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Abstract

In this note we show the existence of weak ε-nets of size O (1/ε log log (1/ε)) for point sets
and axis-parallel boxes in R

d. Our analysis uses a non-trivial variant for the recent technique of
Aronov et al. [AES09] that yields (strong) ε-nets, whose size have the above asymptotic bound,
for d = 2, 3.
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1 Introduction

Let P be a set of n points in R
d, and let 0 < ε < 1 be a parameter. An ε-net for P with respect

to a set R of regions in d-space is a subset N ⊆ P with the property that any region R ∈ R with
|R ∩ P | ≥ ε|P | contains an element of N . In other words, N is a hitting set for all the “heavy”
ranges.

The epsilon-net theorem of Haussler and Welzl [HW87], a fundamental result in this area, asserts
that, for any pair (P,R) (also called a range space), and ε as above, such that (P,R) has finite

VC-dimension1 d, there exists an ε-net N of size O (d/ε log (d/ε)), and that in fact a random sample
of P of that size is an ε-net with constant probability. In particular, the size of N is independent
of the size of P .

A major open problem in the theory of ε-nets is related to the question whether the factor log 1
ε

in the upper bound on their size is really necessary, especially for simply-shaped (low-dimensional)
regions. The reader is referred to [AES09] for the discussion. The prevailing conjecture is that,
at least in these geometric scenarios, there always exists an ε-net of size O(1/ε) [MSW90] (which
matches the best lower bound that is currently known). This “linear” upper bound has indeed
been established for a few special cases, such as points and halfspaces in two and three dimensions,
points and disks or pseudo-disks in the plane, and points and translates of a fixed convex polytope
in 3-space; see [MSW90,Mat92b,CV07,HKSS08,PR08,1].

When the range space (P,R) does not have a finite VC-dimension, the bound obtained by the
epsilon-net theorem does not necessarily hold. A well-studied family is the case where R consists of
all convex subsets of R

d (more precisely, each set in R is the intersection of P with a convex region
in R

d). In this case, it can be shown that the ε-net size can be at least (1−ε)n [HW87]. To overcome
this difficulty, Haussler and Welzl introduced the concept of weak ε-nets. In this case the net is a
set N satisfying the above conditions, except the requirement that N be a subset of P . In some
cases ,the fact that N can be chosen anywhere in space aids us to construct weak ε-nets of relatively
small size. Returning to the case of points and convex subsets of R

d, this crucial relaxation of the
definition enables us to construct weak ε-nets whose size depends only in ε (and not in n), in this
case the ε-net size is O(ε−d polylog (1/ε)) [CEGGSW95,MW04] (which is an improvement of the
result in [ABFK92]); see also a recent result by Alon et al. [AKNSS08] for the case where all the
points in P are in convex position, and [MR08] for a connection between weak ε-nets with respect to
convex sets and “strong” ε-nets (that is, when N is a subset of P ) with respect to other set systems
with finite VC-dimension. Concerning the lower bound, Bukh et al. [BMN09] have very recently
shown that there are range spaces of points and convex sets in d-space that admit a weak ε-net of
size Ω(1/ε logd−1 (1/ε)), thus showing the first super-linear lower bound construction (nevertheless,
when the regions are of constant description complexity, the best lower bound is still linear).

Our result. In this note we consider the case of points and axis-parallel boxes in d-space, for
any d ≥ 4, and show that this range space admits a weak ε-net of size O(1/ε log log (1/ε)) (with a
constant of proportionality that depends on d), thus significantly improving the currently known
bound O(1/ε log (1/ε)) (simply obtained by the epsilon-net theorem). Our technique is a non-
trivial variant of the technique presented by Aronov et al. [AES09] for obtaining (strong) ε-nets for

1Informally, it suffices to require that the number of distinct sets R ∩ P , for R ∈ R, is polynomial in |P |. This
scenario includes the case where the regions in R are simply-shaped, formally, they are assumed to have constant

descriptive complexity, meaning that they are semi-algebraic sets defined in terms of a constant number of polynomial
equations and inequalities of constant maximum degree.

