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Abstract

In this thesis we study a variety of problems in computational and combinatorial geometry,
which involve arrangements of geometric objects in the plane and in higher dimensions.
Some of these problems involve the design and analysis of algorithms on arrangements and
related structures, while others establish combinatorial bounds on the complexity of various
substructures in arrangements.

Informally, an arrangement is the subdivision of space induced by a collection of geomet-
ric objects. For example, a collection of triangles in the plane subdivides it into polygonal
regions, each being a maximal connected region contained in a fixed subset of the triangles
and disjoint from all the others. This subdivision is the arrangement of the triangles, and
each of these polygonal regions is a cell of the arrangement. A substructure in an arrange-
ment is a collection of certain features of the arrangement. Two main substructures that
we study in this thesis, under both combinatorial and algorithmic aspects, are the union
of geometric objects and a single cell in an arrangement.

This thesis consists of two major parts, where in the first we discuss several algorith-
mic problems, and in the second we present combinatorial bounds on substructures in
arrangements.

Algorithmic problems.

Constructing the union of geometric objects. A central problem in computational
and combinatorial geometry, with various applications, concerns the union of geometric
objects. Given a collection S of geometric objects in d-space, let U = U(S) denote their
union. Informally, the combinatorial complexity of the union is the overall number of
features of the arrangement of S that appear on its boundary. For example, if S is a set of
triangles as above, then their union boundary consists of all vertices (intersections between
a pair of triangle boundaries, or an original vertex of a triangle) and edges (a maximal
connected portion of a boundary of a triangle, that does not contain any vertex of the
arrangement in its relative interior) that are not contained in the interior of any of the
triangles in S. It is well known that in the worst case the combinatorial complexity of the
union can be (asymptotically) the same as that of the entire arrangement. However, there
are various special cases for which this complexity is considerably smaller (by, roughly,
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one order of magnitude than the complexity of the full arrangement), and, as a result, the
union boundary can be constructed much more efficiently (that is, without constructing
the entire arrangement).

In Chapter 2 we present a subquadratic “output-sensitive” algorithm to construct the
boundary of the union of a set of triangles in the plane, under the assumption that there
exists a (relatively small) subset of triangles (unknown to us) such that their union is equal
to the union of the entire set. Our approach is fairly general, and we show that it can be
extended to compute efficiently the union of simply shaped bodies of constant description
complexity in d-space, when the union is determined by a small subset of the bodies. The
solution is based on a variant of the Brönnimann-Goodrich technique [40] for obtaining an
approximate solution to the hitting-set problem.

Counting triple intersections among triangles in 3-space. Intersection problems
are among the most basic problems in computational geometry, with many different appli-
cation areas. The problem of reporting all intersections in a given collection of geometric
objects has received considerable attention, and several efficient output-sensitive algorithms
(algorithms whose running time depends on the output size) have been designed for this
problem (mostly for planar instances). However, in some applications, we are only inter-
ested in counting the overall number of intersections, without reporting them explicitly. In
this case, one prefers an algorithm whose running time does not depend on the number
of intersections (which, in the worst case, is proportional to the size of the arrangement
induced by the input objects).

In Chapter 3 we present an algorithm that efficiently counts all intersecting triples
among a collection of n triangles in 3-space in nearly-quadratic time. This solves a problem
posed by Pellegrini [118]. Using a variant of the technique, the algorithm can also represent
the set of all triple intersections in a compact form, as the disjoint union of complete
tripartite hypergraphs, which requires nearly-quadratic construction time and storage. A
compact representation of this form is useful for drawing a random vertex (triple intersection
point) of the arrangement of the given triangles. Our approach also applies to any collection
of planar objects of constant description complexity in 3-space, with the same performance
bounds. We also prove that this counting problem belongs to the “3sum-hard” family, and
thus our algorithm is likely to be nearly optimal in the worst case.

Analyzing the ICP algorithm. The matching and analysis of geometric patterns and
shapes is an important problem that arises in various application areas. In a typical sce-
nario, we are given two objects A and B, and we wish to determine how much they resemble
each other (with respect to some cost function). Usually one of the objects may undergo
certain transformations, like translation, rotation and/or scaling, in order to be matched
with the other object as well as possible. In many cases, the objects are represented as
finite sets of (sampled) points in two or three dimensions.
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A heuristic matching algorithm that is widely used, due to its simplicity (and its good
performance in practice), is the Iterative Closest Point algorithm, or the ICP algorithm
for short, of Besl and McKay [35]. Given two point sets A and B in d-space, we wish
to minimize a cost function φ(A + t, B), over all translations t of A relative to B. The
algorithm starts with an arbitrary translation that aligns A to B (suboptimally), and then
repeatedly performs local improvements that keep re-aligning A to B, while decreasing
the given cost function φ(A + t, B), until no improvement is possible. This algorithm has
been identified and used as a practical heuristic solution over the past fifteen years. Many
experimental reports on its performance, including additional heuristic enhancements of it
have been published [35, 78, 120, 125]. Still, this technique has never before been subject
to a serious and rigorous analysis of its worst-case behavior.

In Chapter 4 we analyze the performance of this algorithm, and present several of its
structural geometric properties. In particular, we present upper and lower bounds for the
number of iterations that it performs, where we consider two standard measures of resem-
blance that the algorithm attempts to optimize: The RMS (root mean squared distance)
and the (one-sided) Hausdorff distance. We show that in both cases the number of iterations
performed by the algorithm is polynomial in the number of input points. In particular, the
upper bound is quadratic in the one-dimensional case, under the RMS measure, for which
we present a lower bound construction that requires Ω(n log n) iterations, where n is the
overall size of the input. Under the Hausdorff measure, this bound is only O(n) for input
point sets whose spread is polynomial in n, and this is tight in the worst case. Regarding the
structural geometric properties of the algorithm, we show, for the RMS measure, that at
each iteration of the algorithm the cost function monotonically and strictly decreases along
the vector ∆t of the relative translation. As a result, we conclude that the polygonal path
π, obtained by concatenating all the relative translations that are computed during the
execution of the algorithm, does not intersect itself. In particular, in the one-dimensional
problem all the relative translations of the ICP algorithm are in the same (left or right)
direction. For the Hausdorff measure, some of these properties continue to hold (such as
monotonicity in one dimension), whereas others do not.

Combinatorial bounds on substructures in arrangements

A single cell. A natural problem that relates to substructures in arrangements is to
analyze the complexity of a single cell in an arrangement of geometric objects. In Chapter 5
we study the case where the input consists of k convex polyhedra in 3-space with n facets
in total. We show that in this case the combinatorial complexity of a single cell in the
arrangement of the polyhedra is O(nk1+ε), for any ε > 0, thus settling a conjecture of
Aronov et al. [27], who presented a lower bound of Ω(nkα(k)), and conjectured that the
upper bound is close to O(nk). We also design an efficient deterministic algorithm that
constructs a single cell of the arrangement, whose running time matches the combinatorial
bound up to a polylogarithmic factor. We note that a nearly-quadratic bound on the
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complexity of a single cell in 3-dimensional arrangements is well known, for fairly general
types of arrangements [24, 85]. The novelty of our bound is its dependence on k, which
makes it linear in n for any fixed k.

Union of geometric objects. As discussed above, constructing the union of geometric
objects in d-space is a central problem in computational geometry with many applications.
On the combinatorial front, it is interesting to seek for natural examples, for which the
combinatorial complexity of the union is considerably smaller than that of the full arrange-
ment. Besides yielding more efficient algorithms that construct the union in these special
cases, these problems involve intricate combinatorial techniques, which we believe them to
be of independent interest, and may find additional applications to related problems.

In Chapter 6 we study the case where the input consists of “fat” tetrahedra in 3-space,
and derive a nearly-quadratic bound on the complexity of their union. Our bound is almost
tight in the worst case, thus almost settling a conjecture of Pach et al. [112]. Our result
extends, in a significant way, the result of Pach et al. [112] for the restricted case of nearly
congruent cubes. As an immediate corollary, we obtain that the combinatorial complexity
of the union of n cubes in 3-space, having arbitrary side lengths, is O(n2+ε), for any ε > 0
(again, significantly extending the result of [112]). Our analysis can easily be extended to
yield a nearly-quadratic bound on the complexity of the union of arbitrarily oriented fat
triangular prisms (whose cross-sections have arbitrary sizes) in 3-space. Finally, we also
show that a simple variant of our analysis implies a nearly-linear bound on the complexity
of the union of fat triangles in the plane (this latter bound is known, even in a slightly
sharper form [107, 116], but the new proof is considerably simpler). In spite of the steady
progress during the past decade in the study of the union of objects in 3-space, the case of
arbitrary fat tetrahedra, considered one of the major basic instances, has remained open.

Regular vertices. Another problem that belongs to this family is to obtain, for a collec-
tion of n objects in the plane, a sharp bound on the number of regular vertices (intersection
points of two object boundaries that intersect twice), which appear on the boundary of the
union. In Chapter 7 we show that the number of regular vertices that appear on the bound-
ary of the union of n compact convex sets in the plane, such that the boundaries of any
pair of these sets intersect in at most some constant number s of points, is O(n4/3+ε), for
any ε > 0. Our bound is nearly tight in the worst case (already for s = 4), and improves
earlier bounds due to Aronov et al. [20].
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Chapter 1

Introduction

1.1 Overview

Given a finite collection S of geometric surfaces in R
d, the arrangement A(S) is the de-

composition of R
d into connected open cells of dimensions 0, 1, . . . , d induced by S. That

is, each cell is a maximal connected region that is contained in the intersection of a fixed
number of the surfaces and avoids all other surfaces; in particular, the 0-dimensional cells
of A(S) are called “vertices”, the 1-dimensional cells are referred to as “edges”, and higher-
dimensional cells are called “faces”, where (d−1)-cells are sometimes referred to as “facets”,
and d-dimensional cells are simply referred to as “cells”. Arrangements have emerged as the
underlying structure of geometric problems in a variety of applications, such as robot mo-
tion planning, pattern matching, visibility problems in computer graphics and modelling,
geographic information systems, bioinformatics, and more. In addition, they arise in most
of the basic problems in computational geometry; see [124, 81] for surveys on arrangements.

Here is a simple application of arrangements to translational motion planning in robotics.
Consider a rigid polyhedral robot R that is moving around in a 2- or 3-dimensional en-
vironment with polyhedral obstacles A1, . . . , Ak (which is also called the workspace of the
robot). To put the discussion in focus, assume for now that the workspace is 3-dimensional.
Assume that the robot is only allowed to translate within the workspace, where the place-
ment of the robot is determined with respect to some reference point that we place, say,
inside the robot. The goal is to determine the set of all free placements of the robot, that
is, placements at which it does not collide with any of the obstacles in the workspace. The
robot thus has three degrees of freedom, which correspond to the location of its reference
point. The set of all these placements comprises the so called configuration space of the
robot, and the free placements form a subset of this space, known as the free configuration
space.

In this configuration space, each possible contact between a feature (vertex, edge or face)
of an obstacle and a similar feature (face, edge or vertex) of the robot induces a surface



2 Introduction

(so-called contact surface) in the configuration space. In our particular problem, all the
contact surfaces are piecewise-linear. The set H of the contact surfaces is constructed by
computing the Minkowski sum Ki = Ai ⊕ (−R) of each of the obstacles Ai and a reflected
copy of R, for i = 1, . . . , k; each of the Kis is also called the expanded obstacle of Ai.
The contact surfaces are then the boundaries ∂Ki of the expanded obstacles. Indeed, each
point that lies inside the expanded obstacle Ki corresponds to a placement of the robot
that results in a collision between R and Ai, and vice versa; see [57, 98] for further details.
Thus the free portion of the configuration space is the complement of the union of all the
expanded obstacles. For each of the cells in the arrangement A(H), either all placements
that it defines are free, or all of them are non-free. Thus the free configuration space is a
substructure of the arrangement A(H), which consists of the union of all cells that contain
free placements, and we can determine the set of all these placements by computing the
union of the expanded obstacles.

Another application that concerns translational motion planning is to determine whether
there exists a continuous motion of the robot between a given initial position and a given
goal position. In the configuration space, this motion is a connected arc from the start
to the goal placement, which must not cross any of the contact surfaces. We can use the
arrangement A(H) to check whether there exists such a valid continuous motion. Such a
decision is equivalent to deciding whether the two configurations lie in the same cell of the
arrangement A(H). Thus deciding whether there exists a continuous collision-free motion
between two robot placements, can be solved by computing the cell of the arrangement
of the contact surfaces containing one of the placements, say the start placement, and by
checking whether the other placement lies in the same cell. In fact, all free placements
reachable from the start placement via a collision-free motion lie in this cell. As in the
previous problem, this problem involves a substructure of the arrangement as well, which,
in this case, is a single cell.

Consider a set S of n geometric objects of constant description complexity1 in d-space.
The complexity of the arrangement A(S) is the number of its cells (of all dimensions).
This complexity might be Θ(nd) in the worst case, and (some reasonable representation
of) A(S) can be computed in O(nd logn) time [124]. However, as discussed above, there
are applications where one is only interested in parts of the arrangement. The hope is
that substructures in arrangements should have smaller complexity than that of the full
arrangement, and that therefore one should be able to compute them more efficiently
(the complexity of a substructure is the number of cells of A(S) that it contains). See
Section 1.1.1 for a detailed survey of related results, and Section 1.1.2 for a survey of Voronoi
diagrams, whose combinatorial complexity is analyzed via substructures in arrangements.

On the algorithmic front, many algorithms for constructing substructures in arrange-

1A set in R
d is said to have constant description complexity if it is a semi-algebraic set defined as a

Boolean combination of a constant number of polynomial equalities and inequalities of constant maximum
degree in a constant number of variables.
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ments are based on randomization, that is, they use some source of random numbers
(“coin-flips”), and their performance parameters, on any arbitrary input, are random vari-
ables. In these cases, we seek algorithms whose expected performance (over all possible
coin flips) is good for any input. This approach is described in Section 1.1.3. In particular,
a fundamental tool, based on a (randomized) divide-and-conquer mechanism, for manipu-
lating arrangements, in both aspects, algorithmic and combinatorial, is (1/r)-cutting; see
Section 1.1.4 for an overview.

1.1.1 Arrangements and their substructures

Lower envelopes. We first introduce a widely studied substructure in arrangements, the
so-called lower envelope (resp., upper envelope). Let Γ be a collection of n surface patches
in d-space of constant description complexity, each of which is the graph of some totally or
partially defined function. The lower envelope EΓ of Γ is the pointwise minimum of these
functions. That is, EΓ is the graph of the following (possibly partially defined) function:

EΓ(x) = min
γ∈Γ

γ(x), for x ∈ R
d−1.

If we project the lower envelope EΓ onto the (d−1)-dimensional space xd = 0, we obtain
a subdivision of R

d−1 into maximal connected relatively open cells of dimensions that range
between 0 and d−1. For each cell ∆ of this subdivision, a fixed subset of Γ attains EΓ over
all points x ∈ ∆, and no other function attains EΓ over any point in ∆. This subdivision
is called the minimization diagram of Γ, and we denote it by MΓ. The complexity of MΓ is
the number of cells (of all dimensions) of MΓ, and the complexity of EΓ is defined similarly
(and is equal to that of MΓ). This complexity is known to be O(nd−1+ε), for any ε > 0,
[84, 123]2.

A single cell. As discussed in the overview above, one of the natural substructures in
arrangements is a single cell. The complexity of a cell in an arrangement is the number
of cells (of all dimensions) that appear on its boundary. For instance, the complexity of
a 2-dimensional face is the number of edges and vertices along its boundary. In general,
the complexity of a single cell of an arrangement A(Γ) (where Γ is defined as above) is
known to be O(nd−1+ε), for any ε > 0; see [33, 85] and Section 1.5 for related results. In
particular, we show in Chapter 5 that the combinatorial complexity of a single cell in an
arrangement of k convex polyhedra with a total of n facets in 3-space is O(nk1+ε), for any
ε > 0; an improvement over the general bound O(n2+ε) just cited.

A substructure that is related to a single cell is the zone. The zone of a surface σ in
A(Γ) is the collection of the cells crossed by σ. The complexity of the zone is the sum of

2In this thesis, a bound of the form f(n) = O(nq+ε) implies that, for any arbitrarily small ε > 0, there
exists a constant cε, such that f(n) ≤ cεnq+ε. Generally, cε tends to ∞ as ε decreases to 0.
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the complexities of these cells. When all the elements in Γ, as well as σ, have constant
description complexity (though, sometimes, it suffices to require that σ is convex), it can
be shown that the zone of σ is actually a single cell in another arrangement of O(n)
surfaces of constant description complexity (obtained by “cutting” the surfaces of Γ at
their intersections with σ), and thus the bound O(nd−1+ε), for any ε > 0, applies to the
complexity of the zone as well; see [33, 85].

The planar case. For planar arrangements, slightly sharper bounds are known on the
complexities of lower envelopes, single cells, and zones. In the plane, it suffices to assume
that Γ is a collection of connected curves, each pair of which intersect at most s times, for
some constant s (note that the curves need not have constant description complexity). In
this setting, the maximum number of edges forming the lower envelope of the curves in Γ
is λs+2(n), where λq(n) is the maximum length of Davenport-Schinzel sequences of order q
on n symbols (in fact, this maximum complexity becomes λs(n) when the curves in Γ are
graphs of totally defined continuous functions); see [124] and below. The same asymptotic
bounds also hold for the complexity of a single cell in A(Γ), as well as of the zone of a
curve σ in A(Γ), assuming that σ intersects each of the curves in Γ in a constant number
of points (see [124] for details).

A Davenport-Schinzel sequence of order s on n symbols is a sequence composed of n dis-
tinct symbols, such that (i) no two adjacent elements in the sequence are equal, and (ii) the
sequence does not contain a (possibly non-contiguous) alternation < a . . . b . . . a . . . b . . . >
of length s+ 2, for any two distinct symbols a and b.

It is known that the maximum length λs(n) of such a sequence is close to linear, for
any constant value of s. In particular, λ1(n) = n, λ2(n) = 2n− 1, and λ3(n) = O(nα(n)),
where α(n) is the (extremely slowly growing) inverse Ackermann function [124]. In general,
for s even,

λs(n) = n · 2Θ(α(n)(s−2)/2),

which, as above, is nearly-linear, slightly super-linear, when s is any fixed constant.

Union of geometric objects. Another substructure of arrangements that we widely
study throughout this thesis is the union of geometric objects. We now let Γ denote a set
of n geometric (full-dimensional) objects of constant description complexity in R

d. The
combinatorial complexity of their union is the overall number of cells (of all dimensions) of
the arrangement of their boundaries (which, for simplicity, we denote by A(Γ)) that appear
on the union boundary. This complexity is known to be Θ(nd) in the worst case, which,
asymptotically, is identical to that of the entire arrangement A(Γ). Nevertheless, there are
various cases for which this complexity can be shown to be roughly O(nd−1) (and sometimes
even smaller), such as the case of the union of the Minkowski sums arising in translational
motion planning in 3-space, with a convex polyhedral robot and polyhedral obstacles (see
the overview above). That is, in this case the complexity of the free configuration space is
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close to quadratic (in the overall complexity of the individual Minkowski sums of the robot
and each of the obstacles); see [25]. For the analogous problem in the plane, this bound
becomes only linear [93]. Another favorable case is when all the objects in Γ are “fat”
(see Section 1.6 for the formal definition). This case has attracted considerable attention
in the past fifteen years. Most of the known earlier results involve planar instances, but
considerable progress has been made on three-dimensional instances during the past few
years; see Section 1.6 for a detailed survey of related results. In this thesis we make
a significant contribution, by deriving, in Chapter 6, a nearly-quadratic bound on the
complexity of the union of fat tetrahedra of arbitrary sizes in 3-space.

Arrangements of linear objects. Some of the above bounds are slightly (or signifi-
cantly) sharper for arrangements of linear objects in three (and higher) dimensions.

Consider first an arrangement A(H) of n hyperplanes in d-space, d ≥ 2. In this case,
the lower envelope of these hyperplanes is the boundary of a convex polyhedron in d-space
(bounded by at most n hyperplanes), and by the Upper Bound Theorem [108], it follows
that its combinatorial complexity is O

(

n⌊d/2⌋) (where the constant of proportionality de-
pends on d). This bound is tight in the worst case. A single cell in the arrangement A(H)
is also a convex polyhedron with the same combinatorial bound as above. Aronov et al. [22]
have shown that the complexity of the zone in A(H) of a (d−1)-dimensional algebraic sur-
face σ of low degree is O(nd−1 log n), and the same bound applies when σ is the boundary
of a convex set in R

d. In fact, when σ has dimension 0 ≤ ρ < d, the more general bound

established in [22] is O
(

n⌊ d+ρ
2

⌋
)

, when d − ρ is even, and O
(

n⌊ d+ρ
2

⌋ log n
)

, when d − ρ is

odd. These bound are tight within a logarithmic factor.

When the given objects are n (d−1)-dimensional simplices in R
d, the complexity of their

lower envelope is O(nd−1α(n)), and this bound is tight in the worst case; see [113]. The best
known upper bound on the complexity of a single cell in an arrangement of such simplices
is the slightly worse bound O(nd−1 log n) [24]. In Sections 1.5 and 1.6 we survey additional
results that are related to substructures in such arrangements and also in three-dimensional
arrangements of convex polyhedra.

1.1.2 Voronoi diagrams

The Voronoi diagram of a set of geometric objects is one of the central structures in compu-
tational geometry, and arises in many applications. It was first introduced by Voronoi [127]
a hundred years ago, and became a major topic in computational geometry during the
past thirty years. The reader is referred to Aurenhammer and Klein [32], Fortune [76], and
Leven and Sharir [99] for comprehensive surveys of the subject; see also Boissonnat and
Yvinec [37].

The Voronoi diagram of a set S of disjoint objects, also referred to as “sites”, in d-space,
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under a metric (or “convex distance function”)3 ρ(·, ·), is a subdivision of R
d into cells, one

for each site, such that the cell associated with a site s ∈ S consists of the points in space
for which s is closer (under the metric ρ) than all other sites of S. Formally, the Voronoi
diagram Vor(S) of S is the subdivision of R

d into Voronoi cells V(s), for each s ∈ S, such
that

V(s) = {x ∈ R
d | ρ(x, s) ≤ ρ(x, s′), ∀s′ ∈ S, s′ 6= s}, (1.1)

where ρ(x, s) = min{ρ(x,y) | y ∈ s}. The combinatorial complexity of Vor(S) is the overall
number of vertices, edges and faces (of all dimensions) that appear on the boundaries of
its cells.

Let us consider the special (and most common in computational geometry) case, where
the set S consists of n points in d-space, and ρ is the Euclidean metric. For each pair of
distinct sites s, s′ in S, the condition ρ(x, s) ≤ ρ(x, s′) defines a halfspace, which contains s
and is bounded by the hyperplane bisecting (and perpendicular to) the segment ss′. Hence,
V(s) is the intersection of n−1 such halfspaces, and is thus a convex (possibly unbounded)
polyhedron. In particular, when d = 2, Vor(S) is a convex subdivision of the plane into n
convex cells, and Euler’s formula for planar graphs implies that the overall complexity of
the diagram is O(n) in this case; see, e.g., [57] for the full analysis. In fact, in almost all
cases, planar Voronoi diagrams have linear complexity (see [124]).

Voronoi diagrams are strongly related to lower envelopes of “distance functions” in
a straightforward manner, first noticed in [61]. Define a collection FS = {ρs | s ∈ S}
of n d-variate functions, where ρs(x) = ρ(x, s), for s ∈ S. It now follows by definition
that Vor(S) is the minimization diagram of FS. Hence the problem of bounding the
combinatorial complexity of Voronoi diagrams, as well as constructing them efficiently, can
be solved using the machinery developed for lower envelopes of d-variate functions.

In particular, for the case where S is a set of points as above, it can be shown that
Vor(S) is the minimization diagram of n hyperplanes in R

d+1 (see, e.g., [124] for the full
analysis), and thus their lower envelope is the boundary of a convex polyhedron in R

d+1

(bounded by at most n hyperplanes). Its combinatorial complexity is O
(

n⌈d/2⌉) [108],
which implies the same bound on Vor(S).

In Chapter 4 we analyze the Iterative Closest Point (ICP) algorithm, and exploit the
structure of Voronoi diagrams of a set of points in one and higher dimensions, as well as
the overlay of Voronoi diagrams of this kind.

1.1.3 Randomized algorithms

Randomization has become a central tool for many geometric problems, both algorithmic
and combinatorial. In particular, in order to achieve efficient (deterministic) solutions
for many computational problems (in geometry and elsewhere), the resulting algorithms
tend to be too complicated and difficult to design, and, consequently, their performance in

3In the simplest case, ρ is the Euclidean metric.
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practice tend to be poor. Here is where randomization plays an important role: It avoids
the use of complicated data structures, and uses instead simple-minded procedures that
might be prohibitively expensive in the worst case, but behave very well when the input is
”shuffled” in a random manner. This makes randomized algorithms considerably simpler
than their deterministic counterparts, and therefore easier to implement, which improves
their performance in practice. The running time of such a randomized algorithm is a
random variable, which depends on internal draws of random numbers (“coin flips”) made
by the algorithm. One then seeks an algorithm whose expected running time is small, no
matter how “bad” is the input data. Although efficiency is guaranteed only on average, it
can be shown, for many of these algorithms (using a more involved probabilistic analysis)
that their actual running time is close to its expectation, with high probability.

Many of the randomized algorithms in geometry are based on (i) a divide-and-conquer
approach, where the problem is partitioned into roughly equal-sized smaller subproblems,
which are then solved recursively, or (ii) a randomized incremental construction, where we
add the given input objects one by one in a random order, and, after each insertion, we
update the structure that we wish to construct, keeping it representing the elements added
so far. See a survey by Clarkson [50], presenting both approaches.

The field of randomized algorithms in computational geometry was introduced by Clark-
son [49, 52] and by Clarkson and Shor [53], and has developed rapidly during the past twenty
years. Mulmuley’s book [109] is devoted to randomized approaches to computational ge-
ometry problems; see also a survey for randomized algorithms in geometric optimization
by Agarwal and Sen [12].

In Chapter 2 we present an efficient randomized algorithm that constructs the union of
geometric objects of constant description complexity.

1.1.4 Geometric cuttings

A natural approach for solving various problems in computational geometry is the divide-
and-conquer paradigm. A typical application of this paradigm to, say, problems involving
a set Γ of n curves in the plane of constant description complexity, is to fix a parameter
r > 0, and to partition the plane into regions R1, . . . , Rm (those regions are usually vertical
pseudo-trapezoids), such that the number of curves of Γ that intersect the interior of Ri is
at most n/r, for any i = 1, . . . , m. This allows us, in many cases, to split the problem at
hand into subproblems, each involving the subset of curves intersecting a region Ri. Such
a partition is called a (1/r)-cutting of the plane, with respect to the set Γ. See [2] for a
survey of algorithms that use cuttings, and [9] for further work related to cuttings. The
notion of cuttings can be extended to higher-dimensional arrangements; see [47]. In this
thesis we will be concerned with cuttings for planar arrangements and three-dimensional
arrangements.

The first (though not optimal) construction of cuttings is due to Clarkson [49], where
m = O(r2 log2 r). Chazelle and Friedman [47] showed the existence of (1/r)-cuttings with
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m = O(r2) (a bound that is worst-case tight). Their results are extended to arrangements
of hyperplanes in d-space, d ≥ 1, with m = O(rd); see [47]. An optimal deterministic
algorithm for generating cuttings of hyperplanes in d-space was given by Chazelle [43],
with m = O(rd) (again, a tight bound), and construction time O(nrd−1), though those
constructions do not seem to produce a practically small number of regions. For other
types of surfaces, in d ≥ 3 dimensions, the bounds are not that tight. Since we will not be
using them in the thesis, we omit the further details (for which see [94, 124]).

