
REAL-TIME H.264 ENCODING BY THREAD-LEVEL PARALLELISM:
GAINS AND PITFALLS

Guy Amit and Adi Pinhas
Corporate Technology Group, Intel Corp

94 Em Hamoshavot Rd, Petah Tikva 49527, PO Box 10097
Israel

{guy.amit, adi.pinhas}@intel.com

ABSTRACT
Real-time encoding of video streams with H.264 coding
standard is a challenging task for current personal
computers. In this study, thread-level parallelism was
applied to an optimized H.264 encoder, achieving real-
time encoding of high-definition video sequences on a
quad-processor machine. The multithreaded encoder
combined data decomposition at the macroblcok level
with functional decomposition of serial tasks at the frame
level. The resulting performance speedup was up to 3.6x
on four physical processors. Analysis of the software and
hardware factors that limit the speedup of the encoder
indicated that the most dominant factors are miss rates of
L2/L3 data caches, inter-thread synchronization overhead
and the remaining sequential portions of the code. Each of
these factors constituted about one third of the overall
degradation from the theoretical speedup of 4x. It is
concluded that hardware support of multithreading, along
with optimized multithreaded software algorithms and
data structures lay the foundation for significant
performance enhancement of computationally-heavy
media applications.

KEY WORDS
Video compression, H.264, multithreading, software
parallelization

1. Introduction
H.264, also known as MPEG-4 part 10, is the latest
international video coding standard [1] that addresses
applications such as video telephony, storage, broadcast
and streaming. Similarly to earlier MPEG and H.26x
standards, H.264 is based on modules of block motion-
compensation, transform, quantization and entropy coding
(Figure 1). The new advanced coding tools [2]
collectively provide impressive coding efficiency as well
as a significant increase in the algorithmic complexity of
both encoder and decoder. The H.264 baseline encoder is
estimated to be 5x to 10x more complex than the H.263
encoder [3], while the decoder is 2x to 2.5x more complex
than the H.263 baseline decoder [4].
In order to meet the demanding requirements of the
standard, three types of solutions have been suggested by
previous studies:

(a) Reduced complexity. Low complexity algorithms that
are suboptimal in terms of the compressed video quality
were described in [3,5]. The H.264 encoder described in
[3] achieved real-time encoding of low-resolution CIF
video on a Pentium® processor. However, its reduced
complexity resulted in a 20% higher bit rate compared to
the reference encoder.
(b) Instruction-Level Parallelism (ILP). An optimized
implementation using a media instruction set was
described in [6,7]. In [6], the time-consuming modules of
the H.264 reference code were identified. The execution
time of these modules was improved using SIMD
instructions, which execute several computations in
parallel with a single instruction. As a result, the entire
codec was improved more than 3x. Nevertheless, the final
conclusion was that H.264 encoder remains too complex
to be implemented in real time on a single-core processor
of a personal computer.
(c) Thread-Level Parallelism (TLP). Multithreaded
implementation on a multiprocessor machine was
described in [8]. This study used a non-real-time, one-
frame-per-second codec. The multithreading side effects
of such a codec were too small relative to the long
computation time, and as a result, the encoder showed
nearly linear performance speedup with the number of
processors.
In the current study, we combine all three solutions
mentioned above: We start with an encoder that was
already well optimized using reduced complexity and ILP
and significantly speed up its performance by TLP. The
multithreaded encoder is capable of real-time encoding of
720p24 High Definition (HD) video (progressive
1280x720 images at a frame rate of 24Hz). To the best of
our knowledge, this is the first implementation of a real-
time H.264 encoder on a PC, in which the distributed
video processing does not cause any degradation in either
compressed video quality or bit rate.
Furthermore, as we parallelized a well-optimized codec,
we were able to reveal and closely examine the side
effects of multithreading. These side effects include cache
performance, bus bandwidth, Amdahl’s law and
synchronization overhead.
The development of microprocessor architectures that
provide TLP support in hardware makes TLP a very

promising approach for speeding up computationally-
heavy applications. Two examples are Pentium® 4
processors with Hyper-Threading (HT) technology, which
allows a single physical processor to manage data as if it
were two logical processors, and Pentium®-D, which is a
dual-core processor, where each core supports HT
technology, enabling simultaneous execution of four
threads.
The remainder of the paper is structured as follows:
Section 2 provides an overview of the parallelism options
in H.264. The implementation is detailed in Section 3.
The performance results and analysis are provided in
Sections 4. Section 5 concludes this paper.