1



range spaces of this kind, whose size has a similar asymptotic bound, for d = 2, 3. The technique
in [AES09] fails to produce a small-size (strong) ε-nets when d ≥ 4, which arises a challenging open
problem: Does the bound O(1/ε log log (1/ε)) holds in any dimension? In this note we relax this
problem, and construct a weak ε-net of this size, thus resolving the aforementioned problem in this
particular scenario.

In our analysis, we construct an ε-net which is a combination of the construction in [AES09]
(and thus contains a subset of P ) and a set of “artificial points” (not from P ) that constitute the
“weakness” of the net.

2 Preliminaries

For the sake of completeness, and in order to simplify the presentation in Section 3, we first present
an overview of the technique of Aronov et al. [AES09] to obtain a (strong) ε-net for points and axis-
parallel rectangles in the plane. The essence of their approach is oversampling, that is, sampling a
slightly larger set of points of the input, in order to guarantee that most of the “heavy” rectangles
are indeed “pierced”’ by the net.

The sampling technique. Let P be a set of n points in the plane. Put r := 4/ε, s := cr log log r,
where c > 2 is a sufficiently large constant. We first draw a random sample R so that each point
p ∈ P is chosen independently to be included in R with probability π := s/n; thus the expected size
of R is2 s. We make R part of the ε-net to be constructed. We then need to handle only axis-parallel
rectangles which contain at least n/r points, but are R-empty, i.e., (axis-parallel) rectangles which
do not contain any point of R. To pierce every such rectangle, we form the subset M of maximal

R-empty rectangles, that is, rectangles, each of which is determined by at most four points of R,
one on each of its sides (in case it is bounded there). Any other R-empty rectangle Q is contained
in one of them (by simply pushing each of its sides until it touches a point of R or extends to ±∞).
By the standard ε-net theory of [HW87], with high probability, each rectangle of M contains at
most O

(

n
s log s

)

points of P . Moreover, the expected number of points of P in such a rectangle
is O(n/s). Since s ≫ r, most rectangles of M contain fewer than εn = n/r points of P , so an
R-empty rectangle Q with at least n/r points will not fit into any of them, and we can simply
ignore them. For each of the relatively few “heavy” rectangles M of M, we apply the resampling
technique of [CF90,CV07], also referred to as a repair sampling step, as follows.

Define the weight factor tM of M to be s|M ∩ P |/n. Rectangles M with tM < s/r = c log log r
can be ignored, because they contain fewer than n/r points of P , so no rectangle Q, as above, can
be completely contained in one of them. By the standard ε-net theory [HW87], for each M ∈ M
with tM ≥ c log log r, there exists a subset NM ⊆ M ∩P of size c′tM log tM that forms a (1/tM )-net
for M ∩ P , where c′ > 0 is an absolute constant. The final ε-net N is the union of R with the sets
NM , over all the “heavy” rectangles M ∈ M (i.e., rectangles with tM ≥ c log log r). The (fairly
easy) analysis in [AES09] shows that this is indeed an ε-net.

The problem decomposition. As shown in [AES09], the number of maximal R-empty rectan-
gles can be Θ(s2) in the worst case, which leads, using the above construction literally, to a Θ

(

1
ε2

)

bound on the expected size of the ε-net in the worst case, which is much too large. To overcome

2From technical reasons described in [AES09], it is crucial to choose this sampling model.
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Figure 1: (a) The “quadrant” σu1,u2
is defined by the line splitters ℓu′

1
, ℓu1,u′

2
, but it is also bounded by

ancestor splitters ℓu′′

1
and ℓu1,u′′

2
. (b) The rectangle Q is anchored at the (apex of the) quadrant σu1,u2

. (c) An
anchored rectangle M that is determined by a pair of points.

this difficulty, we observe that it is sufficient to consider much fewer maximal R-empty rectangles.
To do so, we construct a two-level range-tree T , over the points of P (see, e.g., [dBCKO08]), where
the points are sorted by their x-coordinates in the primary tree, and by their y-coordinates in each
secondary tree3. We associate with each node u1 of the primary tree the subset Pu1 of points that it
represents, and a secondary (y-sorted) tree Tu1 on Pu1 . Similarly, with each node u2 of a secondary
tree Tu1 we associate the corresponding subset Pu1,u2 of Pu1 . We construct each of the two levels
of T down to nodes for which the size of their associated subset is between n/r and n/(4r). Each
of the primary and secondary trees has at most 2 + log r levels, and the total number of nodes in
the range-tree T is O(r log r).