Curve-sensitive cuttings. Let S be a set of n surfaces in 3-space of constant description
complexity, let C be a set of m curves in 3-space of constant description complexity, and
let 1 ≤ r ≤ min{m,n} be a given parameter. A (1/r)-cutting of S, which is sensitive to the
curves in C, is a subdivision of 3-space into connected cells, each of constant description
complexity, so that each cell is crossed by at most n/r surfaces of S, and the number
of cells in the cutting is nearly O(r3) (these are the standard requirements from a three-
dimensional cutting), and, in addition, the overall number of crossings between the curves
of C and cells of the cutting is roughly O(mr). This notion was recently introduced by
Koltun and Sharir [95]. The first properties can be guaranteed, with high probability, by
applying one of the standard sampling constructions of, e.g., Clarkson [49], or Chazelle
and Friedman [47], as reviewed above. However, the second property is not necessarily
guaranteed by the above techniques, as the number of crossings may be Ω(mr2) in the
worst case. See [95] for a specific construction of curve-sensitive cuttings.

Curve-sensitive cuttings find many applications in contexts that involve interactions
between surfaces and curves in 3-space. For example, curve-sensitive cuttings can be used
to obtain a bound of roughly O(m1/2n2) on the complexity of the multiple zone of m curves
in an arrangement of n surfaces in 3-space, all of constant description complexity [95]. The
multiple zone is defined as the collection of all cells of the arrangement of the given surfaces
that are crossed by at least one of the curves.

In Chapter 7 we use planar cuttings in order to bound the number of “regular” vertices
that appear on the boundary of the union of planar convex sets, such that the boundaries
of any pair of these sets intersect in a constant number of points. In Chapters 3, 6 we repre-
sent two major studies that incorporate curve-sensitive cuttings (albeit in more restricted
settings): In Chapter 3 we derive an algorithm that efficiently counts and represents in
a compact form all triples of intersections among triangles in three dimensions, and in
Chapter 6 we present a nearly-quadratic bound on the complexity of the union of “fat”
tetrahedra in 3-space.
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1.2 Output-Sensitive Construction of the Union of Tri-

angles

In this, and in each of the subsequent sections of the introduction, we present an overview
of the results obtained in the corresponding Chapters 2–7.

Overview

Many computational geometry problems deal with the task of constructing (the boundary
of) the union of geometric objects. The most classical problem is perhaps the construction
of the union of triangles in the plane. Problems of this kind arise in motion planning [98],
where we wish to construct the forbidden portions of the configuration space (see Sec-
tion 1.1), in hidden surface removal for visibility problems in three dimensions [109], in
finding the minimal Hausdorff distance under translation between two sets of points (or of
segments) in R

2 [92], in applications in geographic information systems [56], and in many
other areas. The goal is to design an efficient algorithm that constructs the union of the
given triangles. Computing the union by constructing the full arrangement of the n input
triangles requires Θ(n2) time in the worst case, which, in most cases, is wasteful, since the
combinatorial complexity of the union boundary might be considerably smaller. Ideally,
one would like to have an algorithm that computes the union in an “output-sensitive”
fashion, so that the running time depends on the actual union complexity. Nevertheless,
it is strongly believed that such an “output-sensitive” algorithm for this problem, which
runs in subquadratic time, when the boundary of the union has subquadratic complexity,
is unlikely to exist, since this problem belongs to the family of 3SUM-hard problems [77],
which are problems that are very likely to require Ω(n2) time in the worst case. However,
subquadratic algorithms exist in several special cases.

Output sensitivity. Expanding upon the preceding discussion, there are two obvious
ways to define output sensitivity (other than just measuring the complexity of the boundary
of the union). The first is to measure the output size in terms of the size of the smallest
subset S ⊂ T that satisfies

⋃

S =
⋃

T , where
⋃

S (resp.,
⋃

T ) denotes the union of the
triangles in S (resp., in T ). The second measure is in terms of the size of the smallest
subset S ′ such that ∂

⋃

T ⊆ ∂
⋃

S ′. See Figure 1.1 for an illustration of the two measures.
Note that if the output size is ξ, according to either measure, the actual complexity of the
union may be as large as Θ(ξ2) (but not larger).

The second measure of output size is likely to be too weak in the sense discussed below.
Consider the reduction, as presented in [77], of an instance of 3SUM (namely, the problem
of determining whether there exist a ∈ A, b ∈ B, c ∈ C satisfying a + b + c = 0, for
three given sets A, B, C of real numbers) to an instance of the problem of determining
whether the union of a given set of triangles fully covers the unit square. We can further
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t2

(a) (b)

Figure 1.1: (a) An arrangement of six triangles, illustrating the first measure of output sensitivity.
The triangles t1 and t2 cover the entire union, so the output size is 2. (b) Illustrating the second
measure of output sensitivity. The union boundary is determined only by the triangles t1, . . . , t4, even
though the triangles t5 and t6 cover the hole created by

⋃

i≤4 ti. The output size is 4 according to the
second measure, and 6 according to the first one.

reduce this latter problem to our problem, as follows. Let A denote an algorithm that
efficiently computes the union of n triangles in the plane, in terms of the second measure,
and let TA(n, ξ) denote its running time, expressed as a function of n and of the “output
size” ξ. We assume that TA(n, ξ) = o(n2) when ξ = o(n). In order to determine efficiently
whether the given triangles fully cover the unit square, we consider only the portions of
the triangles that are contained in the unit square, and retriangulate them, if necessary.
In addition, we add four thin and narrow triangles that cover the boundary of the unit
square. We now run A on the newly constructed instance. Clearly, there are no holes in
the union of the newly created triangles if and only if the original union contains the unit
square. In this case, the boundary of the new union consists of only four triangles, and
thus A will terminate in a predictable subquadratic time. We thus run A. If it terminates
within the anticipated (subquadratic) time, we can determine, at no extra cost, whether
the union covers the unit square. Otherwise, we stop A, and correctly report that the union
of the original triangles does not cover the unit square. Hence an efficient output-sensitive
solution, under the second measure, would have yielded a subquadratic solution to 3SUM,
and is thus unlikely to exist.

In contrast, the first measure does lend itself to an efficient output-sensitive solution,
which is the main result presented in Chapter 2.

Related work

The union of n triangles can be trivially computed in time O(n logn+ k log n), where k is
the complexity of the whole arrangement of the triangles, using a line-sweeping algorithm
(see [57]). There are several special cases in which the union of (any subfamily of) the given
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triangles has nearly-linear complexity, a property that leads to nearly-linear algorithms for
constructing the union. One such case is that of fat triangles (namely, triangles all of
whose angles are at least some constant positive angle). Another case involves triangles
that arise in the union of Minkowski sums of a fixed convex polygon with a set of pairwise
disjoint convex polygons (which is the problem one faces in translational motion planning
of a convex polygon — see Section 1.1). In these cases, the union has only linear or nearly-
linear complexity [93, 106, 107], and more efficient algorithms, based on either deterministic
divide-and-conquer, or on randomized incremental construction, can be devised, and are
presented in the above-cited papers.

If the input consists of arbitrary triangles, then the union can have quadratic complex-
ity in the worst case. The challenge here is to compute the union in subquadratic time if it
has subquadratic complexity. As noted above, this is likely to be impossible, because even
determining whether the union has a hole is a 3SUM-hard problem [77], and thus unlikely
to be solvable in subquadratic time. Still, in certain favorable instances a subquadratic
solution may be possible. For example, one can employ the randomized incremental con-
struction (RIC) of Agarwal and Har-Peled [6], whose analysis is based on Mulmuley’s theta
series [109]. Briefly, the algorithm inserts the triangles one at a time in a random order, and
maintains the union incrementally, updating it after each insertion. As is well known, the
RIC algorithm has good performance, provided that the depth d(v) of most of the vertices
v of the arrangement induced by the n input triangles, is large enough (the depth d(v) is
the number of input triangles that contain v in their interior). We refer to such vertices
as being deep. Otherwise, when most of the vertices of the arrangement are shallow, the
RIC algorithm performs poorly. In this case, one can employ the Disjoint Cover (DC)
algorithm that we have earlier developed in [68], which has good performance in practice.
This algorithm also inserts the triangles one at a time, but it computes an insertion order
that attempts to cover as many shallow vertices as possible in each insertion step. However,
from a theoretical point of view (and in view of certain pathological examples, that we have
presented in [68]), the DC algorithm can produce Ω(n2) vertices of the arrangement, even
if the size of the output (i.e., the number of vertices on the boundary of the union) is only
linear or constant, and it can be beaten by the RIC algorithm in such cases.

Contributions

In Chapter 2 we present an efficient algorithm that computes the union in an “output-
sensitive” manner (according to the first measure). That is, we present an efficient algo-
rithm to construct the boundary of the union of a set T = {∆1, . . . ,∆n} of n triangles in the
plane, under the assumption that there exists a subset S ⊂ T of ξ ≪ n triangles (unknown
to us) such that

⋃

S =
⋃

T . The running time of the algorithm is O(n4/3 log n+nξ log2 n),
which is subquadratic when ξ = o(n/ log2 n). In our solution, we use the method of Brönni-
mann and Goodrich [40] for finding a set cover in a set system of finite VC-dimension, such
that the size of this cover is at most O(log ξ) times the optimal size ξ. In itself, the running
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time of the Brönnimann-Goodrich technique is rather inefficient, but we provide a careful
implementation of (a certain modified variant of) it for the case at hand, and thereby obtain
an algorithm with the aforementioned subquadratic running time. Our approach is fairly
general, and we show that it can be extended to compute efficiently the union of simply
shaped bodies of constant description complexity in R

d, when the union is determined by
a small subset of the bodies (as in the first measure for the planar case).

The results of Chapter 2 appeared in [71].

1.3 Counting and Representing Intersections Among

Triangles in Three Dimensions

Overview

Intersection problems are among the most basic problems in computational geometry, with
many different application areas, such as solid modeling [97], robotics and motion plan-
ning [98], geographic information systems [56], computer graphics [109], and many others.
The problem of reporting all intersections in a given collection of geometric objects has re-
ceived considerable attention, and several output-sensitive algorithms have been designed
in order to solve this problem efficiently (mostly for planar instances). However, in some
applications, we are only interested in counting the overall number of intersections, without
reporting them explicitly. In this case, one prefers an algorithm whose running time does
not depend on the number of intersections (which, in the worst case, is proportional to the
size of the arrangement induced by the input objects, and can be Θ(nd) in d dimensions). A
more general problem is to construct a compact representation of the intersection set, as an
edge-disjoint union of complete d-partite hypergraphs (this problem is more general, since
one can use the compact representation in order to efficiently count the overall number
of intersections). One motivation for constructing such a compact representation is that
it facilitates a simple mechanism for sampling a random element out of the entire set of
intersections, without constructing this set explicitly.

While planar versions of the intersection counting problem have been successfully solved [3],
no efficient technique was known for counting triple intersections in the 3-dimensional case.
This subproblem actually arose in (one variant of) our study of the problem of computing
efficiently the union of simplices in R

3 (extending the planar result, reported above, to
three dimensions). Another interesting application of this problem is to select the k-th
vertex in a given direction d in an arrangement of n triangles in R

3. This can be performed
using a randomized scheme in three dimensions (similar to those in [54, 103], given for the
two-dimensional case), that is based on drawing a random vertex in the arrangement, and
counting the number of vertices in the arrangement that lie in a given halfspace, bounded
by a plane through that vertex.
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Related work

Many intersection problems involving geometric objects in the plane have been investigated,
such as reporting all intersections in a set of general arcs [34], detecting a red-blue inter-
section between two sets of “red” and “blue” Jordan arcs [15], and counting intersections
in a set of segments [3, 42, 79, 118], or in a set of circular arcs [11]. The best algorithm for
counting intersections among n line segments in the plane takes O(n4/3 log1/3 n) time [43].
(Of course, if the number k of intersections is smaller than n4/3 log1/3 n, an output-sensitive
algorithm for reporting the intersections will perform faster; see, e.g., [109].) In contrast,
there exist much fewer studies of intersection problems involving objects in three dimen-
sions. de Berg et al. [55] provide a procedure for constructing all intersecting pairs in a
collection of n triangles in R

3 in an output-sensitive manner. The running time of this
procedure is O(n4/5+εκ4/5+ε), for any ε > 0, where κ is the number of intersecting pairs.
(This bound is meaningful only when κ ≪ n3/2.) Agarwal and Matoušek [8] provide an
algorithm for segment intersection queries, in which we are given a collection of n triangles
in R

3 and, for any query segment e, wish to report all the input triangles that e intersects.
It follows from their analysis that m queries can be answered in time O(m4/5+εn4/5+ε + κ),
for any ε > 0, where κ is the total output size to all queries. Applying this algorithm to the
3n edges of n given triangles, we obtain a procedure that reports all κ intersecting pairs
of the triangles, in time O(n8/5+ε + κ), for any ε > 0. A later work of Agarwal et al. [4]
presents an algorithm for counting or reporting all intersecting pairs in a collection of con-
vex polytopes in three dimensions. Counting requires time O(n8/5+ε), for any ε > 0, where
n is the overall complexity of the input polytopes, and reporting takes O(n8/5+ε + κ) time,
where κ is the number of intersecting pairs of polytopes. (This is a potential improvement
over the algorithm of [8], since κ counts here the number of intersecting pairs of polytopes,
and not of pairs of facets.)

We are not aware of any previous specific work on counting (efficiently) intersecting
triples among n objects in three dimensions, although known solutions for the planar case
can be employed to solve (suboptimally) three-dimensional instances. (For example, by
intersecting each fixed triangle ∆ with all the other ones, by counting the number of
intersections among the resulting segments on ∆, and by summing these counts over all ∆,
we obtain an O(n7/3 log1/3 n) solution.)

Contributions

In Chapter 3 we present an efficient algorithm that counts all intersecting triples among
a collection T of n triangles in R

3 in nearly-quadratic time. Our algorithm is recursive,
and exploits (a restricted variant of) 3-dimensional curve-sensitive cuttings (see [95], Sec-
tion 1.1.4, and below for more details). More specifically, we recursively partition R

3 using
such a cutting. Each triangle is decomposed into portions that lie in different cells of the
cutting. We take each such portion ∆, and intersect it with all other triangles, obtain-



14 Introduction

ing a system of segments within ∆. We then count the number of intersections between
these segments, applying standard techniques that count intersections between lines, and
between line-segments and lines in the plane [3]. The recursion is handled in a careful
manner that ensures that the algorithm indeed runs in nearly-quadratic time.

The main technical issue that our algorithm faces is the need to avoid direct computation
of the intersections among the segments on each triangle. As already observed, doing so,
using the best algorithms for this planar problem [43], would result in an overall running
time O(n · n4/3 log1/3 n) = O(n7/3 log1/3 n).

Using a variant of this technique, it is possible to construct a representation of the triple-
intersection hypergraph of the triangles in T as an edge-disjoint union of complete tripartite
subhypergraphs {Ai × Bi × Ci}si=1 (where s is the overall number of subhypergraphs), so
that

∑s
i=1(|Ai| + |Bi| + |Ci|) = O(n2+ε), for any ε > 0. The construction takes O(n2+ε)

time as well.
We also extend our technique to count or represent all intersecting triples among n pla-

nar objects of constant description complexity that lie in distinct planes. These extensions
also run in nearly-quadratic time.

Finally, we show that it is unlikely that the triangle intersection counting problem has
a subquadratic solution, since it belongs to the 3SUM-hard family [77], and thus our
algorithm is likely to be nearly worst-case optimal.

The results of Chapter 3 appeared in [72].

1.4 Analysis of the ICP Algorithm

Overview

The matching and analysis of geometric patterns and shapes is an important problem that
arises in various application areas, in particular in computer vision and pattern recogni-
tion [18]. In a typical scenario, we are given two objects A and B, and we wish to determine
how much they resemble each other. Usually one of the objects may undergo certain trans-
formations, like translation, rotation and/or scaling, in order to be matched with the other
object as well as possible. In many cases, the objects are represented as finite sets of (sam-
pled) points in two or three dimensions (they are then referred to as “point patterns” or
“shapes”). In order to measure “resemblance”, various cost functions have been used. Two
prominent ones among them are the (one-sided) Hausdorff distance [18], and the sum of
squared distances or root mean square [35, 88], which we also call RMS, for short. Under
the first measure, the cost function is Φ∞(A,B) = maxa∈A ‖a − NB(a)‖, and under the
second measure, it is Φ2(A,B) = 1

m

∑

a∈A ‖a−NB(a)‖2, where ‖ · ‖ denotes the Euclidean
norm4, NB(a) denotes the nearest neighbor of a in B, and m = |A|.

4Of course, other norms or metrics can also be considered, but in this study we only treat the Euclidean
case.
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A heuristic matching algorithm that is widely used, due to its simplicity (and its good
performance in practice), is the Iterative Closest Point algorithm, or the ICP algorithm for
short, of Besl and McKay [35]. It typically aims to minimize the resemblance cost function
under translations. That is, given two point sets A and B in R

d (also referred to as the data
shape and the model shape, respectively), we wish to minimize a cost function φ(A+ t, B),
over all translations t of A relative to B. The algorithm starts with an arbitrary translation
that aligns A to B (suboptimally), and then repeatedly performs local improvements that
keep re-aligning A to B, while decreasing the given cost function φ(A + t, B), until no
improvement is possible. In the original version of the ICP algorithm, the only cost function
used is the sum of squared distances (see [35, 78, 119, 120, 125]), but the algorithm also
allows A to be rotated in order to be matched with B. In Chapter 4 we analyze the ICP
algorithm only under translations, but we also consider the (one-sided) Hausdorff distance
cost function, as defined above, and analyze the algorithm according to either of these two
measures of resemblance.

The ICP algorithm, under translations, proceeds as follows. At the i-th iteration, the
set A has already been translated by some vector ti−1, where t0 =

−→
0 (there are many

heuristics, which we ignore, to get a good starting translation t0). We then apply the
following two steps:

(i) We assign each (translated) point a + ti−1 ∈ A + ti−1 to its nearest neighbor
b = NB(a + ti−1) ∈ B under the Euclidean distance. (ii) We then compute the new
relative translation ∆ti that minimizes the cost function φ (with respect to the above fixed
assignment). Specifically, under the one-sided Hausdorff distance, we find the ∆ti that
minimizes

φ∞(A+ ti−1,∆ti, B) = max
a∈A
‖a+ ti−1 + ∆ti −NB(a + ti−1)‖,

and under the sum of squared distances, we minimize

φ2(A + ti−1,∆ti, B) =
1

m

∑

a∈A

‖a+ ti−1 + ∆ti −NB(a+ ti−1)‖2.

We then align the points of A to B by translating them by ∆ti, so the new (overall)
translation is ti = ti−1 + ∆ti.

In other words, in stage (i) of each iteration of the ICP algorithm we assign the points
in (the current translated copy of) A to their respective nearest neighbors in B, and in
stage (ii) we translate the points of A in order to minimize the value of the cost function
with respect to the assignment computed in stage (i). This in turn may cause some of the
points in the new translated copy of A to acquire new nearest neighbors in B, which causes
the algorithm to perform further iterations. If no point of A changes its nearest neighbor
in B, the value of the cost function does not change in the next iteration (in fact, the

next relative translation equals
−→
0 ) and, as a consequence, the algorithm terminates. (As

a matter of fact, the ICP algorithm in its original presentation stops when the difference
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A

B
b1

a1 a2 a3

b2 b3 b4

Figure 1.2: A local minimum in R
1 of the ICP measures. The global minimum is attained when a1,

a2, a3 are aligned on top of b2, b3, b4, respectively.

in the cost function falls below a given threshold τ > 0; however, in our analysis, we
assume that τ = 0). It is shown by Besl and McKay [35] that, when φ(·, ·) is the sum
of squared distances, this algorithm always converges to a local minimum, moreover, the
value of the cost function decreases at each iteration (we definitely decrease it with respect
to the present nearest-neighbor assignment, and the revised nearest-neighbor assignment
at the new placement can only decrease it further). An easy variant of their proof (noted in
Chapter 4) establishes convergence also when the cost function is the (one-sided) Hausdorff
distance.

Note that the pattern matching performed by the algorithm is one-sided, that is, it aims
to find a translation of A that places the points of A near points of B, but not necessarily
the other way around.

Since the value of the cost function is strictly reduced at each iteration of the algorithm,
it follows that no nearest-neighbor assignment arises (in its entirely) more than once during
the course of the algorithm, and thus it is sufficient to bound the overall number of nearest-
neighbor assignments (or, NNA’s, for short) that the algorithm reaches in order to bound
the number of its iterations.

Which minimum the algorithm converges to depends on the initial position of the input
points (see [35] for details and for a heuristic that “helps” the algorithm to converge in
practice to the global minimum). There are simple constructions, such as the one depicted
in Figure 1.2, that show that the algorithm may terminate at a local minimum that is quite
different (and far) from the global one, under either of the resemblance measures that we
use. (Nevertheless, as many practical experimentations indicate, the convergence to the
(possibly local) minimum is rather fast in practice [35, 78, 119, 120].) Still, this is a disad-
vantage of the algorithm from a theoretical “worst-case” point of view, and the potential
convergence to a local minimum raises several interesting questions. The most obvious
question is to obtain sharp upper and lower bounds on the maximum possible number of
local minima that the function can attain. Another is to analyze the decomposition of
space into “influence regions” of the local minima, where each such region consists of all
the translations from which the algorithm converges to a fixed local minimum.
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Related Work

The pattern matching problem is a central and important problem that arises in many
applications, ranging from surveillance to structural bioinformatics, and the ICP algorithm
has been identified and used as a practical heuristic solution over the past fifteen years.
Many experimental reports on its performance, including additional heuristic enhancements
of it (e.g., in finding a good initial translation and using various techniques for sampling
points from the input model) have been published [35, 78, 120, 125]. Still, to the best of our
knowledge, this technique has never before been subject to a serious and rigorous analysis
of its worst-case behavior, which it definitely deserves.

Nevertheless, there are a few recent studies, which analyze the performance of related
algorithms. One such algorithm is Lloyd’s method for k-means clustering, which was first
studied by Har-Peled and Sadri [88], who established upper and lower bounds on the
number of iterations performed by this method. Their bounds are polynomial in the size
of the input set and in its spread (i.e., the ratio between the diameter of the set and the
distance between its closest pair of points). In particular, they presented a lower bound
construction that yields Ω(n) iterations for point sets on the real line. The lower bound
has later been improved by Arthur and Vassilvitskii [29] to 2Ω(

√
n), when the dimension d

of the problem, as well as the number of clusters, are Ω(
√
n).

Contributions

In Chapter 4 we first show a (probably weak) upper bound of O
(

mdnd
)

(where n = |B|) on
the number of iterations of the algorithm in R

d under either of the two measures, for any
d ≥ 1. We then present several structural geometric properties of the algorithm under the
RMS measure. Specifically, we show that at each iteration of the algorithm the (real) cost
function monotonically and strictly decreases, in a continuous manner, along the vector ∆t
of the relative translation; this is a much stronger property than the originally noted one,
that the value at the end of the translation is smaller than that at the beginning. As a
result, we conclude that the polygonal path π obtained by concatenating all the relative
translations that are computed during the execution of the algorithm, does not intersect
itself. In particular, for d = 1, the ICP algorithm is monotone — all its translations are in
the same (left or right) direction. Next, we present a lower bound construction of Ω(n log n)
iterations for the one-dimensional problem under the RMS measure (assuming m ≈ n). The
upper bound is quadratic. We also discuss the problem under the (one-sided) Hausdorff
distance measure. In particular, we present for the one-dimensional problem an upper
bound of O ((m+ n) log δB/ logn) on the number of iterations of the algorithm, where δB
is the spread of the input point set B. We then present a tight lower bound construction
with Θ(n) moves, for the case where the spread of B is polynomial in n. We also study the
problem under the Hausdorff measure in two and higher dimensions, and show that some
of the structural properties of the algorithm that hold for the RMS measure do not hold
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in this case.

The results of Chapter 4 appeared in [75]. We note that our work has triggered further
study of the problem by Arthur and Vassilvitskii [30], who have improved our lower bound
construction, and have shown that, for the RMS measure in one dimension, Ω(n2) moves
might be required in the worst case.

1.5 A Single Cell in an Arrangement of Convex Poly-

hedra in R
3

Overview

Let P = {P1, . . . , Pk} be a collection of k convex polyhedra in 3-space having n facets in
total, and let A(P) denote the three-dimensional arrangement induced by the polyhedra
in P. The problem that we study in Chapter 5 is to obtain a sharp upper bound on the
combinatorial complexity of a single cell in such an arrangement, and to construct such a
cell efficiently.

Repeating and extending some of the details discussed in Section 1.1, a major appli-
cation of this problem is to translational motion planning, where a rigid polyhedral robot
R (not necessarily convex) translates in a fixed polyhedral environment, and one wishes
to compute all free placements of R (at which it avoids collision with any obstacle) which
are reachable via a continuous collision-free motion from a given initial free placement.
Assume that R can be represented as the union of k1 convex polyhedra R1, . . . , Rk1, and
that the obstacles consist of k2 convex polyhedra A1, . . . , Ak2. (The case when R is a single
convex robot admits a different treatment; see [25] and below.) For each 1 ≤ i ≤ k1 and
1 ≤ j ≤ k2, set Ki,j to be Aj ⊕ (−Ri), the Minkowski sum of Aj and a reflected copy of
Ri. Then the free portion of the configuration space is the complement of

⋃

i,j Ki,j , and the
subset of all placements reachable from a given initial free placement q0 via a collision-free
motion is a single cell (connected component) of this complement, namely, the cell contain-
ing q0, which is also a single cell in the arrangement of the polyhedra Ki,j. See [25, 121]
for more details.

Related work

In two dimensions, Guibas et al. [80] showed that the complexity of a single face in an
arrangement of n Jordan arcs, each pair of which intersect in at most some constant number
s of points, is O(λs+2(n)) (see also Section 1.1.1). Efficient algorithms for computing a single
face in two dimensions are given in [80] and [46]. Aronov and Sharir [26] showed that the
combinatorial complexity of a single face in an arrangement of k convex polygons in the
plane, having n edges in total, is O(nα(k)), and this bound is tight in the worst case. This
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(ever so slightly) improves the bound O(λ3(n)) = O(nα(n)) obtained from the general
results of [80].

In higher dimensions, it was shown by Aronov and Sharir [24] that the combinatorial
complexity of a single cell in an arrangement of n (d−1)-simplices in R

d is O(nd−1 logn), and
that this bound also holds for the complexity of the zone of an additional algebraic surface
σ of constant degree, or any convex surface, in such an arrangement. They also presented
a randomized nearly-quadratic algorithm that constructs a single cell in an arrangement
of n triangles in 3-space (see also [23]). Finally, Halperin and Sharir [85] presented a
nearly-quadratic bound on the combinatorial complexity of a single cell (or a zone) in an
arrangement of n low-degree algebraic surface patches in 3-space. These results have later
been extended to any dimension d ≥ 3 by Basu [33], where the bounds are O(nd−1+ε),
for any ε > 0. We note (see also Section 1.1.1) that the case of a single cell is a gener-
alization of the simpler problem involving the lower envelope of the given surfaces. This
simpler problem has been studied earlier [84, 123], with the same asymptotic bounds on
its complexity, as those mentioned above.

Applying these results to the case of convex polyhedra, we obtain bounds that depend
only on the total number n of facets, and do not exploit the fact that these facets are
organized in a (potentially) smaller number of convex structures. Previous results that
do exploit this fact mostly study the complexity of the (boundary of the) entire union of
P. A detailed survey of related results is given in Section 1.6, however, for the sake of
completeness, we discuss some of these results below. Aronov and Sharir [26] showed that
the complexity of the union of k convex polygons with a total of n edges in the plane is
O(k2 + nα(k)). Aronov et al. [27] showed that the complexity of the union of k convex
polyhedra with a total of n facets in R

3 is O(k3 + nk log k), and it can be Ω(k3 + nkα(k))
in the worst case. The bound was improved by Aronov and Sharir [25] to O(nk log k)
(and Ω(nkα(k))) when the given polyhedra are Minkowski sums of a fixed convex polyhe-
dron with k pairwise-disjoint convex polyhedra. In the motion-planning context mentioned
above, this problem arises in the case of a convex translating robot R. Our new result (see
below) yields a comparable bound (for only one cell, though) when the translating robot
is not convex.

