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Abstract

We show the existence of ε-nets of size O
(

1

ε
log log 1

ε

)

for planar point sets and axis-parallel
rectangular ranges. The same bound holds for points in the plane and “fat” triangular ranges,
and for point sets in R

3 and axis-parallel boxes; these are the first known non-trivial bounds for
these range spaces. Our technique also yields improved bounds on the size of ε-nets in the more
general context considered by Clarkson and Varadarajan. For example, we show the existence
of ε-nets of size O

(

1

ε
log log log 1

ε

)

for the dual range space of “fat” regions and planar point
sets (where the regions are the ground objects and the ranges are subsets stabbed by points).
Plugging our bounds into the technique of Brönnimann and Goodrich, we obtain improved
approximation factors (computable in randomized polynomial time) for the hitting set or the
set cover problems associated with the corresponding range spaces.

∗Work on this paper by Boris Aronov and Micha Sharir has been supported by a joint grant from the U.S.-Israel
Binational Science Foundation. Work by Boris Aronov has also been supported by NSA MSP Grant H98230-06-1-
0016 and NSF Grant CCF-08-30691. Work by Esther Ezra has been supported by ARO grants W911NF-04-1-0278
and W911NF-07-1-0376, and by an NIH grant 1P50-GM-08183-01. Work by Micha Sharir has also been supported by
NSF Grants CCF-05-14079 and CCF-08-30272, by Grant 155/05 from the Israel Science Fund, and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University.

†Department of Computer Science and Engineering, Polytechnic Institute of NYU, Brooklyn, NY 11201-3840,
USA; aronov@poly.edu.

‡Department of Computer Science, Duke University, Durham, NC 27708-0129, USA; esther@cs.duke.edu.
§School of Computer Science, Tel Aviv University, Tel Aviv 69978 Israel and Courant Institute of Mathematical

Sciences, New York University, New York, NY 10012, USA; michas@post.tau.ac.il.



1 Introduction

Since their introduction in 1987 by Haussler and Welzl [HW87] (see also Clarkson [Cla87] and
Clarkson and Shor [CS89] for related techniques), ε-nets have become one of the central concepts
in computational and combinatorial geometry, and have been used in a variety of applications, such
as range searching, geometric partitions, and bounds on curve-point incidences, to name a few; see,
e.g., Matoušek [Mat02]. We recall their definition: A range space (X,R) is a pair consisting of
an underlying universe X of objects, and a certain collection R ⊆ 2X of subsets (ranges). Of
particular interest are range spaces of finite VC-dimension; the reader is referred to [HW87] for
the exact definition. Informally, it suffices to require that, for any finite subset P ⊂ X, the number
of distinct sets r ∩ P , for r ∈ R, be O(|P |d), for some constant d (which is upper bounded by the
VC-dimension of (X,R)).

Given a range space (X,R), a finite subset P ⊂ X, and a parameter 0 < ε < 1, an ε-net for P
and R is a subset N ⊆ P with the property that any range r ∈ R with |r ∩ P | ≥ ε|P | contains an
element of N . In other words, N is a hitting set for all the “heavy” ranges.

The epsilon-net theorem of Haussler and Welzl asserts that, for any (X,R), P , and ε as above,
such that (X,R) has finite VC-dimension d, there exists an ε-net N of size O

(

d
ε log d

ε

)

, and that
in fact a random sample of P of that size is an ε-net with constant probability. In particular, the
size of N is independent of the size of P . The bound on the size of the ε-net was later improved
to O

(

d
ε log 1

ε

)

by Blumer et al. [BEHW89], and then to (1 + o(1))d
ε log 1

ε by Komlós, Pach, and
Woeginger [KPW92].

In geometric applications, this abstract framework is used as follows. The ground set X is
typically a set of simple geometric objects (points, lines, hyperplanes), and the ranges in R are
defined in terms of intersection with (or, for point objects, containment in) simply-shaped regions
(halfspaces, balls, simplices, etc.), formally assumed to be regions of constant descriptive complexity,
meaning that they are semi-algebraic sets defined in terms of a constant number of polynomial
equations and inequalities of constant maximum degree. It is known that in such cases the resulting
range space (X,R) does have finite VC-dimension (see, e.g., [SA95]).

For example, the main result of our paper concerns the range space in which the objects are
points in the plane and the ranges are axis-parallel rectangles; more precisely, each range is the
intersection of the ground set with such a rectangle. The dual range space in this case is one in
which the objects are rectangles and each point p in the plane defines a range which is the subset
of the given rectangles that contain p. An ε-net in this case is a subset of the rectangles that covers
all the “deep” points.

One of the major questions in the theory of ε-nets, open since their introduction more than 20
years ago, is whether the factor log 1

ε in the upper bound on their size is really necessary, especially
in typical low-dimensional geometric situations. To be precise, in the general abstract context
the answer is “yes”, as shown by Komlós, Pach, and Woeginger [KPW92], using a randomized
construction on abstract hypergraphs (see also [PA95]). However, there is no known lower bound,
better than the trivial Ω (1/ε), in any “concrete” case, certainly in any geometric situation of the
kind mentioned above. The prevailing conjecture is that, at least in these geometric scenarios, there
always exists an ε-net of size O(1/ε) [MSW90].

This “linear” upper bound has indeed been established for a few special cases, such as point
objects and halfspace ranges in two and three dimensions, and point objects and disk or pseudo-disk
ranges in the plane; see [MSW90, Mat92b, CV07, HKSS08, PR08]. Additional progress was made
recently. Clarkson and Varadarajan [CV07], essentially adapting Matoušek’s technique [Mat92b]
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to their more general setting, have introduced a method for constructing small-size ε-nets in dual
range spaces arising in geometric situations where, as above, the ground set is a collection of regions,
and each point p determines a range equal to the set of those regions which contain p, and where
the combinatorial complexity of the union of any finite number r of the regions in the ground
set is small, specifically o(r log r). (The exact condition is slightly more involved—see below.) As
a matter of fact, albeit not explicitly presented in this manner, the technique of [CV07] is more
general and can also be applied to the primal version of the problem, provided that it satisfies a
condition analogous to the one on small union complexity; see below for more details. More recently,
Pyrga and Ray [PR08] have proposed a general abstract scheme for constructing small-size ε-nets in
hypergraphs (i.e., range spaces) which satisfy certain properties, and have applied it to the special
cases of halfspaces in two and three dimensions, and to several other related scenarios.

The set cover and hitting set problems. Given a range space (P,R), with P and R finite,
the set cover problem is to find a minimum-size subcollection S ⊆ R, whose union covers P . A
related (dual) problem is the hitting set problem, where we want to find a smallest-cardinality
subset H ⊆ P , with the property that each range r ∈ R intersects H. Equivalently, a set cover
for (P,R) is a hitting set for the dual range space. The general (primal and dual) problems are
np-hard to solve (even approximately) [GJ79,Kar72], and the simple greedy algorithm yields the
(asymptotically) best known approximation factor of O(1 + log |P |) computable by a polynomial-
time algorithm [BGLR93, Fei98]. Most of these problems remain np-hard even in geometric set-
tings [FG88, FPT81]. However one can attain an improved approximation factor of O(log Opt)
in polynomial time for many of these scenarios, where Opt is the size of the optimal solution.
This improvement is based on the technique of Brönnimann and Goodrich [BG95] (see also Clark-
son [Cla93]), where the key observation is the relation to ε-nets: The existence of an ε-net of size
O

(

1
εϕ

(

1
ε

))

, for any ε > 0, implies that the Brönnimann–Goodrich technique generates, in expected
polynomial time, a hitting set (or a set cover) whose size is O(Opt · ϕ(Opt)).

Hence, for range spaces of finite VC-dimension, the Haussler–Welzl theorem leads to an approx-
imation factor O(log Opt). Consequently, improved bounds for the size of ε-nets, in the primal
or the dual setting, imply improved approximation factors for the corresponding hitting set or
set cover problems, at least in the context of randomized polynomial-time construction (which
is what the Brönnimann–Goodrich procedure provides).

Our results. In this paper we first consider the cases of point objects and axis-parallel rectangular
ranges in the plane, and of point objects and axis-parallel box ranges in three dimensions, and show
that both range spaces admit ε-nets of size O

(

1
ε log log 1

ε

)

, thus significantly improving the standard
bound O

(

1
ε log 1

ε

)

. Our technique is similar in spirit to those of Chazelle and Friedman [CF90] and
of Clarkson and Varadarajan [CV07], but it differs from them in one key (and fairly simple) idea,
which, incidentally, can also be used in the more general context of [CV07] to improve the bounds
that are obtained there for the size of the respective ε-nets—see below. An interesting feature of our
technique is that it can be extended to points and axis-parallel boxes in any dimension, provided
that the input points are randomly and uniformly distributed in the unit cube.

We also describe how to construct these ε-nets in randomized expected nearly-linear time. Our
results then lead to randomized polynomial-time approximation algorithms for the hitting set

problem in these two range spaces, involving axis-parallel rectangles and boxes, respectively, which
guarantee an approximation factor of O (log log Opt).

We then extend our technique to the case of planar point sets and α-fat triangles, that is,
triangles, each of whose angles is at least α, for some constant α > 0 (see [MPSSW94]). In this

2



case too we show the existence of ε-nets of size O
(

1
ε log log 1

ε

)

, leading to an approximation factor
of O (log log Opt) for the corresponding hitting set problem.

Similarly, we obtain improved bounds for the size of ε-nets in the dual range space, and, con-
sequently, for approximation factors for the corresponding set cover problem, in the following
cases, all involving points and regions in the plane (refer to Figure 10):

• α-fat triangles. In this case the size of the corresponding ε-net is O
(

1
ε log log log 1

ε

)

, and, as a
consequence, the approximation factor for the set cover problem becomes O (log log log Opt).