Each non-leaf node u1 of the primary tree stores a vertical line ℓu1 that evenly splits the points
in P (u1) into two subsets stored at the children of u1, and each non-leaf node u2 of a secondary
tree Tu1 stores a horizontal line “splitter” ℓu1,u2 with similar properties. For each such secondary
node u2 of a tree Tu1 , the lines ℓu′

1
and ℓu1,u′

2
, where u′

1 is the parent of u1 in T and u′
2 is the parent

of u2 in Tu1, define a quadrant σu1,u2, which is the intersection of two halfplanes bounded by ℓu′
1

and ℓu1,u′
2

and containing Pu1,u2. As discussed in [AES09], we only need to consider pairs (u1, u2)
of vertices, each of which has a parent in its respective tree. Thus each of the two halfplanes are
proper, and σu1,u2 is a non-degenerate quadrant. More precisely, it is more accurate to regard σu1,u2

as a box, or a clipped quadrant, bounded on the other side also by lines associated with ancestors
of u1 and u2 (if exist); see Figure 1(a).

Given an axis-parallel (R-empty) rectangle Q0 containing at least εn, we first locate the highest
node u′

1 in T , so that the line ℓu′
1

meets Q0, thus splitting Q0 into two parts, one of which, call
it Q1, contains at least εn/2 points of P . Let u1 be the corresponding child of u′

1 so that Hu1

contains Q1. We next locate the highest node u′
2 in Tu1, such that ℓu1,u′

2
meets Q1. We focus on

the portion Q of Q1 that contains at least εn/4 = n/r points, and denote by u2 the child of u′
2

whose corresponding quadrant σu1,u2 contains Q. By construction, Q is anchored at the resulting
quadrant σ := σu1,u2, in the sense that the apex o of σ is a vertex of Q, moreover, Q behaves as a
quadrant within σ that is oppositely oriented to σ. See Figure 1(b).

By the above considerations, it is sufficient to consider all maximal anchored R-empty rectangles

3In fact, the actual approach in [AES09] for the two-dimensional case is somewhat simpler, and uses just a
binary-tree-like hierarchy of vertical strips, whereas a range-tree decomposition is used only for the three-dimensional
problem. Nevertheless, we choose to present this variant, since the analysis given in this paper exploits a structure
of this kind.
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M within σ, and apply the repair sampling step in each of them (it is then easy to verify that Q
is contained in at least one such rectangle M). Let Mu1,u2 be the set of all such rectangles. Since
each of these rectangles behaves as a quadrant inside σ (and is determined by at most two points
of Ru1,u2 := R∩ σ), the number of such empty quadrants is only O(1 + ru1,u2) [BSTY98,KRSV07],
where ru1,u2 := |Ru1,u2|; see Figure 1(c). Summing these bounds over all nodes u2 of all secondary
trees Tu1, appearing in a fixed pair of levels i1 (primary) and i2 (secondary), it is easy to verify that
the resulting bound is O(|R|+ r), for a total of O(|R| log2 r + r log r) over all pairs of levels (i1, i2),
thus yielding a bound on the overall size of the sets Mu1,u2 (see [AES09] for further details).

The Exponential Decay Lemma. We next bound the expected size of the final ε-net N . Define
CT(R) to be the union of all the collections Mu1,u2 , over all nodes u2 of all secondary trees Tu1,
appearing in a fixed pair of levels (i1, i2). For a positive parameter t, let CTt(R) be the subset of
CT(R) consisting of those rectangles M with tM ≥ t. A crucial ingredient of the analysis in [AES09]
is the so-called Exponential Decay Lemma, which implies (see also [AMS98]):

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

,

where Exp(·) denotes expectation, and R′ is another random sample of P , where each point p ∈ P
is now chosen, independently, to belong to R′ with probability π′ := π/t. We apply the lemma
with t = c log log r, so π′ = π/t = r/n. By the above considerations, Exp

{

|CT(R′)|
}

= O(r). We
thus have

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

= O
(

r2−c log log r
)

= O (r/ logc r) .