As noted above, the single-cell problem is a generalization of the related problem of
bounding the complexity of the lower envelope of the polyhedra in P. Specifically, except
for vertical discontinuities of the envelope, each of its features also appears on the boundary
of the unbounded cell; the number of extra features of discontinuity is also asymptotically
bounded by the complexity of the unbounded cell. See, e.g., [124] for further details. The
case of lower envelopes is easier to analyze, and the special case of convex polyhedra was
settled by Huttenlocher et al. [92], who presented an upper bound of O(nkα(nk)), which
can easily be improved to O(nkα(k)).

On the algorithmic front, Aronov et al. [27] presented a randomized incremental algo-
rithm for computing the boundary of the union of k convex polyhedra in 3-space having
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n facets in total, whose expected running time is O(k3 + nk log k log n). Huttenlocher et
al. [92] presented a deterministic algorithm that constructs the lower envelope in an ar-
rangement of this kind in time O(nk1+ε), for any ε > 0. Aronov and Sharir [24] showed that
a single cell in an arrangement of n triangles in 3-space can be computed in randomized
expected time O(n2+ε), for any ε > 0. They also showed that if all the triangles lie in
planes having only a constant number of orientations, then a single cell in an arrangement
of this kind can be constructed deterministically in O(n2 logn) time. For the general case of
algebraic surface patches of constant description complexity, Schwarzkopf and Sharir [122]
showed that a single cell can be constructed in randomized expected O(n2+ε) time, for any
ε > 0.

Contributions

In Chapter 5 we show that the combinatorial complexity of a single cell ofA(P) is O(nk1+ε),
for any ε > 0, thus settling a conjecture of Aronov et al. [27], who presented a lower
bound of Ω(nkα(k)), and conjectured that the upper bound is close to O(nk). Thus, when
k ≪ n, our bound is a significant improvement over the general bound mentioned above.
In particular, we improve significantly the solution of the above motion planning problem,
when the number k1k2 of polyhedra Ki,j is much smaller than the overall number of their
facets.

We present a detailed proof for the unbounded cell of A(P), under the additional as-
sumption that the polyhedra in P are bounded, and then argue that this implies the same
asymptotic bound on the complexity of any other cell, and also extends to the case where
the polyhedra may be unbounded. We apply a variant of the charging scheme of Halperin
and Sharir [85], which relies on the randomized technique of Clarkson and Shor [53], and
is based on the proof technique of [84] and [123]. The main difference between the proof
in [85] and ours is that we treat each polyhedron in P as a single surface, and therefore
a triple of our surfaces may intersect in a large non-constant number of points, which the
analysis in [85] cannot handle. We thus have to modify this analysis and adapt it to our
scenario. We also extend our analysis and show that the overall complexity of the zone in
A(P) of a low-degree algebraic surface, or of the boundary of an arbitrary convex set in
3-space, is O(nk1+ε) we well.

Constructing a single cell. We also design an efficient deterministic algorithm that
constructs a single cell of A(P), in time O(nk1+ε log3 n), for any ε > 0. The algorithm
adapts the general recursive approach of [92], but the implementation details of the “merge
step” are quite different and more involved. In contrast, the O(n2+ε)-algorithm of [24] is
randomized (ours is deterministic) and not k-sensitive.

The results of Chapter 5 appeared in [73].
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1.6 The Union of Fat Tetrahedra in Three Dimensions

Overview

Let T be a collection of n (arbitrarily oriented) tetrahedra of arbitrary sizes in 3-space,
and let U denote their union. The problem that we study in Chapter 6 is to obtain a
nearly-quadratic upper bound on the combinatorial complexity of U , in the special case
where all the given tetrahedra are fat, meaning that the solid angles at their vertices are
all at least some fixed constant α > 0. (Recall that the complexity of U is the number of
faces of the arrangement A(T ) that appear on ∂U .)

Related work

As already discussed, the problem of determining the combinatorial complexity of the
union of geometric objects has received considerable attention in the past twenty years,
although most of the earlier work has concentrated on the planar case. See [10] for a recent
comprehensive survey of the area.

The case involving pseudo-discs (that is, a collection of simply connected planar re-
gions, where the boundaries of any two distinct objects intersect at most twice), arises for
Minkowski sums of a fixed convex object with a set of pairwise disjoint convex objects
(which is the problem one faces in translational motion planning of a convex robot, as
reviewed in Section 1.1), and has been studied by Kedem et al. [93]. In this case, the union
has only linear complexity. Matoušek et al. [106, 107] proved that the union of n α-fat
triangles (where each of their angles is at least α) in the plane has only O(n) holes, and its
combinatorial complexity is O(n log logn). The constant of proportionality, which depends
on the fatness factor α, has later been improved by Pach and Tardos [116]. Extending
the study to the realm of curved objects, Efrat and Sharir [65] studied the union of planar
convex fat objects. Here we say that a planar convex object c is α-fat, for some fixed α > 1,
if there exist two concentric disks, D ⊆ c ⊆ D′, such that the ratio between the radii of
D′ and D is at most α. In this case, the combinatorial complexity of the union of n such
objects, such that the boundaries of each pair of objects intersect in a constant number of
points, is O(n1+ε), for any ε > 0. See also Efrat and Katz [63] and Efrat [62] for related
(and slightly sharper) nearly-linear bounds.

In three and higher dimensions, it was shown by Aronov et al. [27] (see also Section 1.5)
that the complexity of the union of k convex polyhedra with a total of n facets in R

3 is
O(k3 +nk log k), and it can be Ω(k3 +nkα(k)) in the worst case. The bound was improved
by Aronov and Sharir [25] to O(nk log k) (and Ω(nkα(k))) when the given polyhedra are
Minkowski sums of a fixed convex polyhedron with k pairwise-disjoint convex polyhedra.
Boissonnat et al. [36] proved that the maximum complexity of the union of n axis-parallel
hypercubes in R

d is Θ
(

n⌈d/2⌉), and that the bound improves to Θ
(

n⌊d/2⌋) if all hypercubes
have the same size. Pach et al. [112] showed that the combinatorial complexity of the
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union of n nearly congruent arbitrarily oriented cubes in three dimensions is O(n2+ε), for
any ε > 0 (see also [110] for a subcubic bound on the complexity of the union of fat wedges
in 3-space). Agarwal and Sharir [13] have shown that the complexity of the union of n
congruent infinite cylinders is O(n2+ε), for any ε > 0. In fact, the more general problem
studied in [13] involves the union of the Minkowski sums of n pairwise disjoint triangles
with a ball (where congruent infinite cylinders are obtained when the triangles become
lines), and the nearly-quadratic bound is extended in [13] to this case as well. Finally,
Aronov et al. [21] showed that the union complexity of n κ-round objects in R

3 is O(n2+ε),
for any ε > 0, where an object c is κ-round if for each p ∈ ∂c there exists a ball B ⊂ c
that touches p and its radius is at least κ · diam(c). The bound is O(n3+ε), for any ε > 0,
for κ-round objects in R

4. Each of the nearly-quadratic bounds mentioned above (for the
three-dimensional case) is almost tight in the worst case.

To recap, all of the above results indicate that the combinatorial complexity of the
union of fat objects is roughly “one order of magnitude” smaller than the complexity of
the entire arrangement that they induce. While considerable progress has been made on
the analysis of unions in three dimensions, the case of the union of fat polyhedra has so far
been lagging behind, where only very few nearly-quadratic bounds are known.

Contributions

In Chapter 6 we derive a nearly-quadratic bound on the combinatorial complexity of the
union of fat tetrahedra. Our bound, which is the first known subcubic bound for this
general problem, is almost tight in the worst case.

Specifically, a tetrahedron is called α-fat if each of its four solid angles (at its four
respective vertices) is at least α. We show that, for any fixed α > 0, the complexity of the
union of n α-fat tetrahedra is O(n2+ε), for any ε > 0, where the constant of proportionality
depends on ε and on α. Our proof technique relies on the nearly-quadratic bound of the
union of α-fat dihedral wedges, established by Pach et al. [112]; a dihedral wedge is called
α-fat if its dihedral angle is at least α. An immediate application of our result is a nearly-
quadratic bound on the complexity of the union of arbitrarily oriented cubes of arbitrary
sizes (a problem left open in [112]). Moreover, even for the special case of nearly congruent
cubes, studied in [112], the second part of the analysis in that paper is not needed any
more, since it is subsumed by our analysis, which does not rely on that part (and applies
in a much wider context).

The analysis is based on cuttings, which incorporate the Dobkin-Kirkpatrick hierarchical
decomposition scheme for convex polytopes [58], in order to partition space into subcells
(simplices), so that, on average, the overwhelming majority of the tetrahedra intersecting
a subcell ∆ behave as α′-fat dihedral wedges within ∆, where α′ is another constant that
depends on α. Since, as shown in [112] (and mentioned above), the complexity of the union
of α′-fat dihedral wedges is nearly-quadratic, it only remains to analyze the number of
other types of vertices, namely, those incident to at least one ”real” tetrahedron in ∆. This
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latter task is handled by the cutting-based divide-and-conquer mechanism (see Chapter 6
for details).

Our analysis can also be applied when the given objects are arbitrarily oriented α-fat
triangular prisms (that is, all the dihedral angles in each prism are at least α) having cross-
sections of arbitrary sizes. In this case, the complexity of the union is nearly-quadratic
as well, and the bound is nearly worst-case tight. We are not aware of any previous
known subcubic bound in this case, except for the nearly-quadratic bound of Aronov and
Sharir [25], for the special case where the prisms are Minkowski sums of lines in 3-space
with a fixed (not necessarily fat) polyhedron.

An immediate consequence of our results is a bound O(n2+ε), for any ε > 0, on the
complexity of the union of any family of polyhedral objects, so that each of them is the
union of some number of α-fat tetrahedra (or triangular prisms), and the total number of
these tetrahedra or prisms is n.

The problem that we study is a natural extension of the two-dimensional problem of
bounding the complexity of the union of fat triangles [106, 107, 116]. We show that a
simple specialization of our analysis to the two-dimensional case yields the bound O(n1+ε),
for any ε > 0, on this complexity. The analysis, based on the new approach, is almost
immediate (albeit yielding a slightly suboptimal bound), and is significantly simpler than
the analysis in [106, 107, 116].

By now, the arsenal of techniques for analyzing the complexity of the union of geometric
objects in 3-space is quite rich: It includes, for example, the technique of Aronov et al. [21],
for bounding the combinatorial complexity of the union of n κ-round objects in R

3, by
reducing the problem to subproblems involving sandwich regions between upper and lower
envelopes (see also [13]), and the technique of Pach et al. [112] for bounding the complexity
of the union of n nearly congruent cubes in 3-space by bounding the number of “special
cubes” in the arrangement of these cubes (see also [27]). However, we were unable to extend
any of these alternative techniques to our context, and had to develop new machinery. We
believe it to be of independent interest, and hope that it will find additional applications
to related problems.

The results of Chapter 6 appear in [74]. A full version of the paper has been recently
submitted, and is available online.

1.7 Regular Vertices of the Union of Planar Convex

Objects

Overview

Let C be a collection of n compact convex sets in the plane, such that the boundaries of
any pair of sets in C intersect in at most s points, for some constant s. Let U denote the
union of C. If the boundaries of a pair of sets in C intersect exactly twice, we refer to their
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Figure 1.3: A construction with R = Θ(n2) regular vertices on ∂U .

two intersection points as regular intersections; all other boundary intersections are called
irregular. The problem at hand is to bound the number of regular vertices that appear on
the boundary of U .

Related work

Several recent papers have considered the problem of obtaining sharp bounds on the number
of regular intersection points that can appear on the boundary of the union U . In the
simplest instance of this problem, we assume that the boundaries of any pair of sets in
C intersect at most twice, but make no other assumption on the shape of these sets; we
then face the problem of bounding the complexity of the union of pseudo-discs (see also
Section 1.6 for a short discussion about pseudo-discs in the context of translational motion
planning). In an early paper [93], Kedem et al. show that in this case the boundary of the
union contains at most 6n − 12 intersection points, and this bound is tight in the worst
case. Pach and Sharir [114] have shown that, for the special case where C consists of convex
sets, one always has R ≤ 2I + 6n − 12, where R (resp., I) denotes the number of regular
(resp., irregular) intersection points on ∂U , thus generalizing the result of Kedem et al., in
which I = 0.

The bound of Pach and Sharir is tight in the worst case, but since I can be large, it
does not provide a good “absolute” upper bound (a bound that depends only on n) on
R. In fact, I can be Ω(n2) in the worst case, and there exist constructions in which both
I and R are Θ(n2) (see Figure 1.3). However, in these lower bound constructions, some
pairs of boundaries of the sets in C intersect in an arbitrarily large number of points (that
is, our assumption on C does not hold). It is therefore interesting to seek bounds on R
that are independent of I and depend only on n, in cases where each pair of boundaries
intersect in a constant number of points. This has been done by Aronov et al. [20]. Under
similar assumptions on the input sets, they obtained the upper bound R = O(n3/2+ε), for
any ε > 0. For the more general case, where the sets in C are not necessarily convex, they
show the existence of a positive constant δ, which depends only on s, so that R = O(n2−δ).
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Contributions

In Chapter 7 we consider the case where C satisfies the above assumptions, and derive an
improved bound on R. Specifically, we show that R = O(n4/3+ε), for any ε > 0. This
improves the first bound of [20]. Moreover, this bound is nearly tight in the worst case,
since one can easily construct n rectangles and disks which generate Θ(n4/3) regular vertices
on the boundary of their union; see [114] for details.

The results of Chapter 7 appeared in [69]. A full version of the paper has been recently
submitted, and is available online.
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Chapter 2

Output-Sensitive Construction of the
Union of Triangles

In this chapter we present an efficient algorithm to construct the boundary of the union
of a set T = {∆1, . . . ,∆n} of n triangles in the plane, under the assumption that there
exists a subset S ⊂ T of ξ ≪ n triangles (unknown to us) such that

⋃

S =
⋃

T . The
running time of the algorithm is O(n4/3 log n+ nξ log2 n), which is subquadratic when ξ =
o(n/ log2 n). Our approach is a randomized algorithm, based on the method of Brönnimann
and Goodrich for finding a set cover or a hitting set in a set system of finite VC-dimension,
as presented in [40]. Their method is based on a randomized natural selection technique
used by Clarkson [51, 52], Littlestone [100], and Welzl [128]. In our case, the objects are the
triangles of T , and any point v in the plane defines a set Tv = {∆ ∈ T | v ∈ int(∆)}. The
collection {Tv}v∈R2 forms a set system for which a hitting set H ⊂ T is a subset satisfying
⋃

H =
⋃

T , and thus a minimum-size hitting set is the object that we wish to compute. (It
is well known, and easy to verify, that this set system has finite VC dimension; see below for
details.) Note that this set system is the same as the one generated by sampling one point v
in the interior of each cell of the arrangement A(T ). In general, the Brönnimann-Goodrich
technique is not efficient enough for our purposes, but we use a variant of the algorithm
which can be implemented efficiently. Specifically, we apply the algorithm of Brönnimann
and Goodrich in an “approximate setting”, fine-tuning it (using randomization) so that it
constructs a subset T ′ of O(ξ log ξ) triangles of T , whose union covers the overwhelming
majority of the vertices (of positive depth) in the arrangement A(T ). This allows us, with
some care, to compute the portion of

⋃

T that lies outside
⋃

T ′ in an efficient explicit
manner. We note that, when measuring the expected number of vertices generated by the
algorithm, it suffices (and is appropriate) to consider only vertices at positive depth, since
vertices at depth 0 are the vertices of the union, and they have to be constructed by any
algorithm that computes the union. We call the latter quantity, namely the number of
positive-depth vertices generated by the algorithm, the residual cost of the algorithm.

In Section 2.1 we briefly recall the algorithm of Brönnimann and Goodrich, and present
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our approximate version of it. Then we derive an upper bound on the expected residual cost
of the algorithm in its approximate version. Section 2.2 describes a detailed implementation
of our algorithm. In this implementation, we use generic and simple techniques, that can be
easily extended to other geometric objects of constant description complexity in the plane
and in R

d. These extensions are discussed in Section 2.3. We give concluding remarks and
suggestions for further research in section 2.4.

2.1 The Union Construction as a Set Cover Problem

2.1.1 An overview of the Brönnimann-Goodrich technique

A technique for finding a set cover of a set system of finite VC-dimension is described in
detail by Brönnimann and Goodrich [40]; for the sake of completeness, we provide a brief
overview of this approach, in the context of the union construction problem. Recently,
Even et al. [67] have proposed an alternative technique, based on a linear-programming
formulation of the problem, that appears to be somewhat simpler and more efficient.

We denote by V the set of vertices of the arrangement A(T ) at positive depth (con-
sidering only intersection points of the triangle boundaries and ignoring triangle vertices).
A hitting set for the set system induced by {Tv}v∈V , where Tv consists of all the triangles
∆ ∈ T that contain v in their interior, is a subset of triangles H ⊂ T such that

⋃

H
covers all the vertices in V . It needs not necessarily cover

⋃

T entirely, but the pieces left
uncovered are easily computable, and will be computed in the final stages of the algorithm.
Thus we consider the set system (T, V ∗), where

V ∗ = {Tv : v ∈ V }.

Since this set system is dual to (V, T ), which has some finite VC-dimension d (see, e.g., [19]),
it follows that the VC-dimension of (T, V ∗) is also finite; as a matter of fact, it does not
exceed 2d+1 [28]. As already mentioned, our goal is to find a hitting set for (T, V ∗), that is,
a subset H ⊆ T that has a nonempty intersection with every set Tv ∈ V ∗, v ∈ V .

The algorithm of Brönnimann and Goodrich finds a hitting set, whose size isO(h∗ log h∗),
where h∗ is the smallest size of any hitting set. Note that the reported hitting set is actually
a set cover for the primal set system (V, T ), where a set cover, in this case, is a collection
C ⊆ T of triangles, whose union covers the entire set V . (For technical reasons, the method
of Brönnimann and Goodrich computes a set cover via a hitting set of the dual set system,
which is why we also work with the dual system; see [40] for further details.) Since, by
definition, the size of the optimal cover is assumed to be ξ, it follows that the size of the
set cover reported by the algorithm is at most O(ξ log ξ).

We first describe the algorithm of Brönnimann and Goodrich in its “ideal setting”,
where the entire set V is given, and then show how to modify this setting, so that it
suffices to consider only a small subset of vertices.



2.1 The Union Construction as a Set Cover Problem 29

The Brönnimann-Goodrich algorithm has two key subroutines: (i) A net finder F for
(T, V ∗), which is an algorithm that, given a parameter r ≥ 1 and a weight distribution w
on T , computes a (1/r)-net for the weighted system (T, V ∗) [19]. A (1/r)-net is a subset
N ⊆ T , which has a nonempty intersection with each set in V ∗ whose total weight is at
least 1/r of the total weight of T . (ii) A verifier V, that, given a subset H ⊆ T , either
states (correctly) that H is a hitting set, or returns a nonempty “witness” set Tv ∈ V ∗, for
some v, such that Tv ∩ H = ∅. In our context, V has simply to output a vertex v ∈ V
which is not contained in the interior of

⋃

H .

The Brönnimann-Goodrich algorithm then proceeds as follows. We guess the value of
ξ (homing in on the right value using an exponential search). We assign weights to the
triangles in T . Initially, all weights are 1. We then use the net finder F to construct a
(1/2ξ)-net N for (T, V ∗). If the verifier V outputs some set Tv that N does not hit, we
double the weights of the triangles in Tv, and repeat the process with the new weights. As
shown in [40], a hitting set is found after at most 4ξ log (n/ξ) iterations.

The problem with this ideal setting is that it requires the construction of all the
(positive-depth) vertices of A(T ), which is much too much to ask for, since it can be too
expensive (V can be quadratic in the worst case, while ξ can still be very small). Instead,
we use a smaller randomly sampled subset R ⊆ V of r elements, whose actual computation
is presented in Section 2.2. We then feed the verifier V with R instead of the entire set
V . We show that once the verifier V announces that the subset H , reported by the net
finder F , covers R (actually, it suffices that H covers most of R — see below), the actual
number of vertices of V that remain uncovered is relatively small, with high probability.
We then compute the uncovered vertices in an explicit manner, and thereby complete the
construction of

⋃

T .

2.1.2 A subquadratic residual cost via sampling

We begin the analysis of our implementation of the Brönnimann-Goodrich technique with
the following lemma, which provides a lower bound for the size of the sample R, which is
sufficient to guarantee the property asserted at the end of the preceding subsection.

In what follows, we say that an event occurs with overwhelming probability (or w.o.p.,
for short), if the probability that it does not occur is at most 1

nc
, for some constant c ≥ 1.

Lemma 2.1.1 Let T = {∆1, . . . ,∆n} be a given collection of n triangles in the plane, let V
denote the set of vertices of the arrangement A(T ) at positive depth, let κ denote the size of
V , and suppose that there are only ξ triangles of T whose union is equal to

⋃

T . Let S ⊆ T
denote a subset of triangles, and let R ⊆ V be a random sample of r = Ω(tlog n) positive-
depth vertices, sampled after S has been fixed, for some prespecified parameter t ≥ 1 and
with a sufficiently large constant of proportionality. If S covers all but r

S
< r vertices of

R, then, w.o.p., the actual number κ
S

of vertices of V that are not covered by the elements
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of S satisfies

κ
S
≤ max

{κ

t
, β
κ

r
r
S

}

, (2.1)

for some absolute constant β > 1.

Proof: For simplicity of exposition, we present the analysis under the model where R is
obtained by drawing each point of V independently with probability p = r

κ
. Nevertheless,

the assertion of the lemma also holds for other models of sampling R, in particular, for
the model we use in the actual implementation of the algorithm; see Section 2.2 and Ap-
pendix 2.A for details. Since each point in V \⋃S is chosen independently with probability
r
κ
, the expected number of vertices of R that are not covered by S is r

κ
κ
S
.

It suffices to consider the case κ
S
> κ

t
, for otherwise (2.1) clearly holds.

Since R is sampled after S has been fixed, the number r
S

of vertices of R that are not
covered by

⋃

S is a random variable, which can be expressed as the sum of κ
S

mutually
independent indicator variables, X1, . . . , Xκ

S
, each satisfying

Pr[Xi = 1] = p; Pr[Xi = 0] = 1− p, for i = 1, . . . , κ
S
.

Fix a parameter r0 > 0, and consider the event

AS : r
S
− r

κ
κ
S
< −r0.

Using a large deviation bound given in [19, Theorem A.13], it follows that

Pr[AS] < e
− r0

2

2 rκκS . (2.2)

Putting r0 =
√

2c0
r
κ
κ
S

log n, for some constant c0 ≥ 1, (2.2) implies that the probability
that the event AS occurs is at most 1

nc0
. Hence, w.o.p.,

r
S
− r

κ
κ
S
≥ −

√

2c0
r

κ
κ
S

log n,

or

r
S
≥
√

r

κ
κ
S

[
√

r

κ
κ
S
−
√

2c0 log n

]

.

Since we have assumed that κ
S
> κ

t
, and that r = Ω(t log n), with a sufficiently large

constant of proportionality, it follows that, w.o.p.,
√

r

κ
κ
S
−
√

2c0 log n > α

√

r

κ
κ
S
, (2.3)

for some absolute constant 0 < α < 1, which implies that

κ
S
≤ κ

αr
r
S
,
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and thus the lemma follows. 2

Remarks: 1) Note that Lemma 2.1.1, as well as its variant discussed in the Appendix,
deal with abstract sets, and do not exploit any special property of vertices in arrangements
of triangles. We will therefore be able to use the lemma, more or less verbatim, in the
extensions presented in Section 2.3.
2) We re-emphasize that Lemma 2.1.1 relies on the assumption that R is sampled after S
has been chosen (in our implementation, this choice will also be random). In particular,
for the lemma to be applicable at each iteration of the Brönnimann-Goodrich algorithm, R
should be redrawn from scratch before applying the verifier V. (See Section 2.2 for further
details.)

Lemma 2.1.1 implies that if the triangles in S cover all but at most r
t

of the elements of
R (and thus r

S
= O

(

r
t

)

), then, w.o.p., κ
S
≤ κ

t
. We thus construct the union of the input

triangles in two steps, where in the first we find a set H of O(ξ log ξ) triangles that covers
all but at most κ

t
vertices of V , and compute the union

⋃

H , and in the second we handle
efficiently all the remaining vertices of V that H does not cover; see below for details. It
thus follows that the overall expected number of positive depth vertices generated by the
algorithm is O(ξ2 log2 ξ) (which is the number of vertices of the arrangement of the triangles
in H) in the first part, and at most κ

t
in the second part.

In summary, we have shown

Theorem 2.1.2 Let T = {∆1, . . . ,∆n} be a given collection of n triangles in the plane,
and assume that there exists a subset H ⊂ T of ξ ≪ n triangles (unknown to us) such
that

⋃

H =
⋃

T . Let V , κ and t be as in Lemma 2.1.1. Then one can implement the
Brönnimann-Goodrich algorithm, so that its residual cost is O(ξ2 log2 ξ + κ

t
), w.o.p. In

particular, for t = max
{

κ
ξ2 , 1

}

, the residual cost is O(ξ2 log2 ξ).

Discussion. Clearly, if our only concern is to have the algorithm generate as few positive-
depth vertices as possible, we should choose t as large as possible, thereby making R larger,
and the set of vertices of V not covered by H smaller. For example, as noted, if we choose

t = max
{

κ
ξ2 , 1

}

, then the residual cost of the algorithm is at most O(ξ2 log2 ξ), w.o.p.

Since there are only ξ triangles that define the union, the combinatorial complexity of the
boundary of the union is only O(ξ2). This implies that, for the above choice of t, the overall
number of vertices that the algorithm generates is O(ξ2 log2 ξ), which is subquadratic for
ξ = o(n/ logn). However, if we are concerned with the actual running time, large values
of t will slow down the algorithm, because sampling the sets R will be more expensive.
Hence, in the actual implementation of the algorithm, presented in Section 2.2 below, we
will choose a smaller value for t, in order to optimize the bound on the actual running time
of the algorithm. This will also affect the bound on the residual cost.

We also note that the bound O(ξ2 log2 ξ) on the complexity of the union of the triangles
computed in the first part of the algorithm may be too pessimistic in practice. If the
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complexity of the union
⋃

H turns out to be smaller, the residual cost will be smaller too.

2.2 Implementation of the Algorithm

The actual cost of the algorithm depends on the cost of several support routines (in addition
to the cost of the actual generation of positive-depth vertices), such as (i) constructing the
random samples R; (ii) finding a (1/2ξ)-net for the set system (T, V ∗); (iii) implementing
the verifier V, which, in our case, is an algorithm that efficiently decides whether a given
subset S of triangles covers (most of the elements of) another given subset R of positive-
depth vertices; and (iv) the actual construction of the union of the input triangles, after
an approximate hitting set has been found. We present here an implementation that uses
generic and simple techniques, and yields a subquadratic output-sensitive algorithm for
constructing the union.

In the following description, we denote by h the size of the set H computed in the first
stage of the algorithm.

Sampling R

The task at hand is to construct, at each iteration of the algorithm, a random sample of (an
expected number of) r = ct log n positive-depth vertices of A(T ), for appropriate values of
the parameter t and the constant c. (As already mentioned, and will be discussed below,
we have to draw a new subset R in each iteration of the algorithm, in order to eliminate
any dependence between the present subset of triangles reported by the net finder F and
the (current) sample R.)

We sample R using the following simple-minded approach. Suppose that we have a guess
for the values of ξ and κ (see below for details concerning these guesses). Let κ∗ denote
the number of vertices on the boundary of

⋃

T . If κ = O(κ∗) then the entire arrangement
has only O(κ∗) = O(ξ2) vertices, and can thus be constructed in time O(n logn + ξ2),
using any of the standard techniques [109]. We may thus assume that κ > βκ∗, for some
absolute constant β > 1. We also may assume that κ > βmax{ξ2, n4/3}, for the same
constant. Otherwise, we construct the entire arrangement in time O((n+ξ2+n4/3) logn) =
O((ξ2 + n4/3) logn).