2. Parallelism options in H.264
2.1. H.264 Overview
The modules and flow of a typical H.264 encoder are
illustrated in Figure 1: An input frame can be divided into
multiple slices. A slice is a portion of the image that is
processed independently of other slices, thus providing
better recovery from stream corruption. Each slice is
processed in units of 16x16 pixel patches, termed
macroblcoks (MB). Each macroblock is encoded in either
intra or inter mode. In intra mode, a prediction is formed
from samples in the current slice that have been
previously encoded, decoded and reconstructed. In inter
mode, a prediction is formed by motion-compensated
prediction from one or more reference pictures. The
reference pictures can be selected from past and future
pictures that have already been encoded. The prediction is
then subtracted from the current block to produce a
residual block that is transformed and quantized, to give a
set of quantized transform coefficients, which are
reordered and entropy encoded. The encoder also decodes
(reconstructs) each macroblock to provide a reference for
further predictions. A filter is applied to the reconstructed
picture to reduce the effects of blocking distortion. The
major new features introduced in H.264 include variable
block-size motion compensation with small block sizes,
quarter-sample motion vector accuracy by sub-pel
interpolation, multiple reference picture motion
compensation and context-adaptive entropy coding.

Motion
Estimation

(Flexible motion
block sizes)

Input
video
signal

Split into slices
& macroblocks
for processing

Intra
Prediction

(Advanced 4x4 and
16x16 pred modes)

Transform
(Integer 4x4 and
2x2 transform)

Quantization
(52 quant levels)

Inverse
Quantization /

Transform

Motion
Compensated

Prediction
(¼ pixel)

Entropy
Coding

(CAVLC/CABAC)

Motion
data

Quant.
transform

coeffs

Control
data

Coder Control

Prediction

Prediction
Data

Deblocking
Loop Filter

(Adaptive filter)

Reference
Picture Buffer

(Multiple reference
frame prediction)

Motion
Estimation

(Flexible motion
block sizes)

Input
video
signal

Split into slices
& macroblocks
for processing

Intra
Prediction

(Advanced 4x4 and
16x16 pred modes)

Transform
(Integer 4x4 and
2x2 transform)

Quantization
(52 quant levels)

Inverse
Quantization /

Transform

Motion
Compensated

Prediction
(¼ pixel)

Entropy
Coding

(CAVLC/CABAC)

Motion
data

Quant.
transform

coeffs

Control
data

Coder Control

Prediction

Prediction
Data

Deblocking
Loop Filter

(Adaptive filter)

Reference
Picture Buffer

(Multiple reference
frame prediction)

Figure 1: The algorithmic modules and data flow of H.264 encoder,
incluidng motion estimation/prediction, transform, quantization and
entropy coding. New features introduced in H.264 are indicated by
italicized script.

An encoded video sequence is composed of three types of
frames: I-type frames, which are encoded in intra mode,
P-type frames, which are encoded with inter prediction
from previously encoded I or P-type frames, and finally,
B-type frames, which use bidirectional prediction from
both previous and future frames.