In other words, the expected number of “heavy” rectangles of CT(R) is only sublinear in r. More-
over, the analysis in [AES09] shows:

Exp

{

∑

(u1, u2) at levels (i1, i2)

∑

M∈Mu1,u2
tM≥c log log r

tM log tM

}

= O

(

r log log r log log log r

logc r

)

.

Repeating the analysis for each of the O
(

log2 r
)

pairs (i1, i2), the expectation of the above sum
is o(r), provided c > 2, as we indeed assume; thus (recall that N is the final ε-net)

Exp {|N |} = Exp {|R|} + o(r) = O(r log log r).

One of the major properties of the analysis above is to have a (nearly) linear bound on the
expected size of CT(R′). By the properties of this construction, any bound of the form O(r polylog r)
will yield a sublinear bound on the number of points sampled at the repair sampling step, given
that c is sufficiently large. We will return to this property in Section 3.

The natural extension of this technique to three dimensions yields an ε-net whose size has a
similar asymptotic bound. This follows due to the fact that there is only a linear number of maximal
anchored R-empty boxes M in each orthant σ of the decomposition, thus yielding a linear bound on
Exp {|CT(R′)|}. This property is, however, violated in dimensions d ≥ 4. In this case, the bound
can be Θ

(

|R ∩ σ|⌊d/2⌋
)

in the worst case, (see [BSTY98,KRSV07]), which is at least quadratic for

d ≥ 4, and thus yields an ε-net of expected size Θ
(

r⌊d/2⌋
)

in the worst case, using the technique
outlined above literally.
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3 The Construction

We now present our construction for the weak ε-net. Let P be a set of n points in R
d. Put r := 2d/ε

and s := cr log log r, for some constant c > 0 that we fix shortly. We first choose each point of P
independently with probability s/n, thereby producing a sample R whose expected size is s, and
make it part of the output.

We next construct a d-level range-tree T , over the points of P , where the points are sorted by
their xi-coordinates at each i-ary tree, for i = 1, . . . , d. We construct each of the d levels of T down
to nodes for which the size of their associated subset is between n/(2dr) and n/r. Clearly, each of
the i-ary trees, for i = 1, . . . , d, has at most d + log r levels, and the total number of nodes in the
range-tree T is O(r logd−1 r).

We use a similar sampling approach as in Section 2, but the repair sampling step is applied
only at those nodes ud of the d-ary trees that lie at the low levels (starting from the leaves) of
these trees, and thus their respective orthants σ contain a relatively small number of points of R.
This guarantees, as shown by the analysis, that the overall number of points sampled at the second
sampling step is indeed small. Nodes that lie at the higher levels of the d-ary trees (in which case
σ ∩ R may be large) are handled differently, and we choose for each of them the apex o of the
orthant σ associated with them (if exits) to be part of the final ε-net. This guarantees that all
boxes anchored at σ are stabbed by o. The last modification imposes the “weakness” of the ε-net,
that is, the apices of the orthants σ are not necessarily part of the point set P , however, this is
exactly the case where the analysis of [AES09] fails (for dimensions d ≥ 4), as the number of points
added to the output at the second sampling step (for nodes at the higher levels) is much too large,
whereas the construction presented here skips that step for this set of nodes—see below.

Analogously to the construction in [AES09] overviewed in Section 2 and using the notation
there, each non-leaf node ui of the i-ary tree stores a halving hyperplane hu1,...,ui

, which we denote
with a slight abuse of notation by hui

, orthogonal to the xi-axis, which evenly splits the subset
of points of P (and R) associated with ui, for i = 1, . . . , d. Next, let B0 be an axis-parallel box
containing at least εn points of P . Using the considerations in [AES09] (and Section 2), we query
T with B0 and obtain a sequence of d vertices u′

1, . . . , u
′
d, each of which is associated with a halving

hyperplane hu′
i
, . . . ,hu′

d
orthogonal to the xi-axis, respectively, such that one of the orthants σ

induced by these hyperplanes captures at least εn/2d points of B0, that is, |B0∩σ| ≥ εn/2d. Let ui

be the child of u′
i at the i-ary tree, whose corresponding halfspace Hui

(bounded by hu′
i
) contains

σ, for i = 1, . . . , d. We thus have σ = σu1,...,ud
=
⋂

i=1,...,d Hui
. Put B := B0 ∩ σ.

