)

Shared variable concurrent programs

• Dijkstra

– Programs should be insensitive to relative execution speeds

• Brinch Hansen / Hoare

– Shared variables should be encapsulated and their access controlled

– Monitors

• Compiler could check if encapsulation violated for variables

• Solo operating system written almost entirely with safe primitives

• But what about the heap? Needed for multi-user OSes

• Owicki & Gries / Jones

– Limit interference through shared state with predicates / relations

• O’Hearn

– Concurrent separation logic: encapsulation checking for the heap

• “Size” of shared state can change

• “Topology” of access control still fixed

Josh Berdine — Local Reasoning about Storable Locks 2

Locks in the heap — Why?

Josh Berdine — Local Reasoning about Storable Locks 3

typedef struct NODE {

int Val;

struct NODE* Next;

} NODE;

LOCK lock;

NODE* head;

locate_coarse(int e) {

NODE *prev, *curr;

acquire(lock);

prev = head;

curr = prev->Next;

while (curr->Val < e) {

prev = curr;

curr = prev->Next;

}

return (prev, curr);

}

typedef struct NODE {

LOCK Lock;

int Val;

struct NODE* Next;

} NODE;

NODE* head;

locate_hand_over_hand(int e) {

NODE *prev, *curr;

prev = head;

acquire(prev);

curr = prev->Next;

acquire(curr);

while (curr->Val < e) {

release(prev);

prev = curr;

curr = prev->Next;

acquire(curr);

}

return (prev, curr);

}

non-empty, last
value is +1

non-empty, last
value is +1

Optimistic / Idealistic

• syntactically determined critical
regions

(More) Realistic

• semantically determined critical
regions

Josh Berdine — Local Reasoning about Storable Locks 4

Resources & CCRs vs locks

resource r

with r do
...

od

if (flag > 0) {

acquire(l);

}
...

if (flag > 0) {

release(l);

}

Optimistic / Idealistic

• bounded numbers of resources

(More) Realistic

• unbounded numbers of locks
Josh Berdine — Local Reasoning about Storable Locks 5

Locks on the stack vs locks in the heap

resource r

with r do
...

od

l = new LOCK;
...

init(l);
...

acquire(l);
...

release(l);
...

finalize(l);
...

delete l;

Optimistic / Idealistic

• bounded numbers of processes

(More) Realistic

• unbounded numbers of
threads

Josh Berdine — Local Reasoning about Storable Locks 6

Parallel composition vs
dynamic thread creation

(while b do (P1 k P2)) k P3 for (i = 0; i < n; i++) {

t[i] = fork(proc, i);

}
...

for (i = 0; i < n; i++) {

join(t[i]);

}

Objective

• Program logics for analysis and verification of multithreaded heap-

manipulating programs

• Goal: ease static access control

– Allow unboundedly-many locks and threads

– That live in the heap (to exploit indirection)

• but also aim to:

– Retain local reasoning

– Enable automation in program analysis

– Treat more realistic programming language constructs

Josh Berdine — Local Reasoning about Storable Locks 7

This talk

• Logic for storable locks and threads

– Local reasoning preserved

– Storable locks as resources

• Not only technical difficulties:

– Storable locks “make theoreticians wince” (Richard Bornat)

– Russell’s paradox is lurking nearby:

heaps → locks → resource invariants → heaps

– Analogous to stored procedures: Landin’s “knots in the store”

Josh Berdine — Local Reasoning about Storable Locks 8

Outline

• First one top-level parallel composition: C1 k k Cn

• Then dynamic thread creation

• Simplification: no shared mutable variables

– shared mutable heap

– global pre-initialized constants

– local variables of threads

• General cases and details:

Technical report MSR-TR-2007-39

Josh Berdine — Local Reasoning about Storable Locks 9

Concurrent separation logic [O’Hearn04]

• A Floyd/Hoare-style program logic

• Assertion language: ∗ splits the state into disjoint parts

• Proof system:

• Allows for local reasoning

• Processes access shared resources

• Synchronization via conditional critical regions:

Josh Berdine — Local Reasoning about Storable Locks 10

fPg C fQg
fP¤Rg C fQ¤Rg

fP1g C1 fQ1g fP2g C2 fQ2g
fP1¤P2g C1kC2 fQ1¤Q2g

with r when b do C to be replaced

Concurrent separation logic

• Program state partitioned into (disjoint) substates owned by the

different processes and locks

• Processes may access only parts of the state that they own

• Process interaction mediated using resource invariants

• Key in achieving local reasoning:

– reasoning about each process in isolation

– using the sequential semantics

Josh Berdine — Local Reasoning about Storable Locks 11

Reasoning informally

Josh Berdine — Local Reasoning about Storable Locks 12

locate_coarse(int e) {

NODE *prev, *curr;

acquire(lock);

“have (exclusive access to) head list”
prev = head;

“head has a Next”
curr = prev->Next;

“curr has a Val”
while (curr->Val < e) {

prev = curr;

“curr has a Next”
curr = prev->Next;

}

return (prev, curr);

}

locate_hand_over_hand(int e) {

NODE *prev, *curr;

prev = head;

acquire(prev);