2.2. H.264 Decomposition
The execution time of most of the computationally-
intensive modules in the H.264 scheme (e.g. motion-
estimation, entropy coding) is data dependent and cannot
be predicted. Consequently, static scheduling of the
encoder's tasks is inefficient: as some areas of the picture
might be harder to encode than others, partitioning of the
tasks between the threads might be imbalanced, resulting
in low system utilization. To better balance the threads,
the number of computational tasks that can be executed
concurrently should be higher than the number of threads.
This way, the maximal waiting time for the last thread to
complete the last computational task is reduced, and the
overall processor utilization is improved. Partitioning
video encoding algorithms to a large number of
independent tasks is not trivial. Video-encoding
algorithms search for spatial and temporal redundancy in
the video stream. Each pixel value is encoded in respect
to other pixels in the same picture, in previous pictures or
in future pictures that have already been encoded. These
dependencies impose restrictions on the parallel-
processing scheme.
H.264 partitioning can be attained by using either
functional or data decomposition. In functional
decomposition, each thread is responsible for executing a
distinct module of the encoder. The maximal number of
concurrent tasks is limited by the number of functional
modules in the algorithm, which is about 10 modules
(Figure 1). Therefore, the number of threads is typically
low, and load balancing is likely to be inefficient.
Furthermore, the bandwidth of data transfer between the
threads is typically high. In data decomposition, each
thread performs the same operations as the other threads
on different data portion. The following describes the
various data decomposition options (Figure 2):
Frame-level decomposition. The number of frames that
can be coded in parallel is determined by the sequence of
frames types in the video. A typical sequence of frames is
I1BB2B3B P4BB5B6B P7BB8B9B P10, (where the subscript of the frame
type indicates the frame's serial order). In this sequence,
only three frames can be processed concurrently, with the
following order of processing: {I1}=>{P4}=>{B2,B3,P7}
=>{B5,B6,P10}. In the low-delay sequence I1P2P3P4P5P6,
only one frame can be processed at any time.
Slice-level decomposition. Partitioning of a frame to
multiple independent slices enables parallel processing of
slices. However, slicing the image and compressing each
slice independently reduce the amount of spatial
redundancy that can be exploited. Therefore, the more
slices in the video, the higher the bit rate of the
compressed video, assuming a desirable fixed quality of
the compressed video. If the bit rate is kept fixed and the

allowed degradation in the compressed video quality is
less than 0.3db (in terms of signal-to-noise ratio), then
each picture can be divided into 4-8 slices only, resulting
in a limited number of threads.
MacroBlock- (MB) level decomposition. In standard-
definition (SD) and high-definition (HD) video there are
thousands of MB in each frame. However, the level of
MB-based parallelism is constrained by spatial
dependencies between adjacent MBs. Each MB depends
on its left, above, above-left and above-right neighbor
MBs. These dependencies originate from different
components of the encoding scheme: motion-vector
prediction, intra-prediction and deblocking filter (Figure
3). Efficient parallel processing of macroblocks requires a
scheduling algorithm that will determine the order of MB
processing, given that an MB can be processed only after
its dependencies have been satisfied.

Frames in
a sequence

Slices in
a frame

Macroblocks
in a slice

Frames in
a sequence

Slices in
a frame

Macroblocks
in a slice

Figure 2: Data decompoistion options - frame level, slice level and
macroblock level

In this paper, we have chosen to use MB-level
decomposition, due to of the advantages of good load
balancing and preserved video quality. To ensure that at
any time, there is a sufficient number of macroblocks
whose dependencies are satisfied, we used a ‘wave-front’
scheduling scheme, first described in [9]. The scheduling
scheme is illustrated in Figure 4: MBs are grouped in a
'wave-front' format, rolling from upper-left corner
downward. All macroblocks on the same wave-front are
independent (MB with the same number in Figure 4).
Their dependencies reside on previous wave-fronts, and
they can therefore be processed in parallel. Note that for
4:3 or 16:9 video, this scheme restricts the maximal
number of concurrent threads to (w+1)/2, where w is the
horizontal number of macroblocks in a frame.
Furthermore, the system utilization will be typically lower
at the beginning and at the end of a frame, where the
wave-front is shorter.

Intra Pred.
MV Pred.

Intra Pred.
MV Pred.

Deblocking
Filter

Intra Pred.
MV Pred.

Intra Pred.
MV Pred.

Deblocking
Filter

Current
MB

Figure 3: Macroblock dependencies. A macroblock can be encoded
after the macroblocks on its left, above, above-left and above-right
have been encoded. The dependeceis are enforced by the intra-
prediction, motion-vector prediction and deblocking filter modules.

