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The intellect of man is forced to choose
Perfection of the life, or of the worR,
And if it take the second must refuse

A heavenly mansion, raging in the dark,

When all that story's finished, what's the news?
In luck or out the toil has left its mark;
That old perplexity an empty purse,

Or the day's vanity, the night's remorse.

W.B. Yeats, ‘The Choice’
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ABSTRACT

The human heart is an electro-mechanical system that cyclically pumps blood throughout
the body. The mechanical processes of the cardiac cycle generate low-frequency
vibrations that are received on the chest wall as vibro-acoustic signals. These sound and
infra-sound signals carry significant information about the underlying functioning of the
cardiovascular system and its interaction with other body systems, such as the pulmonary
system. The purpose of this work was to develop signal analysis and pattern recognition
techniques for automatic extraction of meaningful physiological information from vibro-
acoustic heart signals. These techniques were used to gain new insights about the
relationship between vibro-acoustic signals and the mechanical function of the heart, and
to assess the potential benefit for non-invasive monitoring of cardiac function.

We describe and study the properties of a wide range of analysis methods of vibro-
acosutic heart signals, including preprocessing, event and component segmentation, time-
frequency signal representation, multi-cycle alignment, robust feature extraction,
morphological clustering and classification. In particular, we introduce a computational
signal analysis framework for identifying distinct morphologies of heart sounds and
classifying them into physiological states. We applied the analysis methods on heart
sound datasets, acquired during controlled alternations of the physiological conditions.
Analysis of heart sound signals acquired during pharmacological stress test was used to
characterize the pattern of spectral changes of S1, which was correlated with ‘gold-
standard’ echocardiographic indices of cardiac contractility. The analysis framework was
able to identify this pattern and to accurately predict the stress level from the morphology
of S1. Analysis of heart sound signals acquired during alternations of the respiratory
activity revealed the temporal and morphological changes induced in S1 and S2 by the
pulmonary system, and showed that the respiratory phase, the resistive-load and the
instantaneous pressure can be estimated from the morphology of the heart sounds.

The results suggest that quantitative automated heart sound analysis using modern
computational techniques may provide a new non-invasive technology for continuous
cardiopulmonary monitoring and improved detection of mechanical dysfunctions caused

by cardiovascular and cardiopulmonary diseases.
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CHAPTER 1
INTRODUCTION TO VIBRO-ACOUSTIC HEART SIGNALS

1.1 Physiological and clinical background

1.1.1 The heart and circulation

The human heart is a mechanical system whose primary function is to pump blood
throughout the body in order to provide adequate perfusion of organs. The anatomical
structure of the heart consists of two atria for collecting blood from the veins and two
ventricles for pumping the blood out to the arteries (Figure 1a). The left side of the heart
is responsible for pumping oxygenated blood through the aorta into the systemic blood
circulation. The deoxygenated blood flows back from the peripheral body tissues through
the veins, and is collected in the right atrium. The right side of the heart pushes
deoxygenated blood through the pulmonary artery into the pulmonary circulation and
towards the lungs. The returning oxygen-rich blood is collected in the left atrium. The
blood flow from the atria to the ventricles is regulated by a pair of atrio-ventricular (AV)
valves, named mitral and tricuspid valves. A second pair of semilunar valves, named

aortic and pulmonary valves, controls the flow from the ventricles to the arteries [1].

1.1.2 The mechanical cardiac cycle

The periodical activity of the heart is controlled by an electrical conducting system,
triggering electrical action potentials that excite the muscle cells and cause the
mechanical contraction of the heart chambers (Figure 1b). The contraction phase of the
heart is called systole. The systole begins with the contraction of the atria, shortly
followed by the isovolumetric contraction of the ventricles. During isovolumetric
contraction, the ventricular pressure rises without change in the blood volume. The high
ventricular pressure causes the atrio-ventricular valves to be closed. When ventricular
pressure exceeds the arterial pressure, the semilunar valves are opened, and blood is
ejected from the ventricles to the arterial circulation. At the end of the ejection phase,
with the fall of ventricular pressure, the semilunar valves are closed, indicating the end of
systole and beginning of diastole. Early diastole is an isovolumetric relaxation period, in

which ventricular pressure drops with blood volume changes. As soon as atrial pressure
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exceeds ventricular pressure, the atrio-ventricular valves are opened to start the filling
phase. Filling is a passive process of blood flow from the atria to the ventricles. The flow
rate is initially rapid, and is reduced in late diastole. Finally, atrial contraction contributes

an additional small volume of blood to the ventricular filling [2].
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Figure 1: The anatomy of a normal heart (a) and the dynamics of aortic, left-ventrcular (LV), left-
atrial (LA) pressures, LV volume, ECG and heart sound signals throughout the systolic (1-4) and
diastolic (4-7) phases of the cardiac cycle (b).

1.1.3 Assessment of cardiac function

The mechanical operation of the cardiovascular system is governed by a complex
interplay between pressure gradients, determined by the contraction force of the
myocardial cells, the dynamics of blood flow and the compliance of cardiac chambers
and blood vessels. One way to assess systolic function is to measure the ventricular
stroke volume (SV), the volume of blood that was ejected during systole. SV is regulated
by three primary mechanisms, namely preload, inotropy and afterload [2]. Preload is the
initial stretching of the cardiac muscle cells (myocytes) prior to contraction. Increased
myocyte stretching causes an increase in force generation during contraction. This
principle, called ‘The Frank-Starling mechanism’, enforces a direct relation between the
stroke volume and the extent of venous return, or ventricular filling. Preload is therefore
often estimated by the ventricular end-diastolic volume. Cardiac muscle has a unique
ability to alter its inotropy, or contractility, which is a preload-independent change in the
rate of force or pressure generation. Inotropy, regulated by the autonomic nervous

system, is directly related to the stroke volume ejected by the contraction force. Finally,
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afterload is the load against which the heart ejects blood, which is closely related to the
aortic pressure. When the aortic pressure is increased, the stroke volume is consequently

decreased.

1.1.4 Cardio-pulmonary interaction

The pulmonary system plays an important part in modulating the cardiovascular
mechanical activity [3, 4]. During respiration, the pressure between the lungs and the
chest wall, named pleural pressure, is altered, causing changes in the arterial pressure and
venous return. During inspiration, the pressure gradient from the extra-thoracic regions to
the right atrium increases due to the lowered pleural pressure, causing an increased blood
filling of the right ventricle (RV). The increased right-ventricular end diastolic volume
(EDV) leads to an increased RV stroke volume by the Frank-Starling mechanism. The
distended RV causes a leftward motion of the inter-ventricular septum, which reduces the
compliance of the left wventricle (LV) by physical compression (ventricular
interdependence) and leads to a reduced LV filling. At the same time, the distending lung
and its circulatory volume tend to reduce the pressure gradient and flow from the
pulmonary veins to the left ventricle. Furthermore, the transmural diastolic aortic
pressure, which is the LV afterload, increases. These additive effects result in a decrease
in LV stroke volume. The opposed process occurs during expiration, in which RV-SV
decreases and LV-SV increases [5]. Respiration has also been shown to modulate the
duration of the systolic and diastolic time intervals of the cardiac cycle [6]. The effects of
the respiratory cycle and changes in intra-thoracic pressure on cardiac function are well
known clinically in the form of “pulsus paradoxus” as a sign of asthma severity and in

assessing the need for fluids transfusion in critically ill patients [7].

1.1.5 Clinical aspects — heart disease

The mechanical functioning of the heart may be impaired by cardiovascular and
cardiopulmonary diseases. Heart failure (HF) is a clinical syndrome defined as the
inability of the ventricle to fill with or eject enough blood in order to deliver adequate
oxygen supply to peripheral tissues and organs [8]. HF is a major public health problem
worldwide, with estimated 15 million new cases each year. HF is especially common in

older populations, being the leading cause of hospitalization in patients over 65 years old.
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HF is usually caused by coronary artery disease, chronic hypertension, cardiomyopathy
(a primary disease of heart muscle cells) or valvular heart disease. The changes in cardiac
function associated with heart failure results in a decreased stroke volume due to systolic
or diastolic dysfunction. Systolic dysfunction occurs as a result of loss of intrinsic
contractility or reduced viability of contracting muscle following acute myocardial
infarction. Diastolic dysfunction occurs when the ventricle becomes more stiff and less
compliant, which impairs its diastolic blood filling. The body has compensatory
mechanisms, aiming to augment stroke volume by increasing the ventricular preload. The
higher preload is achieved by an increase in the ventricular end-diastolic pressure and the
blood volume. However, increased blood volume is often deleterious, because it raises
venous return and can lead to accumulation of fluid in the lungs, a condition termed
pulmonary congestion. HF patients with pulmonary congestion suffer from shortness of

breath initially during exertion, and as disease progresses — in rest conditions as well.

1.1.6 Cardiac monitoring

Electrocardiography, the recording of the surface electrical potentials of the heart,
remains the most common technology for continuous monitoring of cardiac activity,
more than 100 years after its introduction by Willem Einthoven. The electrocardiogram
(ECG) signals provide reliable indications for electrical dysfunctions related to the
heart’s pacing and conduction system, as well as for conditions of myocardial ischemia,
in which lack of oxygen causes changes in the cellular bioenergetics and electrical
conduction of the myocytes. Mechanical dysfunctions which are not accompanied by
electrical changes are not reflected in the electrocardiogram. In addition, patients with
chronic heart disease such as heart failure often have enduring ECG abnormalities [9],
which reduce the efficacy of ECG monitoring in detecting disease exacerbation.

Existing medical technologies for assessing mechanical cardiac function include invasive
catheterization, echocardiography, and impedance cardiography [10]. Pulmonary artery
catheterization (PAC), considered as the gold-standard of hemodynamic measurements,
is utilized for critically-ill patients in intensive care units. A balloon-tipped catheter is
inserted through a peripheral vein into the right atrium, right ventricle and pulmonary
artery. Balloon inflation occludes a branch of the pulmonary artery, and the measured

pressure provide a good estimate of the left-atrial pressure, which is also the end-diastolic
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left-ventricle pressure, or ventricular preload. The routine usage of this highly-invasive
procedure is controversial, due it its potential complications [11].

Echocardiography, cardiac ultrasound imaging, is the most widely-used technology for
evaluation of mechanical cardiac function by qualitative evaluation of cardiac wall
motion, blood flow and valve operation. Hemodynamic parameters such as stroke
volume, ejection fraction and left-ventricular pressure can be also quantitatively
estimated by transthoracic 2D and Doppler echocardiography [12]. More accurate
measurements of stroke volume and ventricular preload can be obtained by an invasive
technique of transesophageal echocardiography. However, these measurements cannot be
obtained continuously for monitoring purposes, as they require manual placement and
adjustments of the transducer by an expert operator.

Impedance cardiography (ICG) is an emerging technology, based on measuring the
resistance to transmission of a small electrical current throughout the chest area. The
measured changes in the impedance are converted into measurements of blood volume
changes during the cardiac cycle. Using ICG, measurements of stroke volume, vascular
resistance and systolic time intervals can be obtained continuously and non-invasively.
ICG has been shown to be beneficial in a variety of clinical conditions [13].

Respiratory functions can be continuously monitored by tracking thoracic and abdominal
motion, tidal volume, respiratory frequency and oxygenation level of arterial and venous
blood [14]. Diseases that involve airway obstruction, such as asthma and COPD, are
monitored by spirometry, which measures the volume of inspired and expired air, or by a

peak-flow meter device, which measures the peak-expiratory air flow rate.

1.2 Vibro-acoustic heart signals

1.2.1 History of heart auscultation and phonocardiography

The medical practice of applying the ear to the chest for direct heart auscultation is very
ancient, appearing already in Hippocratic writings from 400 BC [15]. The invention of
the first auscultation device, the stethoscope, is referred to the French physician René
Laennec, who constructed a wooden tube monaural device in 1816 (Figure 2a). In the
middle of the 19th century, George Cammann and Arthur Leared introduced the binaural
stethoscope, which is the basic model of stethoscope still in use today. In 1907 Willem
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Einthoven reported on the use of the string galvanometer for graphic recording of heart
sounds, thus laying the grounds of phonocardiography (Figure 2b). Phonocardiography
was later developed in various aspects including low-frequency phonocardiogram by
Luisada [16] and spectral phonocardiography by McKusick [17]. With the vast
developments in microelectronics and computing devices, electronic and later digital
stethoscopes emerged. These devices provide more sophisticated control over the aural
and visual properties of the acquired heart sound signals, with some automatic diagnostic
capabilities [18]. However, the utilization of these devices in the common medical

practice is still quite limited [19].

Figure 2: Rene Laennec (b), inventor of the first stethoscope (a) and Willem Einthoven (d), pioneer of
phnocardiography. Displayed phonocardiogram (c¢) was recorded with original Einthoven string
galvanometer at Massachusetts General Hospital [20].

1.2.2 Heart sounds — origin and characteristics

Heart sounds are produced by the vibrations of the cardiohemic system, composed of the
blood, heart walls and valves. The vibrations are triggered by the acceleration and
deceleration of blood due to abrupt mechanical events of the cardiac cycle [21, 22]. The
portion of these vibrations which is within the audible frequency range is termed ‘sound’
while lower-frequency energy (infra-sound) is received as heart ‘palpitations’ (Figure 3).
The two major audible sounds in a normal cardiac cycle are the first and second heart
sounds, S1 and S2 (Figure 4a). S1 occurs at the onset of ventricular contraction, while S2
is heard at the end of systole, following the closure of the semilunar valves. In some
cases, a third low-frequency sound, S3, may be heard at the beginning of the diastole,
during the rapid filling of the ventricles. A fourth heart sound, S4, may be heard in late
diastole during atrial contraction. Another type of heart sound is murmurs. These sounds
are high-frequency, noise-like sounds that are heard between the two major heart sounds
during systole or diastole. Existence of audible S3, S4 or murmurs may be an indication

of cardiovascular dysfunction.
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S1 and S2 are both low-frequency, multi-component transient signals. S1 is usually the
longest and loudest heart sound. It is considered to have four sub-components (Figure
4b): the initial vibrations occur when the first contraction of the ventricle moves blood
towards the atria, closing the AV-valves. The second component is caused by the abrupt
tension of the closed AV-valves, decelerating the blood. The third component involves
oscillation of blood between the root of the aorta and the ventricular walls, and the fourth
component represents the vibrations caused by turbulence in the ejected blood flowing to
the arteries. S2 usually has a shorter duration and higher frequency than S1. It has aortic
and pulmonary sub-components (A2 and P2), associated with the closure of each of the
two semilunar valves.

The complex interplay between pressure gradients in atria, ventricles and arteries affects
the timing, magnitude and morphology of the produced heart sounds. The amplitude of
S1 has been shown to be related to the degree of separation of the mitral valve leaflets,
determined by the relative timing of the left atrial and ventricular systole (P-R interval of
the ECQG). Left-ventricular contractility was also shown to be an independent factor
determining the amplitude of S1 [23, 24]. The amplitude of the aortic component of S2
has been shown to be closely related to the peak rate of development of the aortic-to-left
ventricular differential pressure gradient [25]. The dyssynchrony between the dynamics
of the left and right sides of the heart, which is normally associated with respiratory
activity, has well-established effects of widening the delay between the sound

components, thus producing a split morphology of either S1 or S2 [26, 27].
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Figure 3: Cardiohemic theory of heart sound generation, described by Rushmer [21] as the
vibrations in a fluid-filled balloon (a), and the frequency range of heart sounds, which only partially
overlap with the range of audible sounds (b).
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Figure 4: A phonocardiogram recording of a single heart beat, showing the two major heart sounds
S1 and S2, as well as S3 and S4 (a), and a detailed description of the inner structure of S1 and S2 (b),
showing their subcomponents [28].

1.2.3 Infrasound signals

The vibratory energy produced by the cardiovascular system, which is below audibility
threshold, can be registered by the appropriate transducer as infrasound signals. These
vibrations are of large amplitude, and can be appreciated to some extent by the tactile
sense. Outward movements of the heart or large blood vessels toward the transducer are
recorded as upward deflections of the signal, and retractions are registered as downward
deflections. The carotid pulse signal reflects small volume changes of the artery with
each heartbeat. The signal normally begins to rise abruptly with aortic ejection and
reaches an initial peak (percussion wave) when the ejection is probably at its maximum
(Figure 5a). There usually follows a plateau or secondary wave (tidal wave) late in
systole. This wave was suggested to represent primarily the reflected pulse wave
returning from the upper body. Next, the wave smoothly falls to a point termed the
‘dicrotic notch’, a notch produced by abrupt completion of the aortic valve closure. In
early diastole, there is often a small, positive wave, designated the ‘dicrotic wave’, which
is probably an effect of the reflected pulse from the lower body [28]. The apical pulse
signal, termed ‘apexcardiogram’, reflects the low-frequency vibrations transmitted by the
heart and great vessels to the chest wall at the point of maximal impulse. The signal is
thought to mirror events caused by the left ventricle [28]. The normal apexcardiogram
(Figure 5b) registers a small wave, termed the 'a' wave, at the time of left-atrial
contraction, and then rises abruptly at the onset of the isovolumetric ventricular
contraction ('c' point). With the onset of blood ejection from the ventricle into the aorta,

this initial rise reverses abruptly and forms a peak termed the 'e' point. Following the
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onset of ejection, there is a sudden down-sloping that continues to its nadir, termed the 'o'
point, which is registered approximately at the time of mitral valve opening. Aortic valve
closure can sometimes be observed as a brief notch on the down-sloping segment. With
early rapid ventricular filling, the curve rises steeply in an ascent called the ‘rapid filling
wave’, followed by a gentler incline called the ‘slow filling wave’. If ventricular diastole

is sufficiently long, there follows a late diastolic plateau, called ‘stasis’ [28, 29].
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Figure S: Infrasound heart signals of the carotid pulse (a) and the apexcardiogram (b), with
simultaneous heart sounds (phono) and electrocardiogram (ECG) [28].