• Locally γ-fat objects, that is, objects o satisfying the property that, for any disk D whose center
lies in o, such that D does not fully contain o in its interior, we have area(D⊓o) ≥ γ ·area(D),
where D⊓o is the connected component of D∩o that contains the center of D (see [dB08]). If
we also assume that the boundary of each object has only O(1) locally x-extreme points, and
the boundaries of any pair of input objects intersect in at most s points, for some constant s,
then the size of the ε-net is O

(

1
ε log log 1

ε

)

, and the approximation factor for the set cover

problem is O (log log Opt).

• Locally γ-fat objects of (roughly) equal sizes. Assuming that the objects satisfy the conditions
in the previous case, and that the diameters of any pair of objects differ by at most some
constant ratio, the bound on the size of the ε-net improves to O

(

1
ε log βs+2(

1
ε )

)

, where βt(q) :=
λt(q)/q, and λt(q) is the (nearly linear) maximum length of Davenport-Schinzel sequences
of order t on q symbols (see [SA95]). The corresponding approximation factor becomes
O (log βs+2(Opt)) (see Section 5 for a more detailed discussion of these bounds).

• Semi-unbounded pseudo-trapezoids, each consisting of all points lying above some x-monotone
arc (or all points lying below such an arc), each pair of which meet at most s times, for s a
constant; see Section 5 for a precise definition. In this case the size of the ε-net is, as in the
preceding case, O

(

1
ε log βs+2(

1
ε )

)

and the approximation factor is O (log βs+2(Opt)). If the
pseudo-trapezoids are also unbounded in the x-direction (so they become “pseudo-halfplanes”)
these bounds slightly improve to O

(

1
ε log βs(

1
ε )

)

and O (log βs(Opt)), respectively.

• Jordan arcs with three intersections per pair, where each of the actual objects is the region
bounded by some Jordan arc which starts and ends on the x-axis (and otherwise lies above
it) and by the portion of the x-axis between these endpoints, and each pair of the bounding
Jordan arcs intersect at most three times. In this case, assuming that none of the given
objects “wiggles” too much (as in the case of locally γ-fat objects), the size of the ε-net is
O

(

1
ε log α(1

ε )
)

, and the approximation factor is O (log α(Opt)), where α(·) is the (extremely
slowly growing) inverse Ackermann function.

Our technique for rectangles—a brief overview. We start with a brief overview of our
analysis, in which we assume some familiarity with the earlier papers [CF90, CV07] cited above.
Let P be a given set of n points in the plane. We first sketch a somewhat simpler approach
that almost works—it does not properly address a certain critical technical issue, but captures the
essence of our method. We then briefly describe how to modify it so that it does produce ε-nets of
the desired size.

Put r = 2/ε. We draw a random sample R of s ≫ r points of P (the specific choice of s, made
below, is crucial), and make R part of the ε-net to be constructed, so we only need to handle axis-
parallel rectangles which contain at least n/r points, but are R-empty, i.e., (axis-parallel) rectangles
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(a) (b)

Figure 1: (a) A configuration with quadratically many maximal R-empty rectangles (the points of R are shaded
darker and lie on the two extreme staircases). (b) A configuration with an expected quadratic number of maximal
R-empty rectangles, each containing Ω(n/s) points. The lower staircase contains n/2 points, and each of the s
upper “diagonals” contains n

2s
points.

which do not contain any point of R. To “pierce” every such rectangle, we form the subset M
of maximal R-empty rectangles, so that any other R-empty rectangle is contained in one of them.
By the standard ε-net theory of [HW87], with high probability each rectangle of M contains at
most O

(

n
s log s

)

points of P . Moreover, in a sense that we do not make very precise here, the
expected number of points of P in such a rectangle is O(n/s). Since s ≫ r, most rectangles of M
contain fewer than εn = n/r points of P , so an R-empty rectangle Q with at least n/r points will
not fit into any of them, and we can simply ignore them. For each of the relatively few “heavy”
rectangles M of M, we apply the resampling technique of [CF90,CV07], and sample a small subset
of O(t log t) points of M ∩ P , where t = s|M ∩ P |/n, to serve as a (1/t)-net for M ∩ P . The union
of R and all these samples constitutes the desired ε-net; it is fairly easy to show that this is indeed
an ε-net.

This approach does not quite work, because, for a bad choice of R, the number of maximal
R-empty rectangles can be Θ(s2) in the worst case (see, e.g., [NLH84] and Figure 1(a)). Moreover,
even if we only consider random subsets R, there are point sets where the expected number of
maximal R-empty rectangles which contain Ω(n/s) points of P is still Θ(s2); see Figure 1(b).
Using the technique outlined above literally, turns out to yield a bound of Θ

(

1
ε2

)

on the expected
size of the ε-net in the worst case, which is of course much too large.

We overcome this issue by modifying the scheme, so that it produces fewer maximal empty
rectangles. To do so, we decompose the plane into a binary-tree-like hierarchy of vertical strips.
For any rectangle Q̃ which contains at least εn points of P , we find the first (highest in the hierarchy)
strip-bounding line which crosses Q̃, take one of its halves, Q, which contains at least εn/2 = n/r
points, and consider only such rectangles in the construction of our net. We thus face subproblems,
each involving a vertical strip σ and the corresponding subset P ∩ σ of P , and ranges which are
rectangles that are “anchored” at a specific side of σ (so that they effectively behave like 3-sided
unbounded rectangles for P ∩σ; refer to Figure 2). The number of maximal R-empty rectangles of
this type, within σ, is only linear in |R∩σ|, leading to an overall collection M of maximal R-empty
rectangles of the new kind, whose size is only O(s log r).

We now choose s := cr log log r. Using the so-called Exponential Decay Lemma of [AMS98,
CF90], one can show that the expected number of maximal heavy empty rectangles that can contain
rectangles Q of the above kind is only sublinear in r, which in turn implies that the expected size
of the ε-net is dominated by the expected size of R, namely, O(r log log r) = O

(

1
ε log log 1

ε

)

.
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σu

σv

ℓu

Q̃

Q

Figure 2: The half-rectangle Q is anchored at the left entry side ℓu of the strip σv.

Improving the general bounds in [CV07]. Readers familiar with the technique of Clarkson
and Varadarajan [CV07] will notice the similarity of our approach to theirs. The key new ingredient
is that we use a larger initial sample R, of expected size Θ(r log log r) rather than O(r). The same
idea can be applied in the more general context of [CV07], and leads to an improvement of each of
their bounds that are super-linear in r. Specifically, Clarkson and Varadarajan consider dual range
spaces, and show that if the union complexity of any m of the ranges (i.e., objects in the dual ground
set) is O(mϕ(m)), for an appropriate slowly increasing function ϕ, then there exist ε-nets in such
a dual range space of size O(1

εϕ(1
ε )). Using our approach, we obtain ε-nets of size O(1

ε log ϕ(1/ε)).
Moreover, their method yields improved bounds for ε-nets only when ϕ(m) = o(log m), whereas our
method yields improved bounds as long as ϕ(m) = 2o(log m). The case of rectangles is interesting in
this aspect, because, with the addition of the divide-and-conquer decomposition scheme mentioned
above, the complexity of the appropriate analog of the union of m dual ranges (which is the number
of maximal empty rectangles) is O(m log m), which is the threshold bound at which the more “naive”
approach of [CV07] fails.1

We have just learned that, very recently, Varadarajan [Var08] has independently obtained a
similar improvement on the bound of [CV07] for the size of an ε-net in the dual range space of
α-fat triangles and planar point sets, using very different methods.

2 Small-size ε-nets for axis-parallel rectangles

Let P be a set of n points in the plane. Put r := 2/ε and s := cr log log r, where c > 1 is an
arbitrary constant. Construct a balanced binary tree T over the points of P in their x-order, and
terminate the tree at the level where the size of each leaf node is between n/r and n/(2r). By
construction, T has at most 1 + log r levels.

Fix a random sample R ⊆ P , so that each point p ∈ P is chosen independently to be included
in R with probability π := s/n; thus the expected size of R is s. The sample R is part of the ε-net
N that we are about to construct.

Each node v of T is associated with a subset Pv of P (resp., Rv of R), consisting of those points
of P (resp., of R) stored at the subtree rooted at v. We also associate with v a vertical line ℓv

which splits Pv into the two subsets Pv1 , Pv2 associated with the children v1, v2 of v. Using the
lines ℓu, we associate with each node v a strip σv, which contains Pv (and Rv), where σroot is the
entire plane, and, for a left (resp., right) child node v 6= root of its parent u, σv is the left (resp.,
right) portion of σu delimited by ℓu. We call ℓu the entry side of σv.

1As already noted above, the log m factor comes from the binary-tree hierarchy—see below for details.
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ℓu

M

σv

M

ℓu

σv

M

ℓu

σv

ℓu

M

σv

M

ℓu

σv

(a) (b) (c) (d) (e)

Figure 3: An anchored maximal R-empty rectangle that is determined by three points (a), by a pair of points
(b)–(d), or by a single point (e).

Note that, since the sets Pv are defined ahead of the draw of R, our sampling model guarantees
that, for each node v, Rv is an unbiased sample of Pv , drawn from Pv by exactly the same rule,
namely, by choosing each point independently with probability π.

Let Q̃ be an axis-parallel rectangle containing at least εn points of P , and let u be the highest
node of T such that ℓu crosses Q̃, partitioning it into two parts, one of which necessarily contains
at least εn/2 = n/r points of P . Denote that portion of Q̃ by Q, and let v be the child of u such
that Q ⊆ σv. We say that Q is anchored at the entry side ℓu of σv; see Figure 2.

If Q contains a point of R, we are done, as Q ⊂ Q̃ and the goal was to construct a subset of P
that meets every rectangle Q̃ containing at least εn points of P . So we may assume that Q does
not contain such a point; we then say that Q is R-empty ; equivalently, Q is Rv-empty.