3. Implementation
3.1. Threading framework
The H.264 encoder was multithreaded using Win32
threads, according to the threading framework illustrated
in Figure 5. The framework includes a single main thread,
a single I/O thread and multiple worker threads. The main
thread is responsible for initializing the framework,
performing portions of the serial preprocessing and
postprocessing logic for each frame and synchronizing
with the other threads. The I/O thread performs the rest of
the serial code, using a double-buffer mechanism. The
worker threads perform parallel macroblock compression.
Thread-safe data structures, residing in shared memory
are used to coordinate the concurrent work of the worker
threads. These data structures include a list of the
macroblocks available for processing, counters of the
remaining dependencies of each macroblock, a counter of
the processed macroblocks and pointers to the current
input and output memory buffers. Asynchronous events
are used for inter-thread signaling. This framework is
used to encode a single video frame by the following
execution scenario:
1. The main thread receives an input frame from the I/O

thread.
2. The main thread re-initializes the shared data

structures (MB list and MB dependency counters),
and signals the worker threads to start frame
compression.

3. The I/O thread (concurrently) postprocesses and
writes the previous output frame and then reads and
preprocesses the next input frame.

4. Each worker thread waits for the MB list to be non-
empty. When signaled, the worker thread pops its
next MB from the list.

5. The worker thread compresses the MB and then
updates the effected dependency counters and pushes
newly-available MBs to the list. If there are waiting
worker threads – they are signaled.

6. When all MBs in the frame have been encoded, the
worker thread signals the main thread, and the
scenario is repeated.

Figure 4: 'Wave-front' macroblock scheduling. Rolling from the
upper-left corner downward, MBs on the same wave-front can be
encoded concurrently. MB numbers indicate the processing order.
Note that each MB depends only on previously-processed MBs.

3.2. Macroblock scheduling
The order of macroblcok processing is generally dictated
by the dependencies between adjacent macroblocks, as
described in Figure 4. However, as the number of
independent macroblocks that can be processed
concurrently is typically larger than the number of
available processors, there are several alternatives for the
exact scheduling order of macroblocks. We have
implemented two scheduling policies – a FIFO scheduling
and locality-based scheduling. The FIFO scheduling
policy handles the MB list as a queue, where macroblocks
whose dependencies were satisfied are processed
according to the arbitrary order of the queue. The locality-
based scheduling attempts to improve data locality by
letting each worker thread pop the MB that is closest (in
the raster order) to the previous MB processed by the
thread. In this approach, co-located parts of the picture are
more likely to be encoded by the same processor,
improving cache coherency.

Figure 5: MB-based multithreading architecture. A main thread, an
I/O thread and multiple worker-threads synchronize using events
and thread-safe shared data structures.

3.3. Test setup
The performance of the multithreaded encoder was
measured on an Intel® XeonTM system with four
processors (IBM xSeries255) running at 2.7 Ghz. Each
processor has an 8KB first-level cache (L1), a 512KB
second-level cache (L2) and a 2048KB third-level cache
(L3) on chip. The frequency of the processors front-side
bus (FSB) is 400 Mhz (100 Mhz quad data rate). Hyper-
Threading technology was disabled, unless otherwise
specified. The operating system was Microsoft
Windows® Server 2003. Input files used for the
experiments were either SD (720x480 / 640x480) or HD
(1280x720 / 1920x1080) resolution, 25/30 FPS, 300-720
frames per stream. Execution time of different code
portions was measured by designated functions, using
accurate hardware timers. Measurements of cache and
bandwidth performance were done using Intel VTune®
performance analyzer.