1.3 Research motivation and goals

Vibro-acoustic heart signals are a direct manifestation of the mechanical processes within
the cardiovascular system. These signals therefore carry valuable information about
events of the cardiac cycle and the mechanical functioning of the heart. Physicians have
long been utilizing this information by means of heart auscultation and palpitation.
However, due to the limitations of the human sensual and perceptual capabilities in
receiving and analyzing these signals, their clinical use has been mostly qualitative. The
development of quantitative analysis techniques for vibro-acoustic heart signals has been
pushed aside in recent decades as a result of the immense advancements in cardiac
imaging technologies such as echocardiography, computerized tomography (CT) and
magnetic resonance imaging (MRI). As much as these imaging technologies are valuable,
they require complex equipment and expert operators and interpreters. Furthermore, they
can not be used continuously or outside of the hospital environment, and are therefore
inadequate for applications of cardiac monitoring. Recent advancements in sensor
technology, miniaturization of high-performance computing devices and wireless

communication enable us to revisit quantitative analysis of vibro-acoustic heart signals
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from a computational perspective. The goal of the research presented here was to develop
signal analysis and pattern recognition techniques for automatic extraction of meaningful
physiological and clinical information from vibro-acoustic heart signals. We have asked
whether the application of computational methods, including time-frequency
segmentation, robust feature extraction, morphological clustering and classification, to
vibro-acoustic signal analysis, can improve our ability to automatically infer quantitative
information about the mechanical functioning of the heart. Moreover, we have used these
techniques to gain new insights about the underlying physiological processes and to
assess the potential benefit for non-invasive monitoring of cardiac function and early

diagnosis of cardiovascular and cardiopulmonary dysfunctions.

1.4 Previous research

The characteristics of the vibro-acoustic heart signals and methods for their digital
analysis have been studied extensively [30, 31]. The following sections briefly review
past literature of signal processing and pattern recognition techniques applied to
mechanical heart signals, and applications of these techniques for deriving measures of

cardiac function.

1.4.1 Signal processing techniques

Early techniques for extracting the frequency content of the phonocardiogram signal
included zero-crossing analysis [32] and bandpass filter banks. McKusick et al. studied
the applicability of the sound spectrograph for analysis of heart sounds and murmurs
[17]. The spectrograph, originally developed for speech analysis, used a bank of bandpass
filters to determine the power of the signal at each frequency band of interest. With the
advancement in digital computing, Fast Fourier Transform (FFT) has been implemented
and applied to analyze the frequency spectrum of S1 and S2 [33, 34]. Time-domain
processing methods included synchronized envelope averaging [35, 36], computing of
average power in contiguous segments [37], envelogram estimation by Hilbert transform
[38] or normalized average Shannon energy [39] and complexity-based segmentation
[40]. Modern signal analysis techniques can be generally partitioned into parametric and
non-parametric methods. With parametric methods, the investigated signal is first

modeled by an equivalent system, and the parameters of the model are then estimated
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from measurements of the signal made over a limited period of time. Parametric
modeling of heart sounds was studied using autoregressive modeling [41], iterative pole-
zero modeling [42], and adaptive spectrum analysis with matching pursuit method [43,
44]. Durand et al. [45] evaluated the performance of parametric methods (all-pole and
pole-zero modeling) and of FFT-based methods. They concluded that the basic
periodogram (FFT) appears to be the best compromise for estimating both the spectral
distribution and dominant frequency peaks of the closing sounds of artificial heart valves.
Akay et al. [46] compared the ability of FFT and parametric methods to identify coronary
artery disease from diastolic heart sounds, and pointed out the eigenvector methods that
provided the best diagnostic performance. A different type of signal modeling is
probabilistic hidden Markov models (HMM), applied to heart sounds for identification of
S1 and S2 [47]. Non-parametric decomposition of heart sounds was used to explore the
inner structure of the signals. Homomorphic filtering was used to deconvolve heart
sounds into a sum of slowly varying and fast varying components, providing a smooth
and robust envelogram [48]. Joint time-frequency analysis is a favorable method for
decomposition and representation of heart sounds, due to the multi-component and non-
stationary nature of these signals [49]. Wood et al. used time-frequency representations
(TFR) to characterize the first heart sound in dogs [50]. They compared short-time
Fourier transform (STFT), Wigner-Ville distribution (WVD), and reduced interference
distributions (RID), including Choi-Williams distribution (CWD) and binomial
transforms. Binomial transform was highlighted as an efficient algorithm with good
cross-term suppression properties [51]. Other studies pointed out additional techniques,
including cone-kernel distribution [52] continuous wavelet transform [53] and S-

transform [54] as suitable choices for representation and analysis of S1 and S2.

1.4.2 Computational learning techniques

Signal processing methods enable to uncover the structure of the signal and to extract
features which compactly represent the properties of the raw data. Feature extraction is
usually a preceding step of a classification or regression task, which is used to infer
application-specific information from the input signals. Feature selection can utilize
domain-specific knowledge for choosing features with physical meaning (e.g. frequency,

time interval, energy), or alternatively, may be automatic, relying on general properties of
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the signals. Domain-specific features used for heart sound analysis include, for example,
dominant frequencies of the signal’s spectrum [55], bandwidth of the dominant
frequencies, mean and total spectral energy, and intensity ratio of S1 and S2 [56]. In
model-based signal analysis, the parameters of the model are a natural set of features. For
example, Guo et al. used the coefficients of 12-order all-pole system as features [57].
Bentley et al. used a search scheme to select an optimal subset of features from a larger
set, extracted using discrete wavelet transform [58]. They showed that this feature set
provide better performance than morphological features extracted from CWD in
classifying the condition of native and artificial heart valves. The application of
identifying degenerated artificial valves from features of their closure sounds was
addressed using different types of classifiers, including K-nearest neighbor (KNN),
Gaussian-Bayes and neural networks. Reported results, which seem to be optimistic,
indicate high accuracy of 89%-98% in detecting degeneration of different types of
artificial heart valves.

Unsupervised learning using morphological cluster analysis has been applied before to
biomedical imaging modalities such as magnetic resonance imaging [59], as well as to
electrocardiogram signals [60]. To the best of our knowledge, there are no previous

studies that have applied cluster analysis on the morphology of heart sounds.

1.4.3 Applications of heart sound analysis

The relation between the properties of the first heart sound and the ventricular pressure
was demonstrated by Sakamoto et al. [24], who studied the relationship between the
amplitude of the first heart sound and the maximal rate of left ventricular pressure rise in
anesthetized dogs. Their results showed a strong correlation in various experimentally-
induced cardiac conditions. Similar experiments with the amplitude of the second heart
sound [25] showed that the amplitude of the aortic component of the second heart sound
is not directly related to the aortic pressure. However, it was shown that there is a
consistent relation between the peak rate of development of the aortic-to-left ventricular
differential pressure and the amplitude of the aortic component of S2. Later it was shown
that myocardial infarction in humans caused a shift of the maximum energy of S1 to a
lower frequency range [61], and that a reduction in the spectral energy of S1 correlated

well with the presence of significant coronary artery disease [62]. More recently, Chen et
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al. showed a strong cross-correlation between the instantaneous frequency of S1 and
dP/dt of dogs in various contractile states [63]. They suggested that the resonant
frequency of S1 is proportional to the fractional power of the tension of the left-
ventricular myocardium during contraction, which relates to the left ventricular pressure
gradient by Laplaces’s law. Heckman et al. [64] used simultaneous recordings of internal
phonocardiogram and pressure waves in the left ventricle and the aorta to show that it is
possible to derive close facsimiles of the phonocardiogram by double differentiation of
the corresponding pressure pulse, and conversely to derive the pressure pulse by double
integration of the phonocardiogram. Several studies suggested methods for estimating
pulmonary artery pressure by spectral or time-frequency analysis of the second heart
sound, showing high correlation with invasive measurements [65-67].
Phonocardiography during exercise test, utilizing the increase in the amplitude of S1 as
an index of cardiac contractility reserve, was suggested by Xiao et al. [68]. Emergence of
diastolic heart sounds, S3 and S4, during handgrip static exercise has been shown to be a
useful clinical adjunct in the diagnosis of coronary artery disease [69]. Another clinical
application of heart sound analysis, addressed in many studies, is automatic detection of
murmurs and classification of innocent and pathologic murmurs [70-72]. Recently, Syed
et al. proposed an analytical framework for analysis of cardiac sounds, which may be
useful for teaching cardiac auscultation and for computer-assisted diagnosis of valvular
disease [73]. Finally, Tanaka et al. [74] described coupled analysis of respiration periods

and heart rate from phonocardiographic sensor, which can be used for home monitoring.

1.4.4 Applications of infrasound signal analysis

The techniques of apexcardiography became popular with the work of Benchimol and
Dimond, who demonstrated the clinical usefulness of the apexcardiogram signal for
timing systolic and diastolic events and assessing left ventricular function [75].
Apexcardiography-derived indexes, such as the ratio between the height of the 'a' wave
and the total vertical deflection of the trace, were found to signify elevated left-
ventricular end-diastolic pressure due to various conditions [28]. Manolas et al. showed
that the systolic upstroke time of the apexcardiogram was in close correlation with
internally measured indexes of myocardial performance: isovolumetric contraction time,

maximal dP/dt and peak velocity of shortening of the contractile elements [76]. A method
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for estimating the ejection fraction, and the mean velocity of the shortening of the
contractile elements, based on the apexcardiogram deflection at the beginning and at the
end of systole, was suggested by Antani et al. [77]. Both indexes were shown to highly
correlate with measures taken by invasive angiography procedure. The diastolic function
of the left ventricle was assessed using apexcardiography by Manolas and Rutishauser
[78]. They showed correlations between apexcardiographic time-amplitude features, and
invasively-derived indexes of ventricular relaxation and compliance (minimal dP/dt,
velocity of lengthening of the contractile elements). More recently, Manolas et al. [79]
showed that static handgrip apexcardiographic test is a useful method for detecting left
ventricular diastolic abnormalities in patients with coronary artery disease, hypertension
and cardiomyopathy.

The carotid pulse signal was commonly used for indirect measurements of systolic time
intervals [28]. The duration of the pre-ejection period (PEP) was measured from the ECG
Q-wave to the onset of the steep carotid upstroke, corrected for the delay in the pulse-
wave transmission to the neck. Left-ventricular ejection time (LVET) was measured from
the carotid upstroke to the dicrotic notch. The ratio PEP/LVET was suggested as a useful
index for systolic performance. Garrard et al. [80] showed a high correlation between
PEP/LVET and ejection fraction in patients with cardiac disease. However, on a large
series of patients with ischemic heart disease, Swatzell et al. [81] concluded that
although the PEP/LVET ratio was found to be related to the ejection fraction, the
correlation was too low and the scatter of the data was too large for reliable clinical use.
Another application of pulse wave signals is measuring the pulse wave velocity (PWV)
as an index of arterial distensibility [82]. The pulse wave velocity can be measured from
the time delay between two pulse waves (for example, carotid and radial pulses), given
the distance between the recording sites. PWV is inversely related to the arterial wall
distensibility, and increased PWV was suggested to be an early indicator of

atherosclerosis development.
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CHAPTER 2
RESEARCH METHODOLOGY

2.1 Principles of experimental methodology

The experimental methodology used in this work was based on the following principles:

1. Acquisition of vibro-acoustic heart signals from multiple recording locations.

2. Simultaneous acquisition of supplementary signals and data including
electrocardiogram, breathing pressure and echocardiographic information.

3. Controlled modulation of the hemodynamic conditions by either alternation of the
respiratory activity or induction of stress response.

4. Computational analysis of the changes induced in the vibro-acoustic heart signals by
the hemodynamic modulation.

5. Analysis of the relation between the information extracted from the vibro-acoustic
signals and ‘gold-standard’ reference information obtained from the supplementary

echocardiographic or respiratory data.

2.2 Principles of signal acquisition

Accurate and reliable acquisition of low-frequency mechanical heart signals from the
chest wall is technically challenging and requires a proper combination of transducer,
amplification and sampling hardware. The signals are picked-up using a piezoelectric
contact transducer. Piezoelectric crystals are elements that acquire an electrical charge
when compressed or deformed. The transducer is composed of a flexible metallic
membrane coupled to a piezoelectric element. The lightweight and deformable membrane
is distorted relative to the heavier housing when force is applied to its surface. The
deformation of the membrane relative to the housing generates an electric output from the
piezoelectric element (Figure 6). Piezoelectric sensors generate low voltage and current,
and have high electric impedance of 1MQ [83]. In order to amplify the signal from the
range of ImV to the typical range of analog-to-digital converters (x1V), a suitable pre-
amplifier with matching impedance and low noise figure must be used. As the

frequencies of the recorded vibrations are as low as 1Hz, the amplifier should have linear
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frequency response from DC up to the upper limit of heart sounds frequencies (400Hz).
Finally, the analog signals are sampled by a 16-bit analog-to-digital converter, ensuring
adequate resolution and accuracy. Sampling frequency should be at least 1KHz to acquire

the full range of the signal while avoiding aliasing problems.
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Figure 6: Piezoelectric contact transducer (a) and its principle of operation (b). When force F is
applied to the surface A of the membrane, it is deformed relative to the heavier housing. The
deformation x of the membrane relative to the housing generates an electric output from the
piezoelectric element [83].

2.3 Modalities of echocardiography

Echocardiography was used this work for measuring parameters of cardiovascular
function, and was taken as a ‘gold-standard’ reference. This section provides a brief
overview of the principles and the terminology of the echocardiography modalities that
were used. Echocardiography is a non-invasive imaging technique based on transmission
of ultrasound waves and detection of their echoes returning from the heart. In two-
dimensional (2D) echo, an ultrasound beam rapidly scans a selected cardiac section,
producing a tomographic image that shows the spatial structure of the heart during the
cardiac cycle. Doppler echocardiography is a modality that utilizes the Doppler principle
(2.1) to measure the direction and velocity of moving blood within the heart. In short,
transmitted sound waves returning from a moving object are received with a frequency

shift f,. This shift is directly related to the velocity (V) and angle (6) of the movement,
and the relation depends on the transmitted frequency f,and the velocity of sound c.

Measuring the Doppler shift therefore enables to calculate the velocity of the returning
object, which may be, for example, blood ejected to the aorta or filling the ventricle.
More recently, similar technology has been applied for measuring the velocity of cardiac
tissue. This modality, denoted tissue Doppler imaging (TDI), provides quantitative
information about the dynamics of cardiac wall motion, which can be used to identify

motion abnormalities [84].
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Strain echocardiography is a new technique for quantitative assessment of left-ventricular
systolic and diastolic function, based on post-processing of tissue Doppler imaging data
[85]. Tissue-Doppler assessment of ventricular function is based on measurements of
regional velocities of the cardiac walls. However, as tissue velocity measurement is
affected by the motion of the entire heart during contraction, it may not provide a reliable
estimation of cardiac contractility. Instead, the regional deformation of the myocardial
tissue and the rate of this deformation, denoted in equation (2.2) as strain (S) and strain-
rate (SR), have been shown to quantify the changes in the myocardial function during
stress echocardiography [86]. Specifically, peak systolic strain rate was found to be
strongly correlated to invasive gold-standard indices of left ventricular contractility [87].
_L-L, AL SR—ﬁzM
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(Ly: initial length; L: instantaneous length; AL: change of length; AV: change of velocity)

(2.2)

2.4 Description of data sets

2.4.1 Dobutamine stress echo data set

The data set of heart signals acquired during Dobutamine stress echo test (HSDSE) was
designed for studying the relationship between heart sound characteristics and left-
ventricular global systolic function. To induce dynamic, yet controllable, hemodynamic
changes, we used clinical settings of a routine echocardiography pharmacological stress
test. In this test, the heart’s contractility and rate are gradually augmented by
administration of a pharmacological agent called Dobutamine, while the segmental wall
motion of the heart is evaluated by echocardiography.

Patients: Data was acquired from eleven male subjects of ages 36-79 (mean 60+14),
referred to a routine Dobutamine stress echo test (DSE) for assessment of ischemic heart
disease (Table 1). Female subjects were not included in this study as chest-wall recording
in women might have introduced technical and procedural difficulties. The referral
indications included positive ergometry stress test, atypical chest pain and chest pain
during physical activity. Two of the subjects had a history of coronary artery disease.

These two subjects were diagnosed as positive for myocardial ischemia in the DSE test.
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The remaining nine patients were diagnosed as negative for ischemic heart disease. All
patients have signed an informed consent prior to their enrollment in the study.
Acquisition system: The acquisition system (Figure 7a) consisted of 4 piezoelectric
contact transducers (PPG Sensor Model 3, OHK Medical Devices, Haifa, Israel), an ECG
sensor (EKG-BTA, Vernier Software & Technology, Beaverton, OR), a preamplifier with
high input impedance and a linear frequency range of 1Hz — 4KHz (A.S. ZLIL, Bnei-
Brak, Israel), a 16-bit analog-to-digital converter (PMD-1608FS, Measurement
Computing Corp., Norton, MA), and a designated signal recording software running on a
portable personal computer. Echocardiography images were acquired using a GE Vivid 7
ultrasound machine (General Electric Healthcare, Wauwatosa, WI).

