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1. Abstract 

The immune system protects the living body from infectious pathogens.  To do that, 
it employs highly complex molecular mechanisms for recognition of the pathogen, 
initiation and regulation of an adequate response and memorization of the pathogen for 
possible future cases of re-infection. The ability of the immune system to produce faster 
and more efficient immune responses against re-infecting pathogens is called immune 
memory. The phenomenon and the underlying molecular principles of immune memory 
are constantly investigated by immunologists using both in-vivo and in-vitro 
experimental models. Nevertheless, many questions regarding the memory feature of the 
immune system still remain unsolved. 

Some of these questions are addressed in this work by conducting experiments ‘in-
machina’, i.e. within a computational model of the immune system. The model developed 
in this work is a cellular automaton model. It consists of the main cells and molecules of 
the immune system and simulates the spatial organization and local interactions that 
forge the immune response. The model is based on current perceptions of the basic 
principles of the immune system. The model was implemented in an Immune System 
Simulation (ISS) software, which is a general tool for conducting a broad range of 
immune system experiments in a highly controlled,  reproducible and low-cost 
environment. 

The simulation restores the basic features of the immune system, including development 
of primary and secondary immune responses against a virulent pathogen and production 
of immune memory. It is calibrated to reproduce experimental data regarding the real 
kinetics of the immune response. 

The analysis of the characteristics of immune memory within the simulation system 
yielded some new insights on the biological immune system. It is shown that the memory 
phenomenon is more likely to be manifested in an ‘affinity-based’ immune system, i.e., a 
system which requires a strict recognition criteria for triggering a response, and that the 
development of immune memory is beneficial for regulating autoimmunity. In addition, 
it is shown that an efficient immune memory will develop only if the production of 
memory cells during the primary response exceeds a given threshold. This ‘vaccination 
threshold’ ensures a successful secondary response in every case of subsequent challenge. 
This threshold may have a biological equivalent that can be used to design and evaluate 
vaccine paradigms.  

Memory cells are shown to be of significance not only for protection against re-
infections. Memory cells are shown to be crucial for the success of the primary immune 
response against virulent pathogens, and the kinetics of the primary response is 
significantly effected by the amount of memory cells produced. Moreover, the simulation 
predicts that survival of up to 5% of activated T cells is sufficient for efficient primary 
and secondary responses, an observation that supports experimental findings from 
theoretical considerations. 

Finally, the effect of the immune system recognition repertoire on the outcome of the 
immune response is analyzed. It is shown that repertoire changes occurring during the 
immune response, when the system is adapting to protect the body from the infecting 
pathogens, are the dominant factor in determining the outcome of the immune response, 
surpassing the importance of the initial lymphocyte receptor repertoire. Thus, the system 
demonstrates that an initial immune repertoire that is generated in a random fashion does 
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not affect the ability of any individual immune system to produce efficient and robust 
immune responses. 

The results produced by the simulation system presented in this work improve our 
understanding of some known characteristics of the immune system. Furthermore, they 
predict certain behaviors that can be specifically verified using experimental paradigms. 
These predictions can be used to point out possible directions for future experimental 
research. The developed simulation system can be further enhanced to include additional 
components  of the immune system and expand the range of questions that can be 
addressed with it.  

More generally, this work emphasizes the contribution of mathematical and 
computational modeling to the study of complex biological systems such as the immune 
system. Interdisciplinary research, combining knowledge from both experimental and 
theoretical methodologies, allows a better understanding of the underlying principles of 
these systems.  
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2. Introduction 

2.1 Immune System Overview 

The vertebrate immune system is designed to protect the body and maintain its 
integrity by identifying and eliminating foreign or harmful pathogens. Among these 
pathogens are bacteria, viruses, fungi, different kinds of parasites, toxins, proteins and 
other molecules or cells from external or internal origin.  Elements that can trigger an 
immune response are generally referred to as antigens. The living body has several physical 
and physiological defense mechanisms against foreign invaders[1-3]. The first barrier is 
the skin. Other barriers are epithelial cells, which separate internal systems from the outer 
environment, fluid and mocus flows, which eliminate foreign materials, and hydrolytic 
enzymes (e.g. lysozime in the tears), which neutralize bacteria and viruses. Another 
immunological line of defense is the innate immune system, which is the non-specific arm of 
the immune system. It consists mainly of a class of leukocytes (white blood cells) called 
‘phagocytes’. Phagocytes are cells that engulf and destroy extra-cellular cells and 
materials, clearing the system of both debris and pathogens. Examples of phagocytes are 
neutrophils and macrophages. Another important role of the innate immune system is to 
present peptide fragments of the engulfed pathogen on their cell surfaces, serving as an 
antigen presenting cells (APC) for the specific arm of the immune system, the acquired 
immune response. The acquired immune response is the most sophisticated and complex 
part of the immune system. It consists of a network of leukocytes and a variety of 
chemicals and molecules with complex signaling and regulation mechanisms aimed to 
control and optimize the immune response. The key cells of the acquired immune 
response are the lymphocytes. Lymphocytes are cells that are able to specifically recognize 
and respond to antigens. Antigen recognition is achieved by using a diverse set of 
molecules, called antigen receptors, which are located on the lymphocyte’s surface, and are 
able to bind to antigenic protein fragments (epitopes). Each lymphocyte carries a receptor 
of a single specificity and therefore binds a specific antigen. The binding between the 
receptor and the antigen is specific. The strength of the binding is termed affinity. The 
affinity is dependent on the chemical and spatial characteristics of the receptor and the 
antigenic epitope, and of various adhesion molecules located on the surfaces of 
lymphocytes and APCs. Antigen recognition by lymphocytes can initiate a cascade of 
events and interactions involving secretion of chemical molecules, cellular proliferation 
and differentiation that will result in elimination of the antigen and immunization of the 
body against future encounters with the same antigen or similar antigens. The affinity-
based recognition causes the acquired immune response to be slow relatively to non-
specific response mechanisms of the innate immune system, but the specificity allows the 
system to efficiently eliminate the foreign antigen, without causing autoimmune damage 
to the body’s self antigens. Lymphocytes are created in the bone marrow. They are 
separated into two compartments, named according to their development sites: T cells, 
which develop within the thymus, and B cells, which mature in the bursa in birds and in 
Peyer’s patches or the bone marrow in mammals. T cells are further separated into T-Helper 
cells and  T-Killer cells, the latter also called Cytotoxic T Lymphocytes (CTL) cells. After 
their maturation, lymphocytes enter the circulation of the lymph and blood systems. 
Most of the lymphocytes circulate through lymphoid organs like the spleen or the lymph 
nodes. Lymphocytes can be also found in the blood and in peripheral tissues. 

The different types of lymphocytes have different functions. B lymphocytes are 
responsible for the humoral immune response, namely antibody production against extra-
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cellular antigens. CTLs are responsible for the cellular immune response, namely a 
response involving killing body cells which were infected by intra-cellular antigens. T-
Helper cells, as implied by their name, help other types of lymphocytes to produce an 
effective response. The ‘Help’ signals are given and regulated through chemical binding 
of different membrane molecules, and through secretion of various signaling molecules 
named cytokines. 

In order to handle the huge variety of possible antigens, and to avoid self-attacks, the 
immune system must be able to maintain and regulate a diverse repertoire of antigen 
receptors, adjusting it to the environmental changing conditions. Doing that, the immune 
system employs many processes that are interesting from a computational point of view. 
Some of these processes involve combinatorial genetics, optimization of effectiveness, 
learning , environmental adaptation and memory.  
The diversity of lymphocyte receptors is generated by somatic gene rearrangements. 
Different parts of the receptor are encoded by sets of gene segments. During the 
lymphocyte’s development, one member of each set of gene segments is joined randomly 
to the others by DNA recombination. This results in an exponential number of possible 
combinations and a huge diversity of the receptor structures. The initial repertoire of 
antigen receptors is constantly modified by two processes: the first is the constant cellular 
death of short-lived lymphocytes and generation of new ones. The second is the 
proliferation of antigen-specific lymphocyte clones occurring after the initiation of the 
immune response. This clonal expansion narrows the total repertoire diversity until the 
foreign antigen is cleared. Most of the lymphocytes in these clones die, but some survive 
as long-lived memory cells, representing the immunological history of the body in the 
lymphocytes repertoire. 

  

2.2 Immune Memory Overview 

The immune system can ‘remember’ previously encountered antigens  for a long 
time. This memory feature is demonstrated  by the ability to produce a faster and more 
efficient secondary immune response against these antigens, and is the underlying 
principle of vaccination against  diseases commonly used by modern medicine. 
Vaccination has successfully eradicated several human infectious diseases in the last 
century, while for many other important diseases there is still no effective vaccine. 
Therefore, new vaccination types and various routes of administration are subject to 
continuous research. The specific requirements for successful vaccination vary according 
to the nature of the infecting organism [1]. For extra-cellular organisms, antibody provide 
the most important defense mechanism, while for control of intra-cellular pathogens an 
effective CTL response is also essential.  More generally, an effective vaccine must be 
safe (i.e. should not itself cause illness) and give a sustained protection (of few years) 
against the live pathogen with high success rate at the population level. 

The molecular mechanisms of immunological memory are not yet fully understood [4, 5]. 
It is commonly believed that memory is maintained by long-lived memory cells that are 
generated during the primary immune response. Memory lymphocytes improve the recall 
response by both increasing the frequency of antigen specific cells and by employing a 
faster and more precise response mechanism against the antigen. 

 The developmental process and characteristics of B and T memory cells are subjects of 
constant biological research. The response dynamics of T lymphocytes includes three 
phases. In the initial activation and proliferation phase antigen specific cells become 
activated, differentiate into effector cells and expand rapidly. In the second phase, the 
death phase, most of the activated cells die and disappear. In the last phase, the memory 
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phase, a stable pool of memory cells is generated, and this pool survives for a long time 
[5]. It is difficult to distinguish memory T cells from activated T cells  on the basis of cell 
surface markers. The distinct characteristics of memory T cells , their signaling pathways 
and activation mechanisms are not fully understood. It was experimentally shown that 
memory T cells that developed in one animal can be transferred to another animal and 
protect it against a specific antigen for a long time [6]. It was also shown that that 
memory T cells that were produced in the primary response exhibit cytotoxic activity in-
vitro [7]. 

Another aspect of understanding memory T lymphocytes is elucidating the precise 
differentiation pathway of these cells. One view is that there is a linear differentiation 
process of effector T cells into memory T cells [8]. According to this model, part of the 
activated T cells die and others become memory cells. The factors determining whether 
the fate of the cell will be death or survival as a memory cell are also investigated . 
Antigen affinity of the T cell receptor may play a role in this decision, where cells with 
higher affinity survive as memory cells [9]. It is also possible that the selection is 
stochastic [10]. A second  model for memory T cell differentiation  claims that a naive 
(non-activated) cell ‘decides’ whether to become an activated/effector cell or a memory 
cell according to environmental factors such as the level of infection or the combination 
of several stimuli [11, 12]. An expansion of that view is that the differentiation decision is 
made a few times during the cell’s life cycle : with each consequent stage of 
differentiation towards an effector cell the cell’s potential to become a memory cell 
decreases [13]. 

B lymphocyte development during the immune response occurs in two discrete pathways 
[14]. The first pathway involves a rapid expansion of short-lived plasma cells, which secrete 
antibodies against the antigen. The second pathway involves expansion and maturation 
of long-lived memory B cells in the B-cell-rich microenvironments of lymph nodes 
named germinal centers [15]. It is not clear whether plasma and memory B cells develop 
from the same naive B cell ancestors, or from distinct precursors [16]. 

A long debate exists among immunologists regarding the ability of memory cells to 
survive without persisting antigen stimulation. Although there are experimental evidence 
for the ability of memory cells to survive in an antigen-free environment [6, 17], there are 
alternative views that envision long-term memory as the result of continuous stimulation 
by persisting antigen [18, 19]. 

The immune system has to retain its diversity in order to cope with a variety of different 
emerging antigens, while adjusting the immune repertoire to previously encountered 
antigens in order to allow a better recall response. Balancing coverage of antigen space 
with response efficiency improvement, is a non-trivial computational task for this 
biological system. 
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2.3 Immune System Models 

The biological immune system has some unique features that make it appealing for 
mathematical modeling: it is a highly distributed system, it carries out a complex 
recognition and classification task, it evolves and matures using combinatorial, 
evolutionary and adaptation mechanisms and it is able to ‘remember’.  
The benefit of modeling is bi-directional:  immunologists can gain insights into the 
principles underlying the immune system by examining them within the scope of a 
theoretical model, while mathematicians and computer scientists may utilize some of 
these principles in order to improve computational algorithms. 
Immune system models can be generally separated into three groups: 

1. Applied models, using principles and metaphors of the immune system for solving 
computational or engineering problems. 

2. Continuous models, describing the dynamics of the immune system by sets of 
differential equations. 

3. Discrete models, describing immune process as a series of interactions in discrete 
time steps, or utilizing combinatorial methods to predict properties of the immune 
system . 

The following section gives a brief overview of few representative models of each group.  

2.3.1 Applied Models 

The underlying principles of the immune system have inspired researchers from 
fields other than immunology [20]. Works employing these principles can be found in 
computer science, engineering and even political science. 