4. Results & Discussion
An overall speedup ranging from 3.1x to 3.6x was
achieved on the quad-processor system. Speedup results
are summarized in Figure 6. The encoder's speedup
increased for encoding higher video resolutions (from
3.33x for SD to 3.44x for HD). Scalability was found to
be directly related to the complexity of the encoding
algorithm, expressed by the presence of B-type frames
between P-type frames (from 3.17x for HD-1080p
encoding without B frames to 3.44x for encoding with B
frames). With the Hyper-Threading feature enabled, 8
worker threads on 8 logical processors achieved higher
speedup, up to 3.63x. The average compression time of a
frame decreased as the number of worker threads
increased (up to the number of logical processors) (Figure
7). Using 4 or 8 worker threads, the real-time boundary of
41.6 milliseconds per frame (24 frames per second) was
achieved for SD sequences and HD-720p sequences.
To evaluate the time overhead imposed by the
multithreading framework, the performance of the
multithreaded encoder on a single-processor system were
compared to the baseline single-thread encoder. The
multithreaded encoder (with a single worker thread) was
found to be 5% slower than the single-thread encoder.

3.07
3.13

3.17

3.41 3.44

3.33

2.80

2.90

3.00

3.10

3.20

3.30

3.40

3.50

720x480 1280x720 1920x1080

Resolution

S
pe

ed
up

IPPP IBBP

Figure 6: Average speedup of the multithreaded encoder with four
worker threads on a quad-processor system. Speedup was measured
for encoding SD- and HD-resolution video, with B-type frames
(IBBP sequence) and without B-type frames (IPPP sequence).

The scalability achieved by the multithreaded encoder
was less than the theoretical 4x limit. The following
subsections discuss this gap in detail. The factors
examined were the serial code, synchronization overhead,
cache performance and memory bandwidth.

0

50

100

150

200

250

300

1 2 4 4-HT

Number of threads

Fr
am

e
co

m
pr

es
si

on
 ti

m
e

(m
s)

720x480 1280x720 1920x1080

Real-Time

Figure 7: Average frame compression time as a function of the
number of worker threads, for SD- and HD-resolutions. Real-time
line is defined as 41.6 ms (24 FPS).

4.1. Serial pipelining
Profiling the code of encoding an SD sequence without B-
type frames showed that the execution time of the
nonscalable serial code was about 5% of total execution

time. To reduce the relative portion of the serial code, it
was partitioned between the main thread and a designated
I/O thread that work concurrently, as illustrated in Figure
8. On the SD input mentioned above, the serial pipelining
reduced the relative execution time of the serial code from
about 5% to 3.5%, and the resulting speedup was
improved from 2.97 to 3.07. If we denote the parallel
portion of the code by P, the serial portions by
S=S1+S2=1-P and the effective number of utilized
processors by N, then the serial pipelining improves the
speedup, according to the Amdahl's law as shown in
equation (1).

)(

1

},max{

1

2121 SS
N
PSS

N
PSpeedup

++
>

+
=

 (1)

These results emphasize the asymptotic nature of the
speedup derived from Amdahl’s law, yielding a modest
speedup improvement despite the significant reduction in
the serial portion of the code.

Worker thread 1

Worker thread 2

Worker thread 3

Worker thread 4

Main thread Worker thread 1

Worker thread 2

Worker thread 3

Worker thread 4

Main thread

P S1+S2

Frame 1 Frame 2

CPU1

CPU2

CPU3

CPU4

Worker thread 1

Worker thread 2

Worker thread 3

Worker thread 4

Main
thread Worker thread 1

Worker thread 2

Worker thread 3

Worker thread 4

I/O
thread

Main
thread

I/O
thread

P S1

S2

Frame 1 Frame 2

CPU1

CPU2

CPU3

CPU4

Figure 8: (top) Execution order of the main thread and four worker
threads. (bottom) Execution order of the main thread, four worker
threads and the I/O thread.

4.2. Synchronization overhead
Two main components comprise the time overhead
imposed by the multithreading framework:
1. The time of updating the shared data structures.
2. The time of the inter-thread signaling mechanism.
When using a single worker thread, the overhead of the
shared data structure updating was measured to be 1.6%
of the frame compression time. This measurement
included the update time, MB-dependency counters and
the list of available MBs. As the number of concurrent
worker threads grows, the probability of simultaneous
access to the shared data from two or more threads
increases, and the locking mechanism that guards the
consistency of the data structures became a significant
source of additional overhead. With four worker threads,
this overhead was measured to be as large as 35% of the
frame compression time. To avoid this major bottleneck,
the number of accesses to the MB list was decreased by
allowing the worker threads to 'bypass' the MB list, and
independently choose the next MB from the macroblocks
made available in the last cycle. As a result, the overhead
of updating the shared data structures grew much more
gradually with the number of threads, composing about
2.5% of the total compression time, using four worker
threads.

