

Local Reasoning about Storable Locks and Threads

Josh Berdine Microsoft Research

Joint work with Alexey Gotsman (Cambridge), Byron Cook (MSR), Noam Rinetzky and Mooly Sagiv (Tel Aviv)

Shared variable concurrent programs

- Dijkstra
 - Programs should be insensitive to relative execution speeds
- Brinch Hansen / Hoare
 - Shared variables should be encapsulated and their access controlled
 - Monitors
 - Compiler could check if encapsulation violated for variables
 - Solo operating system written almost entirely with safe primitives
 - But what about the heap? Needed for multi-user OSes
- Owicki & Gries / Jones
 - Limit interference through shared state with predicates / relations
- O'Hearn
 - Concurrent separation logic: encapsulation checking for the heap
 - "Size" of shared state can change
 - "Topology" of access control still fixed

Microsoft[®]

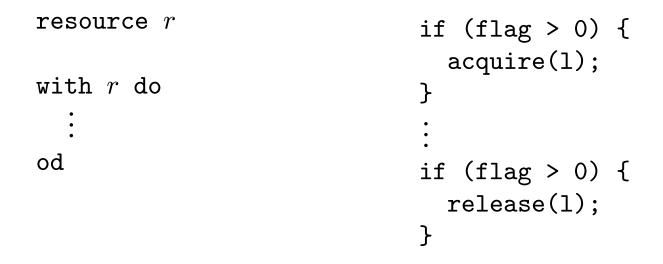
Locks in the heap — Why?

typedef struct NODE { typedef struct NODE { int Val; LOCK Lock; struct NODE* Next; int Val: } NODE; struct NODE* Next; } NODE; non-empty, last LOCK lock; value is $+\infty$ NODE* head; NODE* head; locate coarse(int e) { locate hand over hand(int e) { NODE *prev, *curr; NODE *prev, *curr; acquire(lock); prev = head; prev = head; acquire(prev); curr = prev->Next; curr = prev->Next; while (curr->Val < e) {</pre> acquire(curr); while (curr->Val < e) {</pre> prev = curr; curr = prev->Next; release(prev); } prev = curr; return (prev, curr); curr = prev->Next; } acquire(curr); } return (prev, curr); }

Microsoft[®]

Optimistic / Idealistic

(More) Realistic



- syntactically determined critical
 regions
 - semantically determined critical regions

Locks on the stack vs locks in the heap

Optimistic / Idealistic

resource rwith r do : od (More) Realistic

- l = new LOCK;init(1); acquire(1); release(1); finalize(l); delete 1;
- bounded numbers of resources
 unbounded numbers of locks

Parallel composition vs of the dynamic thread creation

Optimistic / Idealistic

(while b do $(P_1 \parallel P_2)) \parallel P_3$

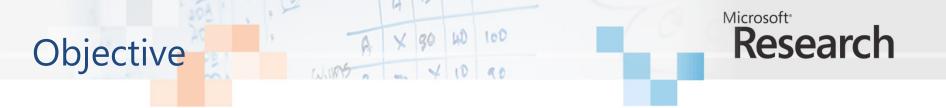
Research

(More) Realistic

```
for (i = 0; i < n; i++) {
   t[i] = fork(proc, i);
}

for (i = 0; i < n; i++) {
   join(t[i]);
}</pre>
```

- bounded numbers of processes
- unbounded numbers of threads



- Program logics for analysis and verification of multithreaded heapmanipulating programs
- Goal: ease static access control
 - Allow unboundedly-many locks and threads
 - That live in the heap (to exploit indirection)
- but also aim to:
 - Retain local reasoning
 - Enable automation in program analysis
 - Treat more realistic programming language constructs

- Logic for storable locks and threads
 - Local reasoning preserved
 - Storable locks as resources
- Not only technical difficulties:
 - Storable locks "make theoreticians wince" (Richard Bornat)
 - Russell's paradox is lurking nearby:

heaps \rightarrow locks \rightarrow resource invariants \rightarrow heaps

- Analogous to stored procedures: Landin's "knots in the store"