Forrest et al. have employed immune-based mechanisms for improving computer 
security and change-detection algorithms [21-24]. These works were inspired by the 
negative selection process occurring in the thymus during T lymphocytes development in 
order to eliminate self-reacting lymphocytes. For computer security purposes, a set of 
‘change-detectors’ is constructed and tested against the protected data (bit-strings are 
used as detectors for static data, while series of system calls are used as detectors for 
Unix processes). Only detectors that cannot recognize the ‘self’ data survive and these are 
used to monitor  against non-authorized changes, intrusions or computer viruses.  

The idea of using the immune system metaphor to build an anti-virus protection for 
computer systems was commercially adopted by IBM in their anti-virus software [25, 26]. 
Immune network hypothesis was used by Ishida [27] and by Ishiguru [28] for fault 
diagnosis applications. Another use of the immune networks was made by Hunt et al. 
[29] for machine learning and pattern recognition applications. 

2.3.2 Continuous Models 

A large portion of the theoretical works in immunology utilizes systems of 
differential equations in order to describe the dynamics of lymphocytes and the 
interactions between them. The system’s description may include equations and 
parameters for generation and death rates of lymphocytes, lymphocytes proliferation 
rates, transitions between resting/activated states or between naive/memory phenotypes, 
transitions of the response between humoral and cellular activity, antigen increase and 
elimination rates, etc. 
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Among the issues that were addressed using this approach are the maturation of the 
humoral immune response exhibited by B cell proliferation and differentiation using 
clonal selection and somatic hypermutations [30, 31], the effect of feedback in 
monitoring, balancing and improving the immune response [32], the role of cross-
reactive stimulation in maintaining immune memory [33], the threshold ratio between T-
h memory cells and antigen dose needed to establish T cell memory [34], and a thorough 
description of antiviral immune response during hepatitis B and influenza infections [35, 
36]. 

A sub-class of models are based on the idiotypic network hypothesis, suggested by Jerne 
[37]. This hypothesis describes the immune system as a regulated network of molecules 
and cells that are able to recognize antigens as well as one another. During an immune 
response, a set of antibodies (Ab1) is created against the foreign antigen. Since an 
antibody carries protein molecules that are recognizable by the immune system, there 
would be production of anti-idiotypic antibodies (Ab2) reacting ‘against’ Ab1. Similarly, 
Ab3 antibodies would be produced against Ab2, and so forth. This network of idiotypic 
interactions is claimed to  have a role in regulating the immune response. An example for 
idiotypic-network based model is the ‘B model’ for B-cell clonal dynamics, proposed in 
[38]. 

2.3.3 Discrete Models 

One sub-class of discrete models uses probability and optimization techniques to 
estimate characteristics of the immune system and to predict its behavior. 

Agur et al. proposed to analyze the strategy of the immune system as an optimization 
problem [39, 40]. The  problem addressed in this work was what should be the optimal 
mutation rate of the B cell receptors in order to maximize the probability that the 
required antibody will be generated before the pathogen kills the host. Using dynamic 
programming methods, a globally optimal strategy of a step-function mutation rate was 
analytically demonstrated. 

A different attitude was proposed by Pereleson et al. in a model called ‘Shape Space’ [41]. 
In this model, the immunological receptors are geometrically described as points in a 
multi-dimensional space. Each dimension of this space is a binding parameter like length, 
width, charge etc. Each receptor is able to bind to epitopes within a small ‘recognition 
ball’ surrounding its complement in the shape space. The model deals with several 
aspects of the immune repertoire such as how large should this repertoire be in order to 
be complete, and what is the probability of recognition of foreign vs. self antigens. 

A second sub-class of discrete models  are cellular-automata models. These models are 
discrete in both space and time, and the dynamics of the immune system is described by 
deterministic rules of the cells, molecules and their local interactions. 
Agur introduced the concept of conducting biological experiments ‘in-machina’  (i.e., 
within computer simulation) [42]. These type of experiments can be used to qualitatively 
examine immunological questions by fast, reproducible and cheap means, before 
planning the real in-vitro or in-vivo experiments. 

The advantage of a  cellular automaton model is in the direct correlation between the 
biological terms and the components and processes of the model. The approximations 
made in order to make the model simple enough to be implemented can be biologically 
reasoned and their influence on the reliability of the model can be estimated. When such 
mathematical approximations are made in order to solve differential equations models, 
they can obscure the relation of the results to the biological system. 
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Celada and Seiden described a cellular automaton model of the immune response [43-45] 
that includes antigen presenting cells, B and T lymphocytes, antigens and antibodies. This 
model was used to study affinity maturation and hypermutation of B cell, as well as virus-
host competition in disease and immune states. However, immune memory related 
questions were not handled  in these earlier works. 
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2.4 Research Objectives 

The primary objective of the research is to explore the nature of immune memory, 
utilizing a large-scale cellular automaton model of the acquired immune response.  
The aim is to define the requirements for development of efficient immune memory and 
elucidate the main factors influencing it. Specifically, the research questions are defined 
as follows: 

• What is the relation between the affinity of the lymphocyte-antigen interaction 
and the efficiency of the immune response. 

• What is the relation between memory T cell production in the primary response 
and the efficiency of the secondary response. 

• What is the role of memory T lymphocytes in the primary immune response. 

• How does the initial immunolgical repertoire effect the efficiency of the immune 
response, and what is the additional contribution of the changes in the repertoire 
during the response. 

• What model of memory T cells differentiation is better for an efficient immune 
response. 

The efficiency of the immune response is assessed in this work mostly by measuring the 
speed of the response, i.e. the time from the antigen injection until its complete 
elimination by the immune system, and the magnitude of the antigen expansion. 
Additional factors like the delay from the antigen injection to the triggering of the 
response, to the peak of the response and to the final relaxation of the response are also 
measured and utilized. 

All of these questions are subject to continuos immunological research, and do not have 
decisive biological answers. However, these questions were not handled so far in a 
mathematical modeling work. To explore this extensive set of questions within a 
computational model, the model has to be large-scaled, to include various immune 
system components in a modular structure, and to allow conducting controlled ‘in-
machina’ experiments. The discrete cellular automaton model developed for this research 
is therefore suitable: 

• It can produce a realistic quantitative description of immunological  processes. 

• It enables to trace the dynamics and organization of the system during 
experiments. 

• It is highly modular, robust and easily  expandable. 

• The conducted experiments have a straightforward biological equivalence, and 
therefore their results can be used to point out possible directions for further, 
more complicated in-vivo or in-vitro experiments. 
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3. Methods 

3.1 Immune System Simulation Model 

3.1.1 Overview 

Immune system simulations were conducted using a software package developed for 
this purpose. The Immune System Simulation (ISS) software is a general tool for 
investigating various qualitative and quantitative aspects of the immune system, its 
organization and dynamics. The software implements a cellular automaton model of the 
acquired immune response. The details of the implemented model are described below. 
Many of the biological assumptions in the model are based on a review by P. Matzinger 
[46]. Immune memory modeling is based on a review by R. Ahmed and D. Gray [5]. 

3.1.2 The Simulated world 

The ‘world’ in which simulations are executed is constructed of two main parts  
(Figure 1): 

• The cell nodes grid , which is rectangular lattice of nodes. Each cell node contains one 
tissue cell, and may contain immune entities (antigens, antibodies, dendritic cells, B 
lymphocytes, or T lymphocytes). A cell node has four neighboring nodes. The lattice 
has periodic boundaries to form a surface of a torus. 

• The lymph nodes array, which is a vector of nodes, representing the lymphatic 
system. Each lymph node may contain immune entities. Each lymph node is 
connected to the next one to form a cyclic circulation. 

The cell nodes grid and the lymph nodes array are connected: the cell nodes grid is 
divided into equal-size areas. Each lymph node is mapped and linked to such a distinct 
area. Immune entities can move from a cell node to the lymph node mapped to that area, 
and backwards. This structure enables the lymph node to be a local center for immune 
interactions [47]. 

 

Figure 1: Simulated World 
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3.1.3 Simulated immune entities 

The simulation is constructed of immune ‘entities’. Each entity has several attributes 
that define its current state, and a transition function, or state machine, that determines 
its dynamic behavior. 

The model includes implementation of the following entities: 

• B lymphocytes 

• T-Helper lymphocytes 

• T-Killer lymphocytes (CTL) 

• Dendritic cells (APC) 

• Antibodies 

• Antigens 

• Body tissue cells 

3.1.3.1 Lymphocytes 

Each simulated lymphocyte (B or T) has a specific receptor, able to bind to antigens or 
other immune entities. 

Lymphocytes have a state indicator, that may have one of four values: 

• RESTING – the basal state in which lymphocytes are created and in which they  
stay in the absence of antigen stimulus. 

• BOUND – the state in which the lymphocyte receptor is  bound to an antigen 
with sufficient affinity. 

• ACTIVATED – the state in which the lymphocyte performs its effector 
function. 

• TOLERATED – the state in which the lymphocyte, instead of being activated, 
becomes tolerated by an antigen. This state is sometimes referred to as anergy 
[48]. 

Lymphocytes have also an indication for their experience: a lymphocyte can either be 
VIRGIN (naive or not yet activated), or EXPERIENCED (memory).  Naive and 
memory lymphocytes in the biological immune system are distinguishable by cell 
surface markers and by the cytokines which they secrete[49].  

3.1.3.2 Antigen Presenting Cells 

Antigen Presenting Cells (APC) perform antigen capturing and antigen presentation 
to T lymphocytes. There are two simulated types of APCs: 

• Dendritic cells, which perform non-specific capturing of both extra-cellular and 
intra-cellular antigens. These cells are considered to be ‘professional’ APC, able to 
present antigens to both types of T cells. 

• B lymphocytes, which perform specific capturing of extra-cellular antigens only. 
These cells serve as APC to T-helper cells. 
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During antigen capturing, APCs are able to record the current level of antigen 
inflammation in their local environment. 

3.1.3.3 Antibodies 

Antibodies are secreted by B lymphocytes, and carry the immunological receptor of 
their secreting cell. Antibodies are able to eliminate encountered extra-cellular 
antigens. This is a simplification of the biological function of the antibody, that by 
binding to the antigen, enables its elimination by phagocytes. 

3.1.3.4 Antigens 

Antigens are the entities which may trigger an immune response. 
An antigen has an indication for its origin, which may be SELF (body’s own antigen) 
or FOREIGN (external invader). 

An antigen also carries a specific ‘signature’, named peptide, which can be identified 
by the immune system. 

An antigen may be intra-cellular, i.e., penetrate tissue cells in the body like a virus, or 
extra-cellular, i.e., reside in the fluid circulation outside tissue cells, like bacteria. 

3.1.3.5 Tissue cells 

Tissue cells construct the simulated ‘body’. A tissue cell has a life indicator, indicating 
its vitality. The life indicator may be affected by a harmful antigen. 
A tissue cell state may be ALIVE for a regular living cell, NECROTIC_DEATH for 
a cell which has died as a result of antigenic damage, or APOPTOTIC_DEATH for 
an infected cell which was killed by the immune system. 

A tissue cell also has an inflammation indicator, indicating the level of antigen 
inflammation in its local environment. The inflammation is calculated according to 
the state of the cell and the states of its adjacent tissue cells. This feature of the 
model stands for the activity of stress-related molecules (like Heat-Shock Proteins) 
or intra-cellular organelles and components (like mitochondria, mannose or RNA) 
[50]. 

3.1.4 Principles of  simulation 

The simulation model is based on the principles of cellular automata [44, 51]: it is 
discrete in both space and time, and the dynamics of the system is described by 
deterministic rules of the immune entities and their local interactions. 

In the initialization phase, immune entities (dendritic cells, T-Helper, T-Killer and B 
lymphocytes, self and foreign antigens, tissue cells) are created and spread over the cell 
and lymph nodes: 

• One tissue cell is located in each cell node.  

• Lymphocytes’ receptors are generated by a random process. 

• Peptides of antigens are generated by a random process. 

• Initial locations of dendritic cells, lymphocytes and self antigens are selected 
randomly. 
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• Foreign antigens are periodically injected into specific location in the cell nodes 
grid. 
 

Simulation proceeds in discrete time units. In each time unit, each immune entity 
performs one simulation step, according to its current state, its local environment and its 
logic of deterministic and stochastic transition rules. Steps of an immune entity are, for 
example, transition from one node to another, interaction with other entities, cloning, 
death, etc. 

3.1.5 Simulated immune processes 

3.1.5.1 Matching process 

The basic process underlying every specific interaction between simulated immune 
entities is the matching process, i.e., the binding of two immunological receptors or 
peptides. Peptides and receptors are represented in the model by fixed-length strings 
over a finite alphabet. In order to decide whether binding was successful or not, a 
matching rule is applied on the two strings to calculate the matching probability. 
In the model, the following matching rule is used: 

Let A,B be strings over finite alphabet Σ  : A=a1a2..an , B=b1b2..bn ,  ai,bi Σ∈  

and let 
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score denotes the number of matching letters of A and B. 
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where integer M>0 is the maximal matching threshold, and 0<r<=1 is a constant 
defining the minimal matching threshold, r*M (see Figure 2). 
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Figure 2: Matching Function 
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3.1.5.2 Interaction signals 

Immune entities in the model communicate through direct interaction signals. There 
are four types of interaction signals: 

• BIND signal – given when a successful binding of lymphocyte’s receptor to an 
antigen has been accomplished. Non-activated T lymphocytes receive this signal 
from an APC (dendritic cell or B cell). B lymphocytes and antibodies receive this 
signal directly from the antigen. Activated T-Killers receive this signal from the 
infected tissue cell. 

• CO-STIMULATION signal – given by the APC after the BIND signal, in order 
to activate T-Helper lymphocytes. This signal is given only if antigen 
inflammation level is high enough, in order to distinguish between harmful and 
harmless antigens [52]. 