The time overhead of the inter-thread signaling
mechanism was measured as the time of
sending/receiving events plus the context-switch time
whenever a thread yields the CPU while waiting for work.
Signaling between the main thread and a worker thread
occurs once per frame, while signaling between worker
threads occurs whenever there are not enough
macroblocks for all threads, typically at the beginning and
end of a frame. With a single worker thread, there is a
single synchronization event per frame. The overhead
imposed by this setting was measured to be 1.8% of the
total frame compression time. With four worker threads,
the average number of inter-thread synchronization events
per frame was found to be about 20 for each thread (out of
a total of 1200 MB in an SD-resolution frame), and the
resulting overhead becomes a significant component of
10.5% of the total frame compression time. The signaling
mechanism relies on system calls of the host operating
system, and its overhead is therefore strictly related to the
efficiency of the inter-thread communication services
provided by the operating system.

4.3. Cache performance
The miss rates of the data caches were measured for
different numbers of worker threads (Table 1). To
measure the cache performance that derives from the
encoding algorithm and exclude the cache pollution
caused by the operating system's thread scheduling, each
thread was associated to a specific processor by setting its
affinity attribute.
The L1 load miss rate did not vary significantly. The
relatively-high miss rate of L1 is a result of its small size
(8KB) and the intrinsic data-access pattern of the
algorithm, at sub-macroblock level. The L2 load miss rate
of the multithreaded encoder, compared to the single-
thread encoder, was higher by an average of 4.5K misses
per frame for each processor. Given that the additional
latency resulting from a data miss in L2 is 45 cycles, this
difference is insignificant compared to the frame
encoding time. The degradation in L3 performance is
more prominent, with an average of 7.7K more misses per
frame for each processor. As the latency for accessing the
external memory is 230 cycles, the increased L3 miss rate
can account for up to 5% of the frame encoding time (for
an SD-resolution input). Cache performance is therefore a
major scalability-limiting factor.
The cache performance with different macroblock
scheduling schemes, as described in section 3.2, produced
the same hit rates, suggesting that the cache behavior is
dominated by low-level functions that process single
macroblocks and not by the higher level scheduling at the
frame level.

Worker
threads

L1 load
miss rate (%)

L2 load
miss rate (%)

L3 read
miss rate (%)

1 8.4 4.1 52.6
4 8.6 5.2 77.1

Table 1: Cache miss rates in L1,L2 and L3 caches, using either one
or four worker threads. Miss rates are calculated for each cache
level as the number of cache misses divided by the number of cache
accesses. Input file is SD resolution.

4.4. Memory bandwidth
To test whether FSB bandwidth is a scalability-limiting
factor, the effect of the number of threads on the shared
bus bandwidth and on the average bus latency was
analyzed. As shown in Figure 9 (bottom curve), the
bandwidth utilization of the multithreaded encoder
showed sublinear direct relation to the number of threads,
with maximal values that are lower than 7% of the total
FSB bandwidth. The average latency of bus read
operations did not increase with the number of threads
(Figure 9, top curve). The memory bandwidth was
therefore concluded to have a minor effect on the
scalability of the algorithm.

214209200

153

444429429443

100

150

200

250

300

350

400

450

500

1 2 3 4

Number of threads

M
em

or
y

ba
nd

w
id

th
 (M

B
/s

ec
)

100

150

200

250

300

350

400

450

500

A
ve

ra
ge

 b
us

 la
te

nc
y

(c
yc

le
s)

Bandwidth Latency
Figure 9: Memory bandwidth (top curve) and average bus latency
(bottom curve) of a multithreaded encoder with 1-4 worker threads