We define, for each node v of T , a set Mv consisting of all the maximal (open) anchored Rv-
empty axis-parallel rectangles contained in σv. Without loss of generality, assume that the entry
side ℓu of σv is its left side. In general, a rectangle M in Mv is determined by three points of Rv,
one point lying on each of the three unanchored sides of M (see Figure 3(a)), but Mv may also
contain degenerate rectangles M where some (or all) of these points are missing, in which case M
extends as much as possible, within σv, in the appropriate direction (upwards, downwards, or to
the right). In particular, when Rv = ∅, there is precisely one maximal Rv-empty rectangle, namely
the whole strip; see Figure 3(b)–(e), illustrating some of these cases.

It is easy to show that |Mv | = 2rv + 1, where rv := |Rv |. Indeed, if a rectangle M has a point
q ∈ Rv on its right side, then q cannot lie on the right side of any other rectangle in Mv, so the
number of such rectangles is rv (equality is also easy to verify). Otherwise, the points of Rv on the
top and bottom sides of M must be consecutive in Rv in the y-order, and there are rv − 1 such
pairs. Finally, there are two semi-unbounded rectangles, one delimited from below by the highest
point of Rv, and the other delimited from above by the lowest point (as in Figure 3(e)). It is easily
checked that the bound 2rv + 1 also applies when rv = 0, 1. It thus follows that the overall number
of such maximal empty rectangles M ∈ Mv, over all nodes v of T at any fixed level, is O(|R|+ r′),
where r′ is the number of nodes at the level, and the total over all levels of T is O(r + |R| log r).

Returning now to the anchored rectangle Q and the corresponding node v, we note that Q is
contained in at least one rectangle in Mv. Indeed, assuming, as above, that the entry side of σv is
its left side, expand Q by pushing its right side to the right until it touches a point of Rv or reaches
the right side of σv, and then push the top and bottom sides until each of them meets a point of
Rv or extends to ±∞. The resulting rectangle belongs to Mv and encloses Q.
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For each node v of T , and each member M ∈ Mv, define the weight factor tM of M to be
s|M ∩ P |/n. Rectangles M with tM < s/r = c log log r can be ignored, because they contain fewer
than n/r points of P , so no anchored rectangle Q, as above, can be completely contained in one of
them. By the standard ε-net theory [HW87], for each M ∈ Mv with tM ≥ c log log r, there exists
a subset NM ⊆ M ∩ Pv of size c′tM log tM that forms a (1/tM )-net for M ∩ Pv, where c′ is another
absolute constant.

The final ε-net N is the union of R with the sets NM , over all the heavy rectangles M (i.e.,
rectangles with tM ≥ c log log r) in the respective sets Mv, over all nodes v of T .

N is an ε-net. Since R ⊆ N , it suffices to show that for any R-empty rectangle Q, contained in
a strip σv, anchored at the entry side of σv, and containing at least εn/2 = n/r points of P (i.e.,
of Pv), and for any M ∈ Mv which contains Q, we have Q ∩ NM 6= ∅. We have

|Q ∩ P |

|M ∩ P |
≥

n/r

ntM/s
=

c log log r

tM
≥

1

tM
.

Since NM is a (1/tM )-net for M ∩ P , it follows that Q ∩ NM 6= ∅, as asserted. Note that the
above inequality implies that we need not sample that many points in NM , and can make do
with c′t∗M log t∗M points, where t∗M := tM/(c log log r). However, this slight improvement does not
asymptotically affect the bound that we are about to derive.

Estimating the size of N . The expected size of N is equal to

Exp

{

|R| + c′
∑

v

∑

M∈Mv
tM≥c log log r

tM log tM

}

= cr log log r + c′ · Exp

{

∑

v

∑

M∈Mv
tM≥c log log r

tM log tM

}

.

We continue the analysis using the notation of [AMS98]. Fix a level i; each node v at this level
satisfies |Pv | = n/2i. Let CT(R) denote the union of the collections Mv, over all nodes v at level i.
For a positive parameter t, let CTt(R) denote the subset of CT(R) consisting of those rectangles
M with tM ≥ t. Let R′ denote another random sample of P , where each point p ∈ P is now chosen,
independently, to belong to R′ with probability π′ := π/t.

Let C denote the set of all rectangles M , such that M is anchored at the entry side of σv, for
some node v at level i, and has one point of P on each of its three other sides (the cases of degenerate
rectangles, determined by fewer than three points, are treated in a fully analogous manner). For a
rectangle M ∈ C, its defining set D(M) is the set of these three points, and its killing set K(M) is
the set of points of P in the interior of M . (Recall that throughout this discussion we have fixed
the level i.)

Agarwal et al. [AMS98] impose two axioms on the sets CT(R). These axioms are too intricate
for what we need here, while they are necessary to handle the more involved scenario considered
in [AMS98]. For our purpose, we can replace them by the single “axiom,” asserting that a rectangle
M ∈ C belongs to CT(R) if and only if D(M) ⊆ R and K(M)∩R = ∅, which holds by construction in
our setting. (We also caution the reader that our sampling model is different from that of [AMS98]—
they sample a random subset of a fixed given size uniformly from all such subsets, whereas we
independently choose each point of P to belong to the sample. Nevertheless, the lemma, given
below, also holds in our model; if at all, the analysis is simpler. For the sake of completeness, we
give, in the appendix, a short (but complete) proof of our variant of the lemma.)

Lemma 2.1 (Exponential Decay Lemma; Agarwal et al. [AMS98]).

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

.
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We apply the lemma with t = c log log r, so π′ = π/t = r/n. Recall that CT(R′) is the set of all
maximal R′-empty rectangles, anchored at the entry sides of their respective strips σv at the fixed
level i. Their number is |CT(R′)| =

∑

v(2r
′
v + 1), where R′

v := R′ ∩ σv, and r′v := |R′
v|. Since the

sets R′
v at level i are disjoint,

∑

v r′v = |R′|. Hence, since there are at most 2r nodes at a fixed level
of the tree, we have |CT(R′)| ≤ 2|R′| + 2r. Hence Exp

{

|CT(R′)|
}

= O(r). We thus have

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

= O
(

r2−c log log r
)

= O (r/ logc r) .

More generally, for any j ≥ t, we have Exp
{

|CTj(R)|
}

= O(r/2j), as is easily checked.

Getting back to the contribution of the fixed level i to the expected size of N , we have (where
t = c log log r)

Exp

{

∑

v at level i

∑

M∈Mv
tM≥t

tM log tM

}

= Exp

{

∑

j≥t

∑

M∈CT(R)
tM=j

j log j

}

(*)

= Exp

{

∑

j≥t

j log j ·
(

|CTj(R)| − |CTj+1(R)|
)

}

= Exp

{

t log t · |CTt(R)|

+
∑

j>t

(

j log j − (j − 1) log(j − 1)
)

|CTj(R)|

}

= O

(

r

logc r
(t log t) +

∑

j>t

r

2j
log j

)

= O

(

rt log t

logc r

)

= O

(

r log log r log log log r

logc r

)

.

Recall again that the analysis so far has been confined to a single level i. Repeating it for each of
the 1 + log r levels, we obtain, recalling that c > 1,

Exp {|N |} = O

(

r log log r +
r log log r log log log r

logc−1 r

)

= O(r log log r).

We have thus shown

Theorem 2.2. For any set P of n points in the plane and a parameter ε > 0, there exists an ε-net
of P , of size O

(

1
ε log log 1

ε

)

, for axis-parallel rectangles.

Remark: A key ingredient of the analysis is that we have managed to reduce the expected number
of R-empty rectangles from Θ(s2) to O(s log r), using a decomposition of the point set into canonical
subsets, so that (i) any rectangle Q̃ with at least εn points of P interacts with just two subsets (any
constant number would do just as well), and (ii) for each canonical subset, the number of maximal
R-empty rectangles (now anchored at the entry side of the respective strip and fully contained in
that strip) is only linear in the number of sample points in that strip.

Constructing the ε-net. We next present a randomized algorithm for constructing an ε-net of
the above size.
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We construct the balanced binary tree T over the points of P in O(n log r) time (stopping at
nodes v for which n/(2r) < |Pv| ≤ n/r), and generate the random sample R, using the drawing
model assumed above; the expected size of R is s.

Following the above notation, we associate with each node v 6= root of T a strip σv, the subsets
Pv, Rv, and an entry side ℓu of σv (where u is the parent of v). We next construct, for each such
node v, the set Mv of all maximal anchored Rv-empty axis-parallel rectangles contained in σv.
This is easy to do in time O(rv log rv), where rv := |Rv|, as follows. Assume that ℓu is the left side
of σv. Sort the points of Rv by their y-coordinates, and find, for each point q, the lowest point q′

which lies above q and to its left. This can be done in linear time, by scanning the points of Rv in
decreasing y-order, and by dynamically maintaining the sorted sequence of xy-minima [CLRS01].
Symmetrically, we find, for each point q, the highest point q′′ which lies below q and to its left. The
resulting triples (q, q′, q′′) (including degenerate ones) determine rv of the maximal empty rectangles
in Mv. Each of the other rv + 1 rectangles straddles σv from left to right and either is delimited
by a pair of points of Rv, consecutive in the y-order, which lie on its top and bottom sides, or is
an unbounded half-strip, bounded by a single point.

It thus follows that the overall expected running time for constructing the sets Mv, over all
nodes v at a fixed level i, is O(s log r), for a total of O(s log2 r) time, over all levels i.

We next count, for each resulting rectangle M , the number of points in M ∩P , using a standard
2-dimensional range-tree data structure. This yields the respective weight factors tM , as defined
above; we keep only those rectangles with tM ≥ c log log r. For each of these surviving rectangles
M , we report the set P ∩ M , and construct a (1/tM )-net for P ∩ M , using, e.g., the deterministic
algorithm of Matoušek [Mat95] (or a straightforward random sampling mechanism [HW87]). We
output the union of R with all the resulting nets. Using the Exponential Decay Lemma and similar
considerations as in the proof of Theorem 2.2, it can be shown that the overall expected number
of reported points in the sets P ∩ M , over all heavy rectangles M and nodes v, is only linear in n.

As argued above, the output N is guaranteed to be an ε-net for P (if we construct the sub-nets
NM deterministically). The size of N is a random variable whose expectation is O(r log log r). We
can ensure this size with high probability, by discarding outputs that are too large and by repeating
the sampling.