• HELP signal – given by T-Helper lymphocyte in order to activate B or T-Killer 
lymphocytes. 

• KILL signal – given in order to force an immune entity to die. T-Killer 
lymphocytes give this signal to infected tissue cells. Antibodies give this signal to 
extra-cellular antigens. All immune entity may induce their own death by this 
signal. 
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Figure 3: Interaction Signals. BIND, CO-STIMULATIN, 

HELP and KILL signals between APC, lymphocytes, antigens and 

tissue cells. 

3.1.5.3 Immune response process 

The immune processes simulated by the model can be separated into several distinct  
phases (in each phase, the biological rationale and reference is given in parenthesis):  

1. Lymphocytes generation and negative selection. 

Lymphocytes are generated with random receptors. In order to simulate the 
maturation process of T lymphocytes T cells may go through a ‘negative 
selection’ process. The aim of negative selection is to eliminate self-reactive T 
lymphocytes. Negative selection is simulated by testing each newly generated T 
lymphocyte against the pool of self antigens. Successful binding commits the 
tested lymphocyte to die. The selection is not absolute: there is a ‘miss’ 
probability enabling self reactive lymphocytes to escape negative selection.  
(The biological negative selection process occurs in the thymus. In this process self-reactive T 
lymphocytes that are able to bind to self antigens expressed in the thymus, are eliminated during 
their development phase in order to prevent possible auto-immunity. Since not all self antigens 
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are expressed in the thymus, mature self reactive T cells can avoid the selection and enter the 
immune system circulation [53]). 

2. Infection. 

Infection is simulated by injection of foreign antigens to a specific location in the 
cell nodes grid. The injected antigens act according to their activity rules – they 
may move around the cell nodes grid, penetrate tissue cells, clone and mutate, 
affect the tissue’s cell vitality, and finally kill the tissue cell. The foreign antigen 
used in this work for most of the experiments has four phases of operation: in 
the first phase, it randomly moves across the cell nodes grid. Than, it penetrates a 
tissue cell and waits. In the next phase it starts replicating, and finally it starts 
decreasing the life indicator of the tissue cell, eventually causing the necrotic death 
of the cell, after which it leaves the tissue cell and starts again with the initial 
phase. Meanwhile, tissue cells sense the level of inflammation in their local 
environment – each tissue cell has an inflammation indicator. The value of this 
indicator is periodically updated according to the cell’s state and the states of its 
adjacent cells. When a tissue cell undergoes an ‘abnormal’ death, i.e. death caused 
by harmful antigen, the value of the inflammation indicator is maximized. 
Otherwise, while the cell is alive, the inflammation indicator’s value is calculated 
by averaging the inflammation levels of neighbor cells, divided by some diffusion 
factor.  
(Natural antigens may have various ‘strategies’ in order to survive and breed in the body [54]. 
A tissue cell that was infected by a harmful antigen may activate chemical alarm signals that 
inform the innate immune system about the local inflammation [50]). 

3. Antigen capturing and presentation. 

Antigens are captured by antigen presenting cells (dendritic and B cells). A search 
for antigens can use a heuristic for targeted movement towards higher antigenic 
load. Dendritic cells are able to capture both intra-cellular and extra-cellular 
antigens, and capturing is non-specific, while B cells are able to capture only 
extra-cellular antigens, which specifically match their receptor. When an antigen is 
encountered, its peptide is recorded by the APC. In addition, the level of 
inflammation in the location of the capture is recorded. After a successful 
capture, the APC moves to the draining lymph node, where it may present the 
antigen to T lymphocytes: extra-cellular antigens are presented to T-Helper cells, 
and intra-cellular antigen are presented to T-Killer cells. (Figure 4, [46]). 
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Figure 4: Antigen Capturing. Intra-cellular and extra-

cellular antigens are captured by an APC, that records the 

inflammation level in the cell node, and moves to the draining 

lymph node. 
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4. T-Helper cells activation. 

In the lymph node, APCs activate T-Helper cells by two signals: BIND and CO-
STIMULATION. When an APC encounters a T-Helper cell with a receptor 
matching the presented extra-cellular antigen, it gives the lymphocyte a BIND 
signal. When the T-Helper is bound to an antigen, the APC may give it also a 
CO-STIMULATION signal, causing its activation. The co-stimulation is given 
only if the APC’s recorded level of inflammation is above a given threshold. 
These two signals can be given by two different APCs. Following activation, the 
T-Helper becomes an effector cell, able to give HELP signals to other 
lymphocytes. If the CO-STIMULATION signal is not given to a naive T-helper 
cell in conjunction with a BIND signal, it becomes tolerant  (Figure 5, [46]). 
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Figure 5: T-Helper Activation. T-h is activated by BIND and CO-

STIMULATION signals given by an APC. 

5. T-Killer cells activation. 

T-Killer cells are activated in the lymph node. Activation requires two signals: 
BIND and HELP. A BIND signal is supplied by an APC presenting an intra-
cellular antigen to which the T-Killer’s receptor matches. After the T-Killer cell is 
bound to the antigen, a HELP signal may be given by an activated T-Helper cell 
with specificity to the same antigen. After activation, the T-Killer cell performs its 
effector function of killing infected tissue cells. (Figure 6, [55]). 
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Figure 6: T-Killer Activation. T-k cell is activated by 
BIND signal given by an APC and HELP signal 
given by an activated T-h cell 
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6.  T-Killer cells effector function. 

An effector T-Killer cell kills encoutered tissue cells that are infected by an 
antigen matching its receptor. Tissue cell’s death induced by T-Killer lymphocyte 
is a programmed death (apoptosis), which does not cause inflammation signals. 
(Figure 7, [46]) 
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Figure 7: T-Killer Effector Function. An effector T-

k cell gives a KILL signal to an infected tissue cell, 

causing its qpoptotics death. 

7. B cells activation. 

 B cell activation requires two signals: BIND and HELP. The BIND signal is 
given directly by the antigen, which is specifically captured by the B cell in the cell 
nodes grid. Following antigen capturing, the B cell moves to the draining lymph 
node, where it can get the HELP signal from an activated T-Helper cell with 
specificity to the same antigen. After activation, the B cell performs its effector 
function by secreting antibodies. (Figure 8, [46]). 
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Figure 8: B Cell Activation. A B cell is activated by 

BIND signal given by an antigen and HELP signal 

given by an activated T-h cell. 

8. B cells effector function. 

An effector B cell resides in the lymph node and secretes specific antibodies. The 
secreted antibodies move to the cell nodes grid, killing matching extra-cellular 
antigens. (Figure 9) 
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Figure 9: B Cell Effector Function. A activated B cell secretes 
antibodies, which kills extra-cellular antigens. 



 20 

 

9. Cloning and life cycle. 

An activated lymphocyte is able to periodically clone copies of itself by cell 
division. The cloned lymphocytes are already in activated state. Cloning is 
augmented after successful effector interaction (e.g., T-Helper that gives a HELP 
signal or T-Killer that kills a tissue cell), with direct correlation to the affinity of 
the interaction. 
Antigens may also clone according to their activity rules. 

Every lymphocyte has a limited life span, defined by its half-life parameter. Each 
simulation time unit, the viability of each lymphocyte is determined by calculating 
its life_probability function, defined by: 

life_probabilily(t) = tTe *
2

1

2ln−

 , where T1/2 is the half-life parameter, and t is the 

age of the lymphocyte. 

A global ‘homeostasis’ mechanism monitors the total number of living 
lymphocytes, and creates new lymphocytes when natural death caused quantities 
to drop below the basal level. 

10. Memory differentiation. 

During the immune response, a lymphocyte may differentiate into a memory cell. 
A memory cell has a much longer life span, and it may also have a faster 
activation mechanism: a resting memory T-Helper lymphocyte may be activated 
only by the first activation signal of antigen binding (without co-stimulation), and 
as a result, T-Killer and B cells activation is also faster. 

Memory differentiation decision is made according to the employed memory model, 
and to the memory survival function. Two major memory models are implemented: 
in the linear differentiation model (Figure 10, [8]), activated lymphocytes 
differentiate into memory cells or die, either by a random selection or according 
to some criteria, such as antigen affinity: a lymphocyte with higher average 
antigen affinity has higher probability to become a memory cell. 

 

 

Figure 10: Linear Memory Differentiation (Taken from [5]) 

In the second ‘decreasing potential’ model (Figure 11, [13] ), naive cells can become 
activated/effector cells, or memory cells, either by random selection or according to 
environmental factors such as level of antigen inflammation. Differentiation can 
occur several times during the cell’s life. Increasing differentiation into an effector 
cell results in decreasing potential to become a memory cell and survive. 
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Figure 11: Decreasing Potential Differentiation (Taken from [5]) 

The memory survival function is used to calculate the probability of a lymphocyte to 
become a memory cell. When memory differentiation decision is made randomly (in 
either one of the memory models), the survival function is merely a uniform 
distribution probability function with a given expectation. When decision is made 
according to some heuristic criteria, the following exponential survival function is 
used: 

survive_probability(val)=
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where MIN is minimal threshold constant, MAX is maximal threshold constant and 
C is an exponent base constant. The function’s input value, val, is determined by the 
differentiation criteria: it may be average affinity if criteria is best affinity, antigen 
load if criteria is inflammation level, etc. 
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Figure 12: Memory Survival Function 
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3.1.5.4 Activity rules 

The process of the immune response, described in the previous section was 
specifically implemented by sets of activity rules for each immune entity. These 
activity rules define  the state transition of the entities . The activity rules for the 
different immune entities are described in detail in Appendix A. 

3.1.6 Simulation parameters 

Many of the model’s parameters can be set per simulation. A detailed list of the 
parameters is presented in Appendix A. 

3.1.7 Simplifying assumptions 

The main  simplifying assumptions underlying the model are: 

• The innate immune system is simplified to perform only the antigen presentation 
function. 

• Binding process between lymphocytes’ antigen receptors and antigenic epitopes is 
simplified to be a string matching process. 

• Complex generation and maturation processes of lymphocytes are not implemented. 
Thymus function is simplified to be a probabilistic elimination of self reactive T cells. 

• Signaling mechanism through cytokines is not implemented. 

• Functionality of antibodies is implemented only as direct antigen elimination. 

• Functionality of tissue cells is implemented only as intra-cellular antigen presentation 
and cell damage signaling. 
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3.2 Experiments  Execution 

A simulation is a single execution of the simulation program with a unique set of 
parameters. An experiment is multiple executions of the same simulation, carried out with 
different randomly generated initial conditions. The experiment’s results are obtained by 
averaging and analyzing the results of the repeated simulations. 
In a typical experiment simulations are repeated 50 times. 
Details of the output files generated by the simulation system, and the graphical tools for 
simulation monitoring are given in Appendix A. 

Averaging the experiments results can be done in two ways: 

• Calculating the average and standard deviation of the results files of all simulations. 
This calculations yields an average result file, containing an average of the 
simulations’ snapshots for each time unit. 

• Analyzing each result file separately, drawing the relevant data out, and averaging 
the analyzed data. 

For most experiments, the second analysis was used. The parameters drawn out of the 
results file for the experiments were: 

• The latency from antigen injection to the beginning of the response 
(T

Th

start
,T

Tk

start
,T

B

start
,T

Ab

start
 - time to the beginning of Th, Tk, B cells and antibodies 

responses).  

• The latency from antigen injection to the peak of the response  
(T

Th

peak
,T

Tk

peak
,T

B

peak
,T

Ab

peak
- time to the peak of Th, Tk, B cells and antibodies 

responses). 

• The duration of the response from antigen injection until antigen elimination 
(T

Ag

end
). 

• The duration of the response from antigen injection until response relaxation 
(T

Th

end
,T

Tk

end
,T

B

end
,T

Ab

end
 - time to the end of Th, Tk, B cells and antibodies responses).  

• The maximal amplitudes of the lymphocyte/antibodies response  
(ATh ,ATk ,AB, AAb – amplitudes of Th, Tk, B cells and antibodies responses). 

• The maximal amplitude of the antigen (AAg). 
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4. Results 

4.1 Simulation System Verification and Calibration 

4.1.1 Development of  an immune response 

After antigen injection, the simulated immune system develops a humoral and cellular 
immune response against the antigen. The response is indicated by the activation and 
proliferation of antigen-specific T-h lymphocytes in the local lymph nodes of the infected 
area. The activated T-h cells supply activation signals for T-k and B lymphocytes, which 
proliferate as well. T-k cells kill infected tissue cells, while B cells secrete antibodies 
which eliminate extra-cellular antigens. This immune response eliminates the foreign 
antigen and generates  antigen-specific memory T cells. After antigen elimination, the 
immune response is gradually terminated. Subsequent injections of the same antigen 
result in a secondary and a tertiary immune responses which are triggered faster and 
eliminate the antigen earlier. A typical immune response dynamics is illustrated in Figure 
13. 
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Figure 13: A typical simulated immune response. Dynamics of antigen, activated T-h 
lymphocytes and antibodies in a primary, secondary and tertiary immune response. A dose 
of 10 antigens was injected in time units 0, 1500 and 3000. 