We now perform
9c′r(n2)

κ
sampling steps, where in each step we choose, uniformly and

independently, a pair of edges of distinct triangles in T , for an appropriate constant c′ > 1
(we first select a random pair of triangles, and then randomly choose a pair of triangle edges
out of the 9 triangle edge pairs induced by the two chosen triangles). Clearly, an intersection
vertex of the arrangement A(T ) (that is formed by a pair of intersecting triangle edges) is
chosen in a single step with probability κ+κ∗

9(n2)
, and thus the expectation of the number r′ of
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pairs of edges that actually intersect is

κ+ κ∗

9
(

n
2

) · 9c
′r
(

n
2

)

κ
= Θ(r).

Applying the same deviation bound used in Lemma 2.1.1, it can be shown that, w.o.p., the
actual number of such pairs satisfies

r′ ≥ E(r′)−
√

γ
κ

9
(

n
2

)

9c′r
(

n
2

)

κ
log n = E(r′)−

√

γc′r logn,

for some constant γ ≥ 1. Since
√
γc′r log n = o(r) (by the choice of γ, c′ and r), there is

a constant 0 < α < 1, which can be made arbitrarily small (for a proper choice of γ) such
that, w.o.p.,

r′ ≥ (1− α)E(r′) = Θ(r),

for a sufficiently large constant of proportionality, that depends on c′ and γ.
Not all sampled vertices have positive depth. However, since κ > βκ∗, the overwhelming

majority of the sampled vertices will have positive depth. By choosing c′ to be sufficiently
large, at least r of these vertices will have positive depth, w.o.p.

Implementing a net finder F and a verifier V
As already described in the preceding section, we assign weights to the elements of T
(initially, each triangle gets the weight 1), and use a net finder F to construct a (1/2ξ)-net
for the weighted dual system (T, V ∗). We then apply the verifier V, in order to decide
whether H covers (most of the elements of the newly resampled subset) R. If it does, the
first part of the algorithm terminates, and we proceed to the actual construction of the
union; otherwise, V returns a particular witness subset Tv ∈ V ∗, for some v ∈ R, such that
Tv ∩H = ∅. We then double the weights of the triangles in Tv, construct a new (1/2ξ)-net
and a new sample R, and repeat this process until we find a subset of triangles that covers
all but at most r

t
elements of R. The analysis in [40] can be modified to show that the

number of iterations that this algorithm performs is O(ξ log (n/ξ)). Indeed, as long as there
exists some vertex of the new sample R that is not covered by the set H constructed by
F , we keep on doubling the weights of the triangles covering this vertex, and according to
the analysis in [40], the overall number of such iterations does not exceed 4ξ log (n/ξ).

We start with the description of the net finder F . We use a simple method, presented
by Matoušek [102], and briefly reviewed in [40], for reducing the weighted case to the
unweighted one. In this method, we scale all weights of the triangles in T , such that the sum
w(T ) of the weights of all the elements of T satisfies w(T ) = n. We then take ⌊w(∆) + 1⌋
copies of each element ∆ ∈ T (where w(∆) is the scaled weight of ∆). Note that the multiset
T ′ that we have constructed contains all the elements of T and has at most 2n elements. It
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is shown in [102] that an ε-net for (the unweighted set) T ′ is also an ε-net for the weighted
set T . Finding a (1/2ξ)-net for T ′ can be done by drawing O(ξ log ξ) random elements of
T ′. As shown, e.g., in [19], an appropriate choice of the constant of proportionality ensures
that such a random sample is a (1/2ξ)-net, with overwhelming probability. Clearly, creating
the multiset T ′ takes O(n) time, and drawing O(ξ log ξ) random elements of T ′ takes an
additional O(ξ log ξ) time. Thus the overall running time of the net finder is O(n), for total
time of O(nξ log (n/ξ)) over all iterations of the algorithm. Note that if the random sample
is not a (1/2ξ)-net (which may happen with an overwhelmingly small probability for any
ξ ≥ log n; see, e.g., [90]), the number of iterations of the algorithm may exceed 4ξ log (n/ξ),
and, in this case, we may stop the whole process and restart it from scratch. The fact that
the process fails with an overwhelmingly small probability ensures that, w.o.p., the number
of such trials is not larger than some constant. (When ξ < logn, the number of trials
that guarantees success, w.o.p., is at most O(logn). However, this does not affect the
asymptotic running time of the algorithm; see Section 2.2 for the specific bound on the
running time of the algorithm.)

In the implementation of the verifier V, we use brute force, and iterate over all the
vertices of R and the triangles of H in O(rξ log ξ) time, to determine whether there exists
a vertex in R that is not covered by the triangles of H . We denote the set of all such
vertices of R by RH . Suppose RH contains at least r

t
vertices (otherwise, the first part

of the algorithm terminates). Rather than just picking any v ∈ RH , we sample a random
vertex v from RH , obtain, by brute force, the set Tv of all triangles in T that contain v in
their interior (clearly, Tv ∩ H = ∅), and, if Tv 6= ∅, double their weights. The reason for
sampling is that R may in general also contain zero-depth vertices, and Tv will be empty
for such vertices v. To accommodate this case, we use the sampling technique, and stop
when we find a positive-depth vertex in RH . Since (i) |RH | ≥ r

t
= Ω(log n), (ii) κ > βκ∗,

and (iii) R is sampled after H has been constructed, it follows that a constant positive
fraction of the elements of RH have positive depth, and that, w.o.p., such an element will
be found after at most O(logn) samplings. Hence, w.o.p., the total cost of this substep is
O(n logn). Since we repeat this procedure for O (ξ log (n/ξ)) steps, the overall cost of this
stage is, w.o.p.,

O(ξ log (n/ξ)(rξ log ξ + n logn)) = O(rξ2 log ξ log (n/ξ) + nξ log (n/ξ) log n),

and this bounds the overall running time, for both the net finder F and the verifier V, over
all iterations of the first part of the algorithm.

The actual construction of the union

The implementation of the actual construction of the union proceeds through two stages.
We first construct the union of the triangles in the set H , and then compute the portion
of A(T ) outside this union. As argued earlier, this portion contains, w.o.p., at most κ

t

positive-depth vertices of A(T ).
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t2

t1

t3

U

Figure 2.1: The second stage of the actual construction of the union. U denotes the union of the h
triangles in the hitting set H, and t1, t2 and t3 denote the remaining triangles to be inserted into the
union. Only the portions of t1, t2 and t3 that lie outside U are relevant.

We first construct the union of the h triangles of H in O(h2) = O(ξ2 log2 ξ) time (using,
e.g., randomized incremental construction [109]). Next, we efficiently find the intersections
of the boundary of each of the remaining triangles ∆ with the boundary of

⋃

H , in order
to collect all the portions of ∂∆ lying outside

⋃

H . We denote the set of all such portions,
over all the remaining triangles, by C. (See Figure 2.1 for an illustration.)

In order to find those portions efficiently, we use the algorithm of Bentley and Ottmann [34]
for reporting all k intersections in a set of n simply shaped Jordan arcs, inO(n logn+k log n)
time. We partition the set of the remaining triangles into ⌈ n

ξ log ξ
⌉ subsets, each containing

O(ξ log ξ) triangles. We denote the collection of all these subsets by S =
{

S1, . . . , S⌈ n
ξ log ξ

⌉

}

.

Next, we compute, for every subset S ∈ S, the arrangement A(S) induced by the trian-
gles in S, and then run the Bentley-Ottmann algorithm on the combined collection of the
edges of A(S) and the O(h2) edges of

⋃

H . Since the edges of A(S) are pairwise openly
disjoint, and so are the edges of

⋃

H , the algorithm will only report intersections between
the boundary of

⋃

H and the remaining triangles. Since the overall number of such inter-
sections, over all subsets in S, is at most κ

t
, the overall cost of reporting all intersections

is

O

((

n

ξ log ξ
· ξ2 log2 ξ

)

logn +
κ

t
log n

)

= O(nξ log ξ logn +
κ

t
log n).

Next, we trim the edges of the remaining triangles to their portions outside
⋃

H , and then
construct the entire union using another line sweeping procedure on these exterior edge por-
tions and the boundary edges of

⋃

H [34]. Since there are at most κ
t

positive-depth vertices
that are constructed during this process, the algorithm takes O

((

n + ξ2 log2 ξ + κ
t

)

logn
)

time.
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This completes the detailed description of our algorithm, which is summarized in the
following procedure, for which ξ is an input parameter. Since ξ is not known a priori,
we run this procedure with the values ξ = 1, 2, 4, . . . , 2i, . . . (where i < logn), thereby
guaranteeing a constant approximation of the actual value of ξ. The choice of r (that is,
of the parameter t) in this procedure will be specified later.
Procedure ConstructUnion(T , ξ)
1. Construct

⋃

T by a line sweeping procedure on the triangles in T . Stop the
procedure as soon as it constructs more than max{ξ2, n4/3} vertices.
If it terminates goto 16.

2. Initialize all weights of the triangles in T to 1.
3. repeat
4. H ← (1/2ξ)-net of size O(ξ log ξ) for the weighted system (T, V ∗).
5. Construct a new random sample R of r vertices out of the vertices of A(T ).
6. Apply the verifier V to H and R.
7. if H covers all but at most r

t
vertices of R goto 11.

8. else
9. Double the weights of all the triangles in the subset Tv reported by V.
10. endrepeat
11. Construct the union of the triangles in H .
12. Partition T into subsets S1, . . . , S⌈ n

ξ log ξ
⌉ of size O(ξ log ξ) each.

13. For each Si, compute A(Si) and find all intersections between its edges and
∂
⋃

H , using a line-sweeping procedure.
14. Trim the edges of the remaining triangles to their portions outside

⋃

H .
Denote the set of the resulting segments by C.

15. Construct
⋃

T by a line sweeping procedure on C and the boundary edges of
⋃

H .
16. end

We substitute r = ct logn, for some absolute constant c > 0, and for the parameter
t that we still need to fix. Since the size h of H is O(ξ log ξ), and since the algorithm
terminates after O(ξ log (n/ξ)) iterations, the overall cost of the algorithm (including the
exponential search of the actual value of ξ) is

min

{

O((n+ κ) log n),

O
(

n2

κ
rξ log (n/ξ) + nξ log (n/ξ) log n+ hrξ log (n/ξ) + nh logn + κ

t
log n+ h2 log n

)

}

=

min

{

O((n+ κ) log n),

O
(

n2

κ
tξ logn log (n/ξ) + nξ(log (n/ξ) + log ξ) logn+ ξ2t log ξ logn log (n/ξ) + κ

t
log n

)

}

.

Choosing

t = max

{ √
κ

ξ logn
, 1

}

,
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the running time bound becomes

min

{

O((n+ κ) logn), O

(

n2

√
κ

log (n/ξ) + ξ
√
κ log2 n+ nξ(log (n/ξ) + log ξ) logn

)}

.

Since κ = O(n2) and ξ ≤ n, this is upper bounded by

min

{

O((n+ κ) log n), O

(

n2

√
κ

log n+ nξ log2 n

)}

.

The two terms involving κ are equal when κ = n4/3. Hence the running time is always
bounded by O(n4/3 log n+ nξ log2 n).

In summary, we have shown:

Theorem 2.2.1 Let T be a set of n triangles in the plane whose union is equal to the union
of an unknown subset of ξ ≪ n triangles. Then the union can be constructed in randomized

expected time O
(

n4/3 log n+ nξ log2 n
)

, which is subquadratic for any ξ = o
(

n
log2 n

)

.

2.3 Extensions

In this section we show how to extend our algorithm to compute the union of other planar
shapes, as well as unions of simply shaped bodies in three and higher dimensions.

The analysis of the algorithm of [40] holds for any range space of finite VC dimension.
Consider an input set S of bodies in R

d, and let V denote the set of positive-depth vertices
of A(S). It is well known that the range space (S, V ∗) has finite VC dimension if the objects
have constant description complexity. This can be shown, for instance, by the linearization
technique (see, e.g., [105]). In this case, the number of vertices that the objects in the set H ,
reported by the net finder F , can generate, among themselves, is O(ξd logd ξ). In addition,
Lemma 2.1.1 continues to hold in this case, since it does not make any assumptions on the
input shapes. It thus follows that Theorem 2.1.2 can be easily extended to bodies in R

d of
constant description complexity, and that the residual cost of the algorithm, in this case,
is O(ξd logd ξ + κ

t
), w.o.p.

The actual implementation of the various stages of the algorithm can also be easily
extended to bodies in R

d of constant description complexity. We begin with the planar
case, and then discuss in Section 2.3.1 the extension to higher dimensions.

In the case of simply shaped planar regions, we apply similar subroutines, that run
within the same time bounds as stated in Section 2.2. In the sampling procedure, each
pair of region boundaries intersect in a constant number of points, and we collect all these
intersections to form R. Since our system has finite VC-dimension, we can construct a
(1/2ξ)-net for this system in much the same way as in Section 2.2. In addition, the verifier
V can still detect whether a given vertex v is contained in the interior of another given region
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in O(1) time, and thus these two subroutines will run within the same asymptotic time
bounds as in the case of triangles. (In fact, these properties hold for bodies of constant
description complexity in higher dimensions as well, and thus the net finder F and the
verifier V will run within the same asymptotic time bounds in these cases too.) In the
actual construction of the union, we use the algorithm of Bentley and Ottmann [34], which
can be applied for any set of Jordan arcs of constant description complexity, with the same
asymptotic time bound, as stated in Section 2.2.

We can thus easily derive the following theorem:

Theorem 2.3.1 Let S be a set of n planar regions of constant description complexity,
whose union is equal to the union of an unknown subset of ξ ≪ n regions. Then the
union can be constructed in randomized expected time O

(

n4/3 log n+ nξ log2 n
)

, which is

subquadratic for any ξ = o
(

n
log2 n

)

.

2.3.1 The union of simply shaped bodies in R
d

We begin with the extension of our algorithm to the case of bodies of constant description
complexity in three dimensions, and then describe the generalization to higher dimensions.

In three dimensions, we may assume in the sampling procedure that κ > βmax{ξ3, n2},
for some absolute constant β > 1. Otherwise, we construct the union in time O((n2 +
ξ3) logn), as follows. We fix a body B ∈ S and intersect its boundary F with each
object B′ ∈ S \{B}. We obtain a collection of n−1 Jordan regions of constant description
complexity on F . The complement of their union is the portion of F that appears on ∂

⋃

S.
Computing this complement can be done in time O(n logn + κB log n), where κB is the
number of vertices of A(S) that lie on F , using an appropriate variant of the line-sweeping
algorithm of Bentley and Ottmann [34]. Repeating this procedure for each boundary F ,
the total cost is O((n2 + κ) logn) = O((n2 + ξ3) log n), as claimed.

The main part of the algorithm then proceeds in much the same way as before. For
example, when we construct a sample R of vertices, we perform, in analogy with the two-

dimensional procedure,
c′r(n3)

κ
sampling steps, for an appropriate constant c′ > 1, where

in each step we choose, uniformly and independently, a triple of distinct input bodies in
S, and collect all resulting boundary intersections to form R. A similar analysis to that
described in Section 2.2 shows that, with an appropriate choice of the constant c′, at least
r of the chosen triples generate real vertices that have positive depth, w.o.p.

As noted above, the net finder F and the verifier V can be implemented in a similar
manner to that described in Section 2.2, and run within the same asymptotic time bounds

(and this holds in higher dimensions as well). It follows that, choosing t = max
{ √

κ
ξ log n

, 1
}

,

the first part of the algorithm computes a subset H of S of size h = O(ξ log ξ), in time
O(rξ2 log ξ log (n/ξ) + nξ log (n/ξ) logn), such that at most κ

t
positive-depth vertices of

A(S) lie outside the (interior of the) union
⋃

H .
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F

Figure 2.2: The case where the input bodies are simplices in three dimensions. The facet F belongs
to one of the h simplices in H. The thick lines are the boundaries of

⋃

H on F . The thin lines are the
intersections of the n − h remaining simplex boundaries with F . The intersections appearing in the
shaded regions lie in the interior of the union of the n simplices, and need not be computed explicitly.

After constructing
⋃

H , we need to compute all the intersections between the remain-
ing bodies and the boundary of

⋃

H . This is done as follows. For each body B ∈ S
(particularly, B may belong to H), we take its boundary F , and compute the set of its
exposed portions that lie outside

⋃

H \{B}. This is done by constructing the intersections
B′

F = B′⋂F for each B′ ∈ H \ {B}, and then compute the complement of their union
within F . Since the regions B′

F are bounded by curves of constant description complexity,
their arrangement has O(h2) complexity, and it can be constructed in O(h2 log n) time. We
denote by EF the set of edges of the arrangement that appear on the boundary of the union
of the regions B′

F . Clearly |EF | = O(h2). We then intersect F with all the remaining n−h
input bodies, obtaining a set of curves SF bounding the intersection regions. Our goal is
to find the portions of the curves in SF that are not contained in the interior of

⋃

H ; see
Figure 2.2 for an illustration. We first report the intersections between the curves in SF

and EF in O(nh logn + IF log n) time, where IF is the number of such intersections, in a
similar manner to that described in the two-dimensional case. Since the overall number of
these intersections, over all boundaries F , is less than κ

t
, the overall time needed to report

all these intersections, over all these boundaries, is

O(n2h logn+
κ

t
log n).

We now trim, on each boundary F , the edges of the cross sections of the remaining input
bodies, to their portions outside

⋃

H , and continue in a similar manner to that described
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in the two-dimensional case; that is, we run a line sweeping procedure on these portions
and the curves in EF . This constructs the entire 2-dimensional arrangements that these
portions induce, from which the complete union boundary is easy to extract. The running
time of this procedure, over all boundaries F , is O

((

n2 + nh2 + κ
t

)

logn
)

.
The overall running time of the algorithm, in this case, is thus

min

{

O((n2 + κ) logn),

O
(

n3

κ
rξ log (n/ξ) + nξ log (n/ξ) logn + hrξ log (n/ξ) + n2h log n+ κ

t
log n

)

}

=

min

{

O((n2 + κ) logn),

O
(

n3

κ
tξ log n log (n/ξ) + ξ2t log ξ logn log (n/ξ) + n2ξ log ξ logn + κ

t
logn

)

}

.

Choosing, as above,

t = max

{ √
κ

ξ logn
, 1

}

,

the running time bound becomes

min

{

O((n2 + κ) log n), O

(

n3

√
κ

log (n/ξ) + ξ
√
κ log2 n+ n2ξ log ξ logn

)}

.

Since κ = O(n3) and ξ ≤ n, this is upper bounded by

min

{

O((n2 + κ) logn), O

(

n3

√
κ

log n+ n2ξ log2 n

)}

.

The two terms involving κ are equal when κ = n2. Hence the running time is always
bounded by

O(n2 log n+ n2ξ log2 n) = O(n2ξ log2 n),

which is subcubic for ξ = o
(

n
log2 n

)

.

Consider next the union problem in d ≥ 4 dimensions. Let B be a set of n bodies
of constant description complexity in R

d, and let S ⊂ B be the (unknown) subset of ξ
bodies whose union is equal to

⋃B. We compute the union by recursing on the dimension.
That is, we fix a body B ∈ B, take its boundary F , and intersect it with each body
B′ ∈ B \ {B}. We then compute the union of these intersection bodies, and construct its
component within F . The union of all these components, over all boundaries F , yields the
boundary of ∂B. Note that if B ∈ B \S then the union of the intersection bodies along ∂B
covers the entire boundary of B. In fact, the union of the intersections with the bodies of S
already covers the boundary. Similarly, if B ∈ S then the union of the intersection bodies
along ∂B is equal to the union of the intersections with the bodies of S. In either case,
with an appropriate parameterization of the boundaries, we obtain n (d − 1)-dimensional
instances of the union construction problem, each with output size ≤ ξ, according to our
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measure. We thus compute these (d − 1)-dimensional unions recursively, and stop the
recursion when d = 3. This leads to an overall algorithm that runs in randomized expected
time O(nd−1ξ log2 n). That is, we have:

Theorem 2.3.2 Let S be a set of n bodies of constant description complexity in R
d, whose

union is equal to the union of an unknown subset of ξ ≪ n bodies. Then the union can be
constructed in randomized expected time O(nd−1ξ log2 n), which is asymptotically smaller

than nd for any ξ = o
(

n
log2 n

)

.

2.4 Concluding remarks

We have presented an output-sensitive algorithm for the problem of constructing efficiently
the union of n triangles in the plane, whose running time is expressed in terms of the
smallest size ξ of an unknown subset of the triangles whose union is equal to the union of
the entire set. We have used a variant of the technique of Brönnimann and Goodrich [40]
for finding an approximate set cover in a set system of finite VC-dimension. We have
also presented a detailed and fairly generic implementation of this method, showing that
the above problem can be solved in randomized expected time O(n4/3 log n + nξ log2 n),
which is subquadratic for ξ = o( n

log2 n
). Derandomization of our implementation seems

nontrivial, and an open problem that thus arises is to make the worst-case running time
of the algorithm subquadratic and deterministic. The algorithm does not have to know
the value of ξ in advance. Instead, it runs an exponential search on ξ, which approximates
well the correct value of ξ, up to a constant factor. However, this approximation concerns
only the size h of the subset H computed in the first stage of the algorithm, whereas the
number of the remaining triangles whose union covers

⋃

T \⋃H may be much larger than
h. An open problem raised by this study is to compute (in subquadratic time) a subset
H ′ ⊂ T such that

⋃

H ′ =
⋃

T and |H ′| is within a constant (or even O(logn)) factor off
the optimum size ξ, or, alternatively, to show that this problem is 3SUM-hard.

In addition, the subset H of triangles that the algorithm computes is not a hitting set
for the weighted system (T, V ∗) but is rather a (1/2ξ)-net for that system. Thus another
question that arises is whether the Brönnimann–Goodrich algorithm can be transformed
to an algorithm that finds a small ε-net in a general setting (with finite VC-dimension),
as it is believed that finding the smallest ε-net is NP-complete. This might lead to an
approximation algorithm for finding minimum-size ε-nets.

We showed that our approach can be easily extended to simply shaped bodies of constant
description complexity in R

d for d ≥ 2, where the union is determined by ξ bodies. In the
planar case, the running time remains O(n4/3 logn+nξ log2 n). In d ≥ 3, the union can be
constructed in randomized expected time O(nd−1ξ log2 n), which is asymptotically smaller
than nd for ξ = o( n

log2 n
). For d > 3, we computed the union recursively on d by constructing

the union along each object boundary separately. However, this recursion had to stop at
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d = 3. Indeed, for d = 3, applying the two-dimensional algorithm on the boundary of
each input body yields an overall O(n7/3 logn + n2ξ log2 n) expected running time, which

is worse than the bound that we have obtained when ξ = o( n1/3

log n
). (Note, however, that

the two-dimensional approach is used in the actual construction of the union, because a
global approach, in this case, would yield an inefficient solution, since it involves the vertical
decomposition of simply shaped bodies in three dimensions, which may become quadratic
in the number of bodies in the worst case [55, 94, 126].)

A direction for further research is to determine whether there exist simpler efficient
approaches to the union construction problem that we study. We note that the standard
randomized incremental construction (RIC) of [109] may fail in the case that we have
considered. In fact, the standard bad example for the RIC, consisting of n triangles that
form Θ(n2) shallow vertices that are all covered by one large triangle (or, more generally,
sparsely covered by ξ = o(n) triangles), shows that the RIC may fail to construct the union
in an output-sensitive manner.

Another direction for further research is to extend our approach to instances involving
unions in three dimensions, where the worst-case complexity of the union is only quadratic
or nearly-quadratic (see [13, 21, 74] for known instances of this kind). Our approach runs
in subcubic time, when ξ is small, but does not improve upon standard, output-insensitive
techniques when the union complexity is always nearly-quadratic. One of the simplest
instance of such a problem would be the following: Given a collection of n balls in R

3 whose
union is equal to the union of some ξ = o(n) of the balls, can the union be constructed in
subquadratic time?

Finally, we note that in an earlier version of the algorithm [70], we used a different
approach, based on a careful implementation of the DC algorithm of [68]. The previous ap-
proach is more complicated, yields a somewhat less efficient solution (which is subquadratic
for only a smaller range of the values of the parameter ξ), and is more difficult to extend
to other geometric shapes and to higher dimensions (in this previous approach, the imple-
mentation was based on the techniques of [8, 11, 16, 47, 72]). Our new approach, based
on the technique of Brönnimann and Goodrich, is simpler and more generic, improves our
previous result, and extends to other shapes and to higher dimensions.



2.A Appendix - The Actual Model for Sampling R 43

2.A Appendix - The Actual Model for Sampling R

In this appendix we show that Lemma 2.1.1 continues to hold under the actual model of
sampling R.

As described in Section 2.2, we draw the elements of R by randomly making
9c′r(n2)

κ

independent selections of a vertex out of V +, for some constant c′ ≥ 1, where in each
trial, each vertex (or more precisely, each pair of triangle edges from distinct triangles) is
chosen with probability 1

9(n2)
(thus the same vertex may be sampled more than once). The

probability p that a vertex v ∈ V + is chosen (at least once) is equal to

p = 1−
(

1− 1

9
(

n
2

)

)9c′r
(n2)
κ

. (2.4)

It is easily checked that p is smaller than c′ r
κ
. Moreover, one can also easily show that

p > c′
r

κ
− (c′r)2

κ2
. (2.5)

In this model, the variables X1, . . . , Xκ
S

(as defined in Lemma 2.1.1) are no longer inde-
pendent. Nevertheless, examining the proof of the deviation bound given in [19, Theorem
A.13], we note that the only place where it uses the assumption that these variables are
independent, is in the derivation of the equality

E
[

e
Pκ

S
i=1 λXi

]

= Π
κ
S

i=1E
[

eλXi
]

,

for any λ. Moreover, the analysis in [19] only uses the value λ = r0

pκ
S
, where r0 is defined

as in Lemma 2.1.1. An inspection of the derivation of these bounds in [19] shows that they
continue to hold when

E
[

e
Pκ

S
i=1 λXi

]

≤ Π
κ
S

i=1E
[

eλXi
]

.

Furthermore, Lemma 2.1.1 continues to hold when the weaker inequality

E
[

e
Pκ

S
i=1 λXi

]

≤ γΠ
κ
S

i=1E
[

eλXi
]

(2.6)

holds, for some positive constant γ. This has the effect of multiplying the probability
that (2.1) fails by γ, which implies that (2.1) still holds, w.o.p. Hence, it suffices to
show that (2.6) holds for the above value of λ. More precisely, as in the original proof of
Lemma 2.1.1, it suffices to establish this under the assumption that κ

S
> κ

t
.

In our model,

Π
κ
S

i=1E
[

eλXi
]

=
(

eλp+ (1− p)
)κ

S =
(

1 + p(eλ − 1)
)κ

S , (2.7)
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and

E
[

e
Pκ

S
i=1 λXi

]

=
r∗
∑

m=0

Pr [r
S

= m] eλm, (2.8)

where r∗ = min

{

9c′r(n2)
κ

, κ
S

}

. (Note that Pr [r
S

= m] = 0, for any m > r∗.)

In each of the
9c′r(n2)

κ
drawing trials, the probability that we have selected a vertex v,

and that it is not covered by S, is q = κ

9(n2)
· κ

S

κ
=

κ
S

9(n2)
. Since these trials are independent,

we have

Pr [r
S

= m] =

(

r∗

m

)

qm(1− q)r∗−m.

Hence the expression in (2.8) becomes

r∗
∑

m=0

(

r∗

m

)

qm(1− q)r∗−meλm =

(

eλq + 1− q
)r∗

=
(

1 + q
(

eλ − 1
))r∗

.

In other words, putting eλ − 1 = λ0, we need to show that

(1 + λ0q)
r∗ ≤ γ (1 + λ0p)

κ
S ,

for some constant γ > 0. We will show that

(1 + λ0q)
r∗ ≤ (1 + λ0p)

2c′r (1 + λ0p)
κ
S ,

which implies the preceding inequality because (1 + λ0p)
2c′r = O(1). Indeed, (1 + λ0p)

2c′r <
e2c′λ0pr. Using the fact that eλ ≤ 1 + 2λ, for 0 ≤ λ ≤ 1, and substituting λ = r0

pκ
S

(which

is indeed ≤ 1 when r0 is chosen as in Lemma 2.1.1 and c′ is sufficiently large, as is easily
verified), and λ0 = eλ − 1, we have λ0 ≤ 2λ, and thus

e2c′λ0pr ≤ e
4c′

rr0
κ
S .