- First one top-level parallel composition: $C_1 \parallel \cdots \parallel C_n$
- Then dynamic thread creation
- Simplification: no shared mutable variables
 - shared mutable heap
 - global pre-initialized constants
 - local variables of threads
- General cases and details: Technical report MSR-TR-2007-39

Concurrent separation logic [O'Hearn04]

- A Floyd/Hoare-style program logic
- Assertion language: * splits the state into disjoint parts
- Proof system:

$$\frac{\{P\} \ C \ \{Q\}}{\{P*R\} \ C \ \{Q*R\}} \qquad \frac{\{P_1\} \ C_1 \ \{Q_1\} \ \{P_2\} \ C_2 \ \{Q_2\}}{\{P_1*P_2\} \ C_1 \| C_2 \ \{Q_1*Q_2\}}$$

- Allows for local reasoning
- Processes access shared resources
- Synchronization via conditional critical regions:

with r when b do C

Microsoft[®]

- Program state partitioned into (disjoint) substates owned by the different processes and locks
- Processes may access only parts of the state that they own
- Process interaction mediated using resource invariants
- Key in achieving local reasoning:
 - reasoning about each process in isolation
 - using the sequential semantics

Reasoning informally

Research

```
locate coarse(int e) {
  NODE *prev, *curr;
  acquire(lock);
  "have (exclusive access to) head list"
  prev = head;
  "head has a Next"
  curr = prev->Next;
  "curr has a Val"
  while (curr->Val < e) {</pre>
    prev = curr;
    "curr has a Next"
    curr = prev->Next;
  }
  return (prev, curr);
}
```

Need to know this even without owning curr node: So ownership of a node comes with knowledge that the Next node has a Lock

```
locate_hand_over_hand(int e) {
  NODE *prev, *curr;
  prev = head;
  acquire(prev);
  "have (exclusive access to) prev node"
  curr = prev->Next;
  "curr has a Lock"
  acquire(curr);
  "have curr node"
  while (curr->Val < e) {</pre>
    "prev is locked by this thread"
    release(prev);
    "don't have prev node any more"
    prev = curr;
    curr = prev->Next;
    "curr has a Lock"
    acquire(curr);
    "have curr node"
  return (prev, curr);
}
```

X 30 WD

100

Approach

- Lock \rightarrow resource invariant
 - lock \rightarrow sort $A(\cdot, \cdot)$
 - sort $A(\cdot, \cdot) \rightarrow$ resource invariant $I_A(\cdot, \cdot)$
 - first parameter address of the lock
- Example:

struct R {
 LOCK Lock;
 int Data;
};

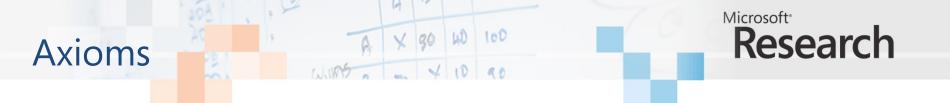
$$I_R(l,v) \stackrel{\Delta}{=} l: Data \mapsto v$$

• Knots in the store cut by indirection through $A(\cdot, \cdot)$

Assertion language

- Handles: $A(E, \vec{F})$
 - ensures that the lock at the address E exists and has the sort A and parameters \vec{F}
 - gives permission to acquire the lock
 - can be split among threads:
 - $1A(E, \vec{F}) = \frac{1}{2}A(E, \vec{F}) * \frac{1}{2}A(E, \vec{F})$
 - < 1 can acquire the lock
 - = 1 can finalize the lock
- Locked-facts: Locked_A (E, \vec{F})
 - lock E is held by the thread owning $Locked_A(E, \vec{F})$
 - ensures the existence of the lock

Microsoft[®]