Signals: Four vibro-acoustic transducers were placed at the apex area, the aortic and
pulmonary areas (2™ intercostal space, right and left sternal border) and at the right
carotid artery. The transducers were firmly attached using either elastic straps or adhesive
bands. The patients were monitored while lying on their left side (Figure 7b). Vibro-
acoustic and ECG signals were continuously recorded during the stress test (30-45
minutes long) at a sample rate of 4KHz. Two-dimensional echo cine loops of a single
heart beat were captured before the beginning of the stress test (baseline), during each
stage of the test and following the test (recovery), from three apical views (4-chamber, 2-
chamber and apical long axis) at a high frame rate of 70-100 frames per second.
Protocol: The standard Dobutamine stress echo protocol consisted of four 3-minute
stages of increasing Dobutamine dosage, from 10 to 40ug/kg/min. If the target heart rate,
defined as 0.85 * (220 — Age), was not achieved at the end of the final stage, 0.25 mg

boluses of atropine were given at 1-min intervals, up to a maximum of 1 mg.

Figure 7: Data acquisition system, consists of piezoelectric transducers, ECG sensor, amplifier and
analog-to-digital converter (a), and its application on a subject recorded during echocardiographic
examination (b).

29



Table 1: Characteristics of the patients included in the HSDSE dataset

Num | ID | Age | Gender | Ref. reason History Test results
01 HP | 54 M atypical chest pain | None Negative
02 AK |55 M chest pain None Negative
03 SH |71 M suspected ischemia | None Negative
in exercise
04 GM | 52 M positive ergometry | None Negative
05 HS |6l M positive ergometry | None Negative
06 BM |77 M suspected ischemia | Hypertension Negative
in exercise
07 AL |52 M chest pain None Negative
08 EZ |36 M positive ergometry | None Negative
09 AB | 48 M atypical chest pain | COPD Negative
10 VM | 78 M typical chest pain MI, PCI Positive
11 RY |79 M chest pain PCI, CABG Positive
Average 60.3
Stdev 14.2

2.4.2 Respiratory pressure data set

The data set of heart sounds and respiratory pressure (HSPRS) was designed to assess the
relationship between heart sounds and respiratory condition, by acquiring signals during
controlled changes of the breathing phase - namely inspiration, expiration, and breath-
holding (‘apnea’), and of the respiratory resistive load, achieved by breathing through
resistive pipes.

Patients: Data was acquired from 12 healthy volunteers (age 29+12, 8 men, Table 2).
Acquisition system: The acquisition system consisted of two piezoelectric contact
transducers (PPG Sensor Model 3, OHK Medical Devices, Haifa, Israel), a breathing
pressure transducer (Validyne, Northridge, CA), an ECG recording system (Atlas
Researchers, Hod-Hasharon, Israel), a pre-amplifier (Alpha-Omega, Nazareth, Israel), a
16-bit analog-to-digital converter (National Instruments, Austin, TX) and a designated
signal recording software running on a portable personal computer (Figure 8).

Signals: Two channels of heart sounds, breathing pressure at the mouth and a single lead
ECG were simultaneously acquired at sampling rate of 11.025KHz. During data
recording, the subjects were sitting upright, with the heart sound transducers firmly
attached by an elastic strap on the left and right para-sternal lines at the 4™ intercostal

spaces.
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Protocol: The data was recorded while the subjects were breathing through a mouthpiece
that was side-connected to the pressure transducer and serially attached to plastic pipes
(0.5 cm OD) of varying lengths, used for altering the respiratory resistive loads. Five
levels of resistance were used: at level 0, no resistive pipe was attached, and at levels 1-4
the lengths of the resistive pipes were 8.5cm, 22cm, 66cm and 200cm, respectively. The
signals were recorded in duplicates with each resistance level during 40 seconds of
normal breathing, and during alternates between 15 seconds of normal breathing and 15

seconds of breath-hold (apnea).
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Figure 8: Experimental setup of HSPRS data set. Two channels of heart sounds, ECG and airway-
opening pressure are simultaneously acquired while the subject is breathing against resistive tubes
with variable length. The signals are amplified, digitally-sampled and saved for further
computational analysis.

Table 2: Characteristics of the subjects included in the HSPRS dataset

Num |ID Age | Gender | Additional
information

01 GAl 31| M

02 ND1 21 | F

03 NMI1 24 | M

04 NGl1 53| M

05 NM2 25| M

06 ND2 19 | F

07 NM3 20 | F

08 0Gl1 24 | M smoker

09 ST1 22| M athlete

10 ZM1 20 | F

11 RS1 54 | M athlete

12 SS1 37 ' M athlete

Average 29.2

Stdev 12.5
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2.4.3 Echo-Doppler data set

The data set of vibro-acoustic and echo Doppler signals was acquired as a pilot for
assessing the technological feasibility of signal acquisition and extraction of temporal
features of the cardiac cycles, which were compared against simultaneously-acquired
echo-Doppler measurements. The echo-Doppler audio signals are synthetic acoustic
signals, produced by the echocardiograph to provide an aural representation of the
measured velocities. The measured Doppler frequency shifts are used to synthesize a sum
of sinusoid waveforms. One signal encodes the positive frequency shifts and a second
signal encodes the negative frequency shifts. These acoustic signals are transmitted in
two separate channels. The acquisition system described in section 2.4.1 was used to
simultaneously record vibro-acoustic signals from the apex, right carotid artery, aortic
area and pulmonary area, along with one-lead ECG and echo-Doppler audio signals, at a
sampling rate of 8KHz. The subjects were recorded while lying on their left side, during
normal quiet breathing and during breath-hold. The transducers were firmly attached
using elastic straps. Doppler echocardiography was acquired from the apical window

with an Acuson Sequoia C256 ultrasound machine (Siemens Healthcare, Malvern, PA).

2.5 Data preprocessing

The acquired vibro-acoustic signals were first preprocessed in order to retain the required
frequency bands and prepare the data for further analysis. Heart sounds were digitally
filtered by a Chebishev type-I IIR band-pass filter of order 6, with a passband between
20Hz and 250Hz. Infra-sound signals were filtered between 0.8Hz and 30Hz.

Partitioning of the continuous raw signal into cardiac cycles was done using ECG-based
segmentation. The peaks of the QRS complexes (R-waves) were identified [88] and the
beginning of each cardiac cycle was defined 50ms before the R-wave. In each cardiac
cycle, peaks of S1 and S2 were identified from the energy envelogram, computed by
applying a low-pass filter on the instantaneous amplitude of the analytic signal, given in
equation (3.4). Segments of S1 were defined as 200ms slices, starting at the beginning of
the cycle. Segments of S2 were defined as 200ms slices centered at the detected energy

peak (Figure 9).
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Figure 9: Basic segmentation of heart sounds. QRS peaks of the ECG are used to partition the
continuous heart sound signal into cardiac cycles. Energy envelogram is used to identify S1 and S2.
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CHAPTER 3
COMPUTATIONAL ANALYSIS TECHNIQUES
OF HEART SIGNALS

An analysis framework of biomedical signals in general and vibro-acoustic heart signals

in particular consists of the following building blocks:

1.

Preprocessing — digital filtering of the acquired signals in order to retain only the

required frequency bands, and remove noise and artifacts.

Segmentation — partitioning of the signal into segments that represent distinct
components or events in the cardiac cycle. Heart signals are naturally separated into

heart beats or cycles, and each cycle is further segmented to identify its components.

Representation — transformation of the signal into a feature domain most suitable for
its characterization. Time-domain, spectral and joint time-frequency representations

are examples of possible representations for vibro-acoustic heart signals.

Feature extraction — selection and calculation of a compact set of features, which

reliably represent the properties of the signal.

Pattern recognition — analysis of signal’s morphology in order to identify and
characterize distinct morphological patterns. Techniques include signal alignment and
clustering.

Classification — association between features and patterns of the signal and

physiological or clinical conditions from the application domain.

The following sections describe the fundamentals of some of the methods used in this

work for signal representation, feature extraction, clustering and classification.

3.1 Analysis techniques — theoretical background

3.1.1 Time-frequency representations

Time representation of a signal, as a series of signal values sampled in time, is probably

the most natural form of examining a physical signal. Signals that have periodic

components, or that are accompanied by noise, can be better analyzed in the frequency

domain, by applying the Fourier transform, defined as:
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S(f)::Ts(ne4”ﬁd¢ (3.1)

The Fourier spectrum is an expansion of the signal into an infinite sum of sine and cosine
functions. It provides the amplitudes and phases of frequencies contained in the signal,
without any localization in time. One way to describe the signal simultaneously in both

time and frequency is to consider its instantaneous frequency.

1 deg(t)
f)y=——"- 3.2
f(@ o di (3.2)
Where ¢(¢) = arg {sa (t)} is the instantaneous phase of the analytic signal:
s, () =s(t)+iHs(t) (3.3)

The analytic signal is a complex signal, whose real part is the original signal, and
imaginary part is the Hilbert transform of the signal. The Hilbert transform is an operator
that shifts the phases of all frequency components in the spectrum of s(z) by 90°. In
addition to instantaneous frequency and phase, the analytic signal can be also used to

represent the instantaneous amplitude, defined as:

Aty =ls, (@) (3.4)

For stationary signals, whose spectral properties are constant in time, the Fourier
spectrum or the instantaneous frequency may be a sufficient description. However,
biomedical signals are often non-stationary, and may consist of multiple components that
are distinct in time and frequency. Joint time-frequency representations (TFR) provide a
solution for describing and extracting information from this type of signals. The short-
time Fourier transform (STFT), defined in equation (3.5), is a commonly-used linear
transform, based on the principle of multiplying the signal by a window function W
centered at time 7, and computing the local Fourier spectrum of the windowed signal for

each time instant [89].

S, f)= T s(OW(r-t)e ™ dr (3.5)

This method introduces the inherent tradeoff between the temporal and spectral
resolution of the representation: good time resolution requires a short window, whereas

good frequency resolution requires a long window. This limitation, which is a
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consequence of the well-known Heisenberg uncertainty principle, is partially removed in
a second type of linear transform, the wavelet transform. The wavelet transform (WT)
projects the signal on a set of basis functions, which are deduced from an elementary
function (the mother wavelet) by operations of translation and dilation. With this
representation, the time-frequency resolution is variable: good time resolution is obtained
at high frequencies, while good frequency resolution is obtained at low frequencies [90].
S-transform (ST), defined in equation (3.6), is an extension of the continuous wavelet
transform, which provides frequency-dependent resolution while maintaining a direct

relationship with the Fourier spectrum [91].

= [ ﬂ '(Hffz -i2mfT
S(t, f) j s(t) Tk e dr (3.6)

An alternative to the linear atomic decomposition of STFT and WT is to examine the
distribution of the signal’s energy along the two variables of time and frequency. Such
energy distributions are quadratic transforms of the signal, and can be expressed by a
general representation (3.7), proposed by Cohen [92].

1
47’

C(t.f:9)=— [[[ ™" p(0.7)s(u+ %)s*(u - %)dudrd@ (3.7)

Where s(u)is the time signal, s (u)is the signal’s complex conjugate, & and r are the
frequency and time lag, and ¢(8,7) is a kernel defining the specific distribution.

The Wigner-Ville distribution (WVD), given in equation (3.8) is a widely-used quadratic
transform of the Cohen’s class. It provides high resolution in both time and frequency
and has some desirable mathematical properties. However, due to its quadratic nature,
WVD produces cross terms, or interferences, which can obscure the interpretation of

multi-component signals.
_OO T, * T —i27ft
St H=|s@+-)s (t—)e dr 38
/) j (t+2)5 (=) (3.8)

Reduced-interference distributions are transforms that use different kernels in order to
suppress cross terms. For example, Choi-Williams distribution (CWD), defined by
equation (3.9), is using an exponential kernel with a single parameter o, which controls

interference suppression and frequency resolution.
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3.1.2 Principal Component Analysis

Principal component analysis (PCA) is a well-known statistical technique for
dimensionality reduction [93]. The principle of PCA is to project the data on a new
orthogonal basis, so that the variances of the linearly transformed data are sorted in
descending order along the coordinates, with the maximal variance on the first coordinate
(first principal component), the second largest variance on the second coordinate, and so
on. The projection of the original data on the first few principal components provides a
low-dimensional representation of the data, which emphasizes the significant features (in
terms of statistical variability) in the data. The choice of the significant principal
components is done by examining their associated eigenvalues.

Mathematically, the PCA algorithm finds the new basis by diagonalizing the covariance
matrix C of the zero-mean column vectors x, €[] ",i=1,..,m (equation (3.10)), and

finding its eigenvalues 4 and eigenvectorsv (principal components), such that Av =Cv.
c:izﬁﬁ (3.10)
mij-

3.1.3 Dynamic Time Warping

Dynamic time warping (DTW) is a non-linear alignment procedure of time series, which
has been extensively used in applications of speech recognition [94]. The principle of
DTW is to stretch or shrink (‘warp’) the signals along the time axis such that the distance
between them (most commonly, Euclidean distance) is minimized. Given two sequences

X=X1,X2,...5%Xn » Y=y1,V2,...,Vm, the algorithm constructs an n-by-m matrix W, such that

2

W, j)=Dist(x,,y;) :Hx,. —¥;| » and then retrieves the path through the matrix that

minimizes the total cumulative distance between the aligned sequences (Figure 16b). The
warping path is found by dynamic programming in time complexity of O(n°), or O(nw),
in case the warping windows is constrained to a window of width w around the diagonal
of the matrix. DTW provides both full mapping between the elements of the aligned

sequences, as well as a measure of the distance between the sequences.
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3.1.4 Hierarchical clustering

Clustering is an unsupervised learning technique whose purpose is to partition a dataset
into disjoint sub-sets (clusters), such that data elements within the same cluster share
some sort of similarity. Similarity is often measured using a distance metric that is
suitable for the nature of the analyzed data. One class of such metrics is the Minkowski
metric, defined in (3.11) for time series s and ». The Euclidean distance is obtained for

q =2, while g =1 yields the city-block distance.
" Ja
d(s,r)z[2|st—rt|qj (3.11)
t=1

The clustering task is defined as an optimization of a criterion function that measures the
clustering quality of any data partitioning. The most widely used criterion function is the
sum of squared error, defined in (3.12),

=YY S—miH2 s om=—Ys (3.12)

1
i=1 seC; ni seC;
where Ci,...,Cy are clusters, n; is the size of cluster C; and m; is the mean of cluster C..

In many cases, the structure of the data is hierarchical, meaning that clusters may have
subclusters. Agglomerative hierarchical clustering [95] is a procedure that initially
partitions a set of n data elements into n clusters, each containing one data element, and
then iteratively merges the two most similar clusters, until the entire dataset forms a
single cluster. The bottom of the created hierarchical tree, often represented by a
dendrogram (Figure 10), can next be pruned so that the required number of N clusters is
obtained. Alternatively, in case there are significant changes in the quality of the
clustering at different levels of the tree, pruning can be done at the hierarchy level that
best reflects the ‘natural” number of clusters in the data. Data elements below each cut are

assigned to a single cluster, creating the output data partitioning to clusters {C,,...,C, }.

Agglomerative clustering requires a measure for the distance between clusters, which is
used to select the next two clusters to be merged. Common choices for this measure are
the single-linkage and complete-linkage algorithms (3.13), using the minimal or the
maximal distance between pairs of data elements from the two clusters, respectively.

D,.(C.C)= nin_ D(s,r) , D, (C.,C)= max. D(s,r) (3.13)
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Another type of cluster distance is a step-wise optimal criterion, which chooses the
clusters such that the increase in the overall sum-of-squared error after the merge is

minimal. This type of linkage, suggested by Ward [96], is defined by:

D, (C.C) = [ fm = m | (3.14)

i
i

where n;, n; are respectively the sizes of clusters C;, C;, and m;, m; are their means.
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Figure 10: Hierarchical clustering tree. A dendrogram illustrating the process of iteratively merging
similar clusters, following by pruning of the hierarchical tree to obtain four clusters (Cj,..,Cy). The
processed signals were extracted from a time series partly displayed at the bottom of the figure.
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3.1.5 Classification

Among the numerous methods of supervised learning, we describe two classical
classification algorithms used in this work: K-nearest neighbor and linear discriminant
analysis. K-Nearest-Neighbor (KNN) is a non-parametric method that classifies a test
data element by a majority vote of the closest data elements in the training set [93]. Given
a labeled training set B and a test data element d, KNN algorithm classifies d by choosing

K train data elements{b,,...,b, } — Bthat are the closest neighbors of d under a distance
metric D:  D(d,b)<D(d,b,)<...<D(d,b,)<D(d,b,) Vb, € B, j#{l,..,K}. Then,

given that /; is the label of train data element b,, d will be classified as the statistical mode

of {/,...,[.}. In the regression case, when the training data elements are associated with
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real values v; rather than discrete class labels, the value associated with d is estimated as a

3" Dby,

weighted average: v(d) = — .
> Dd.b)

i=1 i
Discriminant Analysis (DA) finds a linear transform that maximizes the separation

between classes in the training set [97]. The maximized objective function is:

t
wS,w
!

. where S,=Yn(d.-d)d,~-d) ., S,=Yy.>(d"-d)d ~d,) are

w c=1 c=1 iec

J(w) =

the between-classes scatter matrix and the within-class scatter matrix, respectively,

. . - 1 i .
n. s the number of data elements in class ¢, d, :—Zd is the mean of class ¢ and
n

- 1 I R . . .

d= ﬁZd '= NZ n.d, 1is the mean of the entire training set. Once the transformation
i c=1

w is found, by solving an eigenvalue problem, a test data element d can be classified

toarg min D(dw,d,w) , the class whose center is closest to d, under a distance metric D.

c

The distance metric chosen to be used by the classification algorithm is the mahalanobis
distance, defined by (3.15), where V' is the covariance matrix of vectors d' and d’.