The entire algorithm takes O(n log n) randomized expected time, as is easily seen.

Remark. The running time of the algorithm can be slightly improved to O(n log r). First, we apply
the sampling with s = cr log log r, where c is substantially larger than 1, say c = 2. As already
observed, constructing the truncated tree T , with the stopping condition that we use, can be done
in O(n log r) time, and this also holds for the construction of the set M of all maximal anchored R-
empty rectangles. Regarding the range-searching procedure, it is sufficient to approximate the count
|M ∩P | up to an additive term of O(n/r), with a sufficiently small constant of proportionality. To
do so, we construct the range-tree, but stop at primary nodes u whose associated subsets Pu satisfy
n/(2c1r) < |Pu| ≤ n/(c1r), for some constant c1 > 1. Similarly, we stop the construction of each
secondary tree Tu at nodes v for which n/(2c1r log r) < |Pu,v| ≤ n/(c1r log r). It is easily checked
that each range-counting query can miss at most 4n/(c1r) points. We thus find all rectangles whose
approximated count is at least (1 − 4/c1)n/r, and report the points in each of them. As above,
the overall expected number of reported points is only O(n). We then construct a (1/tM )-net for
each of the heavy rectangles M with tM ≥ c log log r, and continue as in the original algorithm. By
choosing c1 sufficiently large, we can ensure that (a) all canonical empty rectangles that can contain
heavy rectangles are reported, and (b) the overall expected size of N remains O

(

1
ε log log 1

ε

)

. The
overall running time is easily seen to be only O(n log r).
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Figure 4: A two-dimensional illustration: (a) The box B is anchored at the (apex of the) quadrant σu,v (octant
in 3-space). (b) An anchored box that is determined by a pair of points (a triple in 3-space).

3 Small-size ε-nets for axis-parallel boxes in three dimensions

We next extend our construction to the three-dimensional case. We now let P be a set of n points
in R

3, and put r := 8/ε and s := cr log log r, for some fixed constant c > 3. We use a similar
sampling model as in the two-dimensional problem, in order to generate a random subset R ⊆ P
of expected size s.

We next construct a three-level range-tree T , over the points of P (see, e.g., [dBCKO08]),
where the points are sorted by their x-coordinates in the primary tree, by their y-coordinates in
each secondary tree, and by their z-coordinates in each tertiary tree. We associate with each node u
of the primary tree the subset Pu of points that it represents, and a secondary (y-sorted) tree Tu on
Pu. Similarly, with each node v of a secondary tree Tu we associate the corresponding subset Pu,v

of Pu and a tertiary (z-sorted) tree Tu,v. Finally, each node w of a tertiary tree Tu,v is associated
with the corresponding subset Pu,v,w of Pu,v. We construct each of the three levels of T down to
nodes for which the size of their associated subset is between n/r and n/(8r). Clearly, each of the
primary, secondary, and tertiary trees has at most 3 + log r levels, and the total number of nodes
in the range-tree T is O(r log2 r). Moreover, the sum of the sizes of all the subsets stored at the
various nodes is O(n log3 r); see, e.g., [dBCKO08] for further details.

Following the notation of Section 2, we associate with each non-leaf node of any subtree an
axis-parallel plane which evenly splits the subset stored at the node into the two subsets stored at
its children. More specifically, each non-leaf node u of the primary tree stores a plane hu orthogonal
to the x-axis, each non-leaf node v of a secondary tree Tu stores a plane hu,v orthogonal to the
y-axis, and each non-leaf node w of a tertiary tree Tu,v stores a plane hu,v,w orthogonal to the
z-axis.

These planes define, for each node w of a tertiary tree Tu,v, an octant σu,v,w which is the
intersection of three halfspaces Hu ∩ Hu,v ∩ Hu,v,w, where (i) Hu is the halfspace bounded by
hu′ and containing Pu, where u′ is the parent of u; (ii) Hu,v is the halfspace bounded by hu,v′ and
containing Pu,v, where v′ is the parent of v in Tu; and (iii) Hu,v,w is the halfspace bounded by hu,v,w′

and containing Pu,v,w, where w′ is the parent of w in Tu,v. In what follows we only consider triples
(u, v,w) of vertices, each of which has a parent in its respective tree. Thus all three halfspaces are
proper, and σu,v,w is a non-degenerate octant. (Note, though, that, in general, it is more accurate
to regard σu,v,w as a box, or a clipped octant, bounded on the other side also by planes associated
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with ancestors of u, v, and w. Nevertheless, in most of the following analysis, it suffices to treat
σu,v,w as an octant.)

Let B0 be an axis-parallel box containing at least εn points of P . Let u′ be the highest node
in T , so that the plane hu′ meets B0. This plane partitions B0 into two portions, one of which,
call it B1, contains at least εn/2 points of P . Let u be the corresponding child of u′ so that Hu

contains B1. Next, let v′ be the highest node in Tu, such that hu,v′ meets B1, partitioning it into
two portions, one of which, B2, contains at least εn/4 points of P . Let v be the child of v′ for
which Hu,v′ contains B2. Finally, let w′ be the highest node in Tu,v, such that hu,v,w′ meets B2,
partitioning it into two portions, one of which, B, contains at least εn/8 points of P . Let w be the
child of w′ for which Hu,v,w′ contains B. (Note that u, v,w are well defined, in the sense that each
of the sub-boxes is indeed split by a plane associated with a node in the corresponding truncated
tree, and does not reach a leaf without being split.)

By construction, B is anchored at the resulting octant σ := σu,v,w, in the sense that the apex o
of σ is a vertex of B, and the three facets of B adjacent to o lie on the three respective axis-parallel
planar quadrants bounding σ. Moreover, as far as the set Pu,v,w is concerned, we can replace B
by an octant which is oppositely oriented to σ, and whose apex is the vertex o′ of B opposite to o.
See Figure 4(a) for an illustration of (the 2-dimensional analog of) this scenario.

For each node w of a tertiary tree Tu,v, put Ru,v,w = R ∩ σ̄u,v,w, where σ̄u,v,w is the actual box
that the “octant” σu,v,w represents (see the comment above), and ru,v,w = |Ru,v,w|. Let Mu,v,w

denote the set of all maximal anchored R-empty (i.e., Ru,v,w-empty) axis-parallel boxes contained
in the octant σu,v,w. Since each box M ∈ Mu,v,w behaves as an octant inside σu,v,w, it is determined
by at most three points of Ru,v,w, each lying on a distinct facet of M ; see Figure 4(b) for a two-
dimensional illustration. The number of such empty boxes (or, rather, octants) is only O(ru,v,w +1),
as shown2 in [BSTY98,KRSV07]. It thus follows that the overall size of the sets Mu,v,w, over all
nodes w of all tertiary trees Tu,v, is O(|R| log3 r + r log2 r).

We proceed as in the planar case. We make R part of the output ε-net, thereby disposing of
any box B0 whose resulting anchored portion B contains a point of R. For any other box B0, the
corresponding portion B is R-empty, and it is then easy to show that B is contained in at least
one maximal R-empty box M in the set Mu,v,w of the corresponding octant σu,v,w. Moreover, the
weight factor tM of M , defined as in the planar case, must satisfy tM ≥ c log log r.

Thus, for each such heavy maximal box M , we take a (1/tM )-net NM , for the set P ∩ M , of
size O(tM log tM ), whose existence is guaranteed by [HW87], and output the union N of R with all
the resulting nets NM . Arguing as in the planar case, it is easy to show that N is indeed an ε-net
for P .

We bound the expected size of N using similar analysis steps to those in the planar problem.
We define CT(R) to be the union of all the collections Mu,v,w, over all nodes w of all tertiary trees
Tu,v, appearing in a fixed triple of levels i1 (primary), i2 (secondary), and i3 (tertiary). As before,
CTt(R) is the subset of CT(R) consisting of those boxes M with tM ≥ t, for any parameter t. It
is easy to verify that the Exponential Decay Lemma holds in this scenario as well, and thus

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

,

where R′ is another smaller random sample defined as in Section 2. Next, arguing as in the planar

2In fact, the result in [KRSV07] is more general. It asserts that the number of maximal empty orthants for a set
of m points in R

d is O(m⌊d/2⌋). It is the non-linearity of this bound for d ≥ 4 which hampers the extension of our
technique to higher dimensions.
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problem, we obtain that

Exp

{

∑

v at levels i1, i2, i3

∑

M∈Mv
tM≥c log log r

tM log tM

}

= O

(

r log log r log log log r

logc r

)

.

Repeating the analysis for each of the O
(

log3 r
)

triples (i1, i2, i3), we obtain that the expectation
of the above sum is o(r), provided c > 3, as we indeed assume; thus

Exp {|N |} = Exp {|R|} + o(r) = O(r log log r).

We have thus shown:

Theorem 3.1. For any set P of n points in R
3 and a parameter ε > 0, there exists an ε-net of P ,

for axis-parallel boxes, of size O
(

1
ε log log 1

ε

)

.

Constructing the ε-net. We construct an ε-net of this size using an easy extension of the
algorithm presented in Section 2. We start by building a 3-level range tree over the points of P ,
using O(n log2 n) time and storage. The enumeration of the maximal anchored Ru,v,w-empty octants
in any canonical octant σu,v,w can be performed in O(|Ru,v,w| log

2 r) time, using the algorithm
described in [KRSV07]. Using our range tree, we compute the weight factor tM of each maximal
octant M , collect all the heavy octants M (using counting queries), report the corresponding subsets
P ∩M , and construct, for each such octant M , a (1/tM )-net of size O(tM log tM ), for P ∩M , using
standard techniques as in the two-dimensional case. Omitting the further easy details, we obtain
that the expected running time of the algorithm is O(n log2 n), as asserted.

As in the planar case, the algorithm can be slightly improved to O(n log3 r), using similar
refinements.