${E\mapsto}_{A,\vec{F}}$ (E) ${A(E,\vec{F}) * \mathsf{Locked}_A(E,\vec{F})}$

$\{A(E, \vec{F}) * \mathsf{Locked}_A(E, \vec{F})\} \text{ finalize}(E) \{E \mapsto \}$

$\{ \mathsf{Locked}_A(E, \vec{F}) * I_A(E, \vec{F}) \} \text{ release}(E) \{ \mathsf{emp}_h \}$

 $\{\pi A(E,\vec{F})\}$ acquire(E) $\{\pi A(E,\vec{F}) * \text{Locked}_A(E,\vec{F}) * I_A(E,\vec{F})\}$

A simple example A × 90 100

struct R { LOCK Lock; int Data; } *x; // $I_R(l) \stackrel{\Delta}{=} l: Data \mapsto _$

```
initialize() {
   \{emp_h\}
   x = new R;
   \{x \mapsto x: Data \mapsto \}
   \operatorname{init}_{R}(\mathbf{x});
   \{x: Data \mapsto R(x)\}
     * Locked<sub>R</sub>(x)}
   x \rightarrow Data = 0;
   {x:Data \mapsto 0 * R(x)}
     * Locked<sub>R</sub>(x)}
   release(x);
   \{R(x)\}
```

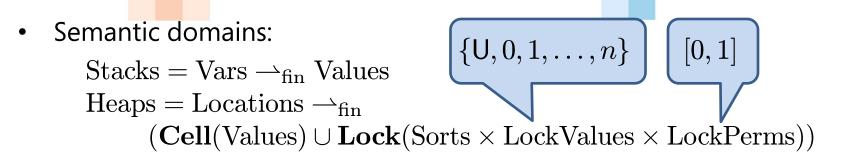
}

```
thread() {
    {\frac{1}{2}R(x)}
    acquire(x);
    {x:Data\mapsto_-*\frac{1}{2}R(x)
    * Locked<sub>R</sub>(x)}
    x->Data++;
    {x:Data\mapsto_-*\frac{1}{2}R(x)
    * Locked<sub>R</sub>(x)}
    release(x);
    {\frac{1}{2}R(x)}
}
```

cleanup() {
 {R(x)}
 acquire(x);
 { $x:Data\mapsto_*R(x)$ * Locked_R(x)}
 finalize(x);
 { $x\mapsto_*x:Data\mapsto_$ }
 delete x;
 {emp_h}
}

Microsoft[®]

Assertion language model



- each program proof associates each sort with an invariant: $I_A(\vec{E}) : \text{Sorts} \to \text{Values}^+ \to \mathcal{P}(\text{Stacks} \times \text{Heaps})$
- Satisfaction relation : $(s, h) \vDash_k \Phi$

$$\begin{array}{ll} (s,h) \models_k E \mapsto F & \Leftrightarrow & h = [\llbracket E \rrbracket_s : \mathbf{Cell}(\llbracket F \rrbracket_s)] \\ (s,h) \models_k \pi A(E) & \Leftrightarrow & h = [\llbracket E \rrbracket_s : \mathbf{Lock}(A, \mathsf{U}, \llbracket \pi \rrbracket_s)] \land \llbracket \pi \rrbracket_s > 0 \\ (s,h) \models_k \mathbf{Locked}_A(E) & \Leftrightarrow & h = [\llbracket E \rrbracket_s : \mathbf{Lock}(A,k,0)] \end{array}$$

* adds up permissions for locks and their values:

$$U * k = k$$
, $U * U = U$, $k * j$ undefined

Microsoft[®]