“have (exclusive access to) prev node”
curr = prev->Next;

“curr has a Lock”
acquire(curr);

“have curr node”
while (curr->Val < e) {

“prev is locked by this thread”
release(prev);

“don’t have prev node any more”
prev = curr;

curr = prev->Next;

“curr has a Lock”
acquire(curr);

“have curr node”
}

return (prev, curr);

}

Need to know this even without
owning curr node:

So ownership of a node comes
with knowledge that the Next

node has a Lock

Approach

• Lock ! resource invariant

– lock ! sort A(¢, ¢)

– sort A(·, ·) ! resource invariant IA(¢, ¢)

– first parameter – address of the lock

• Example:

• Knots in the store cut by indirection through A(¢, ¢)

Josh Berdine — Local Reasoning about Storable Locks 13

struct R {

LOCK Lock;

int Data;

};

IR(l; v)
¢
= l:Data7!v

Assertion language

• Handles:

– ensures that the lock at the address E exists and has the sort A and

parameters

– gives permission to acquire the lock

– can be split among threads:

•

• < 1 – can acquire the lock

• = 1 – can finalize the lock

• Locked-facts:

– lock E is held by the thread owning

– ensures the existence of the lock

Josh Berdine — Local Reasoning about Storable Locks 14

A(E; ~F)

~F

1A(E; ~F) = 1
2
A(E; ~F) ¤ 1

2
A(E; ~F)

LockedA(E; ~F)

LockedA(E; ~F)

Axioms

fE 7! g init
A;~F

(E) fA(E; ~F) ¤ LockedA(E; ~F)g

Josh Berdine — Local Reasoning about Storable Locks 15

fA(E; ~F) ¤ LockedA(E; ~F)g finalize(E) fE 7! g

f¼A(E; ~F)g acquire(E) f¼A(E; ~F) ¤ LockedA(E; ~F) ¤ IA(E; ~F)g

fLockedA(E; ~F) ¤ IA(E; ~F)g release(E) femphg

A simple example

struct R {

LOCK Lock;

int Data;

} *x;

// IR(l)
¢
= l:Data 7!

initialize() {

femphg

x = new R;

fx 7! ¤ x:Data 7! g

initR(x);

fx:Data 7! ¤R(x)

¤ LockedR(x)g

x->Data = 0;

fx:Data 7!0 ¤R(x)

¤ LockedR(x)g

release(x);

fR(x)g

}
Josh Berdine — Local Reasoning about Storable Locks 16

thread() {

f1
2
R(x)g

acquire(x);

fx:Data 7! ¤ 1
2
R(x)

¤ LockedR(x)g

x->Data++;

fx:Data 7! ¤ 1
2
R(x)

¤ LockedR(x)g

release(x);

f1
2
R(x)g

}

cleanup() {

fR(x)g

acquire(x);

fx:Data 7! ¤R(x)

¤ LockedR(x)g

finalize(x);

fx 7! ¤ x:Data 7! g

delete x;

femphg

}

Assertion language model

• Semantic domains:

– each program proof associates each sort with an invariant:

• Satisfaction relation : (s, h) ²k ©

¤ adds up permissions for locks and their values:

Josh Berdine — Local Reasoning about Storable Locks 17

U ¤ k = k; U ¤U = U; k ¤ j unde¯ned

(s; h) j=k E 7!F , h = [[[E]]s : Cell([[F]]s)]

(s; h) j=k ¼A(E) , h = [[[E]]s : Lock(A;U; [[¼]]s)] ^ [[¼]]s>0

(s; h) j=k LockedA(E) , h = [[[E]]s : Lock(A;k; 0)]

Stacks = Vars *¯n Values

Heaps = Locations *¯n

(Cell(Values) [Lock(Sorts£ LockValues£ LockPerms))

fU;0;1; : : : ; ng [0; 1]

IA(~E) : Sorts !Values+ !P(Stacks£Heaps)

Semantics of programs
• pc 2 {1,…,n} ! ProgPoint

• F µ ProgPoint £ Command £ ProgPoint

• !S is the least relation satisfying:

Josh Berdine — Local Reasoning about Storable Locks 18

Flies in the ointment

• Consider invariants:

• with code:

• Postcondition has forgotten that locks x and y exist!

• Logic may not detect a memory leak

• Formulating soundness becomes non-trivial

Josh Berdine — Local Reasoning about Storable Locks 19

IA(x; y)
¢
= B(y; x) IB(x; y)

¢
= A(y; x)

fx7! ¤ y 7! g

initA;y(x);

initB;x(y);

fA(x; y) ¤ LockedA(x; y) ¤B(y; x) ¤ LockedB(y; x)g

release(x);

fA(x; y) ¤ LockedB(y; x)g

release(y);

femphg

Soundness (cheating version)

• Usual interleaving-based operational semantics

• Program C1 k k Cn

•

• Resource invariants are precise

– Unambiguously pick out an area of the heap

• Theorem:

• Cheat: statement about ¾0/¾f uses information about free locks in ¾0/¾f

Josh Berdine — Local Reasoning about Storable Locks 20

` fPkg Ck fQkg

If ¾0 2

µ
n
~
k=1

[[Pk]]
k

¶
¤ (~finvariants for free locks in ¾0g),

then the program is \safe"

and ¾f 2

µ
n
~
k=1

[[Qk]]
k

¶
¤ (~finvariants for free locks in ¾fg)

[[©]]
k

= f(s; h) : (s; h) j=k ©g

Closure

• How can we find all free locks allocated in a state from a set p?