D(d',d)y=(d'—d" W (d' -d’) (3.15)
3.2 Cluster analysis and classification of heart sounds

3.2.1 Problem definition

Periodic biomedical signals, such as vibro-acoustic heart signals, exhibit considerable
morphological variations from beat to beat, resulting from the inherent variability of their
generating processes. For instance, both S1 and S2 exhibit noticeable changes in
amplitude and morphology during normal respiration (Figure 11a), and are nearly
invariable during breath-holding (Figure 11b). By exploring the relations between the

physiological processes and the beat-to-beat changes of the sound signals, we can
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associate a physiological meaning to the morphology of the signal. Given a variable
cyclical heart sound signal, we would therefore like to identify the distinct repetitious
beat morphologies, and analyze the causality of the signal variations by attempting to

predict the underlying physiological state.

3 ) 4
Time (sec) |

Figure 11: Morphological variability of heart sounds. Heart sound signal (PCG) acquired during a
single respiration cycle (RESP) exhibits considerable morphological variability of both S1 and S2 (a).
During breath-hold (apnea), there are nearly no beat-to-beat changes in S1 or S2 (b).

We describe a computational analysis framework for identifying distinct morphologies of
heart sounds and classifying them into physiological states, thus inferring physiological
parameters from the morphology of the signal (Figure 12) [98]. Heart sound signals are
first identified and extracted from the acquired data, as described in section 2.5, and then
transformed to a raw feature space in either time, frequency, or time-frequency plane.
Hierarchical clustering is applied to the signals, and the obtained clusters form a compact
representation of the data in the feature space of distances from the centers of the clusters.
In this feature space, classification or regression algorithms are used to test whether the
different signal morphologies represent different physiological states. The following
sections describe the analysis framework in detail, and discuss the choices of raw signal

representation, distance metrics and classification algorithms.

41



Preprocessing
& Segmentation

Classification &
Prediction

Cluster-Distance
Feature Space

Hierarchical
Clustering

*\‘w‘ —

Signal
Representation

.\‘nw,v w"p.’\‘. e ,‘\“[‘rl 1

1t

| Heart sound signal ‘ Predicted physiological condition

Figure 12: Signal analysis framework. Input heart sound signals are extracted, transformed to a raw
feature space and clustered according to their morphologies. Distances from the centers of the
clusters are used to compactly represent the data and classify it into physiological states.

3.2.2 Clustering and classification procedure

Hierarchical clustering, applied to heart sound signals, included the following steps:

1. Preprocessing. The signals are normalized to have zero-mean and unit-variance, and
phase-shifted to be aligned in the time-domain.

2. Calculation of similarity between data elements. The similarity between every pair of
signal cycles s, and r; is calculated using either Euclidean distance or correlation
distance, defined in equations (3.16) and (3.17), respectively.

3. Grouping of data elements into a binary cluster tree. Pairs of similar data elements are
linked together to form larger clusters, which are grouped again until a hierarchical
cluster tree is formed. Ward’s linkage function, defined in equation (3.14), was used
to measure distance between clusters.

4. Cluster determination by pruning the hierarchical tree. Given the required number of
clusters, the bottom of the hierarchical tree is pruned, and data elements below each

cut are assigned to a single cluster, creating data partitioning.

D, =ls, =l =2 (s, =) (3.16)
D05, =55 ~7) _ 1 _ 1Y

D, =1- : , §S==)58 , r==)>r (3.17)
26 =5, 0 -7 2 2

While cluster analysis identified distinct signal morphologies in the data, the

classification procedure is aimed to uncover the relation between these morphologies and
the alternating physiological conditions. This aim is achieved by evaluating the ability of
a classifier to accurately predict the label of each heart beat, given only its morphological

representation. The input of the clustering-classification framework is a data set of n heart

sound cycles, B = {(bl,ll), (b,,1, ),...,(bn,ln)} , where b; is a representation of a heart sound

42



component (e.g. S1) during a single cardiac cycle, and /; is its associated class label
l.e{L,..,L,} . The cluster analysis procedure assigns a cluster identifier to each signal
cycle, producing a clustered data setC = {(b,,¢,),(b,,c,),....(b,,c,)} , where ¢, €{l,...,N}.
Using these notations, a cluster C; is the set of signal cycles with cluster identifier ¢;:
C = {i‘(b,.,cj) € C}. Clusters that contain a minimal portion of the data, i.e. ‘Cl‘ > fn,
are denoted as significant clusters (f was set by experiment to 0.05). The center of a

cluster C; is a weighted average of the cluster’s elements, in which each signal cycle is

weighted by its similarity to the cluster’s arithmetic mean:

C,=> ob,, o, =1-D(b, (3 b)/[C,

ieC; ieC;

), where D is a distance function.

The centers of the significant clusters provide a compact representation of the
morphological variability in the entire data set. Furthermore, a signal cycle b; can be

efficiently characterized by the vector of its distances from the centers of the significant
clusters g’ = (dli,d;,._,,d}/ ) d,i =D(b,, Ek). The classification algorithm is applied in this
new feature-space of cluster distances.

The outline of the classification procedure is as follows:

1. Classification is applied separately on the data set B of each subject.

Data is partitioned into a training B”*" set and a testing set B""".

2
3. Hierarchical clustering is applied on the training set, producing clustered data C"*".
4

The centers of the significant training clusters El”""",..., C g"’" are calculated.
5. Each beat b, € B U B"" is characterized in the cluster distance space by the vector
d = (dl’ , dé,..., d]"v ) of its distances from the centers of the significant training clusters.
6. A classifier F'is constructed from the distance-space representation of the training set.
For beat b, € B"", F(b)=F(d},d;,...d})=1 , [ e{L,..L}.

7. The classification accuracy is evaluated on distance-space representation of the
testing set B

The two classification methods of K-nearest-neighbor (KNN) and discriminant analysis

(DA), were used, and their performances with different signal representations and

distance metrics were evaluated and compared.
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Since the class labels in the studies datasets represent a continuum of physiological
changes, rather than dichotomic classes, the classification accuracy CC,, was defined as

the fraction of data elements (in the range [0, /]) classified within a certain integer range

-] <5

Where /, ,Z: are discrete integers representing class labels. In most cases, m=1 was used.

m of their actual label:

cC, = ‘{b,. e B | (3.18)

3.2.3 Signal representation - simulation

The choice of the representation method of S1 and S2 signals, used in cluster analysis, is
a fundamental layer of the analysis framework. Different representations highlight
different features of the signals, and may lead to different clustering results. Figure 13
shows an example for S1 and S2 signals, represented in time, frequency and by different

joint time-frequency distributions.
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Figure 13: Representation of S1 (a) and S2 (b) in the time-domain, frequency-domain (FFT) and by
various joint time-frequency transforms: short-time Fourier transform (STFT), S-transform (ST),
Wigner-Ville distribution (WVD) and Choi-Williams distribution (CWD). STFT has fixed resolution,
while ST has frequency-dependent resolution. WVD has higher resolution, but its quadratic nature
creates cross-terms, which are suppressed in the reduced-interference CWD representation.

A simple simulation was conducted in order to realize the differences between signal
representations. The baseline simulated signal was a 30Hz sinus wave with duration of
300ms and a Gaussian amplitude modulation. Random noise with Gaussian distribution
was added to the signal, with initial signal-to-noise ratio set to 7dB. Three types of signal
transformations were simulated: (i) time shift between -200ms to 200ms, (ii) frequency
change between 20Hz to 40Hz and (iii) SNR change between -6dB and 10dB. For each of

the transformations, the correlation distance between the baseline signal and the
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transformed signal was calculated (Figure 14). Spectral signal representation was
obviously insensitive to time shifts. Time representation, on the other hand, was over
sensitive, as the distance in this case is the autocorrelation function, which fluctuates
between high positive and negative values. Time-frequency representations were more
robust to temporal shifts, providing a smooth change of the distance (Figure 14a). The
sensitivity to changes in the signal’s frequency was higher for WVD, spectral and time-
domain representations, compared to ST and STFT, which have lower frequency
resolution (Figure 14b). Finally, lower signal-to-noise ratio affected ST and WVD much
more than STFT and spectral representations, with intermediate noise sensitivity of the

time-domain representation (Figure 14c¢).
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Figure 14: The sensitivity of the correlation distance under different signal representations to
simulative changes of the temporal location (a), the frequency content (b) and the signal-to-noise
ratio (c). The baseline simulated signal is a 300ms, 30Hz sinus with a Gaussian amplitude modulation
and additive Gaussian white noise of 7dB. Bottom panels present examples of the simulated signals.
Time-frequency representations are relatively robust to temporal shifts, compared to over-sensitivity
of time-domain representation and insensitivity of spectral representation (a). WVD, spectral and
time-domain representations are more sensitive to frequency changes than ST and STFT (b). WVD
and ST are more sensitive than STFT to changes in the signal-to-noise ratio (c).

The simulation results showed that the time-frequency representations are more robust to
small alignment differences between the signals, and identified significant differences in
the sensitivity to changes of the frequency and the noise level. The choice of signal
representation is therefore tightly related to the nature of the variability in the data. In
cases where the data exhibits large variability between classes and small variability
within each class, highly-sensitive representations would provide more accurate results,
whereas when the changes in the data are more gradual and there is small between-class
variability or large within-class variability, a representation that is less sensitive but more

robust should be preferred. In order to evaluate the different representations on real data,
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as well as to study the effects of the chosen distance metric and classification algorithm,
the analysis framework was used to analyze the HSPRS and HSDSE dataset. This

analysis is described in detail in sections 4.3, 5.2 and 5.3.

3.3 Segmentation and alignment of heart signals

3.3.1 Problem definition

The inherent variability of vibro-acoustic heart signals is realized in slight beat-to-beat
changes of the components comprising the signals. Consequently, characterization of
these components in time and frequency becomes a non-trivial task. The purpose of
segmentation is to partition the signal into segments that represent distinct components or
events in the cardiac cycle. Formally, a segmentation of a signal s(?) is a function

g:R — N, which associates a segment label L, € N to each time sample of the signal:
g(s(t,))=L,. In order for the segmentation task to be a well-defined optimization

problem, we should have a quantitative measure of the agreement between the
segmentation and the ‘actual’ structure of the signal. In the supervised case, the signal is
manually or semi-automatically annotated, and the comparison between the reference
annotations and the automatic segmentation is straightforward. However, in most cases
such reference annotations are not available, and the quality of the segmentation should
be evaluated in an unsupervised manner. We suggest that the cyclical nature of heart
signals can be beneficial for segmentation, as repetitious components that are similar in
multiple signal cycles can be identified. Comparison of components between cycles
requires the compared signal to be aligned. Segmentation and alignment are
interdependent problems [99]. If the signals are perfectly-aligned, signal averaging will
highlight the repetitious components while suppressing irregular random noise between
components, simplifying the segmentation. However, in practice, alignment of
physiological signals is non-trivial: beat-to-beat morphological changes can take many
forms including temporal shifts, baseline drift, amplitude scaling, time scaling and
additive noise. In fact, alignment can benefit from prior identification of the major
components to be aligned, or in other words — prior knowledge of the segmentation will
simplify signal alignment. In the following sections we describe several techniques for

alignment and segmentation of vibro-acoustic heart signals, and discuss their properties.
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3.3.2 Signal alignment by phase-shift averaging
Phase shift averaging is an iterative procedure of multiple signal alignment [100]. The

steps of the procedure in the /™ iteration are as follows:

AL N .
1. Compute the ensemble average of the signals: S*(¢) = %Zs}(
k=1

2. For each signal s, compute the phase shift that maximizes the cross-correlation

between the signal and the average: 7, = arg max {s; (1) *S'(t+ r)}

3. Shift each signal by the computed phase: s;" (£) = s, (¢ +7})

4. Repeat stages 1-3 until a convergence criterion is met. Such criterion might require
small or zero phase shifts of all signal, small standard deviation, high average
correlation with the average signal, or maximal number of iterations (Figure 15).

(a) average CORR=0.76 (b) average CORR=0.97
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Figure 15: Phase-shift averaging of S1 signals. 109 cycles of S1, initially aligned by the peak of their
energy envelope, exhibit large variability (a). Following one iteration of PSA, the standard deviation
is significantly reduced, and the average correlation with the average signal increases from 0.76 to
0.97. The phase-shift averaged signal is therefore a more accurate representation of the signal’s
morphology.

PSA is a suitable alignment procedure when the transformation between signal cycles is

of the form: s,(¢f)=s,(¢+7,), i.e. there is a constant time delay between pairs of cycles.

However, in case different components of the signal exhibit different temporal delays
(Figure 16a), PSA will not be able to produce correct alignment for all components,

resulting in inaccurate averaging of the weaker components.
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3.3.3 Signal alignment by dynamic time warping

An alternative to the constant time shift of PSA alignment is to consider a non-linear time
scaling transformation between signals by applying dynamic time warping (DTW). DTW
aligns two time series by recursively ‘stretching’ them in time so that the cumulative
distance between the series is minimal. DTW was a popular technique in speech
recognition [94], and has been adopted for other applications of data mining and pattern
recognition [101, 102]. DTW has been previously applied on biomedical signals, such as
the electrocardiogram [103] and left-ventricular volume waveforms [104], showing its
aptness for alignment of multi-cycle physiological signals.

This technique can successfully align multi-component signals, such as cycles of S1 and
S2, where each component has a different temporal delay (Figure 16). Furthermore, the
warping path provides a complete mapping between the samples of the two signals, so in
case the segmentation of one signal is known, the segmentation of the other signal can be

easily derived.
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Figure 16: Dynamic time warping of heart sound signals. Two cycles of heart sounds that differ in
both temporal locations and morphologies of S1 and S2 (a) were aligned using DTW, by finding the
warping path with minimal cumulative error (b). Although the warped signals (c) exhibit good
temporal alignment, they also exhibit some morphological distortions (black arrows) compared to the
original signals. These distortions blur the physiological meaning of the signal’s morphology.

Conversely, conventional DTW has some drawbacks as an alignment procedure for
biomedical signals. As a general algorithm for time-series alignment, it does not
necessarily preserve the morphology of the warped signals. For biomedical signals, the
morphology of the components has a physiological meaning, and the transformation
imposed by the warping process might be physically implausible. The signals could be
mathematically aligned, but the distortions of their morphologies might cause this

alignment to be physiologically meaningless (Figure 16¢). In addition, DTW does not
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account for partial matching, where one of the signals has a component that is missing
from the other. Partial matching is a common situation in vibro-acoustic heart signals,
whose inner-structure can change from beat to beat, as a result of modulating processes
such as the respiratory activity, or irregular occurrences of pathologic sounds such as S3

and S4.

3.3.4 Multi-scale event-based segmentation

In order to constraint the signal alignment transformations to operations that are

physiologically realizable, the ‘natural’ morphology of the signal, i.e. the features that

best define the morphology, should be identified and preserved in the alignment process.

In low-frequency pulse signals such features may be minima, maxima and inflection

points of the signal. We use a multi-scale extrema detection procedure [105] to detect

extrema points and associate each detected point with a scale value. The scale indicates

whether the point is a global or a local extremum of the signal, and accordingly scores the

point’s relative importance in the description of the signal’s morphology. The steps of the

procedure are as follows (Figure 17):

1. The signal is smoothed by a convolution with a Gaussian kernel with an increasing
standard deviation parameter, constructing a scale space representation.

2. At each scale, all maxima and minima points are detected by computing the numeric
derivative of the smoothed signal.

3. Each detected point is tracked down the scale axis, from coarse to fine scale, in order
to localize it in time.

4. Points with high scale are selected as candidate segmentation points.

Following the detection of morphologically important points in each cycle of the signal,

segmentation can be carried out by grouping together similar points from multiple cycles,

and then choosing the groups of points that have the highest repeatability and lowest

inter-cycle variability [106]. Point alignment is achieved by applying DTW between the

series of detected point in each cycle and in a reference cycle, allowing each point also to

be ‘unmatched’. Selection of the best segmentation points is done by grading each point

according to the following parameters: repeatability, namely the portion of cycles in

which the point was detected, standard deviation in time and in amplitude, and maximal
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scale of detection. Examples of applying this algorithm on heart pulse signals are given in

Figure 18.
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Figure 17: Scale-space extrema detection. A carotid pulse signal (a) and its derivative (b) are
smoothed by a Gaussian filter with increasing standard deviations, creating a scale-space

representation. Minima and maxima points are detected in the signal for each scale, and tracked
from coarse to fine scale in order to identify their precise location in time.
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Figure 18: Event-based segmentation of 109 apexcardiogram (ACG) signal cycles (a) and of 31
carotid pulse (CP) cycles (b). The horizontal and vertical error bars indicate temporal and amplitude
variability. The empty circles indicate scale and the numbers indicate repeatability percentage.

3.3.5 Time-frequency component-based segmentation

A second approach of ‘component-oriented’ segmentation is to first identify the major
components in the signal’s time-frequency energy distribution, then to use these
components for alignment of multiple cycles and recognition of the repetitious and
coincidental patterns in the signal. A method for the segmentation of time-frequency

distribution using statistical features of the STFT [107] was applied to heart sound
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signals. This method is based on the principle that STFT coefficients that contain only

noise have zero-mean Gaussian distribution, while coefficients that also contain some of

the signal’s energy do not have zero-mean Gaussian distribution, and their second-order
moment is higher. The segmentation algorithm is iterative, with each iteration consisting
of the following steps:

1. Noise estimation on the non-segmented regions.

2. Local second-order moment estimation of all time-frequency locations.

3. Selection of candidate locations of signal component, using a threshold value
calculated from the estimated noise and a parameter of false detection probability.

4. Region growing around the candidate components: starting at the candidate with the
highest variance, neighbor candidates are assigned a joint label, creating spectral
patterns of each label, until most of the candidates are segmented.