Semantics of programs

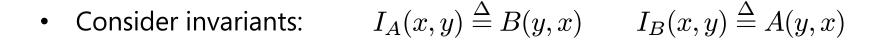
- $\mathsf{pc} \in \{1, ..., n\} \rightarrow \mathsf{ProgPoint}$
- $F \subseteq \operatorname{ProgPoint} \times \operatorname{Command} \times \operatorname{ProgPoint}$
- $\rightarrow_{\mathcal{S}}$ is the least relation satisfying:

$$\frac{(v, C, v') \in F \quad k \in \{1, \dots, n\} \quad C, (s, h) \rightsquigarrow_k q}{\mathsf{pc}[k:v], (s, h) \rightarrow_S \mathsf{pc}[k:v'], q}$$

100

Microsoft[®]

Flies in the ointment × 90 100



• with code: $\{x \mapsto _ * y \mapsto _\}$ init_{A,y}(x);
init_{B,x}(y); $\{A(x, y) * \mathsf{Locked}_A(x, y) * B(y, x) * \mathsf{Locked}_B(y, x)\}$ release(x); $\{A(x, y) * \mathsf{Locked}_B(y, x)\}$ release(y); $\{\mathsf{emp}_h\}$

- Postcondition has forgotten that locks x and y exist!
- Logic may not detect a memory leak
- Formulating soundness becomes non-trivial

Microsoft[®]

Soundness (cheating version)

- Usual interleaving-based operational semantics
- Program $C_1 \parallel \cdots \parallel C_n$
- $\vdash \{P_k\} C_k \{Q_k\}$
- Resource invariants are precise
 - Unambiguously pick out an area of the heap

Theorem:
If
$$\sigma_0 \in \begin{pmatrix} n \\ \circledast \\ k=1 \end{pmatrix}^k P_k \end{pmatrix}^k$$
 (\circledast {invariants for free locks in σ_0 }),
then the program is "safe"
and $\sigma_{\mathbf{f}} \in \begin{pmatrix} n \\ \circledast \\ k=1 \end{pmatrix}^k \otimes (\circledast$ {invariants for free locks in $\sigma_{\mathbf{f}}$ })

• Cheat: statement about σ_0/σ_f uses information about free locks in σ_0/σ_f

Microsoft[®]

Closure

• How can we find all free locks allocated in a state from a set p?

× 20

- Take $\sigma \in p$
- Conjoin to σ resource invariants for all locks with value U in σ
- and set the value of these locks to 0
- Do the same for every state obtained in this way...
- Definition:

The resulting states without locks with value U form the closure of p: $\langle p \rangle$

- Example: $\langle R(x) \rangle$ where $I_R(l) = (l: Data \rightarrow -)$
- Example: $\langle B(y,x) \rangle$ where $I_B(x,y) = A(y,x)$ and $I_A(x,y) = B(y,x)$
- Are we guaranteed to add invariants for all free locks in this way?
- No! Due to self-contained sets of locks

Microsoft[®]

Admissibility of resource invariants

- Admissibility disallows self-contained sets of locks
- If resource invariants are admissible, closure finds all free locks
- Definition:

Resource invariants for lock sorts \mathcal{L} re admissible if there do not exist:

- a non-empty set L of lock sorts from \mathcal{L} with parameters
- a state $\sigma \in \circledast$ {invariants for all locks in *L*}

such that the permission associated with the every lock from L in σ is 1

• Examples:

$$- \{I_R(l) \stackrel{\Delta}{=} l: Data \mapsto_{-}\} \text{ is admissible}$$
$$- \{I_A(x, y) \stackrel{\Delta}{=} B(y, x), I_B(x, y) \stackrel{\Delta}{=} A(y, x)\} \text{ is not}$$

Soundness



- Program $C_1 \parallel \cdots \parallel C_n$
- $\vdash \{P_k\} C_k \{Q_k\}$
- Resource invariants are precise
- Theorem:

Suppose that

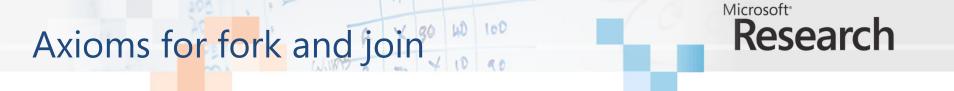
- either resource invariants are admissible
- or one of Q_k is intuitionistic (does not notice heap extension)