Since we choose r0 =
√

2c0
r
κ
κ
S

log n in Lemma 2.1.1, for some constant c0 ≥ 1, the latter
expression is smaller than

e
4c′ r

κ
S

√
2c0

r
κ

κ
S

log n
= e

O

„

r

r

r log n
κκ
S

«

,

which, since we assume that κ
S
> κ

t
, is upper bounded by

eO( rκ
√

tr log n).
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Substituting r = ct logn, for some constant c, and t = max
{ √

κ
ξ log n

, 1
}

, as above, and

using the assumption that κ > βmax{ξ2, n4/3}, for an absolute constant β > 1 (see Sec-
tion 2.2), we have

e2c′λ0pr < max

{

e
O

“

1
ξ2

”

, e
O

„

log2 n
κ

«}

= O(1).

It thus remains to show that

(1 + λ0q)
r∗ ≤ (1 + λ0p)

2c′r+κ
S . (2.9)

Let us first assume that
9c′r(n2)

κ
≤ κ

S
. We thus need to show that

(

1 + λ0
κ
S

9
(

n
2

)

)

9c′r(n2)
κ

≤ (1 + λ0p)
2c′r+κ

S ,

or that
(

1 + λ0
κ
S

9
(

n
2

)

)

9(n2)
κ
S

≤ (1 + λ0p)
κ(2c′r+κ

S
)

c′rκ
S .

Note that the function (1 + λ0x)
1
x is monotone decreasing, and since we have assumed that

9c′r(n2)
κ
≤ κ

S
, it follows that

κ
S

9(n2)
≥ c′r

κ
> p. We thus have

(

1 + λ0
κ
S

9
(

n
2

)

)

9(n2)
κ
S

≤ (1 + λ0p)
1
p .

It therefore suffices to show that 1
p
≤ κ(2c′r+κ

S
)

c′rκ
S

. Using (2.5), p > c′ r
κ
− (c′r)2

κ2 , and thus it

suffices to show that c′r
κ

(

1− c′r
κ

)

≥ c′rκ
S

κ(2c′r+κ
S

)
, or that

1− c′r

κ
≥ 1− 2c′r

2c′r + κ
S

, (2.10)

or that
κ ≥ c′r +

κ
S

2
,

which clearly holds, since κ
S
≤ κ and r = o(κ).

We next assume that
9c′r(n2)

κ
> κ

S
. We thus need to show that

(

1 + λ0
κ
S

9
(

n
2

)

)

≤ (1 + λ0p)
2c′r+κ

S
κ
S .
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Using the facts that (1 + λ0p)
2c′r+κ

S
κ
S ≥ 1+λ0p

(

2c′r+κ
S

κ
S

)

,
κ
S

9(n2)
< c′r

κ
, and (2.5), it is sufficient

to show that
c′r

κ
≤ c′

r

κ

(

1− c′r

κ

)(

1 +
2c′r

κ
S

)

,

or that
(

1− c′r
κ

)

(

1 + 2c′r
κS

)

≥ 1, which is identical to (2.10), as is easily checked, and thus

follows by the preceding argument.
We note that (2.9) holds for any value of λ0 > 0, and the assumption on λ is used only

when showing that (1 + λ0p)
2c′r = O(1). This completes the proof of (2.6) for the value of

λ that we use, and therefore shows that Lemma 2.1.1 also holds for the sampling model
used by our algorithm.



Chapter 3

Counting and Representing
Intersections Among Triangles in
Three Dimensions

In this chapter we present an efficient algorithm that counts and represents in a compact
form all intersecting triples among triangles in R

3. In the next section we present a nearly
quadratic algorithm that counts all intersecting triples among a collection of n triangles
in R

3. In Section 3.2 we show how these intersections can be represented as the disjoint
union of complete tripartite hypergraphs, with an overall storage (and construction time)
that is nearly quadratic in the size of the input. In Section 3.3 we show that the triangle
intersection counting problem belongs to the 3sum-hard family. In Section 3.4 we extend
our algorithm to count intersecting triples among a collection of planar objects of constant
description complexity that lie in distinct planes in R

3. We give concluding remarks and
suggestions for further research in Section 3.5.

3.1 Counting Intersecting Triples Among Triangles in

R
3

Given a collection T of n triangles in R
3, we present an algorithm that efficiently counts

all intersecting triples among the triangles in T . For simplicity of presentation, we assume
that the triangles in T are in general position.

Preliminary alternative stage

If the number κ of pairs of intersecting triangles is significantly smaller than n5/3 then the
problem can be solved in subquadratic time as follows. We first report all κ intersection
segments of pairs of triangles in O(n8/5+ε+κ) time, for any ε > 0, using segment intersection
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queries in 3-space [8], where we preprocess the input triangles, and query with the triangle
edges. These queries produce the set of all intersection points between the triangle edges
and other triangles. The intersection segments between the triangles are delimited by these
points, and can then be easily reconstructed. We count, on each triangle t, the number of
intersections among the κt intersection segments that lie on t (where we have

∑

t κt = 2κ).

Using the algorithm of [1, 102], this takes O(κ
4/3
t log n) time, for each triangle t, for a total

of O
(

∑

t κ
4/3
t logn

)

= O(κn1/3 log n) time. Thus the overall running time of this algorithm

is O(n8/5+ε + κn1/3 log n), for any ε > 0, which is subquadratic when κ = o(n5/3/ logn).
To detect such favorable situations, we first run this algorithm, as a preliminary stage.

If the running time of this step becomes quadratic, we abandon it, and run the main
algorithm, presented in detail below.

3.1.1 Ingredients of the algorithm

Curve-sensitive cuttings

We use a recent result of Koltun and Sharir [95] on the existence of “curve-sensitive”
cuttings. In our context, it implies the following result (see also Section 1.1.4). For any
r ≤ n there exists a (1/r)-cutting Ξ for T of size O(r3+ε), for any ε > 0, which is a
partition of R

3 into O(r3+ε) simplices, such that every simplex (also referred to as a cell of
Ξ) is crossed by at most n

r
triangles of T , with the additional property that the number

of crossings between the edges of the triangles and the cells of Ξ is O(n1+εr). The time
needed to construct such a cutting, when r is at most O(nε), is O(n1+ε′), for any ε′ > 0
that is sufficiently larger than ε.

We note that, for the case of triangles, one can obtain such a cutting using a simpler
construction than that in [95]. Specifically, the cutting is constructed from a random sample
R ofO(r log r) of the planes containing the triangles of T . We form the arrangementA(R) of
R and triangulate each of its cells using the Dobkin-Kirkpatrick hierarchical decomposition
of convex polytopes [58], which has the property that a line that crosses a cell C crosses
only O(log r) of its simplices (see also Chapter 6 for further details). The random sampling
theory of [49, 53, 90] implies that, with high probability, the resulting decomposition is
indeed a (1/r)-cutting for T .1 Since a line (or, rather, an edge of a triangle) crosses
at most O(r log r) cells of A(R) (it has to cross a plane of R to move from one cell to
another), it crosses at most O(r log2 r) simplices, so the total number of edge-cell crossings
is O(nr log2 r). A cutting of this kind, together with the distribution of the input triangles
among its simplices, can be constructed in time O(nr2 log2 r): We construct A(R) and

1Here, and in several subsequent steps of our algorithms, we construct cuttings based on a random
sample of the input objects. For simplicity of presentation, we bypass issues such as verifying that our
sample is indeed a good sample, or reducing the size of the sample by the 2-stage sampling method of [47],
or replacing the randomized approach by a deterministic one. All these issues are fairly standard by now,
and can be applied in our settings as well.
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hierarchically decompose each of its cells into simplices, in a total of O(r3 log3 r) time [58].
We next compute, for every resulting simplex ∆, the subset T∆ of the triangles of T that
cross ∆, in overall time O(nr2 log2 r) [47]. To do so, we trace, for each triangle t of T , all
the cells of A(R) that t crosses. By the Zone Theorem (see [124]), the overall complexity
of these cells is O(r2 log2 r), which also bounds (i) the number of simplices into which
these cells are decomposed, and (ii) the cost of tracing all these cells (see [124] for similar
algorithms). The resulting procedure has the asserted time bound.

However, for more general planar objects that we will consider in Section 3.4, this
simpler approach does not work, and the more general curve-sensitive cutting of [95] is
needed.

The recursive decomposition–an overview

We construct an “edge-sensitive” (1/r)-cutting Ξ, as described above, with a value of r
that will be specified later, and count the intersecting triples in each cell of Ξ separately.
Fix a cell ∆ of Ξ. We classify each triangle t ∈ T that intersects ∆ as being either long in
∆, if ∂t∩∆ = ∅, or short, otherwise. Each intersecting triple in ∆ is consequently classified
as LLL, if all three triangles that form the intersection are long in ∆, LLS, if two of these
triangles are long and one is short, LSS, if one of these triangles is long and two are short,
or SSS, if all three triangles are short.

In what follows we assume that each triangle (long or short) that crosses ∆ is clipped
to within ∆. In particular, for any long triangle t, t ∩ ∆ is a triangle or a quadrilateral.
For short triangles, t ∩ ∆ is at most a 7-gon: Since ∆ is a simplex, the plane containing
t intersects ∆ in at most a quadrilateral, and the edges of t contribute at most three
additional edges to the cross-section.

We count the number of intersecting triples within each cell ∆0 by further partitioning
∆0 into smaller subcells ∆, and recursively derive from each such subcell new subproblems.
We partition ∆0 using the same kind of sensitive (1/r)-cutting, for the same r, with respect
to the set of long and short triangles in ∆0, and the set of edges bounding the short triangles
in ∆0 (and crossing ∆0). Initially, ∆0 is the entire three-dimensional space, and all triangles
are short in ∆0, but they may become long in further recursive steps.

Let us denote by NS = N∆0
S the overall number of short input triangles (within a cell

∆0) and by NL = N∆0
L the overall number of long input triangles (within ∆0). During each

step of the recursion, after partitioning ∆0 into smaller subcells ∆, we immediately dispose
of any new LLL and LLS intersections within each subcell ∆, using two respective simple

algorithms that run in time O
(

(N∆
L )

2
logN∆

L

)

and O(N∆
S N

∆
L logN∆

L ), respectively. These

intersections are not recounted during any further recursive substep. At the bottom of the
recursion (when NS < max

{√
NL, c

}

, for some constant c ≥ 3), we use two additional
simple algorithms that count intersecting triples of types LSS and SSS, which run in time
O(NS

3 + NSNL logNS). We note that the goal of the recursive step is only to count
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pl2

pl1

ql2

l1

ql1

l2

t

Figure 3.1: The long triangles that intersect the triangle t, drawn as lines crossing t. Two lines l1
and l2 intersect within t if and only if their intersection points pl1 , pl2, ql1, ql2 with ∂t interleave along
∂t.

efficiently intersecting triples of type LSS and SSS; the (new) intersecting triples of types
LLL and LLS are counted before entering the recursive step. (Of course, each recursive
step may generate its own LLL and LLS intersections, involving triangles that were short
in the input but became long in some of its subproblems. In other words, some of the
LSS and SSS intersections within a cell ∆ may be counted as LLL or LLS intersections in
various recursive subproblems within ∆.)

We first describe these four simple intersection counting algorithms, and then present in
detail the complete recursive algorithm, which uses these simple algorithms as subroutines.

Counting intersections of type LLL

Let ∆ be a simplex cell of (some recursive cutting) Ξ and let L∆ denote the set of clipped
long triangles in ∆. Let NL = N∆

L = |L∆| denote, as above, the total number of long
triangles in ∆. We apply the planar algorithm of Agarwal [3] to each clipped triangle
t ∈ L∆. That is, we intersect t with all the other (clipped) triangles in L∆, and count all
intersecting pairs within t. Since the boundary of every triangle t′ ∈ L∆ lies outside ∆, t′

must cross t in a line segment, both of whose endpoints lie on ∂t; see Figure 3.1. As shown
in [3], this problem can be solved in time

O
(
∣

∣L∆
∣

∣ log
∣

∣L∆
∣

∣

)

= O(NL logNL),

by sorting the intersection points of these lines with ∂t along ∂t in a clockwise direction, say,
and by counting all pairs whose intersection points appear along ∂t in an interleaved order,
as illustrated in Figure 3.1. It follows that the overall running time needed for counting all
LLL intersections over all the clipped long triangles within ∆ is O(N2

L logNL). (If we follow
this approach verbatim, we need to divide the final count by 3, since each intersection is
counted three times; see below for our modified approach.)

Note that once a triangle has become long in a cell ∆, it will remain long in all recursive
steps involving subcells of ∆. Since we need to ensure that each LLL intersection is counted
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only once, we count only intersections that involve at least one new long triangle (a triangle
that is short in the parent cell of ∆ but long in ∆). To do so, we take only new long triangles
as the base triangles t, within which the planar counting algorithm is applied. Moreover,
we enumerate the new long triangles as t1, . . . , tNL , and apply the algorithm, within each
ti, only to the new long triangles tj, for j > i, and to all the old long triangles. With
these modifications, the running time of the algorithm just presented is O(NLN

0
L logNL),

where N0
L is the number of new long triangles (which are also included among all NL long

triangles). Note that, with all these modifications, each intersection point is now counted
only once.

Counting intersections of type LLS

We use a similar approach as in the LLL case. Let NS = N∆
S denote the number of short

triangles in ∆. We apply the preceding two-dimensional scheme within each short triangle.
That is, we intersect each short triangle with all the long triangles, obtaining O(NL) lines
on each such (clipped) triangle. Then we count all intersecting pairs within each short
triangle, using the preceding algorithm. The overall running time is thus O(NSNL logNL).
Here too we need to ensure that no intersection is recounted in further recursive substeps.
This is done as follows: On each short triangle in ∆, we solve a bichromatic version of the
problem, which counts all intersections between the new long triangles and the old long
triangles. The algorithm for solving this problem is similar to the preceding one, and runs
in time O(NL logNL); see [3] for further details. Then we count the intersections involving
only new long triangles, using the two-dimensional procedure described in the LLL case.
It thus follows that the running time of the modified algorithm remains O(NSNL logNL).

Counting intersections of type LSS

Let S∆ denote the set of (clipped) short triangles in ∆, so NS = N∆
S = |S∆|. Intersect

each (clipped) triangle t ∈ S∆ with all the other triangles of S∆ and L∆. We thus face the
problem of counting intersecting pairs involving a long segment (whose endpoints lie on
the boundary of t) and a short segment, within every triangle t ∈ S∆. Note that each such
problem has an input of O(NS) short segments and O(NL) long segments. Since the short
segments are confined to within t, we may replace the long segments by their containing
lines, without affecting the set of intersecting pairs. The problem can then be solved in
O(NS

2 + NL logNS) time, using an approach presented in [3], in which we construct the
arrangement of the lines dual to the endpoints of the primal segments (representing short
triangles), and then locate in this arrangement all points that are dual to the primal lines
(representing long triangles). Since each face of the arrangement consists of points dual
to lines that cross a fixed set of segments, this easily yields the count of the intersections
between the (primal) segments and the (primal) lines.

To make sure that each intersection is counted only once, we enumerate the short
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triangles as t1, . . . , tNS , and make each triangle ti process only short segments that are
formed by its intersections with triangles tj with j > i. Thus, the overall running time of
the algorithm, for a fixed cell ∆, is O

(

NS
3 +NSNL logNS

)

.

Counting intersections of type SSS

We count all intersecting triples of type SSS using a brute-force algorithm which examines
all triples in time O(N3

S). Note that this bound is subsumed by the bound on the time
needed to count LSS intersections.

The overall recursive algorithm

Each step of the algorithm involves a simplex ∆0, which, in the initial step, is the entire
3-space, and in further recursive steps is a cell of a cutting of some larger simplex. The
algorithm receives as input a set of NS short triangles and a set of NL long triangles clipped
to within ∆0.

If NS ≤ max
{√

NL, c
}

, for some constant c ≥ 3, we stop the recursion and compute
the number of LSS and SSS intersections, using the explicit algorithms described above.
Note that, in this case, there is no need to count intersecting triples of type LLL and LLS,
since all intersecting triples of these types have already been counted in the preceding step
that has processed the parent cell of ∆0.

If NS > max
{√

NL, c
}

, we first compute a (1/r)-cutting Ξ of the arrangement of all
long and short triangles within ∆0, which is also sensitive to the edges of the short triangles,
in the sense defined above. For technical reasons, we need to construct a sensitive (1/r)-
cutting of ∆0 that has the property that each subcell ∆ of ∆0 is crossed by at most N∆0

S /r
short triangles in ∆0 and by at most N∆0

L /r long triangles in ∆0. This problem can be
solved by sampling two subsets of O(r log r) triangles each, one from the long triangles in
∆0 and one from the short ones. The standard ε-net theory [90] implies that the resulting
cutting has the desired property with high probability.

Next we count all LLL and LLS intersections within each subcell ∆ of ∆0, that involve
at least one new long triangle (a triangle that is short in ∆0 but long in ∆), using the
algorithms described above. We then continue to solve the problem recursively in every
cell ∆ ∈ Ξ, applying the analysis presented in detail below.

Since there are only O(N1+ε
S r) crossings between short triangles and the cells of Ξ,2 it

follows that, for any r2 ≤ s ≤ r3+ε, the number of cells in Ξ that are crossed by at least
N1+ε
S r

s
short triangles is at most O(s). (The case s < r2 cannot arise, since each cell of Ξ

is intersected by at most NS
r

short triangles of T , due to the sampling that we have used.)

2We use here the more general and slightly weaker bound of [95] for the number of edge-cell crossings,
rather than the slightly improved bound that can be obtained from the Dobkin-Kirkpatrick hierarchical
decomposition. This does not affect the asymptotic running time bound, and allows us to extend the
analysis essentially verbatim to the case of general planar objects, which is undertaken in Section 3.4.
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We partition the set of all cells in Ξ into at most log
(

M
r2

)

subsets, where M is the overall
number of cells in Ξ (note that log

(

M
r2

)

= O(log r)), so that the i-th subset Ξi contains
O(2ir2) cells of Ξ, each of which satisfies (recall that S∆ denotes the set of short triangles
in ∆)

N1+ε
S

2ir
≤ |S∆| ≤ 2N1+ε

S

2ir
,

for i = 0, . . . , log
(

M
r2

)

. Note that |S∆| = O
(

N1+ε
S

r2+ε

)

for each of the O(r3+ε) cells ∆ in the

last subset.
We now create recursive subproblems, one in each cell ∆ ∈ Ξi, over all i = 0, . . . , log

(

M
r2

)

,

where the number of short triangles in ∆ is O
(

N1+ε
S

2ir

)

, and the number of long triangles

in ∆ is at most NS+NL
r

, because of the cutting property, and because some of the short
triangles in the parent cell ∆0 may have become long in ∆.

We estimate the cost of computing the LLL and LLS intersections within each cell ∆ of
Ξ in the following crude manner. The number of new long triangles in ∆ is at most NS

r
, the

overall number of long triangles in ∆ is at most NS+NL
r

, and the number of short triangles

in ∆ is at most NS
r

. Hence the cost of computing the LLL and LLS intersections within ∆

is O
(

NS(NS+NL) log (NS+NL)
r2

)

. Summing over all cells ∆, the overall running time is

O
(

r3+εNS(NS+NL) log (NS+NL)
r2

)

= O (r1+εNS(NS +NL) log (NS +NL)) .

Let F (NS, NL) denote the maximum time needed to count all intersecting triples at
a recursive step involving NS short triangles and NL long triangles. Then F satisfies the
following recurrence:

F (NS , NL) ≤































O
(

r1+εNS(NS +NL) log (NS +NL) + (NS +NL)1+ε′
)

+
∑

log
“

M
r2

”

i=0 O(2ir2)F
(

2NS
1+ε

2ir
, NS+NL

r

)

, if NS > max
{√

NL, c
}

O(N3
S +NSNL logNS), if NS ≤ max

{√
NL, c

}

,

where c ≥ 3 is constant. The first term is the time needed to count the LLL and LLS

intersections in the current recursive step, and the term O
(

(NS +NL)1+ε′
)

is the time

needed to construct the curve-sensitive cutting, for any ε′ > 0, whose choice is correlated
with the choice of r.

To solve the recurrence, for a given ε > 0, we substitute r = (NS + NL)c′ε′′, for an
appropriate constant c′ > 0 and for ε′′ ≪ ε. It is then easy to see, using induction on NS

and NL, that the solution is

F (NS, NL) = O(NS(NS +NL)1+ε), for any ε > 0, (3.1)
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with a constant of proportionality that depends on ε. (Note that in the case NS ≤
√
NL,

the term O(N3
S), that appears in the bound for the cost of counting all intersecting triples

of types LSS and SSS, is dominated by the term O(NSNL logNS), so (3.1) does hold in
this case too.)

The algorithm begins with ∆0 equal to the entire three-dimensional space, and NS = n,
NL = 0. Note that at this point there are only intersecting triples of type SSS, so the
preceding algorithm will count all of them. (As already remarked, the recursive process
will generate the other types of intersections as the space is progressively cut up into
subcells.)

In summary, we have shown:

Theorem 3.1.1 The number of intersecting triples in a set of n triangles in R
3 can be

counted in time
min

{

O(n8/5+ε + κn1/3 log n), O(n2+ε)
}

,

for any ε > 0, where κ is the number of pairs of intersecting triangles.

Remark. We note that by slightly modifying this algorithm, we can solve the following
trichromatic variant of the problem in nearly quadratic time:

Theorem 3.1.2 Given three sets, Tr of nr “red” triangles, Tb of nb “blue” triangles, and
Tg of ng “green” triangles, all in R

3, one can count the number of triples in Tr × Tb × Tg

with nonempty intersection, in time

min
{

O(N8/5+ε + κN1/3 logN), O(N2+ε)
}

,

for any ε > 0, where N = nr + nb + ng, and κ is the number of bichromatic pairs of
intersecting triangles.

3.2 Compact Representation of All Intersecting Triples

Given a collection T = {t1, . . . , tn} of n triangles in R
3, we represent the set of all in-

tersecting triples among the triangles of T as a 3-uniform hypergraph [19] H = (T,E),
where

E = {{ti, tj , tk} | 1 ≤ i < j < k ≤ n and ti ∩ tj ∩ tk 6= ∅} .
The size of the above representation is Θ(n3) in the worst case. Our goal is to provide a
compact representation for H of nearly quadratic size, that stores the intersection triples
only implicitly. As noted in the introduction, one application of such a compact representa-
tion is for sampling a random element out of the set of all intersecting triples in T , without
having to list all these intersections explicitly. We discuss this and another application,
already mentioned in the introduction, at the end of this section.

The compact representation for H that we seek (defined analogously to that in [17]) is
a collection H = {Hi = (Ti, Ei)}si=1, of s subhypergraphs of H , such that
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1. Each Hi is a complete tripartite hypergraph, that is, the set Ti of its vertices can be
partitioned into three disjoint subsets Ai, Bi and Ci, such that Ei = Ai × Bi × Ci,
and Ei ⊆ E.

2. E =
⋃s

i=1Ei.

3. Ei

⋂

Ej = ∅, for i 6= j.

Clearly, the storage needed for such a compact representation is
∑s

i=1 |Ti| =
∑s

i=1(|Ai| +
|Bi| + |Ci|), since the edges of H are now defined implicitly. We show that the algorithm
described in Section 3.1 can be modified to produce such a compact representation of H ,
with

∑s
i=1 |Ti| = O(n2+ε), for any ε > 0, and that the running time also remains O(n2+ε).

(We remark that our compact representation is somewhat degenerate, in the sense that in
each output subhypergraph Hi, one of the three sets of vertices is a singleton.)

As in the preceding section, we first report, as a preliminary stage, all κ intersection
segments of pairs of triangles in O(n8/5+ε + κ) time, for any ε > 0. Then we run the
algorithm of Agarwal [3], in a manner similar to that described in Section 3.1, but slightly
modified, so that it produces all intersecting triples as the disjoint union of complete tri-
partite hypergraphs composed of precomputed canonical subsets of triangles, so that the
total size of all these subsets (as well as the running time needed to construct them) is
O(κn1/3+ε), for any ε > 0. (With some care, we can ensure that no intersection point
is implicitly constructed more than once — the simple modifications applied in the main
algorithm can be used here as well.) Hence, when the number κ of intersection segments
is significantly smaller than n5/3, this method will yield a compact representation of sub-
quadratic size and the construction time will also be subquadratic. As above, we abandon
this alternative computation when its output size (as well as its running time) becomes
more than quadratic, and resort to the main algorithm.

The main algorithm follows the same recursive mechanism as in the preceding section,
but the four simple counting algorithms (that the recursive algorithm uses as subroutines)
are now modified, so that they construct a compact representation for all relevant inter-
secting triples (instead of counting them). We first describe these simple algorithms.

Representing intersections of types LLL and LLS

We describe the compact representation of intersecting triples of type LLS; the intersecting
triples of type LLL are handled similarly. Fix a cell ∆. For each (clipped) short triangle t
in ∆, let Lt denote the set of lines obtained by intersecting t with all the long triangles in
∆. (Recall that the actual algorithm is slightly modified, to account only for intersections
that involve new long triangles; for simplicity of presentation, we ignore this issue in what
follows.) It is sufficient to obtain a separate compact representation of all intersecting pairs
of lines in Lt, for each short triangle t in ∆, a task that proceeds as follows. Sort the
intersection points of the lines in Lt with ∂t, and turn the resulting circular sequence into a
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linear sequence σt by breaking it at some arbitrary point. For each original triangle ti, for
i = 1, . . . , NL = N∆

L , that intersects t in a line li, we write li1 (resp., li2) for its first (resp.,
second) intersection point in σt. We want to represent compactly all pairs {ti, tj}, i 6= j,
that satisfy li1 < lj1 < li2 < lj2 (in the order within σt).

This is an instance of standard 2-dimensional orthogonal range searching. For the sake
of completeness, we spell out the details. We use a 2-level tree-like structure. The first-
level structure T1 stores the points li1 in sorted order. For each node (subtree) v of T1, we
construct a secondary structure T2(v) that stores all the points li2 whose matching points li1
are stored at v. We now query with each triangle tj. We first search with lj1 in T1, and find all
elements that (strictly) precede lj1, represented as the disjoint union of O(logNL) subtrees.
For each subtree (rooted at some node) v, we go to T2(v) and search there for all elements
that lie (strictly) between lj1 and lj2, again, obtaining them as a collection of O(logNL)
subtrees. Altogether, tj “lands” in O(log2NL) subtrees of the secondary structures. For
each such subtree τ , we collect the set Aτ of all triangles of T in ∆ that reach it as queries,
and output the complete bipartite graph Aτ ×Bτ , where Bτ is the set of triangles that are
stored at τ (more precisely, those triangles ti whose second intersection points li2 are stored
there).

The overall size of the vertex sets of the output graphs is O(NL log2NL). Indeed, the
overall size of all the secondary trees is O(NL logNL), and the overall size of all subtrees of a
secondary tree τ with k vertices is O(k log k), which implies that

∑

τ |Bτ | = O(NL log2 NL).
Similarly, since each triangle reaches as a query O(log2NL) subtrees, we also have

∑

τ |Aτ | =
O(NL log2NL). We now add, for each subtree τ , the tripartite hypergraph {t}×Aτ ×Bτ to
the output representation. Hence, the overall size of the sets of the compact representation,
over all short triangles t in ∆, is O(N∆

S N
∆
L log2N∆

L ). The time for constructing such a
representation has the same upper bound. Note that the output consists of edge-disjoint
complete tripartite 3-uniform hypergraphs, due to the fact that each triple intersection is
represented exactly once—see below, with one of the three vertex sets in each hypergraph
being a singleton.

We need to ensure that each triple intersection is represented only once. Proceeding
as in Section 3.1, the algorithm can be modified so that it represents only bichromatic
intersections between the new long triangles and all the long triangles. This can be done
by constructing the two-level tree-like structure for all the long triangles as above, but
querying only with the points obtained by the new long triangles.