The algorithm stops when the distribution of the remaining non-segmented regions is

close enough to Gaussian distribution. Gaussianity is measured by estimating the excess

kurtosis, which is the fourth standardized moment, minus the kurtosis value of the normal

distribution, as defined in equation (3.19)

Kk=ti_3 (3.19)
O

The application of the time-frequency segmentation algorithm on multi-cycle heart sound
signal with S1, S2 and S3 components [108] is demonstrated in Figure 19. On a STFT
calculated with a Hanning window of length 31 samples (28 ms), window overlap of 29
samples and 1024 frequency bins, two iterations of the time-frequency segmentation
algorithm successfully identified all occurrences of the heart sounds.

Following component segmentation, the identified signal segments should be classified to
distinct groups, in order to recognize repeating patterns and to point out irregularities. For
this unsupervised classification task we propose two alternative approaches: component
clustering and dynamic component warping. In component clustering, hierarchical
clustering is applied to either STFT-derived components or segments of the original
signal, defined by the boundaries of the STFT components. Since the components are
non-aligned and differ in size, the clustering procedure first aligns each pair of compared

components by maximizing their cross-correlation, then measures the distance between
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them. Representative results of component clustering are shown in Figure 20, where

segmented S1, S2 and S3 were clustered into separate clusters.
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Figure 19: Time-frequency component segmentation. A continuous heart sound signal with S1, S2

and S3 (a) was segmented by calculating its STFT (b) and identifying the major components in the
time-frequency representation (c).

The combination of time-frequency segmentation and clustering provides an automatic
method of heart sound segmentation without ECG-based cycle partitioning and without
using any heuristic information about the expected structure of the signal. In fact, this
method can be applied to any cyclical signal with multiple components in the time-
frequency plane.

In a scenario where the external partitioning to cardiac cycles is given, component
classification can be obtained using dynamic cycle alignment of the identified
components. This component-warping procedure aligns a pair of signal cycles by finding
the component mapping that minimizes the overall correlation distance. The temporal
order of components must be retained, but some of the components are allowed to remain
unmatched, and multiple small components can be mapped to non-overlapping regions of

a larger component. This technique enables subtle matching of subcomponents, as shown
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in Figure 21: the first cycle has an additional component of S1, while the second cycle
has an additional component of S2. The alignment procedure identified the similarity
between the main components of S1 and S2 in the two cycles, and correctly matched

these components, allowing the additional components to remain unmatched.
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Figure 20: Time-frequency component clustering. A signal section (a) from a continuous 27-second
heart sound signal that was segmented by time-frequency segmentation (Figure 19), and clustered
into three morphological clusters using STFT representation (b). Segments of S1 (green), S2 (cyan)
and S3 (red) were assigned to distinct clusters.
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Figure 21: Time-frequency component warping. Two heart sound cycles with different morphologies
of S1 and S2 were segmented using STFT (a). In the first cycle, two components of S1 were detected,
and in the second cycle two components of S2 were identified (b). Component warping using two-
dimensional cross-correlation distance matrix (d) matches the major components of S1 (green) and
S2 (red) and marks unmatched components (black), thus providing signal segmentation.
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Unlike the DTW alignment of the same pair of signals (Figure 16¢), which distorts the
morphology of the original signal, component-warping provides signal segmentation and
alignment which preserves the physiological meaning of the subcomponents.

In summary, segmentation and alignment of heart signals can be significantly improved
by adjusting the processing techniques to the morphological properties of the signal and
by exploiting its cyclical nature. Accurate identification of the key events or the major
components in the signal, either in the time-domain or in the time-frequency
representation, can be used as a preceding step for a cycle-by-cycle alignment, which
does not distort the morphology of the signal and maintains the physiological meaning of
its inner-structure. The cyclicality of heart signals allows to discriminate between
repetitious and coincidental patterns, making the proposed segmentation techniques more

robust to noise and artifacts that are common in physiological signals.
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CHAPTER 4
EXTRACTION OF CARDIAC FUNCTION
INDICES FROM HEART SIGNALS

The various analysis techniques described in the previous chapter were used for studying
the relations between cardiac function and vibro-acoustic heart signals and for extraction
of vibro-acoustic information that has physiological significance and can be used to

assess the mechanical function of the heart.

4.1 Temporal location of cardiac events

In order to assess the technical feasibility of extracting physiological features from vibro-
acoustic heart signals, pilot signal recordings have been obtained from a single subject
simultaneously with continuous-wave Echo-Doppler. The following sections describe the
developed methods for heuristic segmentation of low-frequency pulse signals,
identification of cardiac cycle events, and extraction of temporal features estimating the

systolic and diastolic time intervals of the cardiac cycle.

4.1.1 Doppler-audio processing

Spectral analysis of the recorded Doppler-audio (Figure 22a) with short-time Fourier
transform was used to reconstruct the Doppler sonograms and estimate reference values
for the temporal location of events in the cardiac cycle. The spectral coefficients at each

time instant, representing the measured Doppler frequency shifts, were converted into
velocities using the Doppler equation (2.1), with parameters 6 =0" (assuming the

transducer is parallel to the direction of blood flow), ¢ =1540m/s (the speed of sound in
tissue) and f, = 2MHz (transmission frequency). The positive velocities, representing the

movement of blood towards the transducer, quantify the blood flow through the mitral
valve during diastolic ventricular filling. The negative velocities quantify the flow of
blood through the aortic valve during systolic ejection. The reconstructed sonogram was
preprocessed by filtering-out velocities with amplitude below the estimated noise level.
The instantaneous flow through the mitral and aortic valves was estimated by integrating
the intensities (/) of the positive and negative velocities (v), respectively, at each time

instance, according to equation (4.1), followed by smoothing with a moving-average
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filter (Figure 22b). Since the Doppler audio processing of the echocardiograph imposes a
constant time delay of about 150ms between the time of the cardiac event and the time of
the transmitted synthesized audio, the resulting profiles were shifted backwards in time,
to compensate for this delay. The temporal location of the aortic ejection wave and the
mitral filling waves were manually annotated in the instantaneous flow profiles. These
annotations were used to estimate the reference systolic and diastolic time intervals and

the ejection and filling amplitudes.
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Figure 22: Doppler-audio processing. Acquired waveforms of CW-Doppler audio channels (a) are
processed by short-time Fourier transform to reconstruct the sonogram of mitral and aortic flow (b).
In the profile of the instantaneous mitral flow the two diastolic filling waves (E and A) can be
observed, while in the profile of aortic flow the ejection wave is identified, delineated by traces of
mitral valve closure (S1) and aortic valve closure (S2).

4.1.2 Vibro-acoustic signal analysis

The low-frequency pulse signals, acquired at the carotid artery (CP) and at the apex
(ACG) were segmented by a heuristic algorithm, which uses the temporal location of the
first and second heart sounds, and a-priory knowledge about the expected morphology of
the signal, to detect the location of points of interest. Each pulse signal was pre-processed

and partitioned into cardiac cycles, as describe in section 2.5. The frequency band of the
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heart sounds (20-205Hz) was segmented to identify the energy peaks of S1 and S2. PSA

algorithm, described in section 3.3.2, was used for adjusting the temporal location of the

two major heart sounds. In the CP signal, the algorithm detected the points indicating the

beginning of ejection (E), the peak of ejection (P) and the dicrotic notch (DN), using the

following heuristics (Figure 23a):

Point ‘E’ was identified as a local minimum in the proximity of S1 and the maxima of
the second derivative of the CP signal.
Point ‘P’ was identified as a local maximum between S1 and S2.

Point ‘DN’ was identified as a local minima in the proximity of S2.

In the ACG signal, the algorithm detected the points indicating phases of contraction (c),

ejection (e), relaxation (o), filling (f) and atrial contraction (a), using the following

heuristics (Figure 23b):

Point ‘e’ was identified as a local maximum in the proximity of S1.
Point ‘c” was identified as a local minimum preceding point e.
Point ‘o’ was identified as local minimum in the proximity of S2.
Point ‘f” was identified as local maximum following point o.

Point ‘a’ was identified as a local maxima preceding the ECG’s R-wave.

Time (sec)

Figure 23: Identification of events in the carotid pulse (a) and apical pulse (b) signals. Cardiac cycles
are defined by ECG. In each cycle, S1 and S2 are identified in the envelogram of the phnocardiogram
(PCGQG) signal. Their location is used to identify significant points in the CP and ACG signals.
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Using the identified temporal locations of cardiac cycle events, the following systolic and
diastolic time intervals were extracted from the CP and ACG signals:

e Pre-ejection period (PEP).

e Ejection time (ET).

e [sovolumetric relaxation time (IVRT).

e Filling time (FT).

4.1.3 The relationship between vibro-acoustic signals and the Doppler profile

The temporal relationship between the carotid pulse signal and the pattern of aortic blood
flow, obtained by Continuous-Wave Doppler, is illustrated in Figure 24. The rapid
upstroke in the CP signal, indicating the beginning of rapid ejection, coincides with the
beginning of the Doppler ejection wave. The dicrotic notch coincides with the closure of
the aortic valve (S2) and the end of the Doppler ejection wave. Figure 25 demonstrates
the temporal relationship between the apexcardiogram signal and the pattern of lateral
ventricular wall movement, obtained by tissue-Doppler imaging (TDI). The low-
frequency content of the apex pulse during diastole matches the two negative Doppler
waves of early ventricular relaxation and late atrial contraction. Thus, information fusion
from both pulse signals, as well as from sound signals, enables to locate events of the

cardiac cycle and to measure the duration of the cardiac phases with high accuracy.

velocity (cm/sec)

3 35 4 45

25
time (sec)
Figure 24: The relationship between simultaneously-acquired carotid pulse (CP) signal and
reconstructed CW-Doppler sonogram of aortic blood flow. Point ‘E’ in the CP signal coincides with
the beginning of the negative ejection wave, and point ‘DN’ coincides with the end of ejection and the
closure of the aortic valve.
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Figure 25: The relationship between simultaneously-acquired apex pulse (ACG) and the velocity profile of the
lateral wall, measured by TDI. During diastole the ACG signal consists of ‘> and ‘a’ waves, which correspond
with the negative waves (E and A) of diastolic wall movement during rapid and late ventricular filling.

The average values of the systolic and diastolic time intervals, estimated from the pulse
signals and the reference CW-Doppler profile of a healthy subject are given in Table 3. A
good agreement was observed between the time intervals measured by both methods in
terms of average and standard deviation values. The beat-to-beat filling time, derived
automatically from the apexcardiogram signal, showed a strong statistical correlation
with the Doppler-derived filling time (r=0.93, p<le-40). The average difference between
the instantaneous filling times measured by the two methods was 0.77+11.6 ms (Figure
26). Statistically-significant correlations were also observed for the ejection time and
ejection amplitude, derived automatically from the carotid pulse signal. However, as the
physiological variations of these measures are very low in rest conditions, the inherent
measurement errors of both methods mask the small beat-to-beat physiological changes,
thus weakening the correlation between the instantaneous measurements. Dynamic
modification of cardiac function is therefore required to elucidate the correlation of
systolic features. Such conditions can be achieved during dynamic exercising or

pharmacological stress test.

Table 3: Systolic and diastolic time intervals (ms) derived from apexcardiogram (ACG),
carotid pulse (CP) and CW-Doppler of 109 heart cycles recorded from a healthy subject

Time ACG Cp Doppler
interval  (ms) (ms) (ms)

PEP 594+1.8 62.4+57 66.4+59
ET 268.2 +4.1 2622 +73 262.1+7.1
IVRT 88.9+10.1 - 90.1+9.3
FT 313.1+£29.7 - 312.3+30.6
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Figure 26: Correlation (a) and statistical agreement (b) between filling time derived from apexcardiogram and
CW-Doppler of 109 heart cycles recorded from a healthy subject.

4.2 Left-ventricular systolic function

During a pharmacologically-induced stress response, there are marked changes in left-
ventricular systolic function due to the increased cardiac contractility. The HSDSE data
set was analyzed in order to identify and characterize spectral features of S1 which can be
associated with the increased cardiac contractility. The physiological association was
assessed by comparing these acoustic indices to reference strain-echocardiography

indices that are related to left-ventricular systolic function [109].

4.2.1 Echocardiography data processing

The HSDSE data set contain two-dimensional echo cine loops of a single heart beat,
captured at each stage of the stress test. The echo data was post-processed using
EchoPAC Dimension ’06 software (GE Healthcare Wauwatosa, WI) in order to calculate
peak systolic velocity (PSV) and peak systolic strain rate (PSSR). The calculation of
strain indices was done using 2D strain analysis, based on speckle tracking technique
(Figure 27). This technique allows objective analysis of the entire myocardial motion
throughout the heart cycle by tracking natural acoustic markers in the image. It was
shown to provide accurate strain measurements [110]. PSV and PSSR indices were first
calculated separately for each cardiac wall (septal, lateral, inferior, anterior, posterior, and
anteroseptal) and for three segments per wall (basal, middle and apical), and then

averaged to obtain an index of global systolic function (Figure 28). Strain indices were
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successfully calculated for 10 patients. One patient was excluded due to inadequate

quality of the captured echo images.
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Figure 27: Strain-echocardiography analysis. The contour of the left ventricle is semi-manually
defined on a 2D echo image (a). Speckle tracking is used to track basal, middle and apical segments
of the lateral wall and septum during a single cardiac cycle, and to compute instantaneous strain for
each tracked point (d) and for each segment (b), as well as average global strain (dotted line). The
point of end systole (AVC) is used to calculate the peak systolic strain in each segment (c).
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Figure 28: Strain-echocardiography indices. Global peak systolic velocity (a) and peak systolic strain
rate (b) of 10 patients during different stages of Dobutamine stress test.
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4.2.2 Acoustic signal processing

Each of the four recorded heart sound channels was first pre-processed and partitioned
into cardiac cycles as described in section 2.5 (Figure 29a). The signal cycles were
aligned by their starting points and their amplitudes were color-coded to create a two-
dimensional signal map, showing the time-domain dynamics of the first and second heart
sounds throughout the stress test (Figure 29b). S1 segments were extracted, and fast
Fourier transform (FFT) was applied to each cycle of S1. The logarithm of the power
spectrums was color-coded to generate a spectral map of S1 throughout the recording
(Figure 29c). In order to characterize the joint time-frequency energy distribution of S1,
S-transform was applied to each cycle of S1, and the resulting time-frequency
representations were grouped by the stages of the stress test and averaged to produce a

small number of representative time-frequency maps (Figure 30).
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Figure 29: Heart sounds during stress test. (a) Aligned average heart sound cycles of each stage of the
stress test, with heart rate (red labels) and test stages (white labels and colored segments).
(b) Continuous color-coded map of all heart sound signals. (¢) Continuous color-coded power
spectrum of the first heart sound (S1).
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Figure 30: S-transform time-frequency representation of S1 acoustic signal obtained in a
representative healthy subject during the stages of the stress test. Each plot represents an average of
the S-transform of all S1 cycles over a specified period of the test.

PCA was applied on the aggregation of segmented S signals. The analysis was
performed on the time-frequency representations produced by the S-transform (Figure
30), vectorized by concatenating adjacent columns. The most significant principal
components, having eigenvalues greater than 10% of the first eigenvalue, were selected
and weighted by their relative eigenvalues. The projection of the data on this weighted
combination of the significant principal components was chosen as a one-dimensional
feature representing the dynamic characteristics of the acoustic signal during the stress
test. To obtain an interpretable trend line, this feature was normalized by the median
value of the baseline stage and smoothed by a moving average filter. The resulting index,
which was denoted ‘acoustic variability index’ (AVI), is interpreted as the trend of
relative change in the spectral energy distribution of S1 (Figure 31).

A second feature extracted from the spectrum of each cycle of S1 was the frequency
bandwidth of the signal, defined by the highest frequency with significant energy content.
Prior to calculating this feature, signal cycles with a high wide-band energy content,
compared to their local environment, were classified as noise and excluded from further

processing. The bandwidth feature was calculated for each cycle by searching the
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spectrum for the first frequency whose energy is at least 10dB below the maximal energy.
The feature trend line obtained from all cycles was normalized by the median value of the

baseline stage, and denoted ‘Acosutic Spectral Index’ (ASI, Figure 32).

4.2.3 Characterization of acoustic changes during stress

The color-coded signal map in Figure 29b illustrates the time-domain characteristics of
the heart sound signal during the stress test. As expected, there are noticeable changes in
the duration of ventricular systole and diastole, as the heart rate increases in exercise and
decreases in recovery. However, there are no apparent morphological changes in the
signal that can be associated with the stress response. Fourier analysis uncovers a pattern
of an ascent in the spectral energy of the first heart sound as the Dobutamine dose is
increased, and a descent back to baseline levels during recovery (Figure 29¢). In addition
to the overall energy rise, there is also an increase in the frequency bandwidth of S1, as

higher frequency components in the range of 50-150Hz emerge and strengthen.
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Figure 31: AVI index of S1 during stress test. The top plots show the coefficients of the first 3
principal components (PC), and their linear combination, weighted by the eigenvalues. The bottom
plots show the AVI index during the entire stress test, obtained by projecting the data on the
respective PC. The red lines are the result of smoothing the projected data with a moving-average
filter.
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The time-frequency representation, obtained by S-transform, enables localization of these
spectral changes in time (Figure 30): the high-frequency components are centered about
80ms after the beginning of the signal (30ms after the peak of ECG’s QRS complex),
growing up to 150Hz in the highest Dobutamine dose, then falling back to the baseline
upper-limit frequency of 50Hz in the recovery phase. There is no apparent time shift of
the signal’s energy distribution throughout the test. PCA, applied to the vectorized time-
frequency distributions of S1, was able to identify the major frequency bands that
contribute to the data variability and to point out the temporal location of these frequency
bands. Figure 31 shows a representative example of the coefficients of the first three
principal components (PC), and the projection of the time-frequency data on these
principal components. The first PC, representing the axis with the largest data variability,
captures the pattern already observed qualitatively in the time-frequency distributions in
Figure 30: it varies from 30ms to 120ms relative to the beginning of the cycle, and from
frequency of 20Hz to 70Hz, thus showing the strengthening of the signal’s low-frequency
components. The second PC captures the variability of the high frequency components
between 110 to 150Hz for the entire duration of the S1 signal. The third PC shows a
wide-band variability of frequency ranging from 40Hz to 150Hz, localized in time around
80ms from the beginning of the cycle. This component strengthens during peak stress.
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Figure 32: ASI index of S1 during stress test. Spectral coefficients are computed by FFT for each
cycle of S1 throughout the stress test. ASI (white line) is defined for each cycle as the first frequency
whose energy is at least 10dB below the maximal energy.