4.1.2 Development of  efficient immune memory 

In order to use the simulated system for studying immune memory, it is imperative to 
show that development of immune memory does in fact lead to an improved immune 
response in a consequent antigen challenge. To verify the contribution of immune 
memory to the improved efficiency of the secondary immune responses, antigen 
elimination time with and without immune memory was compared. Two experiments of 
50 simulations each were conducted. In the first experiment the simulation system did 
not produce any memory cells. In the second experiment 2-3% of the activated T cells 
survived as memory cells. All other parameters were the same for both experiments. The 
results are presented in Figure 14. Without employing any immune memory mechanism 
there is no significant difference between the primary and the secondary responses. 
When memory T cells are produced during the primary response, the secondary response 
eliminates the antigen 20% faster.  The results indicate that the simulation system 
reproduces the memory feature of the immune system. 
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Figure 14: Primary and secondary immune responses with and without memory. 
Antigen elimination time in the primary and in the secondary immune responses when memory lymphocytes are not 
produced (Left) and when memory T lymphocytes are produced (Right). The simulation parameters are detailed in 
appendix B (Table 5). The antigen was less virulent that in consequent experiments. Each bar represent an average 
of 50 simulations. p < 0.05 (right graph). 

4.1.3 Time scale calibration 

The primary immune response, and specifically T cell response in in-vivo systems, 
can be divided into three distinct phases: lymphocytes activation and expansion, which 
typically lasts about 7 days, lymphocytes death, which occurs between days 7 and 30, and 
finally generation of stable memory pool, that can persist for many years [5]. Quantitative 
experimental data about the time kinetics of the immune response were taken from [56], 
where activated CD8 T cells (‘T-killer’ cells) against Lymphocytic Choriomeningitis Virus 
(LCMV) infection were monitored in-vivo in mice. In these essays, viral clearance was 
accomplished in 8 to 10 days, and T cells dynamics in the primary response was rapid 
expansion during the first 8 days, followed by gradual decline in the number of antigen-
specific T cells.  

Similar data are described in [57] for the dynamics of T-helper cells in vivo against 
Pigeon Cytochrome C (PCC) antigen. This essay also compares the dynamics of primary 
and secondary responses, showing a faster activation phase of 3-4 days during the 
secondary response (Figure 15). 
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Figure 15: In-vivo data. dynamics of antigen specific Th and Tk cells in primary and secondary response  

(data from [57]) 

The above data were used as a reference for assessing the compatibility of the simulation 
time dynamics to the real biological system. Since simulation time is measured by discrete 
time units, the equivalent of a simulation time unit was calculated to be approximately 0.3 
hour. Using this time scale, antigen clearance in simulated primary response was achieved 
in 8-9 days. The activation and proliferation phase of T cells lasted for 6-8 days, while the 
death phase lasted for additional 2-3 days. In the simulated secondary response, antigen 
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clearance was achieved in 3-4 days and the activation phase lasted for about 2-3 days. 
Results of the simulated dynamics of T cells response are shown in Figure 16. 
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Figure 16: In-machina data. Dynamics of the simulated antigen specific Th and Tk cells in the primary and 
secondary responses. The time scale is 0.3 hours per simulation time unit. For antigen specific T-h cells (top 
figures), in the primary response, the activation and proliferation phase is 6-8 days long with expansion rate of 
~50-fold. The death phase is 2-3 days long. In the secondary response, the proliferation phase last for  an 
additional 2-3 days and the expansion rate is 4-6-fold.  For antigen specific T-k cells (bottom figures) the time 
dynamics are similar, while expansion rates are ~420-fold during the primary response, and rise an additional 
9-12-fold during the secondary response. Antigen clearance in the primary response was achieved after 8-9 days, 
and in the secondary response – after 3-4 days. 
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4.1.4 Calibration of  immune entities quantities  

In order to  determine  reasonable initial quantities of immune entities, a calibration 
experiment was conducted: initial quantities of T, B and dendritic cells were varied from 
100 to 2000, and the latency from antigen injection to the beginning of antibody 
response and to antigen elimination was measured. Antigen quantity in these experiment 
was set to 10 antigens per injection. The results are presented in Table 1: Small initial 
quantities result in a very long response. The response is naturally shorter as the initial 
quantities are enlarged. The immune response produced by the initial quantity of 1000 
cells is 670 time unit long, which is equal to 8.4 days. The initial quantity of T-helper 
cells, T-killer cells, B cells and dendritic cells was therefore set to 1000 to correspond the 
calibrated time scale..  This value is small  compared to the real magnitude of the 
biological immune system  – the amount of T cells  in the human body is estimated to be 
1012 cells, with estimated 25x106 different receptors [58]. In mice the size of the T cell 
pool is about 2x108 cells, and the size of the B cell pool is about  1.5x106 cells [59].  The 
simulation system therefore simulates a small fragment of tissue. 

 

Initial 

quantity 
T

Ab

start
 T

Ag

end
 

100 316.4 (48.74) >4500 

400 130.2 (21.92) >4500 

700 85.33 (14.57) 1873.33 (220.06) 

1000 62.04 (3.51) 670.35 (53.81) 

1500 44.7 (6.07) 282.8 (54.94) 

2000 44 (5.75) 119.8 (15.42) 

Table 1: Calibration of initial quantities of immune entities. 
Time latencies from antigen injection to the beginning of antibody production and to the antigen 
elimination. Initial quantities values refer to quantities of T,B and dendritic cells. Results are the 
average of 10 simulation runs for each quantity, with SEM values in parenthesis. Time is given in 
simulation units.  

 

4.1.5 Proliferation rates of  immune entities 

During the activation and proliferation phase of the immune response, there is a 
significant expansion of the lymphocyte population, mainly due to expansion of antigen 
specific lymphocytes. The extent of this proliferation is firmly dependent on the 
characteristics of the experimental system (type and dose of antigen, labeling and 
measuring methods). For the total population of T-helper cells, the reported expansion 
factor is 4-5-fold in the primary response and in the secondary response [9]. The 
reported expansion of antigen specific T-helper cells is 250-1200-fold in the primary 
response, and an additional 70-fold expansion occurs in the secondary response [5, 9, 57, 
60]. For T-killer cells, the total expansion is reported to be 10-fold, while antigen specific 
cells expand 100-5000-fold in the primary response, and 5-100-fold in the secondary 
response [5, 56]. The expansion rates in the simulated immune system are limited by the 
computational capacity and are therefore smaller. However, the dynamics of clonal 
expansion with time, as well as ratios between the primary and secondary responses and 
between the total expansion and the antigen-specific expansion are kept in the simulation 
system. The expansion of  T-helper cells in the simulation  was typically 2-3-fold. Antigen 
specific T-helper cells expanded ~50-fold during the primary response, and 4-6-fold 
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during the secondary response. T-killer cells expanded faster, the total expansion being 
14-15-fold, and the specific expansion being ~420-fold during the primary response, with 
an additional 9-12 fold expansion during the secondary response. Results of total Th and 
Tk expansion are graphically shown in Figure 16. 

4.1.6 Narrowing of  the immune repertoire 

During the development of an immune response and the expansion of antigen-
specific lymphocytes the repertoire of immunological receptors is narrowed and antigen-
specific clones dominate the immune repertoire, making it less diverse and more focused 
on the antigenic challenge. Experimental data about clonal dominance suggest that at the 
peak of the primary response 50-70% of the activated T-killer cells are antigen-specific 
[56]. Antigen-specific T-helper cells become even more dominant, being 80% of the 
activated Th population during the peak of primary response, and up to 95% during the 
peak of the memory response [57]. The simulation system obtains similar results, with  
60% specific Tk cells during primary response, growing to 80% during secondary 
response, and 40-65% specific Th cells during the primary and the memory response, 
respectively. A typical repertoire narrowing during a simulated immune response is 
illustrated in Figure 17. 
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Figure 17: Repertoire narrowing of T cell clones during an immune response. 
A typical dynamics of T-h and T-k clones during primary, secondary and tertiary immune 
response. Antigen-specific clones of T cells proliferate and dominates 40-80% of the total T 
cell population. 
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4.2 Insights on immune memory 

4.2.1 Interaction affinity and response efficiency 

The objective of this experiment was to understand the relation between the affinity 
of the lymphocyte-antigen interaction and the efficiency of the secondary response. This 
was achieved by varying the maximal matching threshold used for the matching function. 
This threshold defines how many matching bits are required for a definite match. 
Different matching thresholds produce matching functions with different matching 
probabilities. 

For each matching threshold, the actual matching probability for the given peptide length 
and the matching rule was evaluated by simulating 106 matching interactions between 
random peptides. The resulting probabilities are listed in Table 2. 

Max match 
threshold 

Actual matching 

probability 

18 0.267666 

20 0.150377 

22 0.075206 

23 0.033477 

Table 2: Relation between matching threshold and actual matching probability 

The simulation parameters are given in Appendix B (Table 5) and the results are 
summarized in Figure 18. The matching threshold was modified from 18 to 23. With a 
low matching threshold of 18-20, lymphocytes are activated quickly and antigen 
elimination is achieved after a short time (87-97 time units). However, the secondary and 
tertiary responses are similar to the primary response and immune memory is not 
developed. With a high matching threshold of 22-23, the primary response is slower, but 
a significant memory effect is demonstrated: the secondary response eliminates the 
antigen 2-folds faster and reduces the maximal antigen amplitude by half. The tertiary 
responses is even more efficient with an additional 1.3-fold speedup. The interpretation 
of this result is that a strict matching criteria favors positive selection of high affinity 
lymphocytes which survive as memory cells, and ensure an improved recall responses. In 
addition, a strict matching rule extends the duration of the primary response to allow 
development of enough memory cells. 
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Figure 18: Matching threshold and efficiency of the immune response.. 
Antigen elimination time (Left)  and antigen maximal amplitudes (Right) in primary, secondary and 
tertiary responses, using different maximal matching threshold. 

 

Although a permissive matching rule does not allow immune memory to develop, Figure 
18  shows that it enables efficient primary, secondary and tertiary responses. In absolute 
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values of antigen elimination times and amplitudes the secondary and tertiary responses 
with a permissive matching rule are better than the corresponding responses with a strict 
matching rule. This apparent paradox is resolved when considering the tradeoff between 
fast antigen elimination and autoimmunity. During the immune response effector 
lymphocytes and antibodies may be targeted against the body’s self antigens. This self-
attack, named autoimmunity, may result from self antigens that are  cross-reactive with 
the foreign antigen, or self antigens that are found in the inflammation area and trigger 
an immune response due to the inflammatory context. A permissive matching rule, in 
addition to fast elimination of foreign antigens, may also lead to elimination of many of 
the self antigens. A strict matching rule requires longer time periods to eliminate the 
foreign antigen, but the response is more precise, and self-damage is better regulated. 
This tradeoff is demonstrated in Figure 19 - the elimination time of the foreign antigen 
and the overall response time are longer as the affinity requirement is more strict (left 
figure). On the other hand, the kinetics of autoimmunity is also slower (right figure). In 
Figure 20, the gradual degeneration of self antigens during the primary, secondary and 
tertiary responses is plotted against the simulation time, using different matching 
thresholds. It appears that immune memory is beneficial for the regulation of 
autoimmunity. When the matching threshold is low and no significant memory is 
generated, the number of self antigens declines steeply during the short time of the 
primary response. Both the secondary and tertiary responses cause the elimination of an 
additional major fraction of the remaining self antigens. With a higher matching 
threshold the primary response is much longer, causing about the same damage to self 
antigens more gradually, and producing antigen specific memory cells. These memory 
cells are most likely to be re-activated in the secondary and tertiary responses. The 
memory responses are shorter and much more targeted on the foreign antigen, causing 
significantly less damage to self. The matching threshold therefore has an important 
impact on the generation of immune memory and on regulation of autoimmunity. 
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Figure 19: Matching threshold and antigen elimination. 
(Left) The relation between the maximal matching threshold, the foreign antigen elimination and the total 
duration of the primary immune response.  (Right) The relation between the maximal matching threshold and the 
self antigen degeneration time in the primary immune response. Each line represent the duration from the 
beginning of the response until a fixed percentage of self antigen (5%, 10%, 15%) is eliminated by autoimmunity.  
Each point is an average of 50 simulation runs with the same parameters. 
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Matching threshold and Autoimmunity
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Figure 20: Matching threshold and autoimmunity. 
Number of self antigens during primary, secondary and tertiary immune responses with different 
maximal matching thresholds. 100 harmless extra-cellular self antigens were randomly 
generated during initialization. Foreign antigen was injected in time units 0, 1500 and 3000. 
Each line represent and average of 50 simulation runs with the same parameters. Simulation 
parameters are detailed in Appendix B (Table 5). 
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4.2.2 The memory threshold for efficient  secondary response 

The result of the previous experiment implies that when the matching rule is strict 
enough the primary response will be slower, more memory cells will develop and 
subsequent responses will be more efficient.  The objective of this experiment was to 
define the relation between the quantity of memory T-h cells generated in the primary 
response and the efficiency of the secondary response. The efficiency of  the secondary 
response was  taken in this experiment as the difference between the antigen elimination 
time in the primary and secondary responses.  

The efficiency of the response was plotted against the quantity of memory T-h cells 
generated in the primary response for 50 simulation runs with the same parameters (Fig. 
21). There is an evident correlation between the quantity of memory cells and the 
efficiency of the secondary response. The results show that when the quantity of memory 
cells generated in the primary response is very small, the secondary response is not 
necessarily more efficient and the difference in response duration is either positive or 
negative. As the number of memory cells increases the secondary response eliminates the 
antigen faster. Interestingly, there is a threshold value of memory T-h cells that ensures 
that the secondary response is more efficient. This number signifies a phase transition - if 
the number of memory cells generated in the primary response is equal to or greater than 
this threshold, the difference in the responses duration is always a positive number, 
indicating that the secondary response is efficient. This phenomenon occurs for the two 
matching thresholds  (22 and 23), indicating that this behavior of the system is general. 
Thus, if enough memory is produced during the primary response the ability of the 
system to produce an efficient secondary response is robust. 