Random point sets in any dimension. The technique fails in four and higher dimensions,
because the number of maximal empty orthants with respect to a set of m points can be Θ

(

m⌊d/2⌋
)

(see [BSTY98,KRSV07]), which is at least quadratic for d ≥ 4. It is a challenging open problem to
extend our results to four and higher dimensions.

Nevertheless, there is one scenario where the technique works in any dimension, which is the case
when the ground set P consists of randomly and uniformly distributed points in R

d. Specifically,
we assume that each point of P is chosen independently at random from the uniform distribution in
[0, 1]d. As shown in [KRSV07], the expected number of maximal empty boxes in this case, for a set
of m points, is only O(m logd−1 m) (see also [NLH84] for the planar case). Moreover, our random
sampling model (where the random choices are assumed, of course, to be made independently of
the random choices made while constructing the input set) ensures that the sample R is also an
unbiased set of randomly, independently, and uniformly distributed points, so the expected number
of maximal R-empty boxes is O(s logd−1 s) (see Section 5 for a proof of a (more general) bound of
this type); the expectation is with respect to both the random drawing of the points of the input
set, and our drawing of the sample R.

Since the (expected) number of maximal R-empty boxes is only nearly linear in s, we can carry
out the preceding analysis, without having to decompose the input set into canonical strips or
orthants, and thus obtain an ε-net of expected size3 O

(

1
ε log log 1

ε

)

. We have thus shown

3By consulting the derivation in (*), it is easily verified that the expected size of the resulting net N is Exp {|R|}
plus a term equal to Exp {|CT (R′)|} divided by a polylogarithmic factor. This implies the bound asserted here.
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Figure 5: (a) The canonization step. The triangle ABC is covered by three triangles, each of which contains
the center O of the inscribed circle of ABC, and has two edge orientations that are taken from a fixed set of
directions. Only one of these triangles (ABD) is depicted in the figure. (b) A semi-canonical right triangle, after
an appropriate affine transformation.

Theorem 3.2. For any set P of n points in R
d, each of which is drawn independently from the

uniform distribution on [0, 1]d, and a parameter ε > 0, there exists an ε-net of P , for axis-parallel
boxes, of expected size4 O

(

1
ε log log 1

ε

)

.

4 Small-size ε-nets for fat triangles in the plane

In this section we present an extension of our technique to the range space of points in the plane
and α-fat triangles, for some fixed constant α > 0, where a triangle is α-fat if each of its angles is
at least α. We thus have a set P of n points in the plane, and a parameter ε > 0, and our goal is
to construct a small-size ε-net N ⊆ P , so that any α-fat triangle that contains at least εn points
of P contains a point of N .

Passing to semi-canonical triangles. Following the analysis of [MPSSW94], we cover each
α-fat triangle T by a triple of “semi-canonical” (α/2)-fat triangles, each of which has a pair of
edges with orientations taken from a fixed finite set D of O(1/α) directions, and a third edge that
bounds T ; see [MPSSW94, Lemma 3.2] and Figure 5(a). Clearly, if T contains at least εn points
of P then at least one of the three covering triangles contains at least εn/3 points of P .

This canonization step yields a constant number (O(1/α2), to be precise) of subfamilies of
(α/2)-fat triangles, where the triangles in each subfamily have two edges at fixed orientations (in
D), and a third edge whose orientation belongs to a sufficiently small range. Our strategy is thus
to construct an (ε/3)-net for P and each of these subfamilies, and the union of all these nets will
be an ε-net for P and the family of all α-fat triangles.

Thus, in what follows we focus on a fixed semi-canonical family F . As in [MPSSW94], by
applying an appropriate affine transformation, we may assume that each triangle T ∈ F is a right
triangle with one horizontal edge and one vertical edge, which meet at the lower-left vertex of T ;
see Figure 5(b).

Thus let P and F be as above, and put r := 24/ε and s := cr log log r, for some fixed constant
c > 2. We use a similar sampling model as in the cases of axis-parallel rectangles and boxes, for
drawing a random subset R ⊆ P of expected size s, which becomes part of our ε-net.

We next construct a two-level range-tree T , over the points of P , in an analogous manner to
that presented in Section 3. The points are sorted by their x-coordinates in the primary tree, and
by their y-coordinates in each secondary tree, and we construct each of the two levels of T down

4The expectation is with respect to the random choice of P .
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Figure 6: (a) The “quadrant” σu,v is defined by the line splitters ℓu′ , ℓu,v′ , but it is also bounded by ancestor
splitters ℓu′′ and ℓu,v′′ . (b) The decomposition of T0. (c) An anchored triangle T appears as a triangle (lightly
shaded) homothetic to T0 at the upper-right quadrant, or as a right-angle trapezoid (darkly shaded) at the
lower-right quadrant.

to nodes for which the size of their associated subset is between n/r and n/(4r). Following the
notation of Section 3, each node u of the primary tree is associated with the subset Pu of points
that it represents, and a secondary (y-sorted) tree Tu on Pu, and each node v of any secondary
tree Tu is associated with a corresponding subset Pu,v of Pu. Each non-leaf node u of the primary
tree stores a vertical line “splitter” ℓu, and each non-leaf node v of any secondary tree Tu stores
a horizontal line splitter ℓu,v. For each such secondary node v of a tree Tu, the lines ℓu′ and ℓu,v′ ,
where u′ is the parent of u in T and v′ is the parent of v in Tu (as before, we only handle nodes for
which u′ and v′ exist), define a quadrant σu,v, which is the intersection of two halfplanes bounded
by ℓu′ and ℓu,v′ and containing Pu,v. (Technically, similar to the situation in Section 3, σu,v is a
(possibly unbounded) rectangle, where the other vertical and horizontal edges of σu,v, if they exist,
are portions of respective splitters ℓu′′ , ℓu,v′′ , where u′′ is an appropriate ancestor of u′ in T and v′′

is an appropriate ancestor of v′ in Tu; see Figure 6(a).)

Let T0 be a right triangle in our semi-canonical family, containing at least εn/3 = 8n/r points
of P . We first decompose T0 into two parts, T1, T2, by a vertical line, so that T1 lies to the left of
the line and T2 to its right, and |T1 ∩ P | ≤ |T2 ∩ P | ≤ |T1 ∩ P | + 1. That is, |T1 ∩ P | ≥ 4n/r − 1
and |T2 ∩ P | ≥ 4n/r. See Figure 6(b) for an illustration.

As in the case of axis-parallel boxes, we locate the highest node u′ in T , so that the line ℓu′

meets T1, thus splitting T0 into two parts, where the right part is a triangle T ′, homothetic to T0

and fully containing T2. In particular, we have |T ′ ∩ P | ≥ 4n/r. Let u be the right child of u′. We
next locate the highest node v′ in Tu, such that ℓu,v′ meets T ′. We focus on the portion T of T ′

that contains at least 2n/r points, and denote by v the child of v′ whose corresponding quadrant
σu,v contains T .

Brief discussion. (a) Although it may not appear so at first sight, the analysis just given uses
also the fact that |T1 ∩P | is large, to guarantee the existence of the node u in the primary splitting
stage: Since we stop the expansion of the primary tree at nodes containing roughly n/r points each,
we need to ensure that T1 contains sufficiently many points of P , or else it would “fall between the
cracks” and not be stabbed by any splitter ℓu′ . This, however, does not happen due to the way in
which T0 is decomposed,

(b) It is important that T1 is the portion of T0 stabbed by ℓu′ (and not T2) because it then ensures
that the apex o of σu,v is indeed contained in T0.

(c) Note that only right children u in the primary tree require the construction of a secondary tree
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Figure 7: A maximal anchored Ru,v-empty (a) right triangle, and (b) right trapezoid.

Tu.

We now continue with the construction. The clipped region T is either (a) a triangle, homothetic
to T0, whose right-angle vertex is the apex o of σu,v, or (b) a right-angle trapezoid, having o as its
top-left vertex, so that its bases are horizontal, its left side is vertical, and its right side is a portion
of the hypotenuse of T0; see Figure 6(c). In both cases we refer to T as being anchored at o. Note
that in case (a) v is a right child of its parent, representing an upper quadrant, and that in case (b)
v is a left child. representing a lower quadrant. Also, in both cases the slope of the slanted edge
of T is negative, so in case (b) the slanted edge moves “away” from o, making the lower base of T
longer than its upper base.

Recall that we have drawn a “global” random sample R of P . For each node v of each secondary
tree Tu, we put Ru,v := R ∩ σu,v and ru,v = |Ru,v|. We make R part of the output ε-net N , so if T
contains a point of R we are done.

To handle the other case, we define a family Mu,v of maximal anchored Ru,v-empty regions, with
the property that each anchored Ru,v-empty region T (triangle or trapezoid, as above), is covered
by at most two regions in Mu,v. Each region in Mu,v is either (a) an anchored Ru,v-empty right
triangle whose hypotenuse touches two points of Ru,v (that is, it supports an edge of the convex
hull of Ru,v), or (b) an anchored Ru,v-empty right-angle trapezoid whose slanted side (has negative
slope and) touches two points of Ru,v, and whose unanchored (lower) horizontal base passes through
a point of Ru,v (which might coincide with one of the two points lying on the slanted edge, i.e., be a
vertex of the region), or else lies on the bottom side of the “quadrant” σu,v. In each of these cases,
the region is clipped within σu,v (when σu,v is defined by three or more splitters). See Figure 7.

In case (a), we also include in Mu,v two axis-parallel rectangles M1,M2 anchored at o, so that
(i) the right edge of M1 passes through the leftmost point of Ru,v and its top edge lies on the top
side of σu,v (if it exists), otherwise M1 extends to ∞, and (ii) the top edge of M2 passes through
the bottommost point of Ru,v and its right edge lies on the right side of σu,v (if it exists), otherwise
M2 extends to ∞. See Figure 8(a). In case (b), we also include in Mu,v axis-parallel rectangles of
the following two types: (i) rectangles that are anchored at o, with both right and bottom sides
passing through a point of Ru,v; (ii) rectangles whose left and right sides lie respectively on the left
and right sides of σu,v (if the right side exists), and whose top and bottom sides pass through two
respective points of Ru,v, necessarily consecutive in the y-order (including two extreme rectangles,
above the highest point and below the lowest point). See Figure 8(b). Finally, if Ru,v is empty,
Mu,v consists of the single region σu,v.