65



4.2.4 The relation between acoustic indices and systolic function

The AVI trend lines, extracted from each of the four transducers and averaged, are
plotted in Figure 34 for four subjects, along with the stages of the stress test, the heart
rate and blood pressure trends and the relative change in the echocardiographic indices of
peak systolic velocity (PSV) and peak systolic strain rate (PSSR). While the AVI
provides a continuous line with one point per cardiac cycle, the reference
echocardiographic indices are available only at discrete time points of each stage in the
stress test. Nevertheless, there are strong correlations between the two indices: the
correlation coefficients between the echo indices PSV and PSSR and the corresponding
AVl values, averaged over all transducers varied from 0.83 to 0.97 (p< 0.05 in all cases).
Both paired and unpaired t-test showed that the absolute values of the acoustic spectral
index (ASI) at the end of low-dose Dobutamine induction were significantly higher than
the baseline values (p<0.04 for the 10ug stage, p<0.003 for the 20ug stage, Figure 33).
The correspondence between the ASI and the echocardiographic indices in all of the
subjects was tested by comparing the values of the relative index change at the end of the
low-dose Dobutamine stages. These points were selected since the inotropic effect is
more prominent at the early stages of the test. In addition, the higher heart rates at later
stages of the test reduce the reliability of the tissue tracking procedure used to extract the
reference echocardiographic indices. As shown in Figure 35, a good linear correlation
(r=0.78, p<0.01) was observed between ASI calculated from the apex signal and the
relative PSSR at the end of the 20ug stage. At the end of the 10ug stage the correlation

coefficient between the two indices was 0.68 (p< 0.03).
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Figure 33: Absolute ASI values of all subjects at baseline and after low-dose Dobutamine induction.
The box plot displays the median, lower quartile, upper quartile and data extent. Each marker
symbol represents a different subject.
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4.3 Unsupervised analysis of heart sound morphology

The clustering and classification framework, described in section 3.2, was applied to the
HSDSE data in order to evaluate its ability to predict the level of stress from the
morphology of S1 [111]. For each stage of the stress test in the HSDSE dataset, the
middle 1/3 of the data was used for testing, and the remaining 2/3 of the data were used
for training. Each beat was associated with the label of the corresponding stress-test
stage. The number of classes varied from 5 to 7 between subjects. All subjects had a
‘baseline’ and ‘recovery’ classes, and a varying number of stress stages. Analysis was
performed separately on S1 signals from each of the four heart sound channels.
Classification results from all four channels were combined by a majority vote scheme.
Noisy test beats that were assigned to non-significant clusters in more than two channels
were excluded (mean 31+13 test beats, 3.7% of the test set). Cluster analysis was applied
on the training data with the required number of clusters set to 16. Before clustering, the
signals were aligned by shifting each cycle to maximize the cross-correlation with an
arbitrary reference cycle. Significant clusters were defined as clusters containing at least
5% of the data. Label classification was done using either KNN with K=5 and
mahalanobis distance or DA with mahalanobis distance, defined in (3.15). Classification
performance was evaluated by computing CC1.

The average number of processed heart beats per subject was 2549+759. The number of
significant clusters identified by the cluster analysis procedure varied from 4 to 10 per
subject (mean 7+2). A considerable association was observed between the clusters and
stages of the stress test, where each stage was dominated by 2-3 clusters (Figure 36). The
same clusters were associated with the baseline and the recovery stages, indicating that
the observed morphological changes were indeed induced by the stress response.
Examining the average morphology of the detected clusters revealed a pattern of increase
in the spectral energy and bandwidth, directly related to the stress level. This pattern,
obtained by an unsupervised learning technique, is consistent with the findings about
stress-induced changes of S1 described in section 4.2. Representation of beats in the
feature space of cluster distances provided a good separation between beats from
different test stages (Figure 37). The observed change in the cluster-distance

representation of S1 was gradual and smooth, becoming more profound at higher stress
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stages, and returning back to the baseline morphology at the later stage of recovery. The
average rates of correct classification (CCy) of S1, achieved by different combinations of
signal representations, distance metrics and classifiers on all 11 subjects, varied from
77% to 86% (Table 4). Correlation distance performed better than Euclidean distance,
and DA classifier was slightly superior to KNN classifier. The best average classification
performance of 86+7% was achieved by the DA classifier on signals represented by the
S-transform and clustered using correlation distance. Time-domain representation, with
correlation distance and DA classifier, provided equivalently good performance, with
correct classification of 85+8%. Frequency-domain representation was inferior, compared
to time-domain or joint time-frequency representations. No significant differences were

observed between STFT, WVD and CWD.

Cluster Number

5 10 | 15 20 25 30
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Figure 36: Clustering results of 2725 beats of S1 acquired from a single subject during 29 minutes of
Dobutamine stress test. Clusters are marked by different colors and by number labels on the y-axis.
The stress level is represented by the bold black line, labeled with the test stages. The time-domain
and S-transform representations of the significant clusters exhibit substantial morphological
changes, strongly associated with stages of the stress test, with a return to the baseline morphology
during recovery.
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Figure 37: Cluster-distance representation of 2725 beats of S1 from a single subject, plotted by their
distances from the centers of the three largest clusters. The marker colors indicate the stage of the
beat in the stress test (baseline, 5 ascending stress levels and recovery). The morphology of S1 seems
to vary smoothly along the stages of the test, with a distinct separation between beats of consecutive
stages and a return to the baseline morphology towards the end of recovery.

Table 4: Classification performance on S1 signals from HSDSE dataset. Mean and standard
deviation of correct classification measure (CC;) of all subjects, using different configurations of
signal representation, distance metric and classification algorithm (KNN=K-Nearest Neighbor,
DA=Discriminant Analysis). Best results, obtained by ST and time-domain representations, are
indicated by boldface.

Signal representation | Distance KNN DA
metric CC1(%) CC1(%)
Time Correlation 81+£8 85+8
Euclidean 81+9 82+8
Frequency Correlation 77£9 77£11
Euclidean 75+8 77+9
Short-Time Fourier Correlation 80+8 80+8
Transform (STFT) Euclidean 78+10 80+9
S-Transform (ST) Correlation 85+7 867
Euclidean 84+0 84+8
Wigner-Ville Correlation 80+9 82+9
Distribution (WVD) Euclidean 79+9 80+9
Choi-Williams Correlation 80+9 82+9
Distibution (CWD) Euclidean 7949 80+9
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CHAPTER 5
EVALUATION OF RESPIRATORY CONDITION
BY HEART SOUND ANALYSIS

The signal analysis framework, described in section 3.2, was applied to the HSPRS
dataset in order to study the effects of the respiration phase and the respiration load on the
temporal and morphological properties of the first and second heart sounds, and to
evaluate the ability to predict parameters of the respiratory activity from the morphology
of the heart sounds [111, 112]. Analyzed data of all 12 subjects included 120 recordings
of a total of 6373 heart beats acquired during normal respiration (mean+SD
531+74/subject) and additional 6275 heart beats acquired during alternations between
respiration and apnea (mean+SD 523+73/subject). Cluster analysis, applied on the normal
respiration recordings identified, on average, 5.5+1.6 significant clusters of S1 and

6.5+0.9 significant clusters of S2, containing 96% of the recorded beats.

5.1 Periodic morphological variability of heart sounds

5.1.1 Data analysis

Following cluster analysis, the relation between the clusters produced and the respiratory
phase was first determined by assessing the morphological variability of S1 and S2
during breathing and apnea. The breathing pressure signal was automatically segmented
to identify breathing activity and apnea segments. The median pressure value of the
apnea segment in each file was defined as the zero-pressure. Pressure values above the
zero-pressure were considered as ‘expiration’, and pressure values below it were
considered ‘inspiration’. The correlation distance between each beat and a template beat,
chosen as the average of the largest cluster, was computed. The morphological variability
was defined as the standard deviation of this distance, and it was computed for 15-second
segments of breathing or apnea. Student’s t-test was used to compare the morphological
variability of S1 and S2 during respiration and during apnea across all subjects.

The periodicity of the morphological changes of S1 and S2 was evaluated by applying a
robust periodicity detection algorithm [113] on the vectors of cluster-center distances.

Given m beats, the vector of distances from the center of cluster £ is given by:
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d, = (d;,df,,_,,d/:”). d, is non-uniformly sampled, due to the beat-to-beat variability of

the heart rate, and it may contain outlier beats, due to noise interferences. The periodicity
analysis is using a robust power spectral estimate, followed by Fisher’s g-test [114],
which computes the p-value of the null hypothesis that the time series is a Gaussian noise
against the alternative hypothesis that the signal contains an added deterministic periodic
component of unspecified frequency. Multiple test corrections for the p-value’s cutoff
were done using the false discovery rate (FDR) method [115]. The cluster center that
provided the smallest p-value was selected as a template, and the identified period was

compared to the average period of the breathing pressure signal.

5.1.2 Analysis results

During normal respiration, both S1 and S2 exhibited marked beat-to-beat variability,
which nearly disappeared during apnea (Figure 38a). The heart sound variability was
periodic and apparently synchronized with the respiratory cycle. The average
morphological variability of S1 was 0.1+£0.07 during respiration and 0.03+0.03 during
apnea (Figure 38b). For S2, the average variability was 0.14+0.09 during respiration and
0.06+£0.07 during apnea (Figure 38c). Both paired and unpaired t-tests showed that the

variability of S1 and S2 during respiration was significantly higher than during apnea

(p<107 for all tests).
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Figure 38: Respiration-induced variability. (a) Respiration pressure signal from a single recording
(in arbitrary units) with beat variability of S1, S2 and heart rhythm (RR interval) during normal
respiration against high resistance and during apnea. Heart sound variability is represented by the
correlation distance between each beat and a fixed template. Both S1 and S2 exhibit periodic
morphological changes during respiration that diminishes during apnea. The standard deviation of
the correlation distance during respiration in all subjects is significantly higher than during apnea
(p<10”’) for both S1 (b) and S2 (c). The box plots display the median, lower and upper quartiles, data
extent and outliers.

72



Cluster analysis identified distinct morphologies of S1 and S2 in all subjects. Although
the heart sound morphology varied considerably between subjects, some general
observations could be made about the intra-subject morphological changes. A typical
instance of S1 clusters is shown in Figure 39a. The major component of S1, prominent in
all clusters, is a large higher-frequency vibration, which reaches its energy peaks about
40ms after the R-wave of the ECG (90 ms from the beginning of S1 segment). While in
the average of the unclustered signals the data that follows the main component is non-
informative due to the high inter-beat variability, in some of the clusters (e.g. the
inspiratory clusters 1,2,5,6) a peak of a secondary low-frequency component is clearly
recognized 50-60 ms after the peak of the main component. This ‘split’ of S1 is absent
from other significant clusters (e.g. clusters 3,5,8). A similar ‘split’ could be observed in
the clustered time-frequency representation of S2, which is demonstrated in Figure 40. In
this example, the clustering procedure identified a gradual emergence of a small low-
frequency component, peaking 75 ms after the larger, high-frequency major component.
This second component is blurred in the unclustered average of the S2 segments.

Statistical analysis of the periodicity of these apparent morphological changes was
performed on 96 recordings from all 12 subjects, breathing against 4 levels of breathing
resistance (2 recordings per resistance level per subject). Thresholds for significant
p-values were determined by setting the false discovery rate (FDR) to 0.01. For SI
signals, a significant periodic component (corrected p<0.007) was identified in 81 of the
recordings (84%). For 8 subjects periodicity was identified in all recordings, while for all
subjects periodicity was identified in at least two different recordings. The measured
period of S1 morphological changes was in high correlation (R=0.96) and good
agreement (mean difference 0.02+0.3 sec) with the average period of the respiration
cycle, measured from the breathing pressure signal (Figure 41). For S2 signals,
significant periodicity (corrected p<0.006) was identified in 63 of the recordings (66%).
All subjects had at least two recordings with periodic S2 morphology, with a strong
correlation (R=0.87) and good agreement (mean difference 0.08+0.5 sec) between the

measured period and the actual respiratory period.
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Figure 39: Clustering results of 579 beats of S1 acquired from a single subject (NM2) while breathing
against variable resistance levels R1 to R4 (a). For each of the 8 clusters, the number of beats in the
cluster is indicated, and the beats are plotted with the cluster’s average. The morphological
variability of the clustered signals is significantly lower than the variability of the unclustered data,
in which subtle changes of the morphology are smeared. The relation between the morphological
clusters and the respiratory activity is revealed by plotting the color-coded temporal location of the
clustered beats along with the breathing pressure (b) and by a polar display of the phase in the
respiratory cycle associated with each beat. A marked separation exists between inspiratory and
expiratory clusters and between low and high breathing resistance levels. Note the secondary peak of
energy at about 140 ms in the inspiratory clusters’ morphology (yellow, blue, green and magenta
clusters) that is missing in the expiratory clusters (cyan, red, gray).
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Figure 40: Clustering results of 412 beats of S2 from a single subject (ST1). For each of the 4
significant clusters, as well as for the unclustered data, the number of beats in the cluster is indicated,
and the beats are plotted with the cluster’s average (top row). The centers of the clusters, viewed by a
time-frequency representation (middle row), emphasizes the emergence of a low-frequency late
component in clusters 3 and 4. The standard deviation of the time-frequency representations (bottom
row) demonstrates the larger morphological variability of the unclustered data.
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Figure 41: A linear regression plot (a) and a Bland-Altman plot (b) showing the strong correlation
and the good statistical agreement between the period of the morphological changes of S1 and the
actual respiration period.

5.2 Modulation of heart sounds by the respiratory phase

5.2.1 Data Analysis
To test whether there is a morphological separation between beats that occur during
different phases of the respiratory cycle, each respiration cycle was mapped into the polar

phase range 0-360°, where 90° is the peak of inspiration (maximal negative pressure) and
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270° is the peak of expiration (maximal positive pressure). Each beat of S1 and S2 was
associated with the corresponding value of the instantaneous respiratory phase (0-360°),
and with the distance from the chosen cluster center. A two-tailed student’s t-test was
used to compare the distance values distribution of the beats occurring during inspiration
(respiration phase value in the range 45°-135°) and the beats occurring during expiration
(respiration phase value in the range 225°-315°). Significant p-value cutoff was
determined by FDR method.

The ability of the computational analysis framework to predict the respiratory phase from
the morphology of S1 or S2 was evaluated separately for each subject. A KNN classifier
(K=5) was trained on half of the beats, and its performance was tested on the rest of the
beats, by evaluating the accuracy of classifying beats into the correct half of the

respiratory cycle.

5.2.2 Analysis results

The morphological difference between inspiratory and expiratory beats of S1, measured
by comparing the distributions of the distances from a template beat, was found to be
statistically significant (corrected p<0.008) in 83 of the recordings (86%), indicating that
at least some of the variability in the signal’s morphology is related to the respiratory
phase. To visualize the effects of the respiratory phase on the heart sounds, S1 and S2
beats were sorted by their time of occurrence in the respiratory cycle (0-360°), and plotted
as two-dimensional color-coded maps (Figure 42). The following observations were

made regarding the variability of the heart sounds during the respiratory cycle:

Energy content of S1: In 11 of 12 subjects there was a statistically significant difference
(p<0.001) between the energy content of S1 beats occurring in proximity to peak
inspiration (phase range 45°-135°) and beats occurring in proximity to peak expiration
(phase range 225°-315°). In 9 of these subjects S1 was attenuated during inspiration
(phase 0-180°) and accentuated during expiration (phase 180°-360°). In the remaining two

subjects the opposite relation was observed.

Timing of S1: S1 was slightly delayed during inspiration in all 12 subjects. The temporal
delay from the R-wave of the ECG to the peak energy point of S1 was 4 to 20 ms longer
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in inspiratory beats, compared to expiratory beats (mean 12+6 ms). This difference was

statistically significant (p<107) in 10 of the subjects.

Split of S1: In 6 subjects, a low-frequency second component was clearly identified in S1
signals occurring during inspiration or early expiration. The peak of this component was

typically 50-60 ms after the peak of the major, high-frequency component.

Energy content of S2: In all of the subjects the energy content of S2 was significantly
higher (»<0.001) during late inspiration and early expiration (phase range 135°-225°),

compared to late expiration and early inspiration (phase range 315°-45°).

Timing of S2: S2 occurred earlier during late inspiration and early expiration in 11 of the
subjects. The peak energy of S2 during this respiratory phase occurred 6 to 28 ms earlier,

compared to late expiration and early inspiration beats (p<0.001).

Split of S2: The changes in the timing of S2 during late inspiration and early expiration
were often due to the earlier occurrence of the first, aortic component of S2, while the
second, pulmonary component did not change or was slightly delayed, producing

noticeable split-S2 morphology in 9 of the subjects.