 

Memory and Primary-Secondary Antigen Elimination       .

-1500

-1000

-500

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

Memory T-h after primary response            .

p
ri
m

a
ry

 -
 s

e
c
o
n
d
a
ry

match threshold = 23
 

Figure 21: Memory survival threshold for efficient secondary response. 
Results of 50 simulation executions with a strict matching rule (matching threshold=23). Y axis 
indicates the efficiency of the secondary response, denoted by the difference between antigen elimination time 
in primary and secondary responses. X axis indicates the quantity of T-h cells generated during primary 
response.  

There is a positive linear correlation between the duration of the primary response and 
the quantity of memory cells produced during this response (data not shown).The data 
presented in Figure 21 were used to estimate the threshold quantity of memory T-h cells 
required for an efficient vaccination in the simulation system. This threshold was used to 
calculate the minimal required duration of the primary response. The results are listed in 
Table 3. 
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Max matching 

threshold 

Memory Th threshold (with 

p-values) 

Primary response duration 

threshold (with p-values) 

23 244.44 (7.65E-09) 229.91 (1.39E-14) time units 

69 hours 

22 36.77 (2.5E-10) 18.74 (7.43E-17) time units 

5.6 hours 

Table 3: Th Memory and response duration thresholds for efficient vaccination. 
Results are based on the experiments described in Figure 21. Threshold values were calculated by linear regression, 
and the p-values are given in parenthesis. translation of simulation time units to hours is based on the scaling of 
0.3 hour per time unit. 
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4.2.2.1 The role of  memory cells in the primary response 

Memory lymphocytes are usually associated with the recall responses against an 
antigen that the immune system has already encountered before. However, since a 
memory cell is a lymphocyte with a longer life expectancy and possibly a faster activation 
mechanism, it is reasonable to assume that once a lymphocyte has differentiated into a 
memory cell it can always be re-activated. If the antigen infection is cleared relatively 
slowly, the re-activation of the memory cell may be part of the primary immune 
response. In order to assess the effect of memory lymphocytes on the primary immune 
response, the dynamics of the immune response against a virulent antigen was monitored 
without any employment of memory mechanism (Figure 22). Surprisingly, without 
immune memory the system cannot eliminate the infection, and the  immune entities 
fluctuate with strong correspondence to the antigen’s fluctuations. This result indicates 
that  memory lymphocytes are crucial for the success of the primary response against a 
virulent antigen. 
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Figure 22: Immune response without a memory mechanism. 
A typical dynamics of the antigen, antibodies and activated T-k lymphocytes. parameters of the 
simulations are as listed in Table 5(Appendix B), except for memory T cells survival rate, which 
was set to 0. A dose of 10 antigens was injected in simulation time units 0, 1500 and 3000.  

The next goal was to define the relation between the production of memory lymphocytes 
and the efficiency of the primary response. To do that, the duration of antigen 
elimination was measured with different probabilities of memory T-h and T-k survival. 
The results are presented in Figure 23. Seven experiments (50 simulation runs in each 
experiment) were conducted. In all of the experiments differentiation of T lymphocytes 
into memory cells was linear with random selection. The survival probability for T-h and 
T-k lymphocytes varied from 0.01  to 0.2. As the survival probability is higher, more 
memory cells are produced and the antigen elimination time in the secondary response is 
shorter. However, the same relation appears in the primary response as well, meaning 
that the newly produced memory lymphocytes are likely to be re-activated during the 
primary response, contributing to the elimination of the antigen in this response. When a 
threshold level of T cell survival probability of approximately 0.05 was reached there was 
no further improvement in the primary response. This result indicates that in addition to 
the contribution of memory cells there are also other factors that determine the 
efficiency of the response, and uncontrolled production of memory cells is not 
necessarily beneficial for the improvement of the response.  

 



 

35 

Memory in primary response

200

300

400

500

600

700

800

900

1000

0 0.05 0.1 0.15 0.2 0.25
mem T-h survial rate

A
g

. 
e

li
m

in
a

ti
o

n
 t

im
e

Primary Secondary
 

Figure 23: memory survival probabilities and responses duration. 
Antigen elimination time in the primary and secondary responses with seven different 
survival rates for memory T cells. Each point is an average of 50 simulation runs. 



 36 

4.2.3 The significance of  the initial immune repertoire 

Following its initial generation, the immune repertoire is going through changes. New 
lymphocytes are randomly generated and put in the system’s circulation concomitant 
with death of lymphocytes, either by ‘naturally’ terminating their life cycle or by ending  
their activation phase during an immune response.  To check the effect of the initial 
immune repertoire on changes that occur later,  the following experiment was conducted: 
two sets of simulations (50 runs in each set) with the same input parameters were 
executed. In the first set, the initial lymphocyte population was randomly generated in 
each simulation run, the same way it was done for all the previously described 
experiments. In the second set, the exact same initial lymphocyte population was used for 
all simulation runs. The equivalent in-vivo experiment would be using 50 genetically 
different (allogeneic) animals for the first experiment, and 50 genetically identical 
(syngeneic) animals for the second one. 

The results of the two sets were very similar to each other (Figure 24) in all of the 
parameters measured. The similarity is not only in the general dynamics of antigen 
elimination but also in parameters related to the immune repertoire like the average 
lymphocyte-antigen affinity and the number of lymphocyte clones. The implication is 
that the repertoire changes occurring during the immune response are far more dominant 
in determining the outcome of the immune response and the generation of immune 
memory than the initial  repertoire of these receptors. Thus, differences in the initial 
immune repertoire are not imperative to the outcome of the immune response in the 
simulation system. 
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Figure 24: A comparison  between syngeneic and allogeneic populations. 
Antigen elimination time in the primary, secondary and tertiary responses in  
two experiments: in the ‘syngeneic’ experiment the same initial lymphocytes  
population was used for all 50 runs. In the ‘allogeneic’ experiment different initial 
populations were generated for every simulation run. 
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4.2.4 Comparison of  different memory differentiation models 

Three different models for T lymphocyte memory differentiation were used in the 
following experiments: linear differentiation of memory cells by highest affinity selection, 
linear differentiation of memory cells by random selection and decreasing potential 
differentiation by random selection. For each model several different survival rates for 
memory T cells were used. The simulation parameters are given in Appendix B. 

In the linear differentiation models, an activated lymphocyte is chosen at the end of its 
activation phase either to die or to differentiate into a long-lived memory cell. The 
selection criteria may be the affinity between the lymphocyte and the antigen or simply a 
random selection. In all experiments, the antigen was successfully eliminated in the 
primary response, and the secondary and tertiary responses started, reached their peak, 
eliminated the antigen and ended faster than the primary response. Results are illustrated 
and compared in Figure 25. These results were obtained for two different maximal 
thresholds of  the memory survival function. 

In the decreasing potential model a lymphocyte is chosen to differentiate into an effector 
cell or a memory cell several times during its life cycle. Each consequent differentiation 
step into an effector cell decreases the cell’s potential to become a memory cell and 
survive. The selection is random and several different survival probabilities were used. 
The results show that when the survival probability was low (0.05), the results were 
similar to the results obtained with the linear differentiation models, as illustrated in 
Figure 25.  
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Figure 25: Comparison of immune responses with different memory models. 
Results are the average of 50 simulation runs, with parameters described in Appendix B. Antigen 
elimination times in the linear memory differentiation by affinity and by random selection, and in the 
decreasing potential differentiation by random selection. 
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5. Discussion 

5.1 Research Main Results 

The results of the experiments conducted in this research using the Immune System 
Simulation (ISS) tool can be categorized into two sub-sets: 

1. Results that restore biological phenomena or data reported in the literature. This 
type of results was used for the calibration and verification processes of the 
model, aimed to show its biological relevance. 

2. Results that gives new insights on the immune system, suggesting a novel point 
of view on currently debatable biological phenomena. 

The following results restore existing biological data: 

• Primary and recall infections of virulent antigen cause the activation, 
development and regulation of humoral and cellular immune responses against 
the antigen. 

• During the primary immune response memory T cells develop. These cells ensure 
an efficient secondary response. The dynamics of the primary and secondary T 
cell response over time is similar to in-vivo experiments described in the 
literature. 

• During the primary and the secondary immune responses antigen-specific T cell 
clones proliferate and expand. Proliferation rates and diversity changes of T cells 
are equivalent to literature in-vivo experiments. 

 

The following results are new insights on the immune system: 

• An immune system with affinity-based interactions is more likely to express the 
immune memory phenomenon: the secondary immune response is more efficient 
as the lymphocyte-antigen matching required for activation is more strict. A strict 
matching criteria favors positive selection of high affinity lymphocytes, and 
extends the duration of the primary response to allow development of memory 
cells, while keeping autoimmunity relatively low in subsequent responses.  

• Immunization by primary exposure to the antigen is successful only if the 
primary immune response is significant enough to produce a threshold amount of 
memory T cells. If the minimal required memory is not produced, the secondary 
response will not be improved. But if enough memory cells are produced, the 
system expresses a very robust immunization against subsequent antigen 
stimulation. The simulation system is used to estimate this ‘vaccination 
threshold’. The biological equivalent of this threshold can be used to design and 
evaluate vaccine paradigms. 

• Memory lymphocytes may have an important contribution to the success of the 
immune system to eliminate the antigen in the primary response, as well as in the 
subsequent responses. Without any memory cells, the primary response against a 
virulent antigen may fail to eliminate the antigen. As more activated T cell survive 
as memory cells the primary response significantly improves. The simulation 
predicts that survival of up to 5% of activated T cells is sufficient for efficient 
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primary and secondary responses, an observation that supports experimental 
findings from theoretical considerations. 

• Repertoire changes occurring during the immune response are more dominant in 
determining the outcome of the immune response than the initial random 
generation of these receptors. This may explain how any individual immune 
system adapts itself to respond efficiently against a broad range of antigens, 
although  its initial repertoire of receptors was created in a random fashion. 
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5.2 Biological Interpretation Of  The Results 

A computational model of a biological system can contribute to a better 
understanding of the modeled biological phenomena. To achieve this goal, the biological 
relevance of the model must be proven, by showing that quantitative data, as well as 
qualitative principles, are restored within the model. Furthermore, the model should be 
capable of giving new insights and predictions about the biological system, which 
correspond to debatable issues in the literature. This section associates the main results 
of this work with current biological research, showing that insights gained from this work 
may contribute to a better understanding of the immune system, and suggesting possible 
experiments to test the theoretical results. 

5.2.1 Requirements for an efficient secondary immune response 

In the experiments described in the previous chapter, the efficiency of the secondary 
immune response was evaluated by assessing the speed and the magnitude of the 
response. The efficiency of the secondary response is a measure for the success of the 
immunization, and it is influenced by many different factors. Some of these factors were 
explored using the simulation system, and the obtained results may be used to define 
some of the requirements for development of an efficient immune memory and thus for 
the development of efficient immunization paradigms. 

5.2.1.1 Interaction affinity 

The matching rule used for the simulated interactions between immune entities has a 
major effect on the overall outcome of the immune response. The matching rule directly 
determines the matching probability, as shown in Table 2, and the matching probability is 
the equivalent to the bonding strength or interaction strength, determining whether 
activation signals will be triggered. One can hypothesize that a less strict matching rule 
with a lower threshold for a definite match should yield an improved response. With 
such a matching rule, more lymphocytes will be activated, and the antigen will be 
eliminated faster. The results of the matching threshold experiment, shown in Figure 18, 
prove this hypothesis to be generally correct: the antigen elimination time decreases with 
the matching threshold. For example, in the primary response, the most strict matching 
rule (threshold=23) yields a long response of 670 time units (~8.3 days) from infection to 
antigen elimination, while the less strict matching rule (threshold=18) yields a short 
response of only 87 time units (~1.1 days). 

But, taking into account that activated lymphocytes may also bind to self antigens, a 
permissive matching rule may result in elimination of a large portion of the body’s self 
antigens. Indeed, it was shown in Figure 20 that a permissive matching rule causes major 
degeneration of self antigens in a very short time in both primary and memory responses. 
When a strict matching rule is used, the damage to self antigens in the primary response 
is more gradual, and more important – the damage to self antigens in the memory 
responses is highly controlled. Therefore, the matching rule balances the speed of the 
response, namely how fast it clears the foreign antigen and the preciseness of the 
response, namely how much damage is caused to self antigens by autoimmunity. 

Figure 18 demonstrates that improved secondary and tertiary responses are produced only 
when a strict matching rule is used, while no memory effect is demonstrated with a 
permissive matching rule.  This result  implies that the phenomenon of immune memory 
is more likely to be expressed in an immune system with affinity-based recognition. A 
strict matching criteria favors positive selection of high affinity lymphocytes which 
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survive as memory cells, and ensures an improved recall responses. In addition, a strict 
matching rule extends the duration of the primary response to allow development of 
enough memory cells, while keeping the damage to self antigens relatively low. A 
permissive matching rule, on the other hand, allows a fast activation of lymphocytes 
against both foreign and self antigens. The primary response is short, and it involves 
activation of a small number of lymphocytes and generation of small quantities of 
memory cells. Antigen is indeed eliminated very quickly, but the response does not 
produce efficient vaccination. The following memory responses are still efficient against 
the foreign antigen, but at the same time the body’s self antigens are significantly 
damaged.  