We next claim that |Mu,v| = O(ru,v + 1). This is trivial when Ru,v = ∅, so assume that
Ru,v is nonempty. The claim is then obvious for regions of type (a), because their number is at
most two plus the number of edges of the lower-left convex hull of Ru,v. To bound the number
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Figure 8: Anchored maximal Ru,v-empty rectangles (a) for upper quadrants, and (b) for lower quadrants. (c) The
larger right trapezoid M ′ cannot be empty, if it shares its slanted edge e with M .

of regions of type (b), sort the points of Ru,v in decreasing y-order, and let the sorted sequence
be (q1, q2, . . . , qru,v). Put R(j) = {q1, . . . , qj−1}, for j = 1, . . . , ru,v. Let M be a region of type (b)
whose lower horizontal base passes through qj, so that qj is not a vertex of M . Then its slanted edge
must contain an edge e of the (lower-left) convex hull of R(j). Moreover, if such an M exists then
there cannot exist another region M ′ whose slanted edge contains e and whose lower base passes
through any point qk with k > j; see Figure 8(c). If qj is the lower-right vertex of M , the other
point lying on the slanted edge belongs to R(j) and is uniquely determined. Hence the number of
regions of type (b) (ignoring the extreme rectangular regions) is upper bounded by ru,v plus the
overall number of distinct edges of the “incremental” convex hulls of R(1), . . . , R(ru,v). The latter
number is O(ru,v) because every newly added point qj generates one new edge of the modified hull,
possibly deleting several other edges from the hull. (Note that this is exactly the analysis of the
classical “Graham scan” convex hull algorithm.) There are only two extreme rectangular ranges
of type (a) in Mu,v. The number of extreme rectangular ranges of type (b) is easily seen to be
O(ru,v + 1), using a variant of the analysis in Section 2.

Let M be the union of all the sets Mu,v, over all primary nodes u and all nodes v of the
respective secondary trees Tu. Then we have |M| = O(|R| log2 r + r log r).

We also have the following promised property: Let T be the remaining portion of an initial
triangle T0, and let u and v be the respective primary and secondary nodes for which T is an
anchored triangle or trapezoid within σu,v, as constructed above. Then, if T is Ru,v-empty, it is
contained in the union of at most two regions of Mu,v.

Indeed, we may assume that Ru,v 6= ∅. Suppose first that T is a triangle. Translate the
hypotenuse of T away from the apex o of σu,v, until it passes through a point q of Ru,v (necessarily
a hull vertex). Then rotate the new hypotenuse about q clockwise (resp., counterclockwise) until it
meets a second point q′ (resp., q′′) of Ru,v or becomes vertical (resp., horizontal). The two resulting
triangles (or rectangles in the extreme cases) clearly belong to Mu,v, and their union covers T . See
Figure 9(a).

Suppose next that T is a trapezoid. Expand T downwards by sliding its bottom edge parallel to
itself, while keeping the remaining bounding lines fixed, until its bottom edge hits some point q = qj

of Ru,v (that is, in the above notation, q is the jth highest point of Ru,v), or else reaches the lower
boundary of σu,v. Then translate the slanted edge of the new trapezoid to the right until it hits a
point q′ of Ru,v (more precisely, of R(j)). Finally, rotate the new slanted edge about q′ clockwise
and counterclockwise until it meets a second point of R(j), or becomes vertical or horizontal; the
clockwise rotation may end when it hits q = qj. This yields two trapezoids (or rectangles) of Mu,v

whose union covers T . See Figure 9(b). (Note that in both cases, the expansion of T may fall
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Figure 9: The dotted edges are those of the original triangle or trapezoid T . The dashed edges are the slanted
edges of appropriate expansions of the original T . Each such expansion is contained in the union of a pair of
regions of Mu,v.

outside σu,v. This, however, does not violate our analysis, since in this case T is still contained in
the union of at most two regions of Mu,v, possibly clipped within σu,v.)

By construction, at least one of these two Ru,v-empty regions must contain at least n/r points
of P . The analysis now continues almost verbatim as in Section 3; that is, for each heavy region
M ∈ Mu,v with weight factor tM ≥ c log log r, we construct a (1/tM )-net NM of size O(tM log tM ),
and output the union N of R with all the resulting nets NM . The preceding arguments, combined
with the analysis in the previous sections, imply that N is indeed an ε-net. Using the Exponential
Decay Lemma, which does hold in the present scenario, it can easily be shown that the expected
total size of the nets NM is sublinear in r (for the above choice of c), and thus the expected overall
size of the resulting net is O(r log log r). We have thus shown:

Theorem 4.1. For any set P of n points in the plane, any fixed constant parameter α > 0, and
a parameter ε > 0, there exists an ε-net of P , for α-fat triangles, of size O

(

1
ε log log 1

ε

)

, where the
constant of proportionality depends on α.

Remark. Once we have restricted our attention to the case of a single semi-canonical family, the
remaining analysis does not depend on any assumption concerning the slope of the hypotenuses
of the triangular ranges. It thus follows that the bound in Theorem 4.1 also holds for the size of
ε-nets for points in the plane and any family of triangular ranges, each of which has a pair of edges
at two fixed orientations.

Constructing the ε-net. We construct an ε-net of this size using an easy variant of the algo-
rithms presented in Sections 2 and 3. For each of the O(1/α2) semi-canonical families, we apply
an affine transformation to the plane (and to P ), which turns the two fixed edge directions into
the coordinate directions. Let us fix one such family. We construct the 2-level range tree T over
the (transformed) points of P , using O(n log n) time and storage. We next enumerate the maximal
anchored Ru,v-empty regions M in each canonical quadrant σu,v, by tracking the edges appearing
on the “incremental” convex hull of the points in Ru,v, for lower-right quadrants, or by just enu-
merating the edges of the lower-left hull of Ru,v, for upper-right quadrants. We can produce these
regions in time O(ru,v log ru,v), although we still need to test which of them is Ru,v-empty. For
simplicity, we perform this step by brute force. This takes a total of O(1 + r2

u,v) time per node, so
the overall cost of producing the canonical empty regions is O(s2), as is easily checked (in this case
the time bounds constitute a geometric sequence over the various levels of the tree); we assume s
to be sufficiently small (specifically, s = o(n1/2)) to make this bound sublinear in n. Finding the
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degenerate canonical empty rectangles can be done by applying enumeration algorithms similar to
those in Section 2.

We next compute the weight factor tM of each of the O(s log2 r) maximal empty regions
M . For this, we prepare an appropriate version of a triangle range counting structure in the
plane, which uses linear storage and O(n log n) preprocessing time, and answers queries in time
O(n1/2 polylog n) [Mat92a]. The overall cost of answering O(s log2 r) queries, including preprocess-
ing, is O(n log n+sn1/2 log2 r polylog n), which is only O(n log n), for s = o(n1/2). We then proceed
in a similar manner as that described for the previous algorithms in Sections 2 and 3. Omitting
any further details, we obtain that the overall expected running time of the algorithm is O(n log n),
with a constant of proportionality that depends on α (for s = o(n1/2)).

5 Improved bounds for ε-nets for other range spaces

In this section we observe that the technique developed in this paper can be adapted to the scenarios
considered by Clarkson and Varadarajan [CV07], and yields improved bounds for the size of ε-nets
in many of the cases considered there. As a consequence, using the same implication as in [CV07]
(which is based on the technique of Brönnimann and Goodrich [BG95]), but with the improved
bounds on the size of ε-nets in the respective range spaces, we obtain approximation algorithms
for geometric set cover or hitting set with improved approximation factors. We list these
improvements in Section 6, including similar improved approximation factors for the three primal
range spaces considered so far in this paper—points and axis-parallel rectangles in the plane or
boxes in 3-space, and points and α-fat triangles in the plane.

Rephrasing the notation used in the introduction, we consider the dual range space Ξ = (C,Q),
where the ground set C is a collection of geometric regions in R

d, and each range in Q is of the form
Qx = {C ∈ C | x ∈ C}, for some x ∈ R

d. Clarkson and Varadarajan [CV07] further assume that, for
any finite subcollection C′ of m regions of C, the complement of the union of C′ can be decomposed
into at most mϕ(m) cells of some simple shape, where ϕ(m) is some slowly increasing function;
for technical reasons, we also require ϕ to be sublinear, in the sense that ϕ(αx) ≤ αϕ(x) for any
integers α, x ≥ 1 (this latter property holds in all applications considered here and in [CV07]).

In addition, we assume that each cell in the decomposition is a (possibly unbounded) portion of
space that is defined by O(1) regions of C′, in the sense that it appears in the decomposition of the
complement of the union of just those O(1) regions (in particular, the cells of the decomposition
do not necessarily have the same shape as the regions of C). In many geometric range spaces of
this kind, the cells are those generated by the vertical decomposition of the complement of the
union [SA95], although there exist other types of decompositions for various special classes of
regions; see, e.g., [AMS98,Cla87,CS89] for a description of this (standard) setup.

Under these assumptions, Clarkson and Varadarajan show that the range space Ξ admits ε-nets
of size O

(

1
εϕ

(

1
ε

))

. Thus, if ϕ(m) = o(log m), the resulting nets have size smaller than the standard
bound O

(

1
ε log 1

ε

)

of [HW87].

In this section we obtain the following improvement.5

Theorem 5.1. Under the assumptions made above, the range space Ξ admits an ε-net of size
O

(

1
ε log ϕ

(

1
ε

))

, for any 0 < ε ≤ 1.

5Of course, it is an improvement only when ϕ is ω(1); otherwise, the bound is O(1/ε), as already follows from
[CV07].
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Remark. The bound in the theorem improves upon the general bound O
(

1
ε log 1

ε

)

when ϕ(m) =

2o(log m), thus extending the applicability of this technique beyond the “effective range” ϕ(m) =
o(log m), where the original technique of [CV07] yields an improvement.