4.5. Analysis of speedup degradation
The scalability of the multithreaded framework, when the
number of worker threads is increased from one to four is
limited by a collection of factors, each contributing to the
overall speedup degradation from the theoretical linear
speedup of 4x to the actual speedup of 3x to 3.6x. These
factors and their effect on the speedup, analyzed for an
SD input, are illustrated in Figure 10. The wave-front
scheme imposes submaximal utilization at the corners of
the frame. For an SD-resolution input, the maximal
speedup is therefore 3.97. When measuring the net time
of the core function that compresses a single macroblock
(data not presented), the speedup on four processors is
3.62. This decrease, contributing 38% of the total speedup
degradation, is due primarily to a lower cache hit rate.
The implemented multithreading framework imposes
overheads in thread synchronization and shared data
structure. These overheads are mainly due to the
concurrent processing of the worker threads, with an
additional contribution by the synchronization mechanism
between the main thread and the worker threads,
summing up to 36% contribution, and a resulting speedup
of 3.28. The last factor in the graph is simply the effect of
Amdahl's law due to the remaining 3.5% of serial code,
which accounts for 23% of the speedup degradation.

5. Conclusions
In this paper we have shown that thread-level parallelism
of H.264 encoder, applied at a fine-grained level of
macroblocks, can speed-up performance up to 3.6x,
achieving real-time performance on HD video sequences.
Nonetheless, as we approach the real-time barrier, the
scalability of the algorithm becomes more significantly
limited by a combination of hardware and software

factors. Our experimental results indicate cache
performance, synchronization overhead and serial code
fractions as the dominant speedup-limiting factors.
Further work is required in order to evaluate potential
ways of reducing the effects of these factors either by
µ-architecture mechanisms (e.g. cache organization) or by
software optimization (e.g. lock-free shared data
structures).

3.073.28

3.974

3.353.62

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

sp
ee

du
p

wave-
front
(3%)

cache
misses
(38%)

WT
overhead

(29%)

main-WT
overhead

(7%)

serial
code
(23%)

Figure 10: The relative contribution wave-front scheduling, cache
misses, synchronization overhead and serial code to the degradation
of the multithreaded encoder's speedup from theoretical 4x to actual
3.07x, on an example SD-resolution input.

References:
[1] ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC, Document
JVT-D157, 4th Meeting: Klagenfurt, Austria, July 2002.

[2] T. Wiegand, G.J. Sullivan, G. Bjntegaard, & A. Luthra,
Overview of the H.264/AVC video coding standard, IEEE
Transactions on Circuits and Systems for Video Technology,
13(7), 2003, 560-576.

[3] V. Iverson, J. McVeigh, & B. Reese, Real-time H.264/AVC
codec on Intel architectures, Proc. of the IEEE International
Conference on Image Processing, Vol. 2, 2004, 757-760.

[4] M. Horowitz, A. Joch, F. Kossentini, & A. Hallapuro,
H.264/AVC baseline profile decoder complexity analysis, IEEE
Transactions on Circuits and Systems for Video Technology,
13(7), 2003, 704-716.

[5] C. Kim, & C.J. Kuo, Fast Intra/Inter mode decision for
H.264 encoding using a risk-minimization criterion. Proc. of the
SPIE, Vol. 5558, 2004, 536-546.

[6] Y.K. Chen, E.Q. Li, X. Zhou, & S. Ge, Implementation of
H.264 Encoder and Decoder on Personal Computers, To appear
in the Journal of Visual Communication and Image
Representation, 2005.

[7] J. Lee, S. Moon & W. Sung, H.264 decoder optimization
exploiting SIMD instructions. Proc. of the IEEE Asia-Pacific
Conference on Circuits and Systems, Vol. 2, 2004, 1149-1152.

[8] S. Ge, X. Tian. & Y.K. Chen, Efficient multithreading
implementation of H.264 encoder on Intel hyper-threading
architecture, Proc. of the IEEE Pacific-Rim Conference on
Multimedia, Vol. 1, 2003, 469-473.

[9] E.B. van der Tol, E.G. Jaspers, & R.H. Gelderblom,
Mapping of H.264 decoding on a multiprocessor architecture,
Proc. of the SPIE, Vol. 5022, 2003, 707-718.