The ability of the cluster analysis framework to automatically identify the relations
between the morphology of the first heart sounds and the respiratory phase is
demonstrated in Figure 39b. There is a marked separation between clusters on the
breathing pressure axis: some clusters (e.g.1,5,6) contain beats that occur in proximity to
the peak of inspiration (maximal negative pressure), while other clusters (e.g. 3,4,8) are
dominated by beats that occur during expiration (positive pressure). This separation is
even more apparent in Figure 39c, showing the distribution of each cluster along the
phase of the respiratory cycle. Beats of either S1 or S2 that are associated with inspiration
are characterized by the ‘split” morphology, wherein a second low-frequency component
follows the major higher-frequency component, as described in the previous section. The
clusters without this low-frequency component are typically associated with the
expiratory or transition phases of the respiration cycle. The accuracy of the respiratory-
phase classification from the heart sound morphology of all subjects is given in Table 5.
The cluster-distance representation of S1 morphologies provided a good separation

between beats associated with different halves of the respiratory cycle. Best accuracy was

77



achieved for partitioning the respiratory cycle at the points of phase 30° and 210°,
allowing small error tolerance during transitions between inspiration and expiration. The
accuracy of the phase classification rate varied between patients from 79% to 97%
(average 87+7%). Phase classification using the morphology of S2 was much less
accurate than S1, with an average correct classification of 69+8%, indicating that the
morphological changes in S2 during respiration are less predictable than the changes in

S1.

Table S: Cluster analysis and classification of the respiration status from S1 and S2. Results include
the number of significant clusters, correct classification (CC) rate of the respiratory phase and
correct classification rate with maximal one level error (CC;) of respiratory resistance from the
morphology of S1 and S2.

# |ID #beats S1 S2

#Clusters | Phase- | Resist- | #Clusters | Phase- | Resist-

CC% | CC1% CC% | CC1%

1 | GAl 528 5 92 74 7 64 57
2 | NDI 652 4 96 81 6 71 76
3 | NMl1 534 8 83 85 6 65 88
4 | NGl 479 5 94 81 8 79 61
5 | NM2 579 5 93 87 6 72 77
6 | ND2 544 4 75 65 5 57 75
7 | NM3 562 7 97 74 6 65 63
8 | 0Gl1 631 4 84 85 6 79 79
9 | STl 442 7 89 84 7 82 90
10 | ZM1 557 4 83 83 6 60 63
11 | RS1 455 8 81 90 7 59 79
12 | SS1 410 5 79 89 8 72 71
Average 531.1 5.5 87.1 81.6 6.5 68.8 73.3
Stdev 73.7 1.6 7.2 7.3 0.9 8.4 10.6
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Figure 42: Morphological and temporal changes of S1 (top) and S2 (bottom), induced by the
respiratory phase and load (subject ST1). S1 and S2 beats of each separate resistance level (R1-R4)
and of the entire recording set (All) were sorted by the phase of their occurrence in the respiratory
cycle (0-360° with inspiration occurring around 90° and expiration around 270°) and plotted as color-
coded maps (red indicating positive deflection of the signal). Note that the respiration phase axis in
each plot is slightly different, due to the arbitrary occurrence times of heart beats during respiration.
S1 is delayed and attenuated during late inspiration. S2 occurs earlier and exhibits split morphology
during late inspiration and early expiration. As the breathing load (resistance) is higher, these
changes become more prominent and occur earlier in the respiration cycle.

79



5.3 Modulation of heart sounds by the respiratory resistive load

5.3.1 Data Analysis

The relations between the morphological changes of the heart sounds, and the variations
in the breathing resistance, were examined by evaluating the performance of a classifier
in predicting the breathing resistance and the instantaneous respiratory pressure from the
signal’s morphology. For this classification task, each beat was labeled by the level of
breathing resistance used while it was acquired (RO — R4). For each subject, A KNN
classifier (K=5) was trained on half of the beats and the accuracy of resistance
classification was evaluated on the other half by computing CC, In addition to measuring
the correct classification rate per beat, the ability to correctly classify the resistance level
of the entire recording, based on the classification of the majority of beats, was evaluated.
Pressure estimation was also done using KNN. The estimated pressure was the weighted
average of the nearest neighbors. The mean pressure estimation error, relative to the

peak-to-peak amplitude of pressure variation was computed by:

LEE =

1 ¥ |B() - p(i) 6.0)

B test

b: B! Ali

where p(i) and p(i) are the reference and the estimated instantaneous pressure values of
beat i, and 4, is the peak-to-peak variation of pressure amplitude when breathing against

resistance /, € {RI,RZ,R3,R4} . The linear correlation between p(i) and p(i) was also
calculated, as well as the correlation between the peak-to-peak breathing amplitude 4,
and its estimation 4, , defined by:

A, =max{p@)|}, =r}-min{p@)|, =~} , re{R,R,,R,R,} (5.2)
The reference value of the instantaneous breathing pressure associated with beat i was
defined as v; = P(t;-7), where ¢; is the reference time point of beat i (usually, the beginning
of the cycle), and 7 is a constant delay parameter (0< r <800ms). The delay parameter 7
was chosen to provide the maximal separation between the pressure values of the

significant clusters, in terms of Fisher’s separation criterion [97], defined by:

FC= ZL p,(m, _"_1)2/211 p;S; (5.3)
1 1 ) c|
here m =— S v, S =— S (v-m). p = = |
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5.3.2 Analysis results

In addition to the cyclic morphological changes induced to the heart sounds by the
respiratory phase, there are also changes induced by the extent of the respiratory resistive
load (Figure 42). The changes in the temporal location of S1 and S2 are more prominent
when the breathing load is higher. The delay of S1 during inspiration becomes longer and
the delay of S2 during late inspiration/early expiration becomes shorter in high breathing
resistances, compared to low breathing resistances. In some of the subjects, the
magnitude of the changes in the energy and morphology of the heart sounds was also
related to the level of breathing resistance. Furthermore, the resistance level affected the
occurrence time of the aforementioned changes in the respiratory cycle: as the breathing
load was higher, the respiration-induced changes of the heart sounds occurred earlier in
inspiration. This phenomenon was observed in 10 of the subjects for temporal,
morphological or energy-related changes of S1 and S2.

Cluster analysis was able to recognize resistance-induced changes, as shown in Figure
39b: while breathing against high resistance levels (R3 and R4), distinct clusters of S1
were identified for both inspiratory and expiratory phases. A representative separation
between beats of different resistance levels is visualized in Figure 43. The ability of the
clustering and classification framework to correctly identify the breathing resistance from
the beat’s morphology was quantified by the classification results, given in Table 5.
Using time-domain signal representation, the accuracy of resistance classification with a
maximal one-level error (CCj) varied from 65% to 90% (mean 82+7%) using S1, and
from 57% to 90% (mean 73+11%) using S2. With S1-based classification, 51% of the
beats in the entire test set were classified to their exact resistance level (CCy), and 93%
were classified with a maximal two-level error (CC,), indicating that there is a good
separation between low-resistance and high-resistance beats. Since for practical
applications, resistance classification may be needed for a series of beats rather than for a
single beat, the classification performance per test recording was also evaluated.
Automatic classification of the resistance level of the entire recording, using the majority
classification of the recording’s beats, was exact (CCy) in 45 of the 60 test recordings
(75%), and correct with maximal one-level error (CC;) in 55 of the recordings (92%).

Performance comparison between different parameters of the analysis framework
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pointed-out time-domain and S-transform representations with correlation distance and
KNN classifier as preferred configurations, with an average correct classification rate of
82+7% (Table 6). The performance differences between the methods were not
significant: correlation distance was somewhat better than Euclidean distance, and the
KNN classifier was slightly better than DA. All representation methods achieved low
estimation errors, with the best result of 19+6% achieved by WVD. A high correlation
was obtained between the breathing pressure estimated from the morphology of S1 and
the pressure value associated with each beat. The correlation coefficient was 0.76 for the
2057 test beats of all 12 subjects (Figure 44A). In addition to instantaneous pressure
estimation, the peak-to-peak amplitude of the estimated pressure in each breathing
resistance level was strongly correlated with the actual pressure variation, or the actual
breathing effort (R=0.92, Figure 44B). To ascertain that these relations are indeed a
consequence of the morphological differences between beats, correctly derived by the
analysis framework, the selection of the K nearest neighbors in the cluster-distance space
was replaced by a random selection of K training beats that were used for classification
and pressure estimation. Using this random classification, the results were significantly
worse (p<107) with average CC; of 52%, and average EE of 35%. There was no

correlation whatsoever between the randomly-estimated and the actual pressure per beat.

Table 6: Classification performance on S1 signals from HSPRS dataset. Mean and standard
deviation of correct classification (CC;) and relative estimation error (EE) of all subjects, using
different configurations of signal representation, distance metric and classification algorithm
(KNN=K-Nearest Neighbor, DA=Discriminant Analysis). Best results, obtained by ST, WVD and
time-domain representations, are indicated by boldface.

Signal representation | Distance metric KNN DA EE(%)
CC1(%) CCi(%)
Time Correlation 82+7 76£11 2047
Euclidean 82+7 80+9 21+6
Frequency Correlation 77+6 7249 20+4
Euclidean 7547 74+5 2345
Short-Time Fourier Correlation 78+10 73£10 2145
Transform (STFT) Euclidean 7848 76+8 23+6
S-Transform (ST) Correlation 82+7 76x10 20+£7
Euclidean 7848 80+9 2245
Wigner-Ville Correlation 817 T7+8 19+6
Distribution (WVD) | Euclidean 80+7 79+£8 20+6
Choi-Williams Correlation 78+8 7349 2046
Distibution (CWD) Euclidean 7848 7649 2247
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Figure 43: Cluster-distance representation of 652 beats of S1 from a single subject (ND1). Each beat
is plotted by its distances from the centers of the two largest clusters (x-axis and y-axis) and by its
associated breathing pressure (z-axis). The marker colors show the breathing resistance levels and
the marker symbols designate the significant clusters of each level. There is a marked separation
between beats of different resistance levels, and within each level, between beats associated with
different respiratory phases
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Figure 44: (A) Estimated breathing pressure of 2057 test beats of S1 from all 12 subjects, plotted
against the actual breathing pressure associated with the beat. The correlation coefficient is 0.76. The
absolute pressure differences were normalized by the peak-to-peak amplitude of pressure variation
to obtain the reported average estimation error. (B) Estimated peak-to-peak amplitude of breathing
pressure of 12 subjects (4 resistance levels per subject, indicated by marker colors), plotted against
the measured amplitude of breathing pressure. The correlation coefficient is 0.92. Pressure values
are specified in arbitrary non-calibrated transducer units.
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CHAPTER 6
DISCUSSION

The relations between the physiological processes producing the heart’s sounds and infra-
sound vibrations and the morphology of the externally acquired signals are highly
complex. The mechanical interplay between myocardial contraction, blood flow and
valve activity is continuously regulated by the autonomous nervous system, and is
affected by hormonal and pulmonary activities. The filtering effects of the thoracic cavity
and the skin conducting the vibrations considerably alter the morphology of the signal
[116]. Nevertheless, vibro-acoustic heart signals, being a direct manifestation of the
mechanical cardiac cycle, bear valuable information about the functioning of the
cardiovascular system. The methods and results described in this work for extracting this
information may provide new means of continuous monitoring and assessment of
cardiovascular mechanical function. The signal analysis techniques and their utilization
on heart sound datasets provide computational insights about the choice of appropriate
methods and parameters for processing vibro-acoustic heart signals and extracting their
information. In addition, the results provide physiological insights about the nature of the
morphological variability of heart sounds and its relation to changes of ventricular

function and respiration activity.

6.1 Computational analysis techniques

6.1.1 Signal representation

Successful predictions of the physiological condition from the morphology of the signal
require suiting of the analysis techniques to the properties of the analyzed signals. Signal
representation is one of the fundamental choices within the proposed analysis framework.
When considering the problem of accurate decomposition of the signal into its
subcomponents, there are considerable differences between methods. Simple STFT is
limited by its fixed resolution, which imposes a tradeoff between temporal and spectral
resolutions. One way to avoid the resolution tradeoff is by using linear transforms with
frequency-dependent resolution, such as the wavelet transform and S-transform.

Alternatively, quadratic transforms, such as WVD and its reduced-interference
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derivatives like CWD, can be used. There is no consensus in the literature regarding the
most suitable time-frequency representation of S1 and S2. Different studies point out
different techniques, such as the binomial transform [51], cone-kernel distribution [52]
and continuous wavelet transform [53] as preferred choices. In our analysis framework,
the preservation of the relative morphological similarity between signals, under a certain
representation method, is of greater importance than the absolute accuracy of the signal’s
decomposition. The optimal signal representation and distance metric should have the
right balance between sensitivity and robustness. Sensitivity is important for detecting
minute differences between beats, and robustness is essential to reject noise-related
differences. The classification results obtained by simple time-domain representation
were comparable in most cases with the results obtained by time-frequency
representation (TFR). Both types of representations hold the same amount of information
about the signal. In TFR, this information is represented in two dimensions, with the cost
of either sub-optimal time/frequency resolution, or interference of artifactual cross-terms,
resulting from the non-linearity of the energy distribution transforms. The simulation
results (Figure 14) demonstrated the differences in the sensitivity of various
representations to changes in time, frequency and noise level, and emphasized the tight
relation between the preferred representation and nature of the data: In cases where the
data exhibits large variability between classes and small variability within each class,
highly-sensitive representations would provide more accurate results, whereas when the
changes in the data are more gradual and there is small between-class variability or large
within-class variability, a representation that is less sensitive but more robust should be
superior. On both data sets of real heart sounds S-transform representation provided
better average classification performance than other time-frequency representations. Its
advantage was evident in the HSDSE dataset, in which the changes between classes are
mostly spectral. Surprisingly, time-domain representation achieved equivalently good
classification results. These results can be explained by the fact that the beats were
aligned in the time-domain prior to their clustering, and this initial alignment helped to
mitigate most of the temporal mismatch between them. Once the starting points of all
beats were correctly aligned, intra-beat temporal variations were relatively minute,

enabling time-domain clustering to perform well.
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6.1.2 Feature extraction

Regardless of the chosen representation method, in order to classify heart sound signals
they must be transformed to a lower-dimension feature space. Typical S1 or S2 signals
are represented in the time-domain by a couple of hundred samples (200ms segments
sampled at ~1000Hz). Time-frequency representations add another order of magnitude
(30-40 frequency bins per time point), resulting in a very high dimensionality of the raw
data, which is inappropriate for classification. Previous studies on heart sound
classification used domain-specific features, such as dominant frequencies, spectral
bandwidth and signal intensities [56]. More general feature extraction techniques used
either model estimation [57] or search-based feature selection [58]. While the domain-
specific features have physical meaning and can therefore be easily interpreted, they need
to be specifically determined for every type of signal and for every data set. Automatic
feature extraction and selection methods provide a more systematic solution, but their
loose relation with the underlying physiological processes make the classification results
less traceable. We have examined two approaches for dimensionality reduction and
feature extraction of heart sounds. The proposed methods for extracting acoustic features
of cardiac function, described in section 4.2.3, include domain-specific features such as
the bandwidth of S1, as well as a unique utilization of PCA on the time-frequency
representation of the signal. PCA, which is commonly used for dimensionality reduction,
enables to characterize and localize the variability of the data. The data projection on a
new orthogonal basis of the principal components accentuates physiologically
meaningful patterns, while diminishing noise-related components. The derived one-
dimensional index is therefore more robust to noise and artifacts than straight-forward
features of spectral energy.

An alterative approach is the unsupervised representation of the data in the feature space
of cluster distances, introduced in section 3.2. The centers of the significant clusters
constitute a concise description of the most prominent signal morphologies, and the
vector of distances of each beat from these centers is extremely informative, yet
computationally sensible. For the studied heart sound datasets, typical distance-space
representation had 7-10 dimensions, enabling efficient feature extraction and

classification. The key advantage of this clustering-based method is that it is entirely
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unsupervised, not requiring any prior knowledge on the processed signals. Cluster
belonging alone, as a one-dimensional feature, is too coarse to reliably classify a data
element. As there is also considerable within-cluster morphological variability, and since
boundaries between similar clusters might be arbitrary, multi-dimensional
characterization of each beat relatively to the different major morphologies in the data is
more powerful. Another benefit of the method is its inherent robustness to irregular noise
interferences. The clustering process distinguishes between repetitious morphologies,
which are assigned to significant clusters, and coincidental patterns, which usually reflect
artifacts and are assigned to insignificant clusters. The cluster-distance feature space is
constructed using only significant clusters, and enables to easily identify noisy beats,
which are considerably distant from all major morphologies. Cluster-distance
representation is a general approach, applicable to different types of periodic signals, and
at the same time it has a simple physical interpretation of morphological signal similarity,

which can be partially visualized using three-dimensional plots (Figure 37, Figure 43).