Proof. We follow the general approach of Section 2. Here we have a finite subcollection of n elements
of C, which, for simplicity, we continue to denote by C. We put r := 1/ε, s := cr log ϕ(r), and
π := s/n, where c > 1 is a constant. We draw a random sample R of regions of C, picking each
region, independently, with probability π. We form the union U of R and decompose its complement
into at most |R|ϕ(|R|) simply-shaped regions, each determined by O(1) sets of R; as above, we
refer to the regions which form the decomposition as “cells”. We define the weight factor tM of a
cell M to be s|CM |/n, where CM is the subcollection of those regions of C which meet M . By the
standard ε-net theory [HW87], or, alternatively, by the Clarkson-Shor technique [Cla87,CS89], it
follows that, with high probability, we have6 |CM | = O

(

n
s log s

)

for each cell M , and, in an informal
and imprecise sense, the expected size of CM , for a cell M , is only O(n/s).

As above, we take each “heavy” cell M , with tM ≥ c log ϕ(r), and use the standard theory of
ε-nets to deduce that there exists a (1/tM )-net NM for CM , whose size is O(tM log tM ). We output
the union of R with all the sets NM , over all heavy cells M , as the desired (1/r)-net (that is, ε-net)
N .

Adapting the argument in Section 2, it is straightforward to verify that N is indeed an ε-net.
Recall that in this dual context an ε-net is a subset of regions that cover all points that are contained
in at least an ε-fraction of the regions. To bound the expected size of N , we follow the same analysis
as in Section 2. That is, we apply the Exponential Decay Lemma in this context. Here, for a cell
M , its defining set D(M) consists of the O(1) regions that determine M , and its killing set K(M)
is the set of all regions in C that intersect M . In essentially all cases considered in [CV07] and
below, the axioms assumed in [AMS98], or their simplified version used in Section 2, hold. We
denote by CT(R) the set of all cells appearing in the decomposition of the complement of the union
of a subset R of C, and by CTt(R) the subset of CT(R) consisting of those cells with weight factor
at least t.

It thus follows that the Exponential Decay Lemma is applicable in this scenario as well, and it
implies that, for any t,

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

= O
(

2−t Exp
{

|R′|ϕ(|R′|)
})

,

where R (resp., R′) is a random sample in which each region of C is chosen independently with
probability s/n (resp., s/(tn)).

To bound the latter expectation, we argue as follows.7 Let z := s/t denote the expected value
of |R′|. By Chernoff’s bound (see, e.g., [AS92]),

Pr
{

|R′| ≥ ξz
}

≤ e−(ξ−1)2z/3,

6Normally, for these bounds to hold, one needs to consider only those regions of C which cross (i.e., intersect but
do not fully contain) M . However, in our case we do not need this distinction: Since each cell M is disjoint from all
regions of R, the above analysis also applies to regions of C that fully contain M .

7Here we pay back a little for using the simpler sampling model.
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for any ξ > 1. Hence, using the sublinearity of ϕ,

Exp
{

|R′|ϕ(|R′|)
}

≤ 2zϕ(2z) +
∑

j≥2

Pr
{

|R′| ≥ jz
}

(j + 1)zϕ((j + 1)z)

≤ zϕ(z) ·

(

4 +
∑

j≥2

(j + 1)2e−(j−1)2z/3

)

= O(zϕ(z)).

In particular, for t = c log ϕ(r), each point is chosen in R′ with probability r/n (so z = r), and we
get

Exp
{

|CTt(R)|
}

= O
(

2−c log ϕ(r)rϕ(r)
)

= O

(

r

ϕc−1(r)

)

,

which, for c > 1, is sublinear in r. For larger values of t, the expectation is O
(

2−t(s/t)ϕ(s/t)
)

.

We can now continue with the analysis of Section 2 almost verbatim, arguing that the overall
expected size of the subsamples “within” each heavy cell of the complement of the union is sublinear
in r, so the expected size of N is dominated by that of R, thus it is O(r log ϕ(r)).

Several special cases. Theorem 5.1 immediately implies improved bounds on the size of ε-nets
for dual range spaces of several classes of regions and points, for which the union complexity (or,
rather, the complexity of the decomposition of its complement) is known to be nearly linear. We
first present some of the standard families with this property, and state their union complexity.
Since these are families of planar regions, the following bounds also apply, with some care, for the
complexity of the decomposition of the complement of their union. (We only consider families for
which the known bound is super-linear; there is no improvement when the union complexity is
linear.)

α-fat triangles (Figure 10(a)). Recall that a triangle is α-fat if each of its angles is at least α. The
complexity of the union of n such triangles is O(n log log n), where the constant of proportionality
depends on the fatness factor α [MPSSW94,PT02].

Locally γ-fat objects (Figure 10(b)). These objects were recently introduced by de Berg [dB08].
Given a parameter 0 < γ ≤ 1, an object o is locally γ-fat if, for any disk D whose center lies in
o, such that D does not fully contain o in its interior, we have area(D ⊓ o) ≥ γ · area(D), where
D ⊓ o is the connected component of D ∩ o that contains the center of D. We also assume that
the boundary of each of the given objects has only O(1) locally x-extreme points, and that the
boundaries of any pair of objects intersect in at most s points, for some constant s. It is then shown
in [dB08] that the combinatorial complexity of the union of n such objects is O(λs+2(n) log2 n), with
a constant of proportionality that depends on γ. When the objects have roughly the same size (i.e.,
the ratio of the diameters of any pair of objects is bounded by some constant), the complexity
of the union decreases to O(λs+2(n)). Locally γ-fat objects are a generalization of several other
previously studied classes of “fat” objects [Ef05,EK99,ES00].

Semi-unbounded pseudo-trapezoids (Figure 10(c)). Here each object is a region of one of the
forms

τ−
x1,x2,f =

{

(x, y) | x1 ≤ x ≤ x2, y ≤ f(x)
}

, or

τ+
x1,x2,f =

{

(x, y) | x1 ≤ x ≤ x2, y ≥ f(x)
}

,

where f is a continuous function. We assume that the graphs of any pair of these functions intersect
in at most s points, for some constant s. In this case the complexity of the union of any n such
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Figure 10: The types of regions considered in this section: (a) an α-fat triangle; (b) a locally γ-fat region; (c)
semi-unbounded pseudo-trapezoids; and (d) regions bounded by Jordan arcs with three intersections per pair.

objects is O(λs+2(n)); see, e.g., [SA95]. If the objects are pseudo-halfplanes, that is, x1 = −∞ and
x2 = +∞ for each object, the bound on the union complexity slightly improves to O(λs(n)).

Jordan arcs with three intersections per pair (Figure 10(d)). Each object is bounded by
some Jordan arc which starts and ends on the x-axis but otherwise lies above it, and by the portion
of the x-axis between these endpoints, and each pair of the bounding Jordan arcs intersect at most
three times. In this case the complexity of the union of any n such objects is O(λ3(n)) = O(nα(n));
see [EGH*89]. We also assume that the boundary of each object has only O(1) locally x-extreme
points.

Recall that the actual condition is about the complexity of a decomposition of the complement
of the union, rather than just the complexity of the union itself. However, since we are dealing with
planar objects of the above kind, the standard vertical decomposition technique (see, e.g., [SA95])
yields a decomposition whose complexity is proportional to that of the union, so the above bounds
hold for the decomposition as well.8

As noted by Clarkson and Varadarajan [CV07], their general approach implies that any dual
range space of α-fat triangles and points admits an ε-net of size O

(

1
ε log log 1

ε

)

. Similarly, any dual
range space of locally γ-fat objects and points, where the objects have roughly the same size, and
each pair of object boundaries intersect in at most s points, admits an ε-net of size9 O

(

λs

(

1
ε

))

.
When the objects are bounded by Jordan arcs with three intersections per pair, as defined above,
the size of the net becomes O

(

1
εα

(

1
ε

))

.

Using Theorem 5.1 we can improve each of these bounds of [CV07], and also extend the bound
for the case of locally γ-fat objects of arbitrary sizes (a case that cannot be treated by the original
technique of [CV07]). That is, we have:

Corollary 5.2. (a) Any dual range space of α-fat triangles and points in the plane admits an ε-net
of size O

(

1
ε log log log 1

ε

)

, for any 0 < ε ≤ 1.

(b) Consider a dual range space of locally γ-fat objects of arbitrary sizes in the plane and points,
so that the boundary of each of the given objects has only O(1) locally x-extreme points, and any
pair of these boundaries meet in at most s points, for s constant. Then any such dual range space
admits an ε-net of size O

(

1
ε log log 1

ε

)

, for any 0 < ε ≤ 1. When these objects have roughly the
same size, the bound improves to O

(

1
ε log βs+2

(

1
ε

))

, where βt(1/ε) = ελt(1/ε).

(c) Consider a dual range space of semi-unbounded pseudo-trapezoids and points in the plane, where,
for any pair of trapezoids, the graphs of their bounding functions intersect in at most s points,

8This is why we need to assume that no object boundary “wiggles” too much.
9In fact, Clarkson and Varadarajan [CV07] applied their technique to the more restricted class of (α, β)-covered

objects of roughly equal size (see [Ef05] for the definition and the union complexity bound), and obtained a similar
bound; the same technique applies to the more general class of locally γ-fat objects.
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for some constant s. Then any such dual range space admits an ε-net of size O
(

1
ε log βs+2

(

1
ε

))

,
for any 0 < ε ≤ 1. When the pseudo-trapezoids are pseudo-halfplanes, the bound improves to
O

(

1
ε log βs

(

1
ε

))

.

(d) Consider a dual range space of objects and points, where each object is bounded by a Jordan arc
which starts and ends on the x-axis and by the portion of the x-axis between these endpoints. Each
bounding Jordan arc has only O(1) locally x-extreme points, and each pair of these arcs intersect
at most three times. Then any such dual range space admits an ε-net of size O

(

1
ε log α

(

1
ε

))

, for
any 0 < ε ≤ 1.