By construction, B is anchored at the resulting orthant σ. Moreover, the apex o of σ stabs any
box that is anchored at σ. We thus output all apices o of the corresponding orthants σ associated
with nodes u = ud of the d-ary trees T d, for which the level of u at T d is at least c′ log log r
(beginning from the leaves of T d), where c′ > 0 is a constant that we fix shortly. In other words,
we ignore, for the time being, the lower c′ log log r levels of the d-ary trees, and consider at that
step only the higher ones. Clearly, the overall number of apices that we collect in each d-ary tree is

O
(⌊

2j−c′ log log r
⌋)

= O

(⌊

2j

logc′ r

⌋)

,

where 1 ≤ j ≤ log r is the number of levels at that tree. It is easy to verify that the sum of these
bounds, over all d-ary trees that are associated with a fixed (d − 1)-ary tree is O(r log r/ logc′ r),
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and, using induction on d, the overall sum of these bounds, over all d-ary trees of T is

O

(

r logd−1 r

logc′ r

)

,

which is o(r) if we choose c′ > d − 1.

When u lies at level at most c′ log log r, we apply the repair sampling step. Put Ru := R ∩ σ,
where σ is the orthant associated with u, and ru := |Ru|. Let Mu be the set of all maximal
anchored R-empty (i.e., Ru-empty) axis-parallel boxes contained in the orthant σ; each of these
boxes M ∈ Mu behaves as an octant inside σ, and is thus determined by at most d points of Ru,
each lying on a distinct facet of M . As shown in [KRSV07], the number of these empty boxes

is O
(

r
⌊d/2⌋
u

)

. In particular, Exp{ru} = O
(

logc′ r
)

, since it lies at level at most c′ log log r. In

order to bound the expected number of empty boxes in Mu, we argue (similarly to the analysis
in [AES09]), as follows. Put z := Exp{ru}. By Chernoff’s bound (see, e.g., [AS92]),

Pr
{

ru ≥ ξz
}

≤ e−(ξ−1)2z/3,

for any ξ > 1. Hence,

Exp
{

r⌊d/2⌋
u

}

≤ (2z)⌊d/2⌋ +
∑

j≥2

Pr
{

jz ≤ ru ≤ (j + 1)z
}

((j + 1)z)⌊d/2⌋

≤ z⌊d/2⌋ ·

(

2⌊d/2⌋ +
∑

j≥2

(j + 1)⌊d/2⌋e−(j−1)2z/3

)

= O
(

z⌊d/2⌋
)

.

In particular, substituting z = O
(

logc′ r
)

, we obtain Exp
{

r
⌊d/2⌋
u

}

= O
(

logc′⌊d/2⌋ r
)

.

We next traverse all the “heavy” boxes M ∈ Mu with weight factor tM ≥ c log log r, and take a
(1/tM )-net NM , for the set P ∩M , of size O(tM log tM ) (whose existence is guaranteed by [HW87]),
and report all the resulting nets NM as part of the output, over all the heavy boxes M ∈ Mu and
vertices u as above. As discussed in Section 2, every anchored box B that is contained in M and
containing at least n/r points of P is hit by NM .