In the natural immune system the primary immune response is a long-lasting process on 
a biochemical scale. Elimination of an antigen usually takes days, and the immune 
response proceeds even after the clinical disease has terminated. The simulation showed 
that this slow time course is of crucial importance to the development of immunization 
against subsequent challenges. The requirement for a very strict affinity recognition 
between the lymphocyte and the antigen serves this purpose. It was shown here that the 
stringent matching criteria are rate-limiting in the primary response but at the same time 
crucial for the efficient secondary response. The simulation shows that an immune 
system not based on stringent recognition would eliminate antigen but would not exhibit 
the hallmark characteristics of immune memory. In addition, such an immune system 
would severely damage the body’s self antigen by autoimmune attacks.  In other words, 
the simulation suggests that the slow kinetics of the primary response are in the basis of 
the development of immune memory and that this memory has an important role in 
regulating autoimmunity in subsequent responses. 

 

5.2.1.2 memory threshold 

Within a single experiment, the quantities of memory cells vary between different 
simulation executions. This allows to estimate the correlation between the amount of 
memory cells produced during the primary response, and the efficiency of the secondary 
response. Such correlation is illustrated in Figure 21, where a larger quantity of memory 
T-h cells causes the secondary response to be faster relative to the primary response. The 
simulation shows that there is a threshold amount of memory cells that guarantees a 
better secondary response. If this amount of memory cells is generated than the organism 
is necessarily vaccinated against the antigen, and therefore this threshold was termed 
‘vaccination threshold’. This ‘vaccination threshold’ for memory T-h cells was estimated 
in the simulation system (Table 3). Since there is a linear relation between the response 
duration and the quantity of produced memory cells, there is an implied threshold for the 
duration of the primary response.  

The emerging picture is therefore as follows: in order for the immune system to develop 
a successful immunity, the primary antigen challenge must be able to trigger a significant 
immune response, which will generate enough memory cells for efficient vaccination. In 
order to do that, the primary response must last a minimal amount of time. Indeed, it is 
known that the primary immune response against most of the virulent antigens lasts 
between several days to more than as week, with antigen elimination occurring well after 
the clinical symptoms of the disease have disappeared [1]. In addition, getting clinical 
symptoms of a disease undeniably ensures production of vaccination against the same 
pathogen in people with intact immune systems. In the living body, when symptoms of 
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the disease induced by the antigen are expressed, the ‘vaccination threshold’ is most likely 
achieved, and the body is immunized against future infections of the same antigen.  

In the simulation system, the ‘vaccination threshold’ is strongly dependent on antigen 
type and on parameters of T-h proliferation and differentiation, and putting all 
parameters into the system, it can be used to evaluate vaccine doses and protocols.  

 

5.2.1.3 memory differentiation model 

Several different immune memory models were used in the experiments: linear 
differentiation by highest antigen affinity, linear differentiation by random selection and 
decreasing potential differentiation by random selection. In addition, a control 
experiment without any memory mechanism was conducted. 

Three experiments using different immune memory models were compared, as illustrated 
in Figure 25. The main differences between these three experiments are in the absolute 
duration of primary, secondary and tertiary responses. When the ratios between primary, 
secondary and tertiary responses are examined, all three experiments yield similar results 
– antigen elimination time in the secondary response is 2.1-2.4 times shorter than in the 
primary response, and antigen elimination time in the tertiary response is 1.2-1.4 times 
shorter than in the secondary response. Other parameters, like maximal amplitudes of the 
antigen, show similar behavior. This similarity between the differentiation models can be 
understood when examining the number of different T-h or T-k clones actively 
participating in the immune response. During the activation and proliferation phase, the 
immune repertoire is narrowed and becomes dominated by a few clones with high 
antigen affinity. The variation of the antigen affinities among these clones is low, and 
lymphocytes of these clones are selected under any of the tested selection rules. The only 
important factor is the memory survival probability, and since probabilities were chosen 
in all experiments to be similar, the outcome is also similar.  

The control experiment demonstrated that without any immune memory mechanism, 
there is no improvement is recall responses. When the infectious antigen is virulent, i.e. 
spreads fast and causes severe damage to tissue cells, the simulated immune response 
cannot eliminate the antigen, as illustrated in Figure 22. This result is explained by the role 
of memory cells in the primary response, as will be discussed later. When the antigen is 
less virulent the immune system is able to cope with it successfully, but there is no 
significant improvement in the efficiency of secondary or tertiary responses, as illustrated 
in (Figure 14).  
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5.2.2 The role of  memory cells in the primary response 

In the model, memory cells were shown to have a major role in keeping the immune 
system alert  against attacks of previously encountered antigens and allowing the system 
to respond faster and more efficiently against subsequent challenges by these antigens. 

 Since a memory cell is a lymphocyte with a longer life expectancy and possibly a faster 
activation mechanism, it is reasonable to assume that once a lymphocyte has 
differentiated into a memory cell it can always be re-activated. If the antigen infection is 
cleared relatively slowly, the re-activation of the memory cell may be part of the primary 
immune response. The results from the simulation experiments show that not only do 
memory cells participate in the primary immune response, but they have a crucial role in 
determining the efficiency of this response as well. This observation that memory cells 
participate and effect the outcome of the primary immune response is new, yet it can be 
easily understood when examining the nature of immune memory development. As 
Figure 22 demonstrates, without any memory cells the simulated immune system fails to 
eliminate a virulent infectious antigen. This  is because a lymphocyte becomes activated 
only for a limited period, during which the invading antigen may not be completely 
cleared. When the lymphocyte reaches its ‘decision point’, it either dies or becomes a 
memory cell. In the former case, an antigen specific lymphocyte dies and goes out of the 
immune circulation. In the latter case, the antigen specific lymphocyte remains in the 
local environment of the infection for as long as it takes, waiting to be re-activated and to 
re-attack the antigen. Therefore, the overall ability of the simulated immune system to 
overcome the antigen in the primary response depends on the amount of memory T cells 
generated during this response.  

This dependency is demonstrated in Figure 23 - the time from infection to antigen 
elimination in the primary response is 30% shorter when the survival probability of 
memory T cells is raised from 0.01 to 0.05. When the survival probability reaches a 
threshold of approximately 0.05 there is no further improvement in the primary 
response. This result indicates that the contribution of memory cells is not the sole factor 
determining the efficiency of the response, and unregulated production of memory cells 
is not necessarily beneficial for the response. Indeed, it was experimentally found that the 
survival ratio of antigen-specific T cells during the final stages of the immune response is 
about 0.01-0.05 [5, 56].  It therefore appears that the simulation system captures a 
genuine behavior of the immune system and provides a theoretical support for it . 

Recently, Jacob and Baltimore described a novel transgenic mouse system which enables 
discrimination between naive,  activated and memory T cells in-vivo using a recombinant 
expression system that irreversibly marks antigen-stimulated T cells [7]. This system was 
used to monitor the distinct populations of T cells at different phases of the immune 
response to Lymphocytic Choriomeningitis Virus (LCMV). They found that 8 days after 
infection, during the acute phase of the response (corresponding to the primary immune 
response in the simulation), a subset of the antigen-specific T-k cells displayed 
characteristics of LCMV-specific memory cells, both in terms of their ability for long-
term growth and their ability to adaptively transfer immunity against LCMV infection.  
These memory cells were only a small fraction of the total LCMV-specific T-k cells 
during the acute response, whereas during the memory phase, more than 30 days after 
infection, these were the only LCMV-specific cells found.  Interestingly, during the acute 
phase of the response these cells exhibited cytotoxic activity in-vitro that was identical to 
activated T cells. It therefore seems likely that these memory cells possessed the ability to 
actively participate in the ongoing immune response, but this was not shown in the 
experimental work. The work of Jacob and Baltimore thus provides experimental 
support to the predictions of the simulation. The theoretical results, on their part, 
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provide a possible explanation to the experimental observation and suggest that the 
memory cells actively participate in the acute phase of the response, contributing to its 
efficiency. On the basis of the theoretical prediction it is now possible to design an 
experiment confirming the actual participation of memory cells in the acute phase using 
the experimental system described, by specifically eliminating the memory population 
during the acute phase and monitoring the kinetics of the response.  

5.2.3 The significance of  the initial immune repertoire 

The influence of the initial immune repertoire on the generation of immune memory 
was assessed. Specifically, the question of the relative contribution of the initial receptor 
repertoire vs. the contribution of repertoire alterations during the response was 
addressed by comparing the differences in the outcome of an antigen challenge in 
simulated syngeneic and allogeneic populations. 

In the simulation system, lymphocyte receptors are generated by a random process, in 
which each of the possible receptors has an equal probability to be generated. The 
random generation process guarantees a non-biased diversity of the immune repertoire. 
Since the possible antigens are not known when the generation process occurs, the 
system must be capable of developing a response against any harmful antigen. Using a 
receptor of 23 binary bits, with a strict matching rule demanding two strings to be 
completely equal for a definite match, the estimated probability for a successful match is 
0.03 (Table 2). An initial population of 1000 lymphocytes, each with the above antigen 
matching probability, guarantees that potentially there is always a matching lymphocyte in 
the repertoire. But, considering also the spatial conditions needed for a successful match 
and for lymphocyte activation–(that requires antigen capturing and presentation to the 
matching T-h cell, the presence and activation of matching T-k or B cell in the same 
lymph node, and the interaction between the effector T-k cells or antibodies with the 
antigen), the actual probability for triggering an immune response is much lower. Still, 
this probability was sufficient to enable the system to respond efficiently against an 
antigen with a random specificity. 

Following its initial generation, the immune repertoire is going through changes. during 
an immune response antigen-specific clones proliferate and dominate the repertoire. 
After the response terminates most of these lymphocytes die and some survive as 
memory cells. In addition, each non-memory lymphocyte has a finite life expectancy. 
Therefore lymphocytes are constantly dying and new lymphocytes are constantly 
generated by homeostasis mechanisms. All of these changes shape the immune repertoire 
and determine its diversity. As demonstrated in Figure 24, the measurements of the 
immune response in a syngeneic population with 50 identical initial repertoires is very 
similar to that of an allogeneic population with 50 unique initial repertoires.  

The implication of this result is that the changes in the structure of the repertoire 
occurring during the simulation are more dominant in determining the outcome of the 
immune response than the initial generation of the immune receptors. The initial specific 
immune repertoire has a minor impact on the  efficiency of the response providing that 
the repertoire  is sufficiently diverse. The dynamics of clonal expansion and the 
narrowing of the repertoire are imperative to the generation of the immune response. 
Thus, the well-accepted conception that the initial immune repertoire is generated in a 
random fashion was shown not to affect the ability of any individual immune system to 
generate efficient and robust immune responses. In other words, the simulation system 
shows that any intact immune system will eliminate an antigen and develop immune 
memory regardless of its specific initial lymphocyte repertoire. Indeed, every healthy 
individual that overcomes a pathogen infection becomes vaccinated against it without 



 

45 

any dependence on his initial lymphocyte receptor pool. Therefore, vaccinations against 
common diseases achieve high success rates in healthy populations [2]. 

This ‘in-machina’ experiment can be directly verified in-vivo by accurately measuring 
parameters of the primary and secondary immune responses and comparing their 
distribution and variance in syngeneic and allogeneic populations. 
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5.3 Pros And Cons Of  The Computational Approach 

5.3.1 Pros of  the simulation system 

The implementation of the immune system simulation model is a general tool for 
investigating various aspects of the immune system within a computer simulation. The 
simulation system benefits from the general advantages of models since it is a low-cost 
tool that can be used to construct highly controlled and repeatable ‘in-machina’ 
experiments. Thus, the system can be used for exploring both qualitative principles and 
quantitative phenomena of mechanisms in the immune system. The unique 
characteristics of the simulation system give it some additional benefits: 

1. Generality and Flexibility.  
The system supplies a high degree of generality and flexibility by allowing the user to 
control over 70 input parameters. These parameters are used to determine the 
‘configuration’ of the simulated model, to precisely tune the  quantitative behavior of 
the system and to determine the dynamics of the injected foreign antigen. 

2. Realism. 
Incorporation of many different immunological mechanisms makes the simulation 
system realistic and robust. The experiments and their results have a straightforward 
biological equivalence.   

3. Modularity and Expandability. 
The system was designed in a modular object-oriented way, which allows its 
expansion and modification. Expansion of the simulation scale is simply achieved by 
using a more powerful computing platform. 
 

4. Ease of use. 
The simulation system is very easy to use. It is suitable for being used by researchers 
from other disciplines that do not possess any programming skills.  
 
 

5.3.2 Cons of  the simulation system 

The immune system simulation model was initially designed to capture only a narrow 
portion of the broad  and complex nature of the biological immune system. It is possible 
to use the simulation system to qualitatively assess  biological assumptions before 
constructing a more complex and expensive laboratory experiment. But in order to 
produce meaningful quantitative results, the simulation system must be tuned to 
accurately imitate a specific  experimental model and predict its results. This might be a 
non-trivial challenge: the simulation system is flexible enough to allow its user to vary a 
large number of input parameters. Trying to comprehensively estimate all of the 
parameters from literature data is hard to do since experimental models usually 
investigate only a few parameters while others are not monitored. In addition there are 
large variations in reported data between different experimental models. 