Remark. Applying the known upper bounds on the quantities βs(n) (see [ASS89,Ni09]), we have

log βs(n) =

{

O
(

α⌊(s−2)/2⌋(n)
)

, s ≥ 2 even,

O
(

α⌊(s−2)/2⌋(n) log α(n)
)

, s ≥ 3 odd;

β1(·) and β2(·) are constants.

In closing, we note that, although the technique, as laid out at the beginning of this section, can
be applied in principle to dual range spaces in any dimension, we have managed to apply it only to
planar dual range spaces. The reason is the scarcity of classes of regions in higher dimensions with
linear or, rather, near-linear bounds on their union complexity. It would of course be interesting
to find such classes, and to apply to them our new technique.

6 Improved approximation factors for geometric Set Cover and

Hitting Set

In this section we plug the improved bounds on the size of ε-nets, as derived in the preceding sections,
into the machinery of Brönnimann and Goodrich [BG95], to obtain improved approximation factors
for the corresponding set cover or hitting set problems.

We first briefly recall this technique. For simplicity, we only review the hitting set variant. We
are given a range space (X,R), and the goal is to find a small subset S of X which meets every
range in R. The technique assumes the availability of two black-box routines: (i) an ε-net finder,
which is a procedure that, given any weight function w on X and ε > 0, constructs a weighted ε-net
N for (X,R), in the sense that N hits each range whose weight is at least εw(X), with the weight
of a subset of X being the sum of weights of its elements; (ii) a verifier, which is a procedure that,
given a subset H ⊆ X, either determines that H is a hitting set, or returns a nonempty range
R ∈ R such that R ∩ H = ∅.

The algorithm runs an exponential search to guess the value of Opt, which is the size of the
smallest hitting set for (X,R). At each step, denote by Opt the current guess for this value. The
algorithm assigns weights (initially, uniform) to the elements of X, and uses the net finder to select
a (weighted) 1

2Opt
-net N . If the verifier determines that N is a hitting set, it outputs N and stops.

Otherwise, it returns some range R not hit by N . We double the weights of the elements in R, and
repeat the above procedure. We keep iterating in this manner until N hits all the ranges in R, or
abort after a pre-specified number of iterations, concluding then (with high probability) that the
current guess for Opt is too small. Thus, upon termination, the size of the reported hitting set
has the same upper bound as that for 1

2Opt
-nets.

The analysis of [BG95] (see also [Cla93]) shows that, at the right guess for Opt, the algorithm
terminates after at most O(Opt log (n/Opt)) rounds. Thus the overall running time of the algo-
rithm is (observing that since the guessed values of Opt obtained at the exponential search form
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a geometric sequence, the running time is dominated by that of the last round)

O (Opt log (n/Opt)(TN + TV )) ,

where TN , TV are the respective running time bounds for the net-finder and the verifier.

We first apply this technique to our three main (primal) range spaces, consisting of points and
axis-parallel rectangles in the plane, of points and axis-parallel boxes in R

3, and of points and α-fat
triangles in the plane. We have presented in Sections 2, 3, and 4 algorithms that construct an
ε-net for these cases in nearly-linear time, and it is straightforward to generalize these algorithms
to the weighted case within the same asymptotic time bound (using, e.g., the technique of Ma-
toušek [Mat95]). The verifier can easily be implemented in polynomial time, using either brute
force or some more refined range-searching machinery. We thus obtain:

Corollary 6.1. There exists a randomized, expected polynomial-time algorithm that, given a set
Q of m axis-parallel rectangles and set P of n points in the plane that hit Q, computes a subset
H ⊆ P of O(Opt log log Opt) points that hit Q, where Opt is the size of the smallest such set.
The algorithm can be extended to the case of axis-parallel boxes and points in 3-space, and α-fat
triangles and planar point sets, yielding a similar approximation factor.

Using the above machinery, we also obtain polynomial-time approximation algorithms for the
set cover problems associated with the dual range spaces considered in Section 5. As shown
in [CV07, Theorem 2.3], the ε-net can be constructed in time that is polynomial in the size of the
ground set (and in 1/ε), and the verifier can be implemented in polynomial time as well, either by
using an appropriate range-searching machinery, or by a brute-force procedure. We thus have:

Corollary 6.2. (a) There exists a randomized, expected polynomial-time algorithm that, given a
set P of n points in the plane and a set T of α-fat triangles that cover P , computes a set cover
T ′ ⊆ T for P of size O(Opt log log log Opt), where Opt is the size of the smallest such set.

(b) There exists a randomized, expected polynomial-time algorithm that, given a set P of n points in
the plane and a set T of locally γ-fat objects of arbitrary sizes that cover P , so that the boundary of
each of the given objects has only O(1) locally x-extreme points, and each pair of these boundaries
intersect in at most s points, for some constant s, computes a set cover T ′ ⊆ T for P of size
O(Opt log log Opt), where Opt is the size of the smallest such set. When the elements of T have
(roughly) the same size, the size of the set cover improves to O (Opt log βs+2(Opt)).

(c) There exists a randomized, expected polynomial-time algorithm that, given a set P of n points in
the plane and a set T of semi-unbounded pseudo-trapezoids that cover P , bounded by x-monotone
curves, each pair of which meet at most s times, computes a set cover T ′ ⊆ T for P of size
O (Opt log βs+2(Opt)), where Opt is the size of the smallest such set; the bound slightly improves
to O (Opt log βs(Opt)), when the input regions are pseudo-halfplanes.

(d) There exists a randomized, expected polynomial-time algorithm that, given a set P of n points
in the plane and a set T of objects that cover P , each of which is bounded by some Jordan arc which
starts and ends on the x-axis and by the portion of the x-axis between these endpoints, so that each
bounding Jordan arc has only O(1) locally x-extreme points, and each pair of these arcs intersect
at most three times, computes a set cover T ′ ⊆ T for P of size O (Opt log α(Opt)), where Opt is
the size of the smallest such set.
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7 Concluding remarks and open problems

In this paper we achieved significant progress on the problem of bounding the size of ε-nets for
several set systems, both in the primal and the dual (geometric) setting. We conclude the paper
by stating several open problems raised by our study.

(i) One may consider the dual version of the main problem that we have studied. Namely, we
are given a collection C of n axis-parallel rectangles, and each range is the subset of C stabbed by
some point in the plane. Here too the goal is to show the existence of a small-size ε-net, which is
a (small-size) subset C′ ⊆ C whose union contains all the “deep” points (i.e., points contained in at
least εn rectangles of C). So far we do not know how to apply our method to this dual setup. We
note that Brönnimann and Lenchner, in their conference paper [BL04], claim, without a proof, the
existence of ε-nets for this dual range space, of size O

(

1
ε log log 1

ε

)

.

(ii) Another challenging open problem is to extend our machinery for axis-parallel boxes to dimen-
sions d ≥ 4. The anchoring trick used for d = 3 fails, because the number of maximal R-empty
orthants in d-space can be Θ

(

|R|⌊d/2⌋
)

in the worst case [KRSV07], and the challenge is to prune
away most of these orthants, and remain only with a nearly-linear number of them. A modest goal
is to construct a weak ε-net in this setting (that is, the points in the ε-net do not necessarily have to
be from the input set). This problem is addressed in a follow-up study [Ezra09], where the bound is
shown to be O

(

1
ε log log 1

ε

)

in any dimension d (with a constant of proportionality that depends on
d). Another goal is to construct weak ε-nets of size o

(

1
ε log log 1

ε

)

for the (primal) range spaces that
we have studied in this paper, most notably for points and axis-parallel rectangles. In fact, it would
also be interesting to find a simpler construction that yields weak ε-nets of size O

(

1
ε log log 1

ε

)

.

(iii) Last but not least, there is the problem of constructing small-size ε-nets for the primal range
spaces whose duals were considered in Section 5, such as those involving planar point sets and locally
γ-fat objects, or semi-unbounded pseudo-trapezoids, with the properties assumed in Section 5. (We
did achieve this goal for α-fat triangles.)
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A Proof of the Exponential Decay Lemma

Proof of Lemma 2.1: For a fixed level i, let T denote the collection of all axis-parallel rectangles
which are anchored at the entry side of some strip σv at that level, and each of their three other
sides contains a point of Pv (or extends all the way to the strip boundary or to ±∞, as appropriate).
Let Tt denote the subset of T consisting of all rectangles with weight factor at least t. We have

Exp
{

|CTt(R)|
}

=
∑

M∈Tt

Prob
{

M ∈ CT(R)
}

, (1)

Exp
{

|CT(R′)|
}

=
∑

M∈T

Prob
{

M ∈ CT(R′)
}

≥
∑

M∈Tt

Prob
{

M ∈ CT(R′)
}

. (2)

In view of (1) and (2), it suffices to show that, for each M ∈ Tt,

Prob
{

M ∈ CT(R)
}

= O
(

2−t
)

· Prob
{

M ∈ CT(R′)
}

.

Let AM be the event that D(M) ⊂ R and K(M) ∩ R = ∅, and let A′
M be the event that

D(M) ⊂ R′ and K(M)∩R′ = ∅. In our setup, the event AM is exactly the event M ∈ CT(R), and
the event A′

M is exactly the event M ∈ CT(R′). Moreover, putting δ := |D(M)| ≤ 3, w := |K(M)|,
we have Prob{AM} = πδ(1 − π)w, and Prob

{

A′
M

}

= (π′)δ(1 − π′)w. Hence

Prob
{

M ∈ CT(R)
}

Prob
{

M ∈ CT(R′)
} =

Prob
{

AM

}

Prob
{

A′
M

} =
πδ(1 − π)w

(π′)δ(1 − π′)w
= tδ

(

1 − π

1 − π′

)w

.

Substituting π = s/n, π′ = π/t, w ≥ t ·n/s, the latter expression becomes O
(

2−t
)

, which completes
the proof of the lemma.
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