If
$$\sigma_0 \in \left\langle \stackrel{n}{\underset{k=1}{\circledast}} \llbracket P_k \rrbracket^k \right\rangle$$
, then the program is "safe"
and $\sigma_{\mathbf{f}} \in \left\langle \stackrel{n}{\underset{k=1}{\circledast}} \llbracket Q_k \rrbracket^k \right\rangle$

Microsoft[®]

Dynamic thread creation

- Programs: let $f_1() = C_1, \ldots, f_n() = C_n$ in C
- Two new commands: x = fork(f) and join(E)
- Assertion language: thread handles $tid_f(E)$
 - thread running f with identifier E exists
 - gives permission to join it
 - only one thread can join any given thread
- Satisfaction relation: $(s, h, t) \vDash_k \Phi$
 - t-thread pool



• Need to give up the precondition of the thread at fork:

 $\Gamma, \{P\} f() \{Q\} \vdash \{P\} \mathtt{x} = \texttt{fork}(f) \{\texttt{emp}_{h} \land \mathsf{tid}_{f}(x)\}$

• and receive the postcondition at join:

 $\Gamma, \{P\} f() \{Q\} \vdash \{\mathsf{emp}_{\mathbf{h}} \land \mathsf{tid}_{f}(E)\} \texttt{join}(E) \{Q\}$

where $fv(\{P,Q\}) \subseteq GlobalConsts$

• Other axioms adjusted accordingly

Soundness A x 80 100 Microsoft Research

- Proof of the program let $f_1() = C_1, \ldots, f_n() = C_n$ in C :
 - $$\begin{split} \Gamma &\vdash \{P_1\} \ C_1 \ \{Q_1\} \\ \vdots & & \text{where} \\ \Gamma &\vdash \{P_n\} \ C_n \ \{Q_n\} & & \Gamma &= \{P_1\} \ f() \ \{Q_1\}, \dots, \{P_n\} \ f() \ \{Q_n\} \\ \Gamma &\vdash \{P\} \ C \ \{Q\} \end{split}$$
- Technical issues:
 - Soundness conditions:
 - P_k are precise
 - P_k and Q_k have an empty lockset (no lock in a state satisfying them has a value other than U)
 - Same circularity problem as with locks: $\operatorname{tid}_f \to Q_f \to \operatorname{tid}_f$
 - Admissibility, closure, and soundness can be generalized

- Original concurrent separation logic can reason about storable locks:
 - represent them as cells storing the identifier of the thread owning the lock
 - build a global invariant of memory as a whole
- Drawbacks:
 - lots of auxiliary state \Rightarrow horrible proofs
 - reasoning is not modular
 - automation is infeasible

Compared to RGSep [Vafeiadis+07]

- RGSep Combination of Jones' rely-guarantee and separation logic
 - Locks not treated natively
 - Uses rely-guarantee to simplify reasoning about the global invariant
 - (+) Reasoning about complex fined-grained concurrency algorithms
 - (–) Awkward reasoning about programs that allocate and deallocate many simple data structures
- One fancy pre-allocated data structure vs many dynamically allocated simpler ones
- We'd like both at once

Summary

- Proposed a Floyd/Hoare-style program logic for
 - concurrent, heap-manipulating programs that:
 - allows local reasoning about unboundedly-many storable locks and threads
 - i.e., more realistic concurrent programming primitives

× 20

- is strong enough to prove some examples published as challenges
 - piece of multicasting code
 - lock-coupling list operations
- is set up to found a program analysis
 - thread-local fixed-point semantics is an analysis scheme
- is sound via a reasonably lightweight mechanism for cutting recursive knots in the heap
 - using only a simple semantics
- Want a semantic analysis of admissibility of resource invariants