6.1.3 Signal matching

Measuring the similarity or distance between pairs or clusters of signals is another
building block of the proposed analysis framework. The simple Euclidean and correlation
distances used for heart sound analysis provided clear visual separation between distinct
signal morphologies, as well as good overall classification results. On both datasets,
average classification results were slightly better when correlation distance was used.
This result is primarily due to the sensitivity of Euclidean distance to scale differences
between the compared signals, while the correlation distance provide more accurate
comparison of the morphologies, regardless of the absolute scales. Many time-series
comparison techniques have been proposed in the pattern recognition and data mining
literature [117]. These include methods for signal normalization and transformation,
longest common subsequence (LCS) measures and piecewise-linear representation [118].
Dynamic time warping has also been studied, with different variants developed to
improve its computational efficiency [119] and its ability to preserve the ‘natural’
morphology of the signals [120]. The landmark model [121] aimed to be consistent with
the human perception of similarity, by selecting important points (landmarks) and

smoothing the compared signals between them. Our approach of event-based
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segmentation (section 3.3.4) extends this idea by identifying the extrema points in a
multi-scale manner and using their maximal scale and multi-cycle variability as measures
of their importance. Prior identification of the significant events or components in the
signal, i.e. signal segmentation, enables to accurately align multi-component signals and
to measure their similarity component-by-component. The technique of combined time-
frequency segmentation and component-wise warping, demonstrated in section 3.3.5,
provides a signal similarity measure that is suitable for heart sounds, especially when
there is large variability in the inner component structure of the compared signals. The
potential contribution of this method to the further performance improvement of the

clustering and classification framework is left for future work.

6.1.4 Classification

The classifiers used in this work, K-nearest neighbor, and linear discriminant analysis
represent two common types of data separation: linear separation (DA) and radial
separation (KNN). On the HSPRS dataset, KNN classification provides better results than
DA. Opposite results were obtained for the HSDSE dataset, where DA was consistently
better. This apparent discrepancy can be explained by the different structures of the
cluster spaces created for the two datasets. In the HSDSE data, the Dobutamine-induced
stress causes substantial spectral changes of S1 that are reflected as extremely distinct
clusters, separable by a linear projection. The respiratory-induced variations in this
dataset are masked by the dominant stress-induced changes, and have a negligible
influence on the clustering results. On the other hand, the morphological changes of S1 in
the HSPRS data are more subtle. Most of the variation is related to the respiratory phase,
while the variation caused by changes in the breathing resistance is smaller. Beats of
different breathing resistances are therefore intermixed in the cluster-distance space, and
non-linear separation of KNN achieves better results than linear DA. In recent years,
support vector machines (SVM) have been established as an advanced classification
method, which perform better than classical methods in a wide range of applications
[122]. We have also applied SVM on the datasets of heart sounds, obtaining equivalent
performance to KNN and DA. We therefore concluded that for the task of multi-class
separation of the analyzed heart sound data, SVMs may offer only a modest performance

improvement, which does not justify its large computational overhead. The utilization of
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multiple heart sound channels, acquired simultaneously from different locations, has an
important contribution to the high classification accuracy. On the HSDSE dataset, each
separate channel provided a lower classification rate of about 80%, while the fusion of
the four classifiers made the analysis more robust and more accurate with 86% correct
classification. This approach can be extended to combining classifiers that use different
signal representations, distance metrics or classification algorithms to further improve the

accuracy.

6.2 Assessment of cardiac function

The effects of hemodynamic changes on heart sounds have been studied for many years.
The amplitude of S1 has been shown to be directly related to left-ventricular contractility
by Sakamoto et al., who reported a nearly linear relationship between the amplitude of S1
and the maximum of the time derivative of the left ventricular systolic pressure (dP/dt) in
dogs [24]. Their experiments included different variations of cardiac dynamics by drug
administration, obstruction of great vessels and induced myocardial infarction. More
recently, Chen et al. studied the properties of intracardiac and thoracic S1 in dogs in
normal, increased and decreased contractile states [63]. They analyzed S1 using cone-
kernel time-frequency distribution and identified the dominant components of the signal
in a band around 50Hz. They also reported a good cross-correlation between the
instantaneous frequency of S1 and dP/dt, thus connecting the resonant frequency of S1 to
the left ventricular pressure gradient. Clinical studies in humans showed that myocardial
infarction caused a shift in the maximum energy of S1 to a lower frequency range [61],
and that a reduction in the spectral energy of S1 correlated well with the presence of
significant coronary artery disease [62]. Our analysis of the changes in S1 during
Dobutamine-induced stress response, using principal component analysis of the time-
frequency distributions of S1, provided results that are consistent with these previous
studies. Our analysis pointed out a significant increase in the energy of the main low-
frequency component, concentrated in the band of 20-70Hz, along with the emergence of
high-frequency components in the band of 110-150Hz. These general patterns were
consistently observed in multiple recording locations in all of the subjects, despite the

significant inter-subject differences in the signal’s morphological and spectral
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characteristics. Normalizing the extracted acoustic features by their baseline value
enabled to continuously track the relative changes of S1 in each patient. The correlation
of these features with the strain-echocardiography indices supports the hypothesis that
these features of S1 reflect changes in the left ventricular systolic function.

Dobutamine affects cardiac function by stimulation of B;-adernergic receptors in the
heart, causing a significant increase in myocardial contractility and a mild increase in
heart rate (HR). As a result, both stroke volume (SV) and cardiac output (CO=SV*HR)
are augmented. With low concentrations of Dobutamine, the dominant cause of the
increased CO is the improved ventricular contractility, whereas with high concentrations
of Dobutamine there is no further change in SV, and the dominant factor is increased HR
[123]. For this reason, the correlation between the acoustic indices extracted from S1 and
the strain-echocardiography indices of contractility was examined at the end of the low-
dose Dobutamine administration (Figure 35). Although in most of the patients the pattern
of heart rate changes resembled the trend line of the acoustic indices, there was a single
patient (#11, Figure 34d) with very small changes in heart rate but significant changes in
both echocardiographic and acoustic contractility indices, showing that the acoustic
changes are independent of the heart rate. The characteristics of heart sound indices
during pathologic reduction of cardiac function could not be addressed quantitatively in
this work, due to the small number of subjects and the fact that the great majority of the
subjects had normal cardiac function. However, the single subject that was diagnosed in
the echocardiography examination with a reduced segmental wall motion during stress,
due to myocardial ischemia (subject #10) had the lowest values of absolute and relative
ASI, as well as the lowest values of PSSR, suggesting that the compromised wall motion
might result in a frequency reduction of the first heart sound. This clinical correlation
should clearly be further addressed in future work.

The clustering and classification analysis framework, applied to the HSDSE dataset in
section 4.3, offers a more general approach to assessing the cardiac function based on the
morphology of heart sounds, without explicit characterization of the monitored features.
Clustering of the time-frequency representations of SI1 provided unsupervised
confirmation to the aforementioned patterns of spectral changes in S1 during stress

response. The clusters that were automatically generated, without using any prior
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knowledge about the underlying physiological condition (Figure 36) showed evident
resemblance to the averaged representations of the corresponding test stage (Figure 30).
This visual impression was quantitatively validated by the ability to predict the stress-
level from the cluster-distance representation of S1 with a high average accuracy of 8§6%.
This framework can therefore assess cardiac function by morphological classification of
test beats into a set of physiological states, on which it was trained beforehand.
Alternatively, it can identify any recurring abnormalities that reflect morphological
deviations from the training set. It can also adapt to new data within normal morphology

by continuously updating its internal cluster-based representation of signal morphologies.

6.3 Assessment of respiratory function

The cyclic respiratory activity modulates the mechanical function of the left and right
heart through changes in the pleural pressure (Figure 45) and pulmonary blood flow. The
lowered pleural pressure during inspiration causes enhanced venous return to the right
atrium, and increased preload and stroke-volume of the right ventricle. The preload and
stroke volume of the left ventricle are decreased due to ventricular interdependence and
increased afterload [5, 124]. The left ventricle contracts with a decreased force, against a
higher arterial resistance, and S1 is attenuated. The increased difference between aortic
and left-ventricular pressure causes S2 to be accentuated. In addition, the aortic
component of S2 occurs earlier, while the pulmonary component is delayed as the right-
ventricle pressure is high. These temporal changes result in a wider split of S2.

The presented analysis of the respiratory-induced changes of heart sounds confirms and
reinforces this physiological model using modern computational tools. The clustering of
heart sounds, along with the compact representation of morphology in the feature space
of cluster distances, enabled to quantitatively analyze the complex relationship between
heart sounds and respiratory activity. Both S1 and S2 exhibited strong morphological
variability during respiration, and nearly no variability during apnea. The morphological
variability of heart sounds was found to be periodic, and the estimated period was in good
agreement with the measured duration of the respiration cycle. This apparent relation
between the respiration phase and the characteristics of heart sounds was confirmed by

identifying statistically-significant differences in the template-distance, energy content,
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and time of occurrence between beats of S1 and S2 acquired during different phases of
the respiration cycle. The common dynamics in most subjects was attenuation of Sl
during inspiration, accompanied by a small temporal delay, and accentuation of S2 during
late inspiration and early expiration, with earlier occurrence of the aortic component, and
wider split morphology. Intensity changes induced to the heart sounds by the respiration
cycle has been described by Ishikawa et al., who compared heart beats occurring in
proximity to peak inspiration and peak expiration [125]. They reported an increased
intensity of both S1 and S2 during expiration. The results of the current study are
consistent with these previous findings, and provide a more extensive and precise
analysis of the relations between heart sounds and respiration, owing to the utilization of
computerized signal analysis. For some of the studied subjects, only few of these
respiration-induced changes were observed, and there was a large inter-subject variability
in the exact characteristics of the heart sound changes. However, as the group of subjects
was relatively small, it was impractical to analyze the differences between subjects. We
did not identify specific clinical characteristics that could explain this variability in a
post-hoc evaluation. The hemodynamic changes induced by inspiration to the atrial and
arterial pressures are exaggerated during loaded inspiration [124, 126]. We have used a
simple experimental model of variable breathing resistances to obtain higher fluctuations
of pleural pressure. In most of the studied subjects, respiration-induced changes in the
timing and morphology of S1 and S2 were indeed more prominent in high-resistance
respiration. As the amplitude of heart sound was measured in uncalibrated units, and was
sensitive to slight movements of the transducers or the subject, comparison of absolute
energy content in different recordings was unreliable.

A new physiological insight from our current analysis is the relation between the
breathing resistance and the relative temporal occurrence of the morphological changes in
the respiratory cycle: with higher resistance, the heart sounds change earlier in
inspiration. This observation is consistent with the hypothesis that the lowered pleural
pressure induces the sound changes, since in high breathing effort the pleural pressure
becomes low enough to affect the cardiovascular homodynamics earlier in the respiratory
cycle. Automatic classification of respiratory phase and resistance level from the cluster-

distance representation of S1 morphology achieved good average accuracy of 87+7% and
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82+7%, respectively. The instantaneous breathing pressure of a single beat could be
estimated with an average error of less than 20%. These results provide additional
credence to the relation between the respiratory function and the heart sounds.

Although the statistical analysis showed that S2 is undergoing significant morphological
changes during respiration, classification of the respiratory condition using S2 signals
consistently achieved inferior performance compared to S1. A possible reason is that S2
has shorter duration and lower amplitude than S1, and its morphological changes are
more subtle. In addition, the multi-cycle alignment of S2 signals is less accurate as it is
performed without external ECG reference. Consequently, S2-based analysis is more
sensitive to noise interferences and signal misalignment, and may require finer methods

of signal alignment and distance measure to achieve more accurate clustering.
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Figure 45: Physiological factors affecting the morphology of heart sounds. During inspiration there is
an increase in the end-diastolic volume (EDV), or preload, of the right ventricle (RV) and a decrease
in the preload of the left ventricle (LV). The latter causes a reduced contraction of the LV and
attenuated S1. In addition, the increase in the LV afterload results in an earlier and accentuated
aortic component of S2 (A2). The delay in the pulmonary component of S2 (P2) due to the larger and
stronger RV stroke volume (SV) contributes to the split morphology of S2.
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6.4 Applications for cardiopulmonary monitoring

Continuous monitoring of cardiovascular and cardiopulmonary functions may be
beneficial in a wide range of clinical conditions such as critically-ill patients with
hemodynamic instabilities, patient after cardiac surgery with possible postoperative
complications, patients after myocardial infarction and heart failure patients with systolic
or diastolic dysfunction. In all of these conditions, the mechanical function of the heart
may be deteriorated by changes of ventricular contractility and compliance, or alterations
of arterial, venous and intra-cardiac pressures, which can be reflected by changes in the
vibro-acoustic signals. In the case of heart failure, the compensatory increase of blood
volume can lead to accumulation of fluid in the lungs and complications of pulmonary
congestion. The resulting increased respiratory load can then be reflected in the changes
induced to the heart sounds. Other respiratory dysfunctions that may affect heart sounds
include chronic obstructive pulmonary disease (COPD), asthma and mechanical
ventilation. Continuous vibro-acoustic monitoring can be carried out by online extraction
of specific signal features, such as time intervals, spectral energy and frequency
bandwidth. In addition, a more general monitoring technique is offered by the clustering
and classification framework, which can monitor morphological changes of heart sounds,
and classify heart beats into physiological states. This technique requires prior training
per subject, which may be done under controlled conditions such as a stress test,
controlled changes of respiratory resistance, or controlled induction of medication.
Alternatively, in case such multi-class training data is not available, baseline signals of a
stable condition can be used for training, and the framework can be used to identify
significant variations from baseline morphologies. Recurrent beats with morphological
dissimilarity to the training beats can be alerted as a suspected abnormality. The monitor
can also continuously adapt its training set to new signal morphologies that were
confirmed by a human inspector. Using heart sound monitoring, gradual disease
exacerbation may be identified before there are noticeable clinical symptoms or
electrocardiographic abnormalities. Another potential use is assessment of the patient’s
response to pharmaceutic treatment and adjustment of medication doses according to
monitored effects on the vibro-acoustic signals. Vibro-acoustic monitoring is a non-

invasive method, which passively acquire the physiological signals. It is simple to use,
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low-cost and portable, suitable for employment as a wearable home-monitoring device.
Alternatively, it can also be performed in an out-patient setup, requiring only minimal

equipment and technical support.

6.5 Limitations and future work

The described study of automatic heart signal analysis has some limitations. The number
of subjects in each of the analyzed datasets was relatively small while the inter-subject
variability of the signal’s morphology was naturally large. As a result, the analysis was
limited to relative changes in signal features per subject. Each subject should be
separately trained with its own baseline signal, as it is not feasible to construct a
generalized classifier for multiple subjects. We were also unable to characterize
differences between sub-groups of subjects, and specifically between ‘normal’ and
‘abnormal’ subjects.

The analyzed vibro-acoustic signals, recorded on the surface of the chest wall, are prone
to be distorted by different noise sources. Possible interferences include body
movements, environmental noise and other physiological sounds originating from
muscles, lungs or stomach. Some of these interferences produce irregular signal
morphologies, which can be detected and excluded by the analysis framework. However,
non-cardiac interferences that occur in a regular, periodic manner should be carefully
identified. The filtering effects of the thorax, lungs and skin, for instance, cannot be
easily distinguished from the cardiopulmonary-induced modulation of the signals.
However, the fact that opposite effects were consistently observed for S1 and S2 during
inspiration (S1 was attenuated and delayed while S2 was accentuated and occurred
earlier) indicates that the contribution of the conducting medium is not a major
determinant in the detected morphological changes of the signals. In order to isolate the
effects of the conducting medium, intrathoracic or transesophageal heart sound signals
should be acquired as well, which naturally requires a much more invasive research
protocol.

Invasive measures of intra-cardiac and intrathoracic pressures can also improve the
accuracy and reliability of the ‘gold-standard’ measures of cardiac function, to which the

extracted vibro-acoustic information is compared. Although the strain-echocardiography
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indices used for reference assessment of ventricular function have been shown to
correlate with invasive measures of contractility, they merely remain an estimation. An
additional drawback of these echocardiography indices is that they are given as discrete
values along a few time points rather than a continuous beat-to-beat trend line. Similarly,
the breathing pressure data, used to assess the relation between heart sounds and
respiratory activity, is an indirect estimate of the intrathoracic pressure.

The utilization of ECG for cycle segmentation and temporal location of S1 was a
simplifying choice, taken to ensure reliable, straightforward signal segmentation.
However, the methods for heart sound segmentation without ECG, proposed in section
3.3.4, can be incorporated in the analysis framework in order to remove this limitation.
Further improvement of the clustering and classification accuracy can be gained by using
component-based signal alignment as a similarity measure suited for heart sound signals.
In summary, our work has laid the grounds for more extensive clinical studies by
demonstrating some of the principle relations between heart sounds and cardiopulmonary
physiology, and the computational methods for exploring these relations. Additional
research with large groups of patients is now required in order to characterize and
generalize the changes of vibro-acoustic heart signals in specific clinico-pathological

conditions.

6.6 Conclusions

In this work, we introduced a variety of signal processing and pattern recognition
techniques for automatic analysis of vibro-acoustic heart signals. In particular, we have
studied methods of preprocessing, segmentation, alignment, time-frequency data
representation, robust feature extraction, morphological clustering and classification of
sound and infra-sound signals. We have acquired vibro-acoustic heart signals from
human subjects during experimentally-controlled modulations of the physiological
conditions, and used computational analysis methods to characterize the relations
between heart sounds and cardiorespiratory function. We found that temporal, spectral
and morphological features extracted from heart sounds can be used to estimate and
monitor indices of left-ventricular systolic function. Using a computational framework of

morphological clustering and classification of heart sounds we have shown that the
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cardiac stress level, the respiratory phase, the respiratory resistive load and the
instantaneous breathing pressure can be predicted from the signal’s morphology with
high accuracy and good noise robustness.

We demonstrated that automatic analysis of vibro-acoustic heart signals can be applied to
continuous non-invasive monitoring of cardiac and respiratory functions, thus providing a
promising technology for detection and diagnosis of mechanical dysfunctions caused by
cardiovascular and cardiopulmonary diseases. The cost-effectiveness of the technology
and its suitability for home-monitoring justify the revisit of these long-known signals

with an armory of novel analysis algorithms, which can fulfill an actual clinical necessity.
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APPENDIX A — INFORMED CONSENT FORMS

Dobutamine stress echo study
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