We now bound the overall expected size of the nets NM . Analogously to Section 2, we define (i)
CT(R) to be the union of all the collections Mu, over all nodes u of all d-ary trees T d, appearing
in a fixed d-tuple of levels (i1, i2, . . . , id), with id < c′ log log r, and (ii) CTt(R) to be the subset of
CT(R) consisting of those boxes M with tM ≥ t, for any parameter t. By the Exponential Decay
Lemma we have

Exp
{

|CTt(R)|
}

= O
(

2−t Exp
{

|CT(R′)|
})

,

where R′ is defined as in Section 2. In particular, when t ≥ c log log r we have

Exp
{

|CT(R′)|
}

= Exp

{

∑

u at levels (i1, . . . , id)

id<c′ log log r

|Mu|

}

= Exp

{

∑

u at levels (i1, . . . , id)

id<c′ log log r

O
(

r⌊d/2⌋
u

)

}

=
∑

u at levels (i1, . . . , id)

id<c′ log log r

Exp

{

O
(

r⌊d/2⌋
u

)

}

=
∑

u at levels (i1, . . . , id)

id<c′ log log r

O
(

logc′⌊d/2⌋ r
)

= O
(

r · logc′(⌊d/2⌋−1) r
)

,
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where the last bound follows from the fact that any fixed d-tuple (i1, . . . , id) induces a decomposition
of space into O(r/2id) cells (or truncated orthants σ), each of which contributes O

(

2id⌊d/2⌋
)

maximal
anchored empty boxes, according to the preceding arguments. Thus the overall contribution is
O
(

r2id(⌊d/2⌋−1)
)

, which is bounded by the expression that we have obtained when id < c′ log log r.

In other words, the expected number of maximal anchored empty boxes in a fixed d-tuple of
levels (i1, i2, . . . , id) as above is only O(r polylog r), which, according to the analysis in [AES09]
and the discussion in Section 2, is exactly the case that yields a sublinear bound on the overall size
of the various nets NM . Specifically, using similar considerations as in [AES09]:

Exp

{

∑

u at levels
(i1,...,id)

∑

M∈Mu
tM≥c log log r

id<c′ log log r

tM log tM

}

= Exp

{

∑

j≥t

∑

M∈CT(R)
tM=j

j log j

}

= Exp

{

∑

j≥t

j log j ·
(

|CTj(R)| − |CTj+1(R)|
)

}

= Exp

{

t log t · |CTt(R)| +
∑

j>t

(

j log j − (j − 1) log(j − 1)
)

|CTj(R)|

}

= O

(

r · logc′(⌊d/2⌋−1) r

logc r
(t log t) +

∑

j>t

r · logc′(⌊d/2⌋−1) r

2j
log j

)

= O

(

r · logc′(⌊d/2⌋−1) r · t log t

logc r

)

= O

(

r · logc′(⌊d/2⌋−1) r · log log r log log log r

logc r

)

.

Repeating the analysis for each of the O(logd r) d-tuples (i1, . . . , id), we obtain that the expec-
tation of the above sum is o(r), provided c > d + c′(⌊d/2⌋ − 1).

Summing each of the three bounds, obtained at the preliminary sample, the secondary sample,
and the set of the orthant apices associated with d-ary nodes at levels ≥ c′ log log r, it follows that
the expected size of the ε-net is O(r log log r), as asserted.

Constructing the ε-net. Constructing an ε-net of this size is an easy extension of the algorithm
given at [AES09]. We first construct a d-level range-tree T over the points of P , stopping at nodes
u (at each level of the tree) for which n/(2dr) < |Pu| < n/r. We next set the pair of constants c, c′

to satisfy the condition stated above. We report, as part of the final ε-net, the preliminary random
sample R (drawn according to the model assumed above), and all apices o of the corresponding
orthants σ associated with nodes u of the d-ary trees T d, whose level at T d is at least c′ log log r. We
next consider all the remaining nodes u (at level at most c′ log log r at T d), and process them in a
similar manner as in [AES09]. Specifically, for each such node u, we enumerate all maximal anchored

R-empty octants M in σu in O
(

r
⌊d/2⌋
u logd−1 r

)

time, using the technique of Kaplan et al. [KRSV07].
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Using the range-tree, we compute, for each of these octants M , its weight factor tM , and collect
those M whose weight factor exceeds c log log r. We then report, for each of the heavy octants,
the set P ∩M , and construct a (1/tM )-net of size O(tM log tM ) for that set. Omitting any further
details, we obtain that the overall expected running time is O(n logd−1 n).

As observed in [AES09], and using the (fairly easy) technique there, the (expected) running
time can be slightly improved to O(n logd r).
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