Beside parameter tuning, the simulation model is coded with a set of deterministic and 
stochastic rules. These rules define, within the simplifying assumptions of the model, 
how the immune system works. Formulating these rules from the current biological 
knowledge is difficult to do – many aspects of the biological immune system are not 
thoroughly understood. Some questions in immunology are only answered theoretically, 
and others are subjects for continuous scientific debates, where contradicting 
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assumptions are presented and often supported by contradicting experimental data. In 
order to allow the simulation to work, these controversial questions can be addressed by 
two possible ways: the first is to support simulation of different views through additional 
input parameters, which might make the system harder to tune. The second is to choose 
the more common hypothesis and implement it, hoping that the simulation results will 
not be wrongly biased. In this work, most ‘hard-coded’ assumptions are based on 
common theories of immunology, simplified to make implementation and investigation 
possible. More debatable issues, like the nature of immune memory, were left for the 
users of the simulation system to determine using the input parameters.  

The relatively small capacity of the simulation system might be a drawback. In the 
highly-complex immune system, some characteristics may emerge only when the 
number of immune entities and size of the body are few orders of magnitude larger. The 
simulation system handles this issue not by intending to mimic the complete system on a 
smaller scale, but instead by simulating small subsystems – few tissue cell, several lymph 
nodes and immune system cells and molecules. 

5.3.3 Future enhancements and directions 

The simulation system may be further developed to incorporate additional immune 
mechanisms. Enhancements will make the implemented model more realistic, and will 
enable exploring other aspects of the immune system. It should be mentioned, however, 
that as the model becomes more realistic, it also becomes more complicated, as there are 
more parameters and more possible behavior patterns. Therefore, enhancements should 
be modular, by allowing to use each of the system’s component independently, and 
carefully constructing a more complex simulation system by putting few components 
together. 

A first possible enhancement has to do with signaling between immune entities. The 
current model includes a very simplified signaling method, in which direct ‘binary’ signals 
are transferred between different cells (APCs, lymphocyes, tissue cells). In the natural 
immune system, a highly complex network of chemical signals, mediated by proteins 
called cytokines, is used to regulate and control the activity of the immune cells. Cytokines 
are secreted and recognized by immune system cells. There are more than 20 type of 
cytokines, and at least 90 different cytokine-mediated activities have been recognized [2]. 
Some of these activities encourage activation and proliferation and others suppress the 
immune response. Cytokine-mediated signals are determined by the protein 
concentrations, and therefore are not binary signals. Incorporation of cytokine signaling 
in the simulation system would make the process of decision making by cells more 
complex and more realistic. 

Another gross simplification made by the model is the nature of antibodies. Simulated 
antibodies are plain specific antigen-eliminating molecules with a given existence time. In 
fact, different types of antibodies can be found in the living body (the major human types 
are named IgG, IgM, IgA, IgE and IgD), and the mixture of these types, produced 
during an immune response has a crucial effect on the overall outcome. Expanding the 
variety of antibody response in the simulation may help exploring the humoral arm of the 
acquired immune response. 

Another possible enhancement involves elaborating the binding process between 
receptors and antigenic epitopes, which is currently implemented as binary string 
matching. The actual strength of the binding depends on the spatial and chemical 
structures of the receptors, and in order to simulate it, complex representation and 
generation processes of the receptors should be employed. 
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The representation of the tissue as  three-dimensional space, instead of the implemented 
two-dimensional lattice may also expose new aspects of the spatial organization and 
dynamics of the system. 

And finally, an artificial distinction was made in the model between tissue cells, which 
can be infected by antigens, and immune system cells which react against antigens. One 
of the main challenges of immunology in recent years is understanding a pathogen that 
attacks the lymphocytes themselves, the HIV. Simulating virus infection of the immune 
system cells may be used to explore aspects of AIDS. 

The simulation system may be used in the future to investigate different immunological 
questions, like preferable infection strategies for foreign antigens, the nature of self 
tolerance mechanisms, the course of auto-immune diseases, and even aspects of immune 
system evolutionary development. 
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7. Appendix A: The Simulation System Details 

7.1 Activity rules 

Each immune entity has a set of activity rules, defining its state transition. The 
following section describes in detail the activity rules for the different immune 
entities: 

Tissue cell 

• If state is ALIVE: update inflammation indicator by averaging the inflammation 
levels of the neighbors,  and divide it by the propagation factor. 

• If state is NECROTIC_DEATH: update inflammation indicator to the maximal 
level. 

• If state is APOPTOTIC_DEATH: die without leaving any trace and (specifically, 
without changing the inflammation indicator). 

• If state is NECROTIC_DEATH or APOPTOTIC_DEATH, and sufficient time 
(RECOVERY_TIME ) has passed since death – recover and set state to ALIVE. 

Dendritic cell 

• If located in a CELL_NODE: 

� Move across the cell nodes grid for DENDRITIC_MOVE_TIME, than try 
to capture an antigen. Movement time is used to guarantee equitable 
distribution of dendritic cells across the cells nodes grid. Movement may be 
random or heuristic towards higher antigen load.  

� If there are extra-cellular antigens in the cell node, capture one of them 
randomly. 

� If there are intra-cellular antigens attached to the tissue cell, capture one of 
them randomly. 

� If an antigen was captured - record the local inflammation level and move to 
the draining lymph node, otherwise – move to adjacent node, and try to 
capture an antigen there. 

• If located in a LYMPH_NODE: 

� Stay in the lymph node for DENDRITIC_LYMPH_WAIT_TIME. 

� If an extra-cellular antigen was captured, and if a matching T-Helper cell is 
present: present the antigen to the T-Helper cell, giving it a BIND signal. If 
activation conditions are fulfilled, activate the T-Helper cell by giving it a CO-
STIMULATION signal. 

� If an intra-cellular antigen was captured, and if a matching T-Killer cell is 
found in the lymph node: present the antigen to the T-Killer cell, giving it 
BIND signal. If there is also a matching activated T-Helper cell in the lymph, 
transfer the HELP signal from the T-Helper cell to activate the T-Killer cell. 
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T-Helper cell 

• Make life/death decision according to the cell’s HALF_LIFE parameter. 

• If state is RESTING (initial state): 

� Traverse the cyclic lymph nodes array, waiting 
T_HELPER_REST_WAIT_TIME in each lymph node for antigen 
presentation by APC. 

� If a matching antigen was presented, and BIND signal was given – divert to 
BOUND state. 

• If state is BOUND (bound to an antigen presented by an APC): 

� Wait T_HELPER_BOUND_TIME for activation signal from APC. 

� If activation signal was given: divert to ACTIVATED state. 

� If activation signal was not given: divert to TOLERATED state. 

• If state is ACTIVATED (effector cell): 

� If there is a matching B cell in the lymph node, give it an activation HELP 
signal. 

� If there is a matching T-killer cell in the lymph node, give it an activation 
HELP signal (through the APC). 

� Clone daughter cells after successful effector interaction and reiterate every 
T_HELPER_CLONE_PERIOD. 

� Make memory differentiation decision according to the employed memory 
model. 

• If state is TOLERATED (got BIND signal without activation signal):  

� Wait T_HELPER_TOLERANCE_TIME, and revert to RESTING state. 

T-Killer cell 

• Make life/death decision according to the cell’s HALF_LIFE parameter. 

• If located in a LYMPH_NODE: 

� Is state is RESTING (initial state): 

� Traverse the cyclic lymph nodes array, waiting 
T_KILLER_REST_WAIT_TIME in each lymph node for antigen 
presentation by an APC. 

� If a matching antigen was presented, and BIND signal was given – divert 
to BOUND state. 

� If state is BOUND (bound to an antigen presented by an APC): 

� Wait T_KILLER_BOUND_TIME for activation signal from T-Helper 
cell. 

� if activation signal was given: divert to ACTIVATED state. 

� if activation signal was not given: divert to TOLERATED state. 

� If state is ACTIVATED (effector cell): 

� Move to a random cell node in the local environment of the lymph node, 
and perform effector function. 
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� If state is TOLERATED (got BIND signal without activation signal): 

� Wait T_KILLER_TOLERANCE_TIME, and revert to RESTING state. 

� If located in a CELL_NODE (effector cell): 

� Move across the cell nodes grid for T_KILLER_ACTIVATED_TIME, 
encountering infected tissue cells. Movement may be random or heuristic, 
towards higher antigen load. 

� if an infected cell with a matching antigen was encountered, give the tissue 
cell a KILL signal, causing it an apoptotic death. 

� Clone daughter cells after successful effector interaction and reiterate every 
T_KILLER_CLONE_PERIOD. 

� Make memory differentiation decision according to the employed memory 
model. 

B cell 

• Make life/death decision according to the cell’s HALF_LIFE parameter. 

• If located in a CELL_NODE: 

� Move across the cell nodes grid for B_CELL_MOVE_TIME, then try to 
capture an antigen. Movement time is used to guarantee equitable distribution 
of B cells across the cells nodes grid. Movement may be random or heuristic, 
towards higher antigen load. 

� If there are extra-cellular antigens in the cell node, capture one of them 
randomly. 

� If an antigen was captured - record the local inflammation level and move to 
the draining lymph node, otherwise – move to adjacent node, and try to 
capture an antigen there. 

• If located in a LYMPH_NODE: 

� If state is RESTING (initial state): 

� Move to a random cell node in the local environment of the lymph node. 

� If state is BOUND (antigen was captured): 

� Stay in the lymph node for B_CELL_LYMPH_WAIT_TIME. 

� If a matching T-Helper cell is found in the lymph node: present the 
antigen to the T-Helper cell, giving it BIND signal. If activation conditions 
are fulfilled, activate the T-Helper cell. 

� If an activating HELP signal was given by a matching effector T-Helper 
cell, divert to ACTIVATED state. 

� If state is ACTIVATED (effector cell): 

� Secrete antibodies 

� Clone daughter cells with possible mutations every 
B_CELL_CLONE_PERIOD. 

� Make memory differentiation decision according to the employed memory 
model. 
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Antibody 

• If located in a LYMPH_NODE (initial state): 

� Move to a random cell node in the local environment of the lymph node. 

• If located in a CELL_NODE: 

� Move across the cell nodes grid, looking for matching extra-cellular antigens. 
Movement may be random of heuristic, towards higher antigen load. 

� If a matching antigen was found – eliminate it. 

• Die after ANTIBODY_LIFE_TIME. 

Antigen (harmful) 

• If state  is Phase 0 (move phase):  

� Move across cell nodes grid for ANTIGEN_1_MOVE_TIME. 

� Try to infect a tissue cell. If successful: divert to Phase 1, otherwise – keep 
moving. 

• If state is Phase 1 (infect phase): 

� Wait in infected cell node for ANTIGEN_1_CELL_WAIT_TIME. 
Than, Divert to Phase 2. 

• If state is Phase 2 (clone phase): 

� Clone daughter antigens with possible mutations, for 
ANTIGEN_1_CLONE_TIME. 
Than, divert to Phase 3. 

• If state is Phase 3 (kill phase): 

� Decrease the tissue cell’s life indicator, until the cell is dead. 

� Leave the tissue cell and revert to Phase 0. 
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7.2 Simulation parameters 

Many of the model’s parameters can be set per simulation. The following section 
specifies these parameters, their meaning and their default values in the simulation 
system. 

No Parameter name Parameter meaning default 
value 

1. LATTICE_SIZE_X  Horizontal size of cell nodes grid 128 

2. LATTICE_SIZE_Y Vertical size of cell nodes grid 128 

3. LYMPH_NODE_RATIO Ratio between number of cell nodes and 
number of lymph nodes 

64 

4. THYMUS_MISS_PROBABILITY Probability of auto-reactive T cell to 
escape negative selection in the thymus 

0.2 

5. THYMUS_ENABLED Enable/Disable flag of thymus negative 
selection mechanism 

Dis 

6. SIGNAL_2_ENABLED Enable/Disable flag of second signal for 
lymphocyte activation 

En 

7. HUMORAL_ENABLED Enable/Disable flag of humoral arm of 
immune response 

En 

8. CELLULAR_ENABLED Enable/Disable flag of cellular arm of 
immune response 

En 

9. TH_MEM_ENABLED Enable/Disable flag of improved response 
mechanism of T-h memory cells 

En 

10. HERISTIC_MOVE_ENABLED Enable/Disable flag of heuristic 
movement of immune entities across cell 
nodes grid according to antigen load 

En 

11. NUMBER_OF_T_HELPERS Initial quantity of T-helper cells 1000 

12. NUMBER_OF_T_KILLERS Initial quantity of T-killer cells 1000 

13. NUMBER_OF_B_CELLS Initial quantity of B cells 1000 

14. NUMBER_OF_DENDRITICS Initial quantity of Dendritic cells 1000 

15. NUMBER_OF_SELF_ANTIGENS Initial quantity of self antigens 0 

16. PEPTIDE_ALPHABET_SIZE Number of different possible symbols in a 
peptide string 

2 

17. PEPTIDE_LENGTH Length of a peptide string 23 

18. PEPTIDE_MATCH_THRESHOLD 
MATCH_MIN_CONST 

Parameters (M, r) for the peptides 
matching function 

23 
2/3 

19. MAX_LIFE_VALUE Initial (maximal) life value of tissue cell 10 

20. DEATH_VALUE Value of life indicator which means tissue 
cell death 

0 

21. RECOVERY_TIME Time from tissue cell death to recovery 300 

22. MAX_INFLAM_VALUE Maximal inflammation value, set by a tissue 
cell after necrotic death 

100 

23. INFLAM_PROPAGATION_FACTOR The factor by which the inflammation value 
is divided when propagated to a neighbor 
tissue cell 

2 

24. DENDRITIC_MOVE_TIME Number of time units in which a dendritic 
cell moves across the cell nodes grid, 
looking for antigen 