Handling LLL intersections is done similarly. We ensure that each triple intersection
is represented only once, using similar arguments to those described in the LLL counting
algorithm of Section 3.1. The size of the resulting representation is O(NLN

0
L log2 NL),

where N0
L is defined as in Section 3.1, and it can be constructed in O(NLN

0
L log2NL) time.
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Representing intersections of type LSS

Here too we adapt the corresponding algorithm of the preceding section, so that it represents
(rather than counts) all intersecting pairs between theO(NS) short segments and the O(NL)
long segments within every short triangle t in ∆. As in the LSS counting algorithm, to
make sure that each intersection is represented only once, we enumerate the short triangles
as t1, . . . , tNS , and make each triangle ti process only short segments that are formed by
its intersections with triangles tj with j > i. By repeating the following procedure for all
short triangles, we obtain a compact representation of all LSS intersections.

Fix a short triangle t, denote by St the set of short segments within t, obtained by
intersecting t with all the short triangles in ∆ (that succeed t in the above enumeration),
and by Lt the set of lines within t, obtained by intersecting t with all the long triangles in
∆. Denote by S∗

t the set of the double wedges dual to the segments in St, and by L∗
t the

set of points dual to the lines in Lt. We wish to obtain a compact representation of the
set of all pairs (p, w), where p ∈ L∗

t , w ∈ S∗
t , and p ∈ w. This can be done using standard

range searching techniques, which, for the sake of completeness, we spell out next.

We construct a (1/r)-cutting Π for the double wedges in S∗
t , for a sufficiently large

constant parameter r, and locate all the points of L∗
t in the cells of Π. We subdivide, if

needed, each cell in Π into smaller subcells, each containing at most |L∗
t |/r2 points of L∗

t

in its interior. Let Π′ denote this new set of cells (it is easily seen that this decomposition
does not asymptotically increase the number of cells in Π′, and thus |Π′| = O(r2)). We
then compute, for each cell π ∈ Π′, the set of all the double wedges of S∗

t that fully contain
π. The overall running time of this step is O(r2|S∗

t | + |L∗
t | log r). Let us denote by Lt(π)

the set of lines of Lt whose dual points lie in the interior of π, and by St(π) the set of
segments in St whose dual double wedges contain π. We add {t} × Lt(π) × St(π) to the
output representation. Since each double wedge may contain O(r2) cells in its interior, and
since

∑

π∈Π′ |Lt(π)| = |L∗
t |, it follows that the overall size of the vertex sets of this compact

representation, at this stage, is

∑

π∈Π′

(1 + |Lt(π)|+ |St(π)|) = O(r2|S∗
t |+ |L∗

t |)

(we add 1 for each cell of Π′, since {t} is also part of the representation). We now recursively
continue to construct such a compact representation within each cell π of Π′, where the
subproblem at π involves the at most |L∗

t |/r2 dual points in π and the at most |S∗
t |/r

double wedges whose boundaries cross π. The recursion is stopped when either NS or NL

becomes smaller than r. We then report all intersecting pairs in a brute-force manner, as
a collection of single-edge hypergraphs. The complexity of the representation, at any such
bottom step, is O(r(NL +NS)).

Let G(NS, NL) denote the maximum size of the compact representation of all intersect-
ing pairs at a recursive step involving NS segments and NL lines. Then G satisfies the
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following recurrence:

G(NS, NL) ≤
{

O (r2NS +NL) +O(r2)G
(

NS
r
, NL

r2

)

, if NS, NL > r

O (r (NS +NL)) , if NS ≤ r or NL ≤ r.

The solution of this recurrence (for a sufficiently large but constant value of r) is easily
seen to be

G(NS, NL) = O(N2+ε
S +N1+ε

L ),

for any ε > 0. We note that the same bound applies for the time needed to construct
this representation. Thus the overall size of the compact representation of all intersecting
triples of type LSS within a cell ∆ is O((N∆

S )3+ε +N∆
S (N∆

L )1+ε), for any ε > 0.

Representing intersections of type SSS

The compact representation for all intersecting triples of type SSS is constructed in a brute-
force manner, by examining all triples, and reporting separately each intersecting triple,
as a separate single-edge tripartite hypergraph. The overall size of the representation, and
the time needed to compute it, are both O(N3

S). This bound is subsumed by the bound on
the size and the construction time of the representation of the intersecting triples of type
LSS.

The overall compact representation

We use the same recursive mechanism as in Section 3.1. To analyze its performance,
we let F (NS, NL) denote the time needed to construct the compact representation of all
intersecting triples at a recursive step involving NS short triangles and NL long triangles.
(The storage cost is analyzed in essentially the same manner.) Then F satisfies the following
recurrence:

F (NS , NL) ≤































O
(

r1+εNS(NS +NL) log2 (NS +NL) + (NS +NL)1+ε′
)

+
∑

log
“

M
r2

”

i=0 O(2ir2)F
(

NS
1+ε

2ir
, NS+NL

r

)

, if NS > max
{√

NL, c
}

O(N3+ε
S +NSN

1+ε
L ), if NS ≤ max

{√
NL, c

}

,

for any ε > 0, where c ≥ 3 is constant, and M and ε′ are defined as in Section 3.1.
Applying arguments similar to those in Section 3.1, we conclude that the solution of

this recurrence is

F (NS, NL) = O
(

NS(NS +NL)1+ε) , for any ε > 0.

A slightly simpler version of this recurrence, that results in the same bound, applies for
the size of the compact representation; we omit the straightforward details. We have thus
shown:
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Theorem 3.2.1 Given a collection T of n triangles in R
3, the set of all intersecting triples

among the triangles of T can be represented in compact form, as the disjoint union of
complete tripartite hypergraphs, with an overall size of

min
{

O(κn1/3+ε), O(n2+ε)
}

,

where κ is the overall number of pairs of intersecting triangles. The time needed to construct
this representation is

min
{

O(n8/5+ε + κn1/3+ε), O(n2+ε)
}

,

for any ε > 0.

3.2.1 Applications

Drawing random intersections. We now present two applications of the results ob-
tained so far. In the first application, we wish to draw at random an element from the set
of all intersecting triples among a set T of n triangles in R

3. This is easy to do, in O(logn)
time, using the compact representation of this set. 3 We first count the number X of all
the intersecting triples among the triangles of T in min

{

O(n8/5+ε + κn1/3 log n), O(n2+ε)
}

time, for any ε > 0, where κ denotes, as usual, the overall number of intersecting pairs.
If X = O(n2), we construct all intersecting triples explicitly in time O(n2 log n), using the
reporting algorithm mentioned in the introduction. In this case, a random intersection can
then be drawn in O(1) time. Otherwise, let the compact representation of all intersecting
triples be given as

⋃s
i=1(Ai × Bi × Ci). We first compute, as a preprocessing step, all the

“prefix sums” Xi =
∑

i′<i |Ai′| · |Bi′| · |Ci′|, for i = 1, . . . , s. We store these sums in a
(sorted) array. The cost of this step is O(n2+ε), for any ε > 0. Next, to draw a random
intersecting triple, we draw a random number j between 1 and X, and find in O(logn)
time the index i that satisfies Xi < j ≤ Xi+1. We then pick the (j − Xi)-th edge of the
hypergraph Ai×Bi×Ci, according to some obvious lexicographical order, and output the
corresponding intersecting triple of triangles. Thus, drawing a random intersecting triple
takes O(logn) time, with O(n2+ε) preprocessing time and storage, for any ε > 0.

Finding the k-th highest vertex. We have mentioned in the introduction another
application of our machinery: Given a set T of n triangles in R

3, and a parameter k, find
the k-th highest vertex of A(T ). This problem can be solved in nearly quadratic time as
follows. We construct the compact representation of all triple intersections in T , and draw
a random subset V of O(n2) intersections. We sort the points in V in increasing order of
their z-coordinates, and run a binary search through them. At each step of the search,
involving a vertex v, we count the number of triple intersections between the triangles

3This algorithm is a variant of another algorithm that the authors have used for drawing a random
element of the set of all intersecting pairs of n given segments in the plane [70].
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X

Y

Z

H : z = x + y

A∗

C∗

z = x + y − 1/2

z = x + y + 1/2

B∗

Figure 3.2: The construction used to reduce 3sum’ to 3counting. The vertical lines are the
planes representing the elements of A, the rectangles are the planes representing the elements of
B, and the horizontal lines are the planes representing the elements of C. We exclude the region
x+ y − 1/2 < z < x+ y + 1/2.

of T that lie above v, and use this count to guide the binary search. This counting can
be done by clipping each triangle to the halfspace above v, and by applying our counting
algorithm to the clipped triangles. When the search terminates, we obtain a horizontal slab
Σ, which is known to contain the desired k-th highest vertex, and which contains, with high

probability, only O
(

n3

n2 logn
)

= O(n logn) triple intersections. We can then enumerate all

of them explicitly, by applying an intersection reporting algorithm to the portions t ∩ Σ,
for t ∈ T , in O(n2 logn) time, and select from among these points the desired vertex. The
total cost of this algorithm is, with high probability, O(n2+ε), for any ε > 0. Note that
when the number κ of intersecting pairs of triangles is small, we can get a subquadratic
algorithm that runs in time O(n8/5+ε + κn1/3+ε), for any ε > 0.

3.3 Counting Intersecting Triples is 3sum-Hard

In this section we show that the problem of counting all intersecting triples among triangles
in R

3, a problem that we denote as 3counting, belongs to the 3sum-hard family (see [77]),
and thus, the best solution to this problem is likely to require Ω(n2) time in the worst
case, thus making our algorithm nearly worst-case optimal. Let us consider the following
problem, which is among the basic 3sum-hard problems [77]:
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Problem 3sum’:

Given three sets of integers A, B, and C of total size n, are there a ∈ A, b ∈ B, c ∈ C with
a + b = c?

We show that the 3sum’ problem is linear-time reducible to 3counting. Given three
sets A, B and C of integers, we transform each element a ∈ A into the plane ha : x = a,
each element b ∈ B into the plane hb : y = b, and each element c ∈ C into the plane
hc : z = c. We denote the three resulting sets of planes by A∗, B∗ and C∗, respectively.
Every triple of planes ha ∈ A∗, hb ∈ B∗ and hc ∈ C∗ intersects at the point (a, b, c), and
the overall number of such intersecting triples is |A||B||C|. We now add to the scene the
plane H : z = x+ y. See Figure 3.2 for an illustration.

The (obvious but) key observation is that there is a triple a ∈ A, b ∈ B, c ∈ C such
that a+ b = c if and only if the plane H contains the intersection point of the three planes
ha, hb and hc. We thus split each plane h ∈ A∗ ∪ B∗ ∪ C∗ into two halfplanes at the
intersection line h ∩H , resulting in six sets of open halfplanes, such that the halfplanes in
three subfamilies lie above H and the halfplanes in the other three subfamilies lie below
H . We now count all triple intersections among the open halfplanes that lie above H and
all triple intersections among the open halfplanes that lie below H . It now follows that the
overall number of intersections on both sides of H is strictly smaller than |A||B||C| if and
only if there are three planes ha ∈ A∗, hb ∈ B∗ and hc ∈ C∗, such that H contains their
intersection point (a, b, c), which is equivalent to the existence of three numbers a ∈ A,
b ∈ B, c ∈ C such that a+ b = c.

To make the reduction compatible with the type of input assumed by 3counting, we
next modify each open halfplane into a bounded closed triangle. We first intersect each
plane in A∗, B∗ and C∗ with a box bounding all vertices of the arrangement of these planes,
obtaining three corresponding sets of rectangles A2, B2 and C2. Next, we observe that the
intersection points among all triples ra ∈ A2, rb ∈ B2 and rc ∈ C2 have integer coordinates
(and thus the distance between each pair of such points is at least 1). Hence, the region
{x+ y − 1/2 < z < x+ y + 1/2} \H does not contain any of these intersection points (see
Figure 3.2 for an illustration). Hence, it is sufficient to intersect each rectangle in A2, B2

and C2 with the two halfspaces z ≤ x+y−1/2 and z ≥ x+y+1/2, obtaining six families of
bounded closed triangles, quadrilaterals, and pentagons, which can be further refined into
families of closed bounded triangles, with the same properties as the families of halfplanes
constructed earlier.

We note that computing the bounding box of all vertices of the arrangement of the
planes in A∗, B∗ and C∗ is trivially done in O(n) time (n = |A| + |B| + |C|), and that
the construction of the six families of triangles takes additional O(n) time. Thus we have
shown that 3sum’ is linear-time reducible to 3counting, implying that 3counting is a
3sum-hard problem.
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∆

Figure 3.3: A view from above of four ellipses in R
3. After the vertical walls from their boundaries

are erected, nonconvex cells, such as ∆, are generated. Thus, the intersection of ∆ with any ellipse
that crosses ∆ is not convex.

3.4 Extensions

In this section we extend the algorithms presented in Sections 3.1 and 3.2 to count or
represent all intersecting triples among n planar simply shaped objects in R

3.

Let S be a collection of n planar objects in R
3, such that each object s ∈ S is bounded

by a closed planar curve c ∈ R
3 of constant description complexity; recall that this means

that each bounding curve is defined as a Boolean combination of a constant number of
polynomial equalities and inequalities of constant maximum degree. We also assume that
the objects in S are in general position, and in particular that no two of them are coplanar.
In this case, as already discussed in Section 3.1, we can construct for S a (1/r)-cutting Ξ
of size O(r3+ε), for any ε > 0, which is sensitive to the set of the bounding curves of the
elements in S, in the sense that the number of crossings between these bounding curves
and the cells of Ξ is O(n1+εr). The time needed to construct this cutting, when r is at
most O(nε), is O(n1+ε′), for any ε′ > 0 that is sufficiently larger than ε.

Note that the cells of Ξ, and the clippings of objects of S to cells of Ξ, need not be
convex, even when the original objects in S are convex. Indeed, as part of the construction
of Ξ (as presented in [95]), we draw a random sample R of the bounding curves, and erect
vertical walls up and down from each such curve. Thus, a clipped object s ∈ S to within a
cell ∆ ∈ Ξ need not be convex; see Figure 3.3. Nevertheless, since the given objects have
constant description complexity (and hence so does each cell ∆ ∈ Ξ), it follows that each
clipped object s has constant description complexity, and each element s′ ∈ S intersects
the (clipped) object s in O(1) line-segments (recall that they are assumed to lie in different
planes). A clipped object need not be connected, but it has at most O(1) connected
components, and we treat each of them separately. In what follows we abuse the notation
of s to denote a (connected component of a) clipped object to within a cell ∆ of Ξ.

These properties allow us to apply a similar algorithm to that presented in Section 3.1,
in order to count all intersecting triples among the elements of S. More specifically, the
recursive mechanism remains the same, and the four simple algorithms can be applied with



3.4 Extensions 63

l2

tl3

pl1

l3

tl1

s

pl2

pl3

ql2

l1

sl1

ql1

sl3

ql3

Figure 3.4: The lines l1, l2, l3 are cross sections within s of corresponding long objects of S. The
lines l1 and l2 intersect within s since the intersection points pl1 , pl2 , ql1, ql2 of ∂s with two of their
contained segments interleave along ∂s. The lines l1 and l3 do not intersect within s since they do
not contain segments that are clipped to within s and have interleaving endpoints.

slight modifications. In the case of counting intersecting triples of type LLL (or LLS), the
input to the planar algorithm, that we apply within each (clipped) object s, is the set of all
clipped segments that are generated by the intersections of s with an appropriate subset
of the long objects. Note that, since we intersect s only with long objects, the endpoints
of each intersection segment lie on ∂s. In this case, as in the case of triangles, two clipped
segments l1, l2 intersect within s if and only if their endpoints interleave along ∂s; see
Figure 3.4 for an illustration. Since each long object s′ intersects s in a constant number of
segments, the number of input segments to the two-dimensional algorithm is O(NL), and
thus the running time of the planar algorithm remains O(NL logNL).

In the case of counting intersecting triples of type LSS, the input to the two-dimensional
algorithm, that we apply within each clipped object, is the set of all clipped short segments
and the set of the containing lines of all the clipped long segments. Here however we face
a new difficulty. Since the cells ∆ need not be convex, extending a clipped long segment
into a full line, as we did in the case of triangles, may produce new intersections with
short (or long) segments, a situation that is illustrated in Figure 3.5. We overcome this
difficulty as follows. We extend each short segment e to the (unique) longer segment e′

that contains e, which is contained in s, and has endpoints lying on ∂s. Let S ′
s denote

the set of the resulting extended segments, and let Ls denote the set of long segments in
s. We first apply an appropriate variant of the representation algorithm for LLS (or LLL)
intersections (see Section 3.2), that reports the set of all bichromatic intersecting pairs
(e′, λ) ∈ S ′

s × Ls as the disjoint union of complete bipartite graphs S ′
i × Li, i = 1, . . . , m.
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s

e1 λ̄

λ

e2

Figure 3.5: Extending a long segment λ into a full line may create new intersections with short
segments (as the intersection with e1). However, if the extended short segment (such as the extension
of e2) and λ meet, extending λ to a line is safe.

Recall that
∑m

i=1 |S ′
i| = O(N∆

S log2N∆
L ) and

∑m
i=1 |Li| = O(N∆

L log2N∆
L ). We now process

each subgraph S ′
i × Li separately. For any pair (e′, λ) ∈ S ′

i × Li, we have e′ ∩ λ 6= ∅. This
is easily seen to imply that if we replace λ by its containing line λ̄, then the original short
segment e whose extension is e′ intersects λ if and only if e intersects λ̄; see Figure 3.5.
Hence we are now in the scenario of the LSS algorithm of Section 3.1, in which we need to
count intersections between segments and lines, which can be accomplished using the same
duality-based algorithm. The running time is, as in Section 3.1,

O

(

m
∑

i=1

(|S ′
i|2 + |Li| log |Si|)

)

= O((N∆
S )2 log2N∆

L +N∆
L log2N∆

L logN∆
S ),

where the first term in the bound is obtained by noting that |S ′
i| = O(N∆

S ), for each
i = 1, . . . , m.

In the case of counting intersecting triples of type SSS, we use a brute-force algorithm
as in Section 3.1. The running time of this algorithm is O(N3

S), because the objects in S
have constant description complexity, and thus each triple is examined in constant time.

With all the four intersection counting routines (for LLL, LLS, LSS, and SSS intersec-
tions) properly extended, the algorithm can proceed in essentially the same manner as in
Section 3.1. The slight increase in the running time of the LSS routine is subsumed in the
final bound O(n2+ε), as is easy to check.

Arguing as in Section 3.2, we can use the same mechanism, with appropriate modifica-
tions, to derive an algorithm for constructing a compact representation of these intersec-
tions, with the same nearly quadratic bound on the storage and the running time.

Note that the preliminary alternative algorithm described in Section 3.1 is not applicable
to general planar objects, since it operates only on polygonal objects. We can replace this
step by a more complicated procedure based on the technique of [8] for range searching
with semi-algebraic sets, to obtain, in time O(n2−γ + κ), all the κ intersecting objects in
S, where γ > 0 is some constant that depends on the complexity of the objects in S. This
yields a total of O(κ) intersection segments on the individual objects in S, and we can
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apply the algorithm of [1, 102] to count the number of (or represent) their intersections,
exactly as in Sections 3.1 and 3.2. If κ is relatively smaller than n5/3, we end up with
alternative subquadratic counting algorithms that run in time O(n2−γ + κn1/3 log n), for
any ε > 0, (or O(n2−γ + κn1/3+ε) when constructing the compact representation). We thus
conclude:

Theorem 3.4.1 The number of intersecting triples in a set of n planar objects of constant
description complexity that lie in different planes in R

3 can be counted in time

min
{

O(n2−γ + κn1/3 log n), O(n2+ε)
}

,

where γ is a positive constant that depends on the complexity of the objects in S. Moreover,
these intersecting triples can be represented in a compact form, as the disjoint union of
complete tripartite hypergraphs, whose total size is

min
{

O(κn1/3+ε), O(n2+ε)
}

.

The time needed to construct this representation is

min
{

O(n2−γ + κn1/3+ε), O(n2+ε)
}

,

for any ε > 0.

Applications. It follows, as in Section 3.2, that, with O(n2+ε) preprocessing time and
storage, we can draw a random intersecting triple of objects of S in O(logn) time. Similarly,
we can find in O(n2+ε) time the k-highest vertex in an arrangement of n such objects. As
in the case of triangles, subquadratic solutions can be obtained when the number κ of
intersecting pairs of objects is significantly smaller than n5/3.

3.5 Concluding Remarks and Open Problems

The results obtained in this study raise several open problems. A challenging open problem
is to obtain comparably efficient algorithms for the case where the input objects are not
necessarily planar, but are curved surface patches (or closed surfaces) in R

3 of constant
description complexity. The three subtasks of counting LLL, LLS, and LSS intersections
become considerably harder, because they call for counting the number of intersections
between curves and arcs on some curved surface, and the best known algorithms for these
tasks are much less efficient than those for lines and line-segments, which we have used
above.

Consider, for example, the problem of counting all intersecting triples among n spheres
in R

3. In this case, in the LLL subroutine, we need to solve the problem of counting all
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intersecting pairs among circles and/or long circular arcs (that is, arcs within a patch of a
sphere, that completely cross this patch). However, we are not aware of any algorithm for
this task that is faster than (an appropriate variant of) the standard algorithm that counts
intersections between circular arcs in the plane, and runs in time O(n3/2+ε) [11]. Thus, in
this case, our algorithm is not better than a simple-minded algorithm that intersects each
sphere with all the others spheres, and uses the two-dimensional algorithm of [11] on each
sphere. The running time of this algorithm is thus O(n5/2+ε).

Finally, another challenging problem is to count d-wise intersections among (d − 1)-
simplices in R

d, for d ≥ 4. Note that the reduction presented in Section 3.3 can be
extended to d-space and thus the d-dimensional problem is dsum-hard [66], which implies
that the best solution to this problem is likely to require Ω(n⌊(d+1)/2⌋) time in the worst case.
However, we are not aware of any algorithm whose running time is close to this bound. A
simple minded algorithm can be performed, for example, by induction on the dimension
d, as follows. Given n (d − 1)-simplices in R

d, we intersect the facets of each simplex s
with all the other n − 1 input simplices, obtaining O(n) subproblems in one dimension
lower (with a constant of proportionality that depends on d). We now continue to solve
each such subproblem recursively. We stop the recursion when we reach three-dimensional
problems, and then solve each of them in nearly quadratic time. It thus follows that the
overall running time of this algorithm is O(nd−1+ε), for each d ≥ 3, where the constant of
proportionality depends on d and ε. An open problem is to prove that this bound is nearly
optimal, or, alternatively, design an improved algorithm for this problem.

We also note that in higher dimensions there is a wider range of problems, in which
one might wish to count (or represent) the number of all k-wise intersections among n
(d − 1)-simplices in d-space, where k can vary from 2 to d. Each of these variants is a
challenging open problem.



Chapter 4

Analysis of the ICP Algorithm

In this chapter we analyze the performance of the ICP algorithm, as reviewed in Section 1.4.

In the next section we first show a (probably weak) upper bound of O
(

mdnd
)

on the
number of iterations of the algorithm in R

d under either of the two measures, for any
d ≥ 1. We then present, in Section 4.2, several structural geometric properties of the
algorithm under the RMS measure. Specifically, we show that at each iteration of the
algorithm the (real) cost function monotonically and strictly decreases, in a continuous
manner, along the vector ∆t of the relative translation; this is a much stronger property
than the originally noted one, that the value at the end of the translation is smaller than
that at the beginning. As a result, we conclude that the polygonal path π obtained by
concatenating all the relative translations that are computed during the execution of the
algorithm, does not intersect itself. In particular, for d = 1, the ICP algorithm is monotone
— all its translations are in the same (left or right) direction. Next, in Section 4.3 we present
a lower bound construction of Ω(n logn) iterations for the one-dimensional problem under
the RMS measure (assuming m ≈ n). The upper bound is quadratic, and closing the
substantial gap between the bounds remains a major open problem. In Section 4.4 we
discuss the problem under the (one-sided) Hausdorff distance measure. In particular, we
present for the one-dimensional problem an upper bound of O ((m+ n) log δB/ logn) on
the number of iterations of the algorithm, where δB is the spread of the input point set B
(i.e., the ratio between the diameter of the set and the distance between its closest pair of
points). We then present a tight lower bound construction with Θ(n) moves, for the case
where the spread of B is polynomial in n. We also study the problem under the Hausdorff
measure in two and higher dimensions, and show that some of the structural properties of
the algorithm that hold for the RMS measure do not hold in this case. We present open
problems and give concluding remarks in Section 4.5.
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4.1 An Upper Bound for the Number of Iterations

We use the notation introduced in Section 1.4. Let A = {a1, . . . , am} and B = {b1, . . . , bn}
be two point sets in d-space, for d ≥ 1, and, as described in Section 1.4, suppose that the
ICP algorithm aligns A to B; that is, B is fixed and A is translated to best fit B. In what
follows, we use the above notation (unless stated otherwise).

Theorem 4.1.1 The maximum possible overall number of nearest-neighbor assignments,
over all translated copies of A, is Θ

(

mdnd
)

.

proof: Let V(B) denote the Voronoi diagram of B, that is, the partition of R
d into d-

dimensional cells V(bi), for i = 1, . . . , n, such that each point p ∈ V(bi) satisfies ‖p− bi‖ ≤
‖p− bj‖, for each j 6= i.

The global NNA (nearest-neighbor assignment) changes at critical values of the transla-
tion t, in which the nearest-neighbor assignment of some point a+ t of the translated copy
of A is changed; that is, a+ t crosses into a new Voronoi cell of V(B). For each a ∈ A (this
denotes the initial location of this point) consider the shifted copy V(B) − a = V(B − a)
of V(B); i.e., the Voronoi diagram of B − a = {b− a | b ∈ B}. Then a critical event that
involves the point ai occurs when the translation t lies on the boundary of some Voronoi
cell of V(B−ai), for i = 1, . . . , m. Hence we need to consider the overlay M(A,B) of the m
shifted diagrams V(B−a1), . . . ,V(B−am). Each cell of the overlay consists of translations
with a common NNA, and the number of assignments is in fact equal to the number of
cells in the overlay M(A,B). A recent result of Koltun and Sharir [95] implies that the
complexity of the overlay is O(mdnd). It is straightforward to give constructions that show
that this bound is tight in the worst case, for any d ≥ 1. 2

Corollary 4.1.2 For any cost function that guarantees convergence (in the sense that the
algorithm does not reach the same NNA more than once), the ICP algorithm terminates
after O(mdnd) iterations.

Remark: A major open problem is to determine whether this bound is tight in the worst
case. So far we have been unable to settle this question, under the RMS measure, even for
d = 1 (but subsequent progress on this question has been made in [30]).

4.2 General Structural Properties under the RMS Mea-

sure

We first present a simple but crucial property of the relative translations that the algorithm
generates.



4.2 General Structural Properties under the RMS Measure 69

Lemma 4.2.1 At each iteration i ≥ 2 of the algorithm, the relative translation vector ∆ti
satisfies

∆ti =
1

m

∑

a∈A

(

NB(a+ ti−1)−NB(a+ ti−2)

)

, (4.1)

where tj =
∑j

k=1 ∆tk.

Proof: Follows using easy algebraic manipulations, based on the well-known fact that, for
a fixed nearest-neighbor assignment, the RMS cost is minimized when the two centroids
1
|A|
∑

a∈A(a+ ti−1),
1
|A|
∑

a∈ANB(a+ ti−1) coincide, and thus

∆ti =
1

m

∑

a∈A

(

NB(a+ ti−1)− (a+ ti−1)

)

. (4.2)

(See [88, Lemma 5.2] for similar considerations.) Applying (4.2) also to ∆ti−1, and sub-
tracting the two equations, yields (4.1). 2

Remark: The expression in (4.1) implies that the next relative translation is the average
of the differences between the new B-nearest neighbor and the old B-nearest neighbor of
each point of (the current and preceding translations of) A. This property does not hold
for the first relative translation of the algorithm.

Theorem 4.2.2 Let ∆t be a move of the ICP algorithm from translation ti to ti + ∆t.
Then RMS(ti + ξ∆t) is a strictly decreasing function of ξ ∈ [0, 1].

First Proof: We present two (related) proofs. In the first proof, put

RMS0(ξ) :=
1

m

∑

a∈A

‖a+ ti + ξ∆t−NB(a+ ti)‖2.