– Take ¾ 2 p

– Conjoin to ¾ resource invariants for all locks with value U in ¾

– and set the value of these locks to 0

– Do the same for every state obtained in this way…

• Definition:

The resulting states without locks with value U form the closure of p: h p i

• Example: hR(x)i where IR(l) = (l:Data-)

• Example: hB(y,x)i where IB(x,y) = A(y,x) and IA(x,y) = B(y,x)

• Are we guaranteed to add invariants for all free locks in this way?

• No! – Due to self-contained sets of locks

Josh Berdine — Local Reasoning about Storable Locks 21

Admissibility of resource invariants

• Admissibility disallows self-contained sets of locks

• If resource invariants are admissible, closure finds all free locks

• Definition:

Resource invariants for lock sorts are admissible if there do not exist:

– a non-empty set L of lock sorts from with parameters

– a state ¾ 2 ~{invariants for all locks in L}

such that the permission associated with the every lock from L in ¾ is 1

• Examples:

– is admissible

– is not

Josh Berdine — Local Reasoning about Storable Locks 22

L

L

fIR(l)
¢
= l:Data7! g

fIA(x; y)
¢
= B(y; x); IB(x; y)

¢
= A(y; x)g

Soundness

• Usual interleaving-based operational semantics

• Program C1 k k Cn

•

• Resource invariants are precise

• Theorem:

Josh Berdine — Local Reasoning about Storable Locks 23

` fPkg Ck fQkg

Suppose that

² either resource invariants are admissible

² or one of Qk is intuitionistic (does not notice heap extension)

If ¾0 2

¿
n
~
k=1

[[Pk]]
k

À
, then the program is \safe"

and ¾f 2

¿
n
~
k=1

[[Qk]]
k

À

Dynamic thread creation

• Programs:

• Two new commands: and

• Assertion language: thread handles

– thread running f with identifier E exists

– gives permission to join it

– only one thread can join any given thread

• Satisfaction relation: (s, h, t) ²k ©

– t – thread pool

Josh Berdine — Local Reasoning about Storable Locks 24

let f1() =C1; : : : ; fn() =Cn in C

x = fork(f) join(E)

tidf(E)

Axioms for fork and join

• Need to give up the precondition of the thread at fork:

• and receive the postcondition at join:

where

• Other axioms adjusted accordingly

Josh Berdine — Local Reasoning about Storable Locks 25

¡; fPgf()fQg ` fPgx = fork(f)femph ^ tidf(x)g

¡; fPgf()fQg ` femph ^ tidf(E)gjoin(E)fQg

fv(fP;Qg)µGlobalConsts

Soundness

• Proof of the program :

where

• Technical issues:

– Soundness conditions:

• Pk are precise

• Pk and Qk have an empty lockset (no lock in a state satisfying them has a value

other than U)

– Same circularity problem as with locks: tidf ! Qf ! tidf

– Admissibility, closure, and soundness can be generalized

Josh Berdine — Local Reasoning about Storable Locks 26

let f1() =C1; : : : ; fn() =Cn in C

¡ ` fP1g C1 fQ1g
...

¡ ` fPng Cn fQng

¡ ` fPg C fQg

¡ = fP1g f() fQ1g; : : : ;fPng f() fQng

Compared to
concurrent separation logic

• Original concurrent separation logic can reason about storable locks:

– represent them as cells storing the identifier of the thread owning the lock

– build a global invariant of memory as a whole

• Drawbacks:

– lots of auxiliary state ⇒ horrible proofs

– reasoning is not modular

– automation is infeasible

Josh Berdine — Local Reasoning about Storable Locks 27

Compared to RGSep [Vafeiadis+07]

• RGSep – Combination of Jones’ rely-guarantee and separation logic

– Locks not treated natively

– Uses rely-guarantee to simplify reasoning about the global invariant

– (+) Reasoning about complex fined-grained concurrency algorithms

– (–) Awkward reasoning about programs that allocate and deallocate many

simple data structures

• One fancy pre-allocated data structure vs many dynamically allocated

simpler ones

• We’d like both at once

Josh Berdine — Local Reasoning about Storable Locks 28

Summary

• Proposed a Floyd/Hoare-style program logic for

– concurrent, heap-manipulating programs that:

– allows local reasoning about unboundedly-many storable locks and threads

• i.e., more realistic concurrent programming primitives

– is strong enough to prove some examples published as challenges

• piece of multicasting code

• lock-coupling list operations

– is set up to found a program analysis

• thread-local fixed-point semantics is an analysis scheme

– is sound via a reasonably lightweight mechanism for cutting recursive knots

in the heap

• using only a simple semantics

• Want a semantic analysis of admissibility of resource invariants

Josh Berdine — Local Reasoning about Storable Locks 29