5 

25. DENDRITIC_LYMPH_WAIT_TIME Number of time units in which a dendritic 
cell waits in the lymph node after 
capturing an antigen 

5 

26. INFLAM_THRESHOLD The inflammation threshold of the APC, 
determining if a second signal will be given 
by the APC to the T-helper 

1 

27. T_KILLER_BOUND_TIME Number of time units in which a T-killer 
cell stays bound to a presented antigen, 
waiting for a second signal 

10 

28. T_KILLER_ACTIVATED_TIME Number of time units in which a T-killer 
cell stays activated 

100 
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No Parameter name Parameter meaning default 
value 

29. T_KILLER_REST_WAIT_TIME Number of time units in which a T-killer 
cell in resting state waits in each lymph 
node for an APC presenting a peptide 

2 

30. T_KILLER_TOLERANCE_TIME Number of time units in which a T-killer 
cell stays in tolerated state (inactive) after 
receiving signal one without signal two 

1 

31. T_KILLER_CLONE_SIZE Number of T-killer cells cloned each time 
unit by an activated T-killer cell 

5 

32. T_KILLER_CLONE_PERIOD Number of time units between consequent 
T-killer cloning 

50 

33. T_KILLER_MUTATION_RATE Mutation rate of cloned T-killer cells 0 

34. T_KILLER_MEMORY_MODEL Memory model chosen for T-killer cells Linear-
random 

35. T_KILLER_MEMORY_SURVIVAL_RATE Survival rate of memory T-killers for 
random memory differentiation 

0.05 

36. T_KILLER_MEMORY_MIN_THRESHOLD 
T_KILLER_MEMORY_MAX_THRESHOLD 
T_KILLER_MEMORY_POWER_BASE 

Parameters (MAX,MIN,C) for survival 
function of memory T-killers (heuristic 
memory differentiation) 

0 
24 
1.8 

37. T_KILLER_MEMORY_HALF_LIFE Half life time of a memory T-killer cell Infinite 

38. T_KILLER_CLONED_HALF_LIFE Half life time of a regular T-killer cell 4000 

39. T_HELPER_BOUND_TIME Number of time units in which a T-helper 
cell stays bound to a presented antigen, 
waiting for a second signal 

10 

40. T_HELPER_ACTIVATED_TIME Number of time units in which a T-helper 
cell stays activated 

100 

41. T_HELPER_REST_WAIT_TIME Number of time units in which a T-helper 
cell in resting state waits in each lymph 
node for an APC presenting a peptide 

2 

42. T_HELPER_ACT_WAIT_TIME Number of time units in which an 
activated T-helper cell waits in each lymph 
node  

10 

43. T_HELPER_TOLERANCE_TIME Number of time units in which a T-helper 
cell stays in tolerated state (inactive) after 
receiving signal one without signal two 

1 

44. T_HELPER_CLONE_SIZE Number of T-helper cells cloned each 
time unit by an activated T-helper cell 

5 

45. T_HELPLER_CLONE_PERIOD Number of time units between consequent 
T-helper cloning 

50 

46. T_HELPER_MUTATION_RATE Mutation rate of cloned T-helper cells 0 

47. T_HELPER_MEMORY_MODEL Memory model chosen for T-helper cells Linear-
random 

48. T_HELPER_MEMORY_SURVIVAL_RATE Survival rate of memory T-helpers for 
random memory differentiation 

0.05 

49. T_ HELPER _MEMORY_MIN_THRESHOLD 
T_ HELPER _ MEMORY _MAX_THRESHOLD 
T_ HELPER _MEMORY_POWER_BASE 

Parameters (MAX,MIN,C) for survival 
function of memory T-helpers (heuristic 
memory differentiation) 

0 
24 
1.8 

50. T_HELPER_MEMORY_HALF_LIFE Half life time of a memory T-helper cell Infinite 

51. T_HELPER_CLONED_HALF_LIFE Half life time of a regular T-helper cell 4000 

52. B_CELL_ACTIVATED_TIME Number of time units in which a B cell 
stays activated 

5 

53. B_CELL_MOVE_TIME Number of time units in which a B cell 
moves across the cell nodes grid, looking 
for antigen 

10 

54. B_CELL_LYMPH_WAIT_TIME Number of time units in which a B cell 
waits in the lymph node after capturing an 
antigen 

10 

55. B_CELL_CLONE_SIZE Number of B cells cloned each time unit 
by an activated B cell 

2 

56. B_CELL _CLONE_PERIOD Number of time units between consequent 1 
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No Parameter name Parameter meaning default 
value 

B cell cloning 

57. B_CELL_NUMBER_OF_ANTIBODIES Number of antibodies produced each time 
unit by an activated B cell 

3 

58. B_CELL_MUTATION_RATE Mutation rate of cloned B cells 0 

59. B_CELL_MEMORY_MODEL Memory model chosen for B cells Linear-
random 

60. B_CELL_MEMORY_SURVIVAL_RATE Survival rate of memory B cells for 
random memory differentiation 

0 

61. B_CELL _MEMORY_MIN_THRESHOLD 
B_CELL _ MEMORY _MAX_THRESHOLD 
B_CELL _MEMORY_POWER_BASE 

Parameters (MAX,MIN,C) for survival 
function of memory B cells (heuristic 
memory differentiation) 

0 
0 
1.8 

62. B_CELL_MEMORY_HALF_LIFE Half life time of a memory B cell Infinite 

63. B_CELL_CLONED_HALF_LIFE Half life time of a regular B cell 2000 

64. ANTIBODY_LIFE_TIME Life time of an antibody 100 

65. ANTIGEN_0_MOVE_TIME Number of time units in which anitgen_0 
(self antigen) moves across cell nodes grid 
before attaching to a tissue cell 

3 

66. ANTIGEN_0_CELL_WAIT_TIME Number of time units in which anitgen_0 
(self antigen) waits in the tissue cell 

3 

67. ANTIGEN_1_MOVE_TIME Number of time units in which anitgen_1 
(foreign antigen) moves across cell nodes 
grid before attaching to a tissue cell 

5 

68. ANTIGEN_1_CELL_WAIT_TIME Number of time units in which anitgen_1 
(foreign antigen) waits in the tissue cell 
before starting cloning itself 

5 

69. ANTIGEN_1_CLONE_TIME Number of time units in which anitgen_1 
(foreign antigen) clones itself in the tissue 
cell, before starting killing the cell 

5 

70. ANTIGEN_1_KILL_TIME Number of time units in which anitgen_1 
(foreign antigen) effect the life variable of 
the tissue cell in order to kill it 

3 

71. ANTIGEN_1_CLONE_SIZE Number of antigen_1 copies cloned each 
time unit by antigen_1 in cloning phase 

1 

72. ANTIGEN_1_MUTATION_RATE Mutation rate of cloned antigen_1 0 

73. ANTIGEN_INJECTION_X Antigen_1 horizontal injection position 64 

74. ANTIGEN_INJECTION_Y Antigen_1 vertical injection position 64 

75. ANTIGEN_INJECTION_QUANTITY Injected quantity of antigen_1  10 

76. ANTIGEN_INJECTION_INTERVAL Time interval for repeated injections of 
antigen_1 

1500 

Table 4 : Simulation parameters and their default values 
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7.3 Simulation output 

Several output files are created during simulation execution: 

• The record file (a file with .rec extension) contains the simulation parameters and 
additional data needed for restoring the exact same simulation in ‘restore’ mode. 

• The result file (a file with .rsl extension) contains snapshots of simulation state in 
each time unit. The data in this file include the number of dead tissue cells and of 
T-h, T-k and B cells in various states, the number of antibodies and of antigens, 
and different statistics about lymphocytes clones, affinities and memory survival. 

• The trace file (a file with .trc extension) contains a more detailed description of 
the simulation dynamics, for debugging purposes. 

During execution of a simulation, the states and dynamics of the immune entities can be 
visualized using different graphic views. A graphic view displays a specific profile of both 
the cell nodes grid and the lymph nodes array. In addition, it enables to examine various 
data of particular node, and of the simulation in general. 

The available profiles for cell nodes grid: 

• Tissue cells vitality: displays life indicator for each tissue cell. 

• Inflammation level: displays inflammation indicator for each tissue cell. 

• Immune entities (T-killers, B cells, Antibodies, Antigens): displays locations and 
concentrations. 

On each cell nodes profile, the following events can be displayed: 

• Necrotic death of a tissue cell by an antigen. 

• Apoptotic death of a tissue cell by a T-Killer cell. 

• Elimination of an antigen by an antibody. 

The available profiles for lymph nodes array: 

• Inflammation level: displays inflammation levels recorded by APCs. 

• T-Helper and T-Killer cells: displays locations and concentrations of RESTING, 
BOUND, ACTIVATED and TOLERATED cells. 

• B cells: displays locations and concentrations of RESTING, BOUND and 
ACTIVATED B cells. 

On each lymph nodes profile, the following events can be displayed: 

• T-Helper, T-Killer and B cell activation. 

• T-Helper and T-Killer cell toleration. 
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Figure 26: Graphic Views Legend 

The following data regarding the simulation are displayed in the graphic view: 

• Number of dead tissue cells (necrotic and apoptotic death). 

• Number of lymphocytes (T-Helper, T-Killer or B cells): RESTING, 
ACTIVATED and MEMORY. 

• Number of antibodies. 

• Number of self and foreign antigens. 

• Statistics about actual matching probability. 

• Statistics about actual memory survival of T-h, T-k and B cells. 

• Statistics about clones and affinities of T-h, T-k and B cells. 

The following data regarding a selected cell node are displayed in the graphic view: 

• Life and inflammation indicators of the tissue cell. 

• Existence of attached antigen. 

• Number of dendritic cells. 

• Number of B cells. 

• Number of activated T-killer cells. 

• Number of antibodies. 

• Number of extra-cellular antigens.  

The following data regarding a selected lymph node are displayed in the graphic view: 
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• Number of T-Helper, T-Killer and B cells: RESTING, BOUND and 
ACTIVATED. 

• Number of dendritic cells. 

 

 

Figure 27: Graphic View Example 

 

  

7.4 Technical Details 

The ISS code was written in C++, compiled with Microsoft Visual C++ 6.0 compiler 
for Windows95 platform, and run on a Pentium II workstation. 
The random numbers generator used for random operations was R250, A fast "shift-
register" generator with a long (2^250) period. The algorithm is described in [61]. The 
code for the random numbers generator was obtained from [62]. 
Results were analyzed and visualized using MS-Excel 97 and Matlab 5.2. 

Antigens profile 

Tissue cells 
vitality profile 
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8. Appendix B: Detailed Parameters  

No Parameter name A B C D E 

1. LATTICE_SIZE_X  128     

2. LATTICE_SIZE_Y 128     

3. NUMBER_OF_T_HELPERS 1000     

4. NUMBER_OF_T_KILLERS 1000     

5. NUMBER_OF_B_CELLS 1000     

6. NUMBER_OF_DENDRITICS 1000     

7. NUMBER_OF_SELF_ANTIGENS 0     

8. ANTIGEN_INJECTION_X 64     

9. ANTIGEN_INJECTION_Y 64     

10. ANTIGEN_INJECTION_QUANTITY 10     

11. ANTIGEN_INJECTION_INTERVAL 1500     

12. PEPTIDE_LENGTH 23     

13. PEPTIDE_MATCH_THRESHOLD 18 ; 20 ; 22 ; 
23  

23 23 23 23 

14. T_KILLER_ACTIVATED_TIME 100     

15. T_KILLER_CLONE_SIZE 5     

16. T_KILLER_MEMORY_MODEL Linear- 
rand. 

Linear- 
rand. 

Linear-avg. 
affinity. 

Linear- 
rand. 

Parallel- 
rand. 

17. T_KILLER_MEMORY_SURVIVAL_RATE 0.02 0.02; 0.025; 
0.03; 0.1; 
0.17 

- 0.02 ; 0.18 0.05 ; 1 

18. T_KILLER_MEMORY_MIN_THRESHOLD - - 0   

19. T_KILLER_MEMORY_MAX_THRESHOLD - - 20 ; 24 - - 

20. T_KILLER_MEMORY_POWER_BASE 1.8     

21. T_HELPER_ACTIVATED_TIME 100     

22. T_HELPER_CLONE_SIZE 5     

23. T_ HELPER _MEMORY_MODEL Linear-rand. Linear-
rand. 

Linear-avg. 
affinity. 

Linear-
rand. 

Parallel-
rand. 

24. T_ HELPER _MEMORY_SURVIVAL_RATE 0.045 0.026; 0.04; 
0.05; 0.12; 
0.21 

- 0.03 ; 0.23 0.05 ; 1 

25. T_HELPER_MEMORY_MIN_THRESHOLD - - 0 - - 

26. T_ HELPER_MEMORY_MAX_THRESHOLD - - 20 ; 24 - - 

27. T_ HELPER _MEMORY_POWER_BASE 1.8     

28. B_CELL_ACTIVATED_TIME 5     

29. B_CELL_CLONE_SIZE 2     

30. B_CELL_NUMBER_OF_ANTIBODIES 3     

31. B_CELL_MEMORY_SURVIVAL_RATE 0     

Table 5 : Simulation parameters used for experiments. For all other parameters default values, listed in Table 4, were used. 
A: parameters of interaction affinity, memory threshold and initial repertoire experiments 
B: parameters of memory cells in the primary response experiments  
C: parameters of linear differentiation by highest affinity selection experiments 
D: parameters of linear differentiation by random selection experiments 
E: parameters of decreasing potential differentiation by random selection experiments 

 