Note that, by the definition of the ICP algorithm, the graph of RMS0(ξ) is a parabola that
attains its minimum at ξ = 1. Hence, its derivative is negative for ξ ∈ [0, 1). That is,

1

2
RMS′

0(ξ) =
1

m

∑

a∈A

(

a + ti + ξ∆t−NB(a+ ti)

)

·∆t < 0,

or
1

2
RMS′

0(ξ) = ξ‖∆t‖2 +
1

m

∑

a∈A

(

a+ ti −NB(a + ti)

)

·∆t < 0.

On the other hand, for any ξ ∈ [0, 1], the function

RMS1(ξ) := RMS(ti + ξ∆t) =
1

m

∑

a∈A

‖a+ ti + ξ∆t−NB(a+ ti + ξ∆t)‖2
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b′

∆t

b

a

Figure 4.1: The new nearest neighbor lies ahead of the old one in the direction ∆t.

is the (real) RMS-distance from A to B at the translation ti + ξ∆t, i.e., the distance with
the real nearest-neighbor assignment at ti + ξ∆t, rather than the “frozen” assignment at ti.
Our goal is to show that RMS′

1(ξ) < 0, for any ξ ∈ [0, 1], in which the function RMS1(ξ)
is smooth (note that RMS1(ξ) is non-smooth exactly at points where some a changes its
nearest neighbor in B). As above, we have, at points ξ where RMS1(ξ) is smooth,

1

2
RMS′

1(ξ) = ξ‖∆t‖2 +
1

m

∑

a∈A

(

a+ ti −NB(a+ ti + ξ∆t)

)

·∆t.

It follows that

RMS′
0(ξ)− RMS′

1(ξ) =
2

m

∑

a∈A

(

NB(a+ ti + ξ∆t)−NB(a+ ti)

)

·∆t.

We claim that each of the terms in the latter sum is non-negative. Indeed, consider a fixed
point a. When a changes its nearest neighbor from some b to another b′, it has to cross the
bisector of b and b′ from the side of b to the side of b′. This is easily seen to imply that (see
also Figure 4.1)

(b′ − b) ·∆t ≥ 0.

Adding up all these inequalities that arise at bisector crossings during the motion of a, we
obtain the claimed inequality. Hence RMS′

0(ξ) ≥ RMS′
1(ξ) throughout the motion, and

since RMS′
0(ξ) is negative, so must be RMS′

1(ξ).
Second Proof: (This can be regarded as a geometric interpretation of the first proof.)
The function

RMS(t) =
1

m

∑

a∈A

‖a+ t−NB(a+ t)‖2 =

1

m

∑

a∈A

(

‖t‖2 + 2t · (a−NB(a+ t)) + ‖a−NB(a+ t)‖2
)

is the average of m Voronoi surfaces SB−a(t), whose respective minimization diagrams are
V(B − a), for each a ∈ A. That is,

SB−a(t) = min
b∈B
‖a+ t− b‖2 = min

b∈B

(

‖t‖2 + 2t · (a− b) + ‖a− b‖2
)

,
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f(t)

h(t)
ti

∆tQ(t)

Figure 4.2: Illustrating the proof that RMS(ti + ξ∆t) is a strictly decreasing function of ξ ∈ [0, 1].

for each a ∈ A. Subtracting the term ‖t‖2, we obtain that each resulting Voronoi surface
SB−a(t)− ‖t‖2 is the lower envelope of n hyperplanes, and its graph is thus the boundary
of a concave polyhedron. Hence Q(t) := RMS(t) − ‖t‖2 is equal to the average of these
concave polyhedral functions, and is thus itself the boundary of a concave polyhedron (see
also the proof of Theorem 4.1.1).

Consider the NNA that corresponds to the translation ti. It defines a facet f(t) of
Q(t), which contains the point (ti, Q(ti)). We now replace f(t) by the hyperplane h(t)
containing it, and note that h(t) is tangent to the polyhedron Q(t) at ti; see Figure 4.2
for an illustration. The graph of RMS0(ξ), as defined above, is the image of the relative
translation vector ∆t on the paraboloid ‖t‖2 + h(t). Since Q(t) ≤ h(t), for any t ∈ R

d,
the concavity of Q(t) implies that for any 0 ≤ ξ1 < ξ2 ≤ 1, Q(ti + ξ1∆t)−Q(ti + ξ2∆t) ≥
h(ti + ξ1∆t) − h(ti + ξ2∆t). Since ‖t‖2 + h(t) is (strictly) monotone decreasing along ∆t
(by definition, ∆t moves from ti to the minimum of the fixed paraboloid ‖t‖2 + h(t)), we
obtain

RMS(ti + ξ1∆t)−RMS(ti + ξ2∆t) =

‖ti + ξ1∆t‖2 +Q(ti + ξ1∆t)− ‖ti + ξ2∆t‖2 −Q(ti + ξ2∆t) ≥

‖ti + ξ1∆t‖2 − ‖ti + ξ2∆t‖2 + h(ti + ξ1∆t)− h(ti + ξ2∆t) > 0,

which implies that RMS(ti + ξ∆t) is a strictly decreasing function of ξ ∈ [0, 1]. 2

Let π be the connected polygonal path obtained by concatenating the ICP relative
translations ∆tj . That is, π starts at the origin and its j-th edge is the vector ∆tj . Theo-
rem 4.2.2 implies:

Theorem 4.2.3 The ICP path π does not intersect itself.

In particular, Theorem 4.2.3 implies that, on the line, the points of A are always trans-
lated in the same direction at each iteration of the algorithm. We thus obtain:
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Corollary 4.2.4 (Monotonicity) In the one-dimensional case, the ICP algorithm moves
the points of A always in the same (left or right) direction. That is, either ∆ti ≥ 0 for each
i ≥ 0, or ∆ti ≤ 0 for each i ≥ 0.

Corollary 4.2.5 In any dimension d ≥ 1, the angle between any two consecutive edges of
π is obtuse.

Proof: Consider two consecutive edges ∆ti, ∆ti+1 of π. Using Lemma 4.2.1 we have

∆ti+1 = 1
m

∑

a∈A

(

NB(a + ti) − NB(a + ti−1)

)

. As follows from the first proof of Theo-

rem 4.2.2 (see once again Figure 4.1),
(

NB(a+ ti)−NB(a+ ti−1)

)

·∆ti ≥ 0,

for each i ≥ 1, where equally holds if and only if a does not change its B-nearest neighbor.
Hence ∆ti+1 ·∆ti ≥ 0. It is easily checked that equality is possible only after the last step
(where ∆ti+1 = 0). 2

Lemma 4.2.6 At each iteration i ≥ 1 of the algorithm, RMS(ti−1)− RMS(ti) ≥ ‖∆ti‖2.
Proof: As in the proof of Theorem 4.2.2, consider the function

RMS0(ξ) :=
1

m

∑

a∈A

‖a+ ti−1 + ξ∆ti −NB(a + ti−1)‖2.

This is a parabola, with minimum at ξ = 1 (i.e., at ∆ti), whose quadratic term is ξ2‖∆ti‖2.
Hence, its value at ξ = 0 is ‖∆ti‖2. That is,

RMS(ti−1)− RMS(ti) ≥ RMS0(0)− RMS0(1) = ‖∆ti‖2,

where the first inequality follows from RMS(ti) ≤ RMS0(1), since both expressions are
computed at ti, where RMS0(1) uses the old NNA, and RMS(ti) uses the new NNA, which
makes its value smaller. 2

Corollary 4.2.7 If the relative translations computed by the algorithm are ∆t1, . . . ,∆tk,
then

1

k

(

k
∑

i=1

‖∆ti‖
)2

≤
k
∑

i=1

‖∆ti‖2 ≤ RMS(t0)− RMS(tk). (4.3)

Proof: Use the Cauchy-Schwarz inequality, applied to the result of Lemma 4.2.6. 2

Lemma 4.2.8 At each iteration i ≥ 0 of the algorithm

RMS(t0)−RMS(ti) ≤ ‖ti+1‖2 − ‖∆ti+1‖2. (4.4)
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Proof: We have

RMS(ti)− RMS(t0) =
1

m

∑

a∈A

(

‖NB(a+ ti)− a− ti‖2 − ‖NB(a)− a‖2
)

=

1

m

∑

a∈A

(

‖NB(a+ ti)−a− ti‖2−‖NB(a+ ti)−a‖2
)

+
1

m

∑

a∈A

(

‖NB(a+ ti)−a‖2−‖NB(a)−a‖2
)

.

The second sum is non-negative, since ‖NB(a)− a‖2 ≤ ‖NB(a+ ti)− a‖2, for each a ∈ A,
and the first sum is

1

m

∑

a∈A

(

−ti · (2(NB(a+ ti)− a− ti) + ti)

)

= −‖ti‖2 − 2ti ·∆ti+1,

by Equation 4.2. That is, we have

RMS(ti)− RMS(t0) ≥ −‖ti‖2 − 2ti ·∆ti+1 = −‖ti + ∆ti+1‖2 + ‖∆ti+1‖2 = −‖ti+1‖2 + ‖∆ti+1‖2,

as asserted. 2

Combining inequalities (4.3) and (4.4), we obtain,

Corollary 4.2.9 For any k ≥ 1,

k
∑

i=1

‖∆ti‖2 ≤ RMS(t0)−RMS(tk) ≤ ‖tk+1‖2 − ‖∆tk+1‖2.

In particular, we have, rearranging terms and replacing k + 1 by k,
∑k

i=1 ‖∆ti‖2 ≤ ‖tk‖2.
Remarks: (1) Note that, for d = 1, this inequality is trivial (and weak), due to the
monotonicity of the ICP translations. For d ≥ 2, the inequality means, informally, that as
the ICP is rambling around, the path π that it traces does not get too close to itself. In
particular, if each ∆ti is of length at least δ then, after k steps, the distance between the
initial and final endpoints of the ICP path is at least δ

√
k. This also holds for any pair of

intermediate translations, k apart in the order.
(2) Specializing Remark (1) to the case k = 1, we obtain ‖∆t1‖2 ≤ RMS(t0)− RMS(t1) ≤
‖t2‖2 − ‖∆t2‖2. This provides an alternative proof that the angle between ∆t1 and ∆t2
is non-acute. Moreover, the closer this angle is to π/2 the sharper is the estimate on the
decrease in the RMS function.

4.3 The ICP Algorithm on the Line under the RMS

Measure

In this section we consider the special case d = 1, and analyze the performance of the ICP
algorithm on the line under the RMS measure. Theorem 4.1.1 implies that in this case the
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+ 1
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+ δ an = 1
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− 1
n

+ δa1 = −n − δ(n − 1)

Figure 4.3: The lower bound construction. Only the two leftmost cells of V(B) are depicted.

number of NNA’s, and thus the number of iterations of the algorithm, is O(mn). We show
below that the number of iterations can be superlinear in the worst case:

Theorem 4.3.1 There exist point sets A, B on the real line of arbitrarily large common
size n, for which the number of iterations of the ICP algorithm, under the RMS measure,
is Θ(n log n).

Proof: We construct two point sets A, B on the real line, where |A| = |B| = n. The set

A consists of the points a1 < · · · < an, where a1 = −n − δ(n − 1), ai = 2(i−1)−n
2n

+ δ, for
i = 2, . . . , n, and δ = o

(

1
n

)

is some sufficiently small parameter. The set B consists of the
points bi = i− 1, for i = 1, . . . , n. See Figure 4.3.

Initially, all the points of A are assigned to b1. As the algorithm progresses, it keeps
translating A to the right. The first translation satisfies

∆t1 =
1

n

n
∑

i=1

(b1 − ai) =
1

n
(b1 − a1)−

n− 1

n
δ = 1,

which implies that after the first iteration of the algorithm all the points of A, except for
its leftmost point, are assigned to b2. Using (4.1), we have ∆t2 = 1

n

∑n−1
i=1 (b2 − b1) = n−1

n
,

which implies that the n − 1 rightmost points of A move to the next Voronoi cell V(b3)
after the second iteration, so that the distance between the new position of an from the
right boundary of V(b3) is 2

n
− δ, and the distance between the new position of a2 and the

left boundary of V(b3) is δ, as is easily verified.
In the next iteration ∆t3 = n−1

n
(arguing as above). However, due to the current position

of the points of A in V(b3), only the n − 2 rightmost points of A cross the right Voronoi
boundary of V(b3) (into V(b4)), and the nearest neighbor of a2 remains unchanged (equal
to b3).

We next show, using induction on the number of Voronoi cells the points of A have
crossed so far, the following property. Assume that the points of A, except for the leftmost
one, are assigned to bn−j+1 and bn−j+2, for some 1 ≤ j ≤ n (clearly, these assignments can
involve only two consecutive Voronoi cells), and consider all iterations of the algorithm, in
which some points of A cross the common Voronoi boundary βn−j+1 of the cells V(bn−j+1),
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al+2 an−(j−l−1) an

bn−j+2

l+2
n

βn−j+2βn−j+1

a2

bn−j+1
bn−j+3

Figure 4.4: At the last iteration of round j, after shifting the points of A by ∆t = j
n to the right,

the points al+2, . . . , an−(j−l−1) (represented in the figure as black bullets) still remain in V(bn−j+2).

V(bn−j+2). We call the sequence of these iterations round j of the algorithm. Then, (i) at
each such iteration the relative translation is j

n
, (ii) at each iteration in this round, other

than the last one, the overall number of points of A that cross βn−j+1 is exactly j, and no
point crosses any other boundary, and (iii) at the last iteration of the round, the overall
number of points of A that cross either βn−j+1 or βn−j+2 is exactly j − 1. In fact, in the
induction step we assume that properties (i), (ii) hold, and then show that property (iii)
follows, for j, and that (i) and (ii) hold for j − 1.

To prove this property, we first note, using (4.1), that the relative translation at each
iteration of the algorithm is k

n
, for some integer 1 ≤ k ≤ n. The preceding discussion shows

that the induction hypothesis holds for j = n and j = n − 1. Suppose that it holds for
all j′ ≥ j, for some 2 ≤ j ≤ n − 1, and consider round j − 1 of the algorithm, during
which points of A cross βn−j+2 (that is, we consider all iterations with that property).
Thus, at each iteration of round j (except for the last one), in which there are points of A
that remain in the cell V(bn−j+1), the j rightmost points of A (among those contained in
V(bn−j+1)) cross βn−j+1. Let us now consider the last such iteration. In this case, all the
points of A, except l of them, for some 0 ≤ l < j (and the leftmost point, which we ignore),
have crossed βn−j+1 in previous iterations. The key observation is that the distance from
the current position of an to the next Voronoi boundary βn−j+2 is l+2

n
−δ (this follows since

we shift in total n− 1 points of A that are equally spaced apart by 1
n
), and since the next

translation ∆t satisfies ∆t = j
n

(using the induction hypothesis and (4.1)), it follows that
only j−1 points of A cross a Voronoi boundary in the next iteration. Moreover, the points
a2, . . . , al+1 cross the boundary βn−j+1, and the points an−(j−l−2), . . . , an cross the boundary
βn−j+2 (this is the first move in which this boundary is crossed at all); see Figure 4.4 for
an illustration.

Thus, at the next iteration, since only j − 1 points have just crossed between Voronoi
cells, (4.1) implies that the next translation is j−1

n
, and, as is easily verified, at each further

iteration, as long as there are at least j − 1 points of A to the left of βn−j+2, this property
must continue to hold, and thus j−1 points will cross βn−j+2. This establishes the induction
step.
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Figure 4.5: Proof of Lemma 4.4.2.

.

It now follows, using the above properties, that the number of iterations required for all
the points of A to cross βn−j+1 is ⌈n

j
⌉, where in the first (last) such iteration some of the

points may cross βn−j (βn−j+2) as well. This implies that the number of such iterations,
in which the points of A cross only βn−j+1 (and none of the two neighboring Voronoi

boundaries), is at least
⌈

n
j

⌉

− 2 (but not more than
⌈

n
j

⌉

). Thus the overall number of

iterations of the algorithm is Θ
(

∑n
j=1

⌈

n
j

⌉)

= Θ(n logn). 2

4.4 The Problem Under the Hausdorff Distance Mea-

sure

4.4.1 General Structural Properties of the ICP Algorithm

Lemma 4.4.1 The ICP algorithm converges under the (one-sided) Hausdorff distance
measure in at most O(mdnd) steps.

Proof: At each iteration i, we compute ∆ti that minimizes maxa∈A ‖a+ti−1+∆ti−NB(a+
ti−1)‖. Since ‖a + ti − NB(a + ti)‖ ≤ ‖a + ti − NB(a + ti−1)‖, for each a ∈ A, the cost
function decreases after each iteration (the algorithm terminates if there is no decrease).
The lemma then follows from Corollary 4.1.2. 2

The following lemma provides a simple tool to compute the relative translations that
the algorithm executes.

Lemma 4.4.2 Let Di−1 be the smallest enclosing ball of the points {a+ti−1−NB(a+ti−1) |
a ∈ A}. Then the next relative translation ∆ti of the ICP algorithm is the vector from the
center of Di−1 to the origin.
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Figure 4.6: Proof of Lemma 4.4.3. The point b is placed at the origin, the center of the minimum
enclosing disc of the points a0, a1, a2 is c, and its radius is r. Initially, ‖a0 − b‖ = max ‖ai − b‖ > r,
for i = 0, 1, 2 (a), and after translating by ∆t, ‖a0 + ∆t− b′‖ < r (b).

Proof: The proof follows from the (easy) observation that since Di−1 is a minimum en-
closing ball, all points appearing on its boundary are not contained in the same halfspace
bounded by a hyperplane that passes through its center, and thus any further infinitesimal
translation of the points a + ti−1 + ∆ti, for a ∈ A, from their current position causes at
least one of the points on the boundary of (the translated ball) Di−1 + ∆ti to get further
from the origin (which is also the center of Di−1 + ∆ti). Therefore the Hausdorff distance
measure is minimized (with respect to the above fixed NNA) after translating by ∆ti. Note
that it follows by definition that the cost obtained after the relative translation by ∆ti is
smaller than (or equal to) the radius of Di−1 (it may become strictly smaller, when the
NNA changes after translating by ∆ti). See Figure 4.5 for an illustration. 2

In contrast with Theorem 4.2.2, we have:

Lemma 4.4.3 In any dimension d, there exist finite point sets A, B with the following
property. Define the cost function H(t) = maxa∈A ‖a+ t−NB(a+ t)‖. Then H(t0 + ξ∆t),
for ξ ∈ [0, 1], is not monotonically decreasing along the relative translation vector ∆t that
the algorithm executes from translation t0.
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Proof: A planar example (which can be lifted to any dimension d ≥ 3) is depicted in
Figure 4.6. Initially, all three points a0, a1, a2, are closer to b. By Lemma 4.4.2, the
translation ∆t moves the center c of the circumcircle of ∆a0a1a2 to b, so the final distance
of all three ai’s from b is equal to the radius r of this circle. As we translate each of them
by ∆t, a0 crosses into V(b′), its distance to its nearest neighbor (first b and then b′) keeps
decreasing, and its final value is strictly smaller than r. In contrast, the distances of a1,
a2 from b (their nearest neighbor throughout the translation) both increase towards the
end of the translation, and their final values are both r. Hence, towards the end of the
translation H(t0 + ξ∆t) is increasing. 2

Remark: We do not know whether non-monotonicity can arise at any step of the algorithm.
Perhaps only the first step might have this property.

Lemma 4.4.4 Let H(t) be as above. At each iteration i ≥ 1 of the algorithm

H(ti−1)
2 −H(ti)

2 ≥ ‖∆ti‖2.

Proof: Using Lemma 4.4.2, the next relative translation ∆ti is the vector ci−1o, where ci−1

is the center of the minimum enclosing ball Di−1 of the set A∗ = {a+ ti−1 −NB(a+ ti−1) |
a ∈ A}, and o is the origin.

The argument in the proof of Lemma 4.4.2 implies that the cost H(ti) (obtained after
the relative translation by ∆ti) is smaller than or equal to the radius of Di−1. (It is equal
the radius under the former NNA, and can only become smaller under the new NNA, after
the translation.) Let A∗

0 denote the set of all points a∗ ∈ A∗ that appear on ∂Di−1, and let
a∗0 be the point of A∗

0 farthest from the origin.
As above, since Di−1 is a minimum enclosing ball, it follows that all points of A∗

0

cannot be contained in the same halfspace bounded by a hyperplane through ci−1, which,
in particular, implies that a∗0 and o are separated by the hyperplane λ, perpendicular to the
segment connecting ci−1 and o, and passing through ci−1; see Figure 4.7 for an illustration.
Clearly, the cost H(ti−1) is at least ‖a∗0‖ (the maximum distance may be obtained by
another point of A∗ that lies in the interior of Di−1). Hence the angle ∡a∗0ci−1o is at least
π/2, and thus

H(ti−1)
2 −H(ti)

2 ≥ ‖a∗0‖2 − ‖a∗0 − ci−1‖2 ≥ ‖ci−1 − o‖2 = ‖∆ti‖2.

2

Using the Cauchy-Schwarz inequality, we obtain the following corollary, which is the
analogue of Corollary 4.2.7:

Corollary 4.4.5 If the relative translations computed by the algorithm are ∆t1, . . . ,∆tk,
then

1

k

(

k
∑

i=1

‖∆ti‖
)2

≤
k
∑

i=1

‖∆ti‖2 ≤ H(t0)
2 −H(tk)

2. (4.5)
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Figure 4.7: The angle ∡a∗0ci−1o is obtuse.

4.4.2 The one-dimensional problem

Let A, B be two point sets on the real line, with |A| = m, |B| = n.

Lemma 4.4.6 (Monotonicity) The points of A are always translated in the same direc-
tion, over all iterations of the algorithm. That is, either ∆ti ≥ 0 for each i ≥ 1, or ∆ti ≤ 0
for each i ≥ 1.

Proof: Let a∗ ∈ A, b∗ = NB(a∗), be the pair (which is unique if we assume initial general
position1) that satisfies initially ξ = |b∗ − a∗| = maxa∈A |NB(a) − a|. Suppose without
loss of generality that a∗ < b∗. By Lemma 4.4.2, the initial “ball” (i.e., interval) D0 has
a∗ − b∗ = −ξ as its left endpoint, and its right endpoint is smaller than ξ (otherwise,
the algorithm terminates; following the observations of Lemma 4.4.2, the next relative
translation is

−→
0 ). Hence the center (midpoint) of D0 is negative, so the first translation

∆t1 of the algorithm is to the right. See Figure 4.8.
After translating, a∗+∆t1 is still to the left of b∗ (since ∆t1 < ξ) and is closer to b∗, so b∗

is still the nearest neighbor of a∗ +∆t1, and |a∗ +∆t1−b∗| = maxa∈A{|a+∆t1−NB(a)|} ≥
maxa∈A{|a+∆t1−NB(a+∆t1)|}, since right after the translation by ∆t1, the left and the
right endpoints of D0 are at the same distance from the origin, but then the reassignment
may modify the right endpoint of D0. Thus a∗ + ∆t1 − b∗ is still the left endpoint of the
new interval D1, whose right endpoint is closer to the origin (or at the same distance, in
which case the algorithm terminates). Hence, the preceding argument implies that ∆t2 will
also be to the right, and, using induction, the lemma follows. 2

Remarks: (1) The proof implies that the pair a∗, b∗, which attains the maximum value
of the cost function at the initial position of A continues to do so over all iterations of the

1If there are several such pairs then either (i) some of the differences b∗ − a∗ are positive and some are
negative, and then the algorithm terminates right away, or (ii) all the differences b∗ − a∗ have the same
sign, and then the same argument given in the proof continues to apply.
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a−NB(a)
0c

∆t1
D0

a∗ − b∗

c = 0
a∗ + ∆t1 − b∗ a+ ∆t1 − B(a)

Figure 4.8: Proof of Lemma 4.4.6. The points a − NB(a), for a ∈ A, before translating by ∆t1
(top), and after the translation (bottom).

algorithm. The point a∗ gets closer to b∗, and can never exit its cell V(b∗) (actually, it
never passes over b∗).
(2) The relative translation ∆ti is always determined by a∗, b∗, and by another pair of
points a′, b′, which determine the other endpoint of Di−1. Note that in the next iteration
NB(a′) must change, or else the algorithm terminates.
(3) While monotonicity holds in R

1, we do not know (in view of Lemma 4.4.3) whether
the analog of Theorem 4.2.3 holds for the Hausdorff distance measure in two (and higher)
dimensions.

Recall that the spread of a point set P is the ratio between the diameter of P and the
distance between its closest pair of points. Our main result on the ICP algorithm under
the Hausdorff distance measure is given in the following theorem.

Theorem 4.4.7 Let A and B be two point sets on the real line, with |A| = m, |B| = n, and
let δB be the spread of B. Then the number of iterations that the ICP algorithm executes
is O ((m+ n) log δB/ logn).

Proof: Let the elements of A be a1 < a2 < · · · < am, and those of B be b1 < b2 < · · · < bn.
Put ∆A = am − a1, ∆B = bn − b1. Assume, without loss of generality, that, initially,
maxa∈A |NB(a)− a| ≤ ∆A (otherwise, this is the case after the first translation), and that
b1 − a1 = maxa∈A |NB(a)− a| (in particular, a1 < b1). The initial interval D0 (in the
notation of Lemma 4.4.2) is [a1 − b1, 0]. As shown in Lemma 4.4.6, all translations will be
to the right, and a1 will stay to the left of b1. Thus the overall length of all translations is
at most b1−a1 ≤ ∆A. Put Ik−1 = b1−(a1 + tk−1), for each iteration k ≥ 1 of the algorithm.

A relative translation ∆tk, computed at the k-th iteration of the algorithm, for k ≥
0, is said to be short if ∆tk < Ik−1

2n/ log n
, otherwise, ∆tk is long. We first claim that the

overall number of (short and long) relative translations that the algorithm executes is

O
(

m log
(

∆A

∆B
δB

)

/ logn
)

.

We say that a pair (a′, b′) of points, a′ ∈ A, b′ ∈ B, a′ 6= a1, is a configuration of
the algorithm, if, at some iteration k, a′ − b′ is the right endpoint of Dk−1 (so (a1, b1),
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Figure 4.9: Proof of Theorem 4.4.7.

(a′, b′) determine the k-th relative translation of the algorithm). Due to monotonicity, each
configuration can arise at most once, and thus an upper bound on the overall number
of such configurations also applies to the actual number of iterations performed by the
algorithm.

The idea of the proof is as follows. The overall number of long relative translations
is relatively small, since, after performing each of them, the distance between b1 and the
translated copy of a1, which measures the cost function, significantly decreases. As to
the number of short relative translations, if there are at least two configurations involving
the same point a′ 6= a1 in A, which determine short relative translations, then the cost
function must significantly decrease (since a′ has changed its nearest neighbor, and becomes
significantly further from its previous nearest neighbor), and, as a result, each such point a′

cannot be involved in too many configurations that determine short relative translations.
Let S be the sequence of all configurations produced by the algorithm (sorted by the

“chronological” order of their creation), which determine short relative translations. We
next bound the number of a-configurations in S, namely, those that involve the same point
a ∈ A.

Fix some a 6= a1 ∈ A. Let (a, bj), (a, bl), 1 ≤ j 6= l ≤ n, be two consecutive a-
configurations in S, so each configuration that appears between (a, bj), (a, bl) does not
involve a. Due to the monotonicity of the relative translations, we must have j < l.
Suppose that (a, bj) arises at the k-th iteration, and (a, bl) arises at the k′-th iteration
(k′ > k). Since (a, bj) determines a short relative translation, (the translated copy of) a

must lie to the right of bj before the k-th step, for otherwise ∆tk would be at least
Ik−1

2
,

and thus would not be short. Furthermore, we have, by construction,

∆tk =
1

2
(Ik−1 + (bj − (a+ tk−1))) <

Ik−1

2n/ logn
,

and thus

|bj − (a + tk−1)| ≥ Ik−1 −
Ik−1

n/ logn
.

Since a+ tk−1 ∈ V(bj), we have

|bj+1 − (a+ tk−1)| ≥ |bj − (a+ tk−1)| ≥ Ik−1 −
Ik−1

n/ logn
.
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Thus a can pass over bj+1 only if we further translate it by at least Ik−1 − Ik−1

n/ log n
; see

Figure 4.9 for an illustration. Since (a, bl) determines a short relative translation at the

k′-th iteration (and thus a lies to the right of bl at that time), it follows that
∑k′−1

r=k ∆tr >

Ik−1 − Ik−1

n/ log n
. But then, |b1 − (a1 + tk′−1)| < Ik−1

n/ log n
. Thus the cost function is reduced by

a factor of at least n/ logn between each two consecutive configurations of S that involve
the same point a 6= a1 of A.

We now show that the overall number of such configurations is O
(

log
(

∆A

∆B
δB

)

/ logn
)

,

for a fixed point a 6= a1 ∈ A. Let CB be the distance between the closest pair in B; that is,
CB = ∆B

δB
. We claim that when Ik−1 becomes smaller than CB

4
(at some iteration k ≥ 1), the

algorithm terminates. Indeed, since Ik−1 = maxa∈A{|NB(a+tk−1)−(a+tk−1)|}, this implies
that the next relative translation satisfies |∆tk| < CB

4
. On the other hand, the distance

between each (translated) point a+ tk−1, a ∈ A, to its nearest Voronoi boundary is at least
CB
4

(since the distance between any b ∈ B and the (left or right) boundary of its Voronoi

cell V(b) is at least CB
2

), and thus, after shifting the points by ∆tk, the nearest-neighbor
assignments do not change. This easily implies that the overall number of iterations, in
which I0 is reduced by a factor of at least n/ log n until it becomes smaller than CB

4
, is

O(logn ∆A − logn CB) = O

(

log

(

∆A

∆B
δB

)

/ logn

)

,

as asserted. Thus the overall number of iterations of the algorithm that involve short

relative translations, over all points of A, is O
(

m log
(

∆A

∆B
δB

)

/ logn
)

.

We next show that the overall number of long relative translations isO
(

n log
(

∆A

∆B
δB

)

/ logn
)

.

A long relative translation ∆tk reduces Ik−1 by a factor of at least 1− 1
2n/ log n

, so if j long

relative translations occur before the k-th iteration then Ik−1 ≤ ∆A

(

1− 1
2n/ log n

)j

. Argu-

ing as above, and, using the fact that (1 − x) < e−x, for 0 < x < 1, the largest value of j

for which ∆A

(

1− log n
2n

)j ≥ CB
4

satisfies j = O
(

n log
(

∆A

∆B
δB

)

/ logn
)

.

In order to remove the factor log ∆A

∆B
from the bound, we argue that when ∆A ≥ 5∆B,

the algorithm terminates after at most two iterations. Indeed, after the first iteration of
the algorithm, the next relative translation is determined by (a1, b1), (am, bn), and these
two pairs of points maintain this property in any further iteration, so the algorithm will
terminate at the next iteration, as claimed. Hence, the actual bound on the overall number
of iterations is O ((m+ n) log δB/ logn), which completes the proof of the theorem. 2

Corollary 4.4.8 The number of iterations of the ICP algorithm is O(m + n) when the
spread of the point set B is polynomial in n, where the constant of proportionality is linear
in the degree of that polynomial bound.
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Figure 4.10: The lower bound construction.

Our second main result of this section is a matching linear lower bound construction,
for the case where the spread of B is linear in n.

Theorem 4.4.9 There exist point sets A, B of arbitrarily large common size n, such that
the spread of B is linear, and the number of iterations of the algorithm is Θ(n).

Proof: We construct two point sets A, B on the real line, with |A| = |B| = n. For
simplicity of the analysis, we implicitly define the two point sets by the following relations:

(1) a1 = 0,

(2) a1 − b1 = n,

(3) aj − bj = −
(

n−∑j−2
k=0

1
2k

)

, for each 2 ≤ j ≤ n,

(4) a1 − b1+b2
2

= 2n, aj − bj+bj+1

2
=
∑j−1

k=1
1
2k
− ε, for each 2 ≤ j ≤ n− 1, where ε = o

(

1
2n

)

.

It is easy to verify that the above conditions determine uniquely the sets A and B, and
that 2(n − 1) < |bj − bj+1| ≤ 2n, for each j = 1, . . . , n − 1, and thus the spread of B is
O(n). Note that in this construction each point aj ∈ A is initially located in the respective
Voronoi cell V(bj), for j = 1, . . . , n; see Figure 4.10 for an illustration. (Note that in this
notation the points are indexed in increasing order from right to left.)

We now claim, using induction on the number of iterations of the algorithm, that the
relative translation at the i-th iteration ∆ti is − 1

2i
, for i = 1, . . . , n− 2. As a consequence,

each point aj ∈ A progresses to the left towards V(bj+1), and, in particular, ai+1 crosses, at
the i-th iteration, the Voronoi boundary common to V(bi+1) and V(bi+2), as follows easily
from property (4). In addition, all the remaining nearest neighbors remain the same at that
iteration, and the nearest neighbor of ai+1 remains bi+2 at any subsequent iteration — see
below. This would imply that the overall number of iterations is n − 2, which establishes
our bound.

The pair a1, b1 satisfies b1 = NB(a1) and |a1 − b1| = maxa∈A |a − NB(a)|, as is easily
verified, and, by Lemma 4.4.6, this pair attains the maximum value of the cost function



84 Analysis of the ICP Algorithm

at every subsequent iteration of the algorithm. Thus at the first iteration of the algorithm
a1 − b1 is the right endpoint of the interval D0, and a2 − b2 is its left endpoint. Hence

∆t1 =
(b1 − a1) + (b2 − a2)

2
= −1

2
,

and, as a consequence, all the points of A move to the left. Moreover, due to property (4)
of the construction, the nearest neighbor of a2 becomes b3, and the nearest neighbors of
all the remaining points do not change. Suppose now, for the induction hypothesis, that
at the (i− 1)-th iteration ∆ti−1 = − 1

2i−1 , and, as a consequence, the overall translation so

far ti−1 is −∑i−1
j=1

1
2j

. It can be easily verified, using property (4), that the current nearest
neighbor of each point aj , j = 2, . . . , i, is now bj+1, and that aj is located to the right of
bj+1. We next claim, using properties (3) and (4), that each of these points satisfies

aj + ti−1 − bj+1 = n− 2ε−
i−1
∑

k=1

1

2k
< a1 + ti−1 − b1 = n−

i−1
∑

k=1

1

2k
. (4.6)

In addition, due to property (3),

ai+1 + ti−1 − bi+1 = −(n− 1) < aj + ti−1 − bj ,

for each j = i+2, . . . , n. That is, ai+1 + ti−1− bi+1 is the left endpoint of the interval Di−1.
Thus, at the i-th step we have

∆ti =
(b1 − (a1 + ti−1)) + (bi+1 − (ai+1 + ti−1))

2
= −1−∑i−1

k=1
1
2k

2
= − 1

2i
,

as asserted, which, using property (4), implies that the new nearest neighbor of ai+1 is
bi+2. Note that it can be easily verified, using (4.6) and properties (3), (4), that all the
remaining points remain in their previous cells, and, in particular, that none of the points
aj , for j = 2, . . . , i can exit the cell V(bj+1) in any further iteration (since the overall
translation length is less than 1). This completes the induction step. Note that, the
nearest neighbors of the points a1, an do not change during the execution of the algorithm,
and thus the overall number of iterations is n− 2, as asserted. 2

Remark: In the above construction, the number of bits that is required in order to repre-
sent each input point is Θ(n). We are not aware of any construction in which this number
is O(logn) and the number of iterations is Ω(n). We would therefore like to conjecture that
in the latter case the overall number of iterations that the algorithm performs is sublinear.

4.5 Concluding Remarks

One major open problem that this study raises is to improve the upper bound, or, alter-
natively, present a tight lower bound construction, on the number of iterations performed
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by the algorithm under each of the above measures. In a further study, this problem was
settled by Arthur and Vassilvitskii for the one-dimensional case [30], who showed a lower
bound construction of Ω(nd+1) iterations in any dimension d ≥ 1 (where the constant of
proportionality depends on d). Still, it leaves a substantial gap between our upper bound
and the above lower bound, for d ≥ 2.

Another problem concerns the running time of the algorithm. The algorithm has to
reassign the points in A to their (new) nearest neighbors in B at each iteration. This can
be done by searching with each point of A in V(B), but this will take time that is more
than linear in m for each iteration. Thus, for points on the real line, when the number of
iterations is linear or super-linear, we face a super-quadratic running time. The irony is that
we can solve the pattern matching problem (for the RMS measure) directly, without using
the ICP algorithm, in O(mn logm) time, as follows. (i) Compute the overlay M(A,B) of
the Voronoi diagrams V(B − a), for a ∈ A, in O(mn logm) time. (ii) Process the intervals
of M(A,B) from left to right. (iii) For each interval I, compute the corresponding NNA by
updating, in O(1) time, the NNA of the previous interval (only one point changes its nearest
neighbor). (iv) Obtain, in O(1) time, the minimizing translation of this NNA, using (4.2)
for the leftmost interval, and (4.1) for any subsequent interval, and the corresponding value
of the cost function. (v) Collect those I for which the minimizing translation lies in I; these
are the local minima of the cost function. (vi) Output the global minimum from among
those minima. The problem can also be solved for the Hausdorff distance measure in
O(mn logm) time, by computing the upper envelope of the m Voronoi surfaces S(B − a),
for a ∈ A, and reporting its global minimum (see, e.g., [124]).

Of course, in practice the ICP algorithm tends to perform much fewer steps, so it
performs much faster than this worst case bound. We remark that a variant of the preceding
algorithm (for points on the real line) can be employed in the ICP algorithm, so that the
overall cost of updating the NNA’s remains O(mn logn), regardless of how many iterations
it performs. Many interesting open problems arise in this connection, such as finding a faster
procedure to handle the NNA updates, analyzing the performance under the Hausdorff
distance and in higher dimensions, and so on.

Moreover, inspired by a comment of D. Kozlow, if we contend ourselves with finding a
local minimum of the cost function, this can be found in nearly-linear time, using binary
search over the intervals of M(A,B), which we keep implicit. Specifically, we proceed as
follow. At each step of the search, there are three previously tested translations t1 <
t2 < t3, for which we have computed the corresponding values RMS(ti), and the indices ji
(numbering from left to right) of the intervals of M(A,B) containing ti, for i = 1, 2, 3, and
the translation we are looking for lies in the interval [t1, t3]. We inductively assume that
RMS(t2) ≤ min{RMS(t1),RMS(t3)}. Assume, without loss of generality, that j2 − j1 ≥
j3−j2. We compute j− = ⌊(j1 + j2)/2⌋, and find a point t− in the j−-th interval ofM(A,B).
By definition, this is a point t− that has exactly j− Voronoi boundaries to its left, that is,
exactly j− differences of the form bi+bi+1

2
− al are smaller than t−. Finding such a t− is
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a special case of the slope selection problem (see [54]), and can thus be solved in O((m+
n) log (m+ n)) time. We now compute RMS(t−). If RMS(t−) ≤ RMS(t2), we continue the
search with the triple (t1, t

−, t2); otherwise, we continue the search with (t−, t2, t3). Clearly,
the process converges after logarithmically many steps, to a local minimum of RMS(T ), in
overall time O((m+ n) log2 (m+ n) time.

Clearly, one expects the algorithm to converge faster (say, under the RMS measure)
when the initial placement of A is sufficiently close to B, in the sense that RMS(t0) is
small. Attempts to exploit such heuristics in practice are reported in [78, 120]. It would
be interesting to quantify this “belief”, and show that when RMS(t0) is smaller than some
threshold that depends on the layout of B, the algorithm converges after very few iterations.

Finally, we note that recent variants of the ICP technique [78, 120] cater to situations
where the point sets A and B are samples of points on two respective curves (or surfaces)
γA, γB. Then each point of A finds its nearest neighbor along γB (rather than in B), using
some polygonal (or polyhedral) approximation of γB. This tends to speed up the algorithm
in practice, as reported e.g. in [78, 120]. It would be interesting to extend the worst-case
analysis of this study to this scenario.



Chapter 5

A Single Cell in an Arrangement of
Convex Polyhedra in R

3

In this chapter we show that the combinatorial complexity of a single cell in an arrangement
of k convex polyhedra in 3-space, having n facets in total, is O(nk1+ε), for any ε > 0; the
main analysis is presented in Section 5.1, where we also show that the number of “special
quadrilaterals” on the unbounded cell ofA(P) is O(nk), which is one of the main ingredients
of the derivation of the above bound on the combinatorial complexity of the unbounded
cell of A(P). We then present an extension of our main result, and show that the overall
complexity of the zone of an algebraic surface patch of constant description complexity, or
the boundary of an arbitrary convex set in 3-space, in an arrangement of k convex polyhedra
in 3-space with n facets in total is also O(nk1+ε), for any ε > 0. In Section 5.2 we present
a deterministic algorithm (based on a divide-and-conquer scheme) that constructs a single
cell of such an arrangement in time O(nk1+ε log3 n), for any ε > 0. We give concluding
remarks and suggestions for further research in Section 5.3.

5.1 The Complexity of a Single Cell

Preliminaries. Let P = {P1, . . . , Pk} be a collection of k convex polyhedra in 3-space
having n facets in total. For simplicity of the analysis, we assume that the given polyhedra
are in general position. This excludes degenerate configurations, and allows us to assume
that no four polyhedron boundaries meet at a common point, no vertex of one polyhedron
lies on the boundary of another, no edges of two distinct polyhedra meet, and no edge of
a polyhedron meets the polygonal curve of intersection of the surfaces of any two other
polyhedra. As claimed in [27], this assumption involves no loss of generality, since we can
slightly perturb the vertices of the given polyhedra, so as to move them to general position,
and verify that the number of vertices, edges, and faces appearing on the boundary of a
given cell C of A(P) does not decrease.
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Figure 5.1: An inner vertex v. (a) and (b) The outer exterior of the four polyhedra P1, P2, P3, P
′,

coincides with the (unbounded) cell C. The polyhedra P1, P2, P3 create a quadrilateral ψ, that lies
on the facet F1 of P1 and is intersected by the fourth polyhedron P ′. All four vertices of ψ lie on the
boundary of C. (b) A cross-section through the facet F1 of P1, its intersections with P2, P3, P

′, and
the quadrilateral ψ. (c) The convex polygon ψ is formed on the cross-section through the facet F1

(represented by the plane of the figure) and the two polyhedra P2 and P3. As depicted in the figure, ψ
is an octagon, and three of its edges are intersected by the two bottom polyhedra. The five remaining
edges form the exposed convex chain γ, all of whose six vertices appear on ∂C.

We classify the vertices of A(P) as in [27]: An intersection vertex v of A(P) (i.e., not
a vertex of one of the polyhedra of P) is said to be an outer vertex if it is the intersection
of an edge of one polyhedron and the relative interior of a facet of another polyhedron.
Otherwise v is an inner vertex (that is, v is the intersection of the relative interiors of three
facets of three distinct polyhedra). The number of outer vertices in the entire arrangement
A(P) is O(nk), since each of the O(n) edges of the polyhedra of P intersects at most two
facets of any other polyhedron (see also [27]), so our main goal is to bound the number of
inner vertices of any given (or, as in our analysis, the unbounded) cell C of A(P). We note
that the total number of inner vertices of the entire arrangement A(P) is O(nk2); see [27]
for the easy proof.

Reducing to the case of the unbounded cell in an arrangement of bounded
polyhedra. In this section we show that the combinatorial complexity of C is O(nk1+ε),
for any ε > 0. In what follows, we assume that the polyhedra in P are bounded and that
C is the unbounded cell of A(P). These assumptions involve no loss of generality, since
the problem of bounding the combinatorial complexity of any single cell of A(P) can be
reduced to the above case. Indeed, let ∆ be a cell of A(P), and assume first that ∆ lies in
the complement of the union of the polyhedra in P, and that the polyhedra are bounded.
Let h denote a plane that intersects the interior of ∆ and does not pass through any vertex
of ∆; such a plane is easily seen to exist. We cut each polyhedron P of P by h, and leave
an arbitrarily small gap between the two resulting pieces of P , thereby splitting P into
two smaller polyhedra (P remains unchanged if it misses h). Let us denote the resulting
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collection of these polyhedra by P ′. It is easy to verify from the construction that ∆
becomes a portion of the unbounded cell C′ in the new arrangement A(P ′), and that the
number of vertices, edges, and faces of C′ is not smaller than the number of vertices, edges,
and faces of the original cell ∆. The new collection P ′ contains at most 2k polyhedra that
have at most 2(n + k) facets in total. Thus our asserted asymptotic upper bound on the
combinatorial complexity of the unbounded cell of A(P) also holds for any cell of A(P) (in
the complement of the union of P).

We next consider the case where the polyhedra in P may be unbounded. We note that
the notion of the unbounded cell of A(P) may not be well defined in this case. However,
we can transform the given polyhedra into a set of bounded polyhedra, by intersecting each
unbounded polyhedron P ∈ P with a large box enclosing all vertices of A(P) in its interior,
thereby obtaining a new set P ′′ of k bounded convex polyhedra with O(n + k) facets in
total. It is easy to see that any bounded cell in the original arrangement A(P) appears
unchanged in the resulting arrangement A(P ′′), and that any unbounded cell of A(P) is
contained in the unbounded cell of A(P ′′). In the latter case, the number of features of the
new unbounded cell is not smaller that those of the original cell. (To keep the polyhedra
in general position, we can intersect each polyhedron with a slightly shifted copy of the
bounding box; the complexity of the resulting unbounded cell may increase in this way.)

So far, we have only considered cells in the complement of the union of P. Suppose
next that the cell ∆ lies in the intersection K of l polyhedra of P (and outside all the
remaining ones). We first replace these l polyhedra by K. Clearly, this does not change
the combinatorial complexity of ∆. We now observe that the vertices of ∆ are either (i)
vertices of ∂K, (ii) outer vertices that lie on the edges of ∂K (some of which might have
been inner vertices before replacing the l original polyhedra by K), (iii) inner vertices on
∂K, or (iv) inner vertices of ∆ in the interior of K. Since the complexity of K is clearly
only O(n), there are at most O(n) vertices of type (i), at most O(nk) vertices of type (ii),
and all the vertices of type (iv) lie on the boundary of (one component of) the complement
of the union of the k − l remaining polyhedra. We now bound the number of vertices of
type (iii). Each such vertex v is created by the intersection of a facet F1 of K and the
intersection edge e of a pair P2, P3 of polyhedra (neither of which is K). Clearly, each such
edge e can intersect ∂K in at most two points, due to the convexity of K. It thus follows
that the overall number of such vertices is O(nk). We can thus ignore the l polyhedra
containing ∆, since the cell containing ∆ in the resulting subarrangement contains all but
at most O(nk) vertices, edges, and faces of ∆.

To summarize, we have shown that it suffices to analyze the complexity of the un-
bounded cell in an arrangement of k convex bounded polyhedra with a total of n facets.

In what follows, with a slight abuse of notation, we denote by C the closure of the
unbounded cell of A(P). In the analysis, we will be using subsets P ′ ⊆ P, and will denote
by C(P ′) the (closure of the) unbounded cell of A(P ′).
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The number of inner vertices. Let v be an inner vertex of C, which is incident to
three facets F1, F2, and F3 of three distinct respective polyhedra P1, P2, and P3. Then v is
incident to a convex polygon ψ obtained by the intersection of one of the facets, say facet
F1, and the two other polyhedra P2, P3. In this case, the polygon ψ = F1 ∩ P2 ∩ P3 lies
fully inside the union of P, except for (some of) its vertices, one of which is v (since v lies
on the boundary of the unbounded cell of A(P)). The cell C may contain other vertices
of ψ in addition to v. See Figure 5.1(a)–(b) for an illustration of the case where ψ is a
quadrilateral, and Figure 5.1(c) for the general case.

Rather than dealing with ψ as a single entity, we break it into a collection of pairwise
disjoint exposed chains. Such a chain is a maximal contiguous sequence of inner vertices
v0, v1, . . . , vj of ψ in counterclockwise order, such that each vi lies on ∂C, and each edge
vivi+1 does not intersect any other polyhedron of P. The length of a chain is the number j
of its edges (in particular, when j = 0 only one vertex of the chain lies on ∂C). Note that
we may have vj = v0 (when j > 2), that is, the chain may be the entire polygon ψ. Exposed
chains with v0 6= vj are called open, and chains with v0 = vj (with j > 2) are called closed.
See Figure 5.1(c). The length of a chain is not necessarily bounded by a constant, since
two polyhedra and a facet of a third polyhedron may intersect in a convex polygon with up
to Ω(n) vertices. However, we show below that the overall number of vertices of exposed
chains of length at least 5, as well as of all exposed closed chains, is O(nk). It therefore

suffices to consider only exposed open chains of length at most 4. We define V
(j)
0 (P), for

j ≥ 0, to be the maximum number of inner vertices of the unbounded cell of A(P) that lie
on exposed open chains of length at least j.

Our approach is to derive a recurrence relationship for the number of inner vertices, by
bounding each of the functions V

(j)
0 in terms of V

(j+1)
0 (with a special handling of V

(5)
0 ),

and the solution of the resulting system of recurrences will yield the asserted bounds. Note
that we actually seek a bound on the quantity V

(0)
0 (P), which bounds the overall number

of inner vertices of C (that lie on exposed open chains).
For the analysis, we define, analogously to [85], the level of a vertex w of A(P) to be l

if, by removing l polyhedra from P, none of which is incident to w, we make w a vertex of
the unbounded cell in the resulting subarrangement, and if l is the smallest number with
that property. Clearly, all vertices of C are at level 0. (In general, the set of l polyhedra
whose removal “exposes” w need not be unique.)

Lemma 5.1.1 For each j = 0, . . . , 4, and for any parameter ξ ≤ k, we have

V
(j)
0 (P) = O

(

ξ2E[V 0
0 (R)] + ξ3E[V

(j+1)
0 (R)] + nk

)

, (5.1)

where R is a random sample of k
ξ

polyhedra of P, and E[·] denotes expectation with respect
to the choice of R.

Proof: We fix 0 ≤ j ≤ 4, and let γ be an exposed open chain of length j ′ ≥ j but
less than 5, that is contained in an intersection polygon ψ (if j′ ≥ 5 then, as we will
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Figure 5.2: The charging scheme. (a) We trace the segment β = vz from a vertex v of a polygon ψ,
and charge v to the outer vertex z. (b) We trace the segment β = vu from a vertex v of a polygon
ψ, and encounter the polyhedra R1, R2 before reaching u ∈ ∂C. We charge the first ξ vertices wi,
assuming there are at least ξ of them. (c) When we remove these polyhedra, q becomes a vertex of
C, and the edge vq becomes a (portion of an) exposed chain.

show in Lemma 5.1.2, the overall size of these chains is O(nk)). Let v ∈ ∂C be the
last (most counterclockwise) vertex of γ, let e be the edge of ψ that emanates from v in
counterclockwise direction, and let q denote the other endpoint of e.

We traverse the line containing e from v towards q, and stop as soon as one of the
critical events listed below is encountered. In each case we charge v to certain features
encountered along the traced portion β. (We may stop either before or after reaching q, or
at q itself.)
Case (a): β ends at an outer vertex z (in this case z = q), before reaching any vertex of
C. We charge v to z. Note that z is charged in this manner only a constant number of
times, since along each edge emanating from z it is charged at most twice. Thus the overall
number of vertices v of this kind is O(nk); see Figure 5.2(a).
Case (b): β ends at a vertex u of C. Clearly, the relative interior of vq is disjoint from C.
If u = q, then, since v is the last vertex on the chain, the edge vq must intersect a fourth
polyhedron (other than the three that create the chain). Otherwise, if q is not a vertex of
C, β must contain q as an interior point; see Figure 5.2(b). Let t denote the number of
distinct polyhedra of P that intersect β (excluding the three defining ψ). We consider the
following two subcases:
Case (b.1): t ≥ ξ. In this case we charge v to a block of ξ points of intersection between β
and the first ξ polyhedra that we encounter during the traversal. Note that each polyhedron
intersects β in at most two points, and we choose the point of intersection that lies nearer
to v along β (at which β enters the corresponding polyhedron). Any such point w is an
inner vertex of A(P), and it can be charged up to three times (we omit the easy details).
By construction, each of the charged vertices w lies at level at most ξ, as is easily verified.

Next we obtain an upper bound for the number of inner vertices of A(P) that lie at level
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Figure 5.3: Proof of Lemma 5.1.2(a). The convex polygon M = F1 ∩ P2 is drawn in the plane of
the facet F1. The two chords c1, c3 lying on the boundaries of the two respective polyhedra P3, P

′,
connect the two edges e, e′ of M along the two respective intersection polygons ψ, ψ′. The additional
chord c2, connecting e and e′, lies on an intersection quadrilateral, and the chord c′2 lies on a pentagon
having an outer vertex (in the interior of M).

at most ξ, by applying the probabilistic analysis technique of Clarkson and Shor [53], in a
manner similar to that in [85]. That is, we choose a random sample R of r = k

ξ
polyhedra of

P, and construct the arrangement A(R). Let w be an inner vertex of A(P) at level l ≤ ξ,
and let L be a collection of l polyhedra whose removal makes w a vertex of C(R). The

probability that w shows up as a vertex of C(R) is at least
(k−l−3
r−3 )
(kr)

, since among all samples

of r polyhedra, those that contain the three polyhedra that form w and do not contain any

of the polyhedra of L make w a vertex of C(R). Hence, we have
∑ξ

l=0

(k−l−3
r−3 )
(kr)

Vl ≤ E[V 0
0 (R)],

where Vl = Vl(P) is the number of vertices w of A(P) at level l. As in [53] and [85], this
implies that, for r = k

ξ
, we have

∑ξ
l=0 Vl = O (ξ3E[V 0

0 (R)]). Since we charge v to a block
of ξ of these points, and none of these points is charged more than three times, this implies
that the number of inner vertices of C that fall into this subcase is O (ξ2E[V 0

0 (R)]).
Case (b.2): t < ξ. In this case, if we remove the t encountered polyhedra from the
arrangement (while retaining the three polyhedra that define ψ), the next vertex q of ψ
that we meet during the traversal must appear on the boundary of the unbounded cell C′
in the reduced arrangement, and the edge e = vq of ψ does not intersect in its interior any
of the remaining polyhedra. Thus γ ∪ e becomes (possibly a prefix of) an exposed chain of
length at least j + 1, and we charge v to q (note that q is charged up to six times in this
manner); see Figure 5.2(c) for an illustration.

Applying standard arguments, as in [53], [85], and above, one can easily show that the
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number of vertices v that fall into this case is O
(

ξ3E[V
(j+1)
0 (R)]

)

, where R is, as above, a

random sample of k
ξ

polyhedra of P.
Since we deal with chains of bounded length, considering only the last vertex in a chain

affects the bound by only a constant factor. Combining cases (a), (b.1), and (b.2), the
lemma follows. 2

Lemma 5.1.2 (a) V
(j)
0 (P) = O(nk), for j ≥ 5.

(b) The number of vertices on exposed closed chains is O(nk).

Proof: (a) Let γ be an exposed open chain of at least five edges, lying on an intersection
polygon ψ = F1 ∩ P2 ∩ P3, where F1 is a facet of P1, and P1, P2, P3 are three distinct
polyhedra in P. By definition, γ consists of only inner vertices, and thus its edges must
alternate between edges incident to ∂P2 and edges incident to ∂P3; without loss of generality,
assume that at least three of the edges of γ lie on ∂P2. That is, the convex polygon
M = F1 ∩ P2 has at least three edges that lie on ∂P2, and γ contains at least two chords
(edges of γ lying in the interior of M whose endpoints lie on ∂C) that connect pairs of these
edges. We now argue that, once we fix a pair e, e′ of edges of M , they can be connected by
at most two chords, each of which belongs to a distinct exposed chain γ of length at least
five, with at least three edges that lie on ∂P2 (two of which are e, e′). Indeed, suppose that
there are three chords c1, c2, c3 of this kind that connect e and e′. Since these are edges
of exposed chains, they do not cross each other, so one of them, say c2, lies in between the
other two. Moreover, the intersection polygon φ that contains c2 as an edge must also be
fully contained in the region bounded by e, e′, c1, c3. See Figure 5.3. This implies that
either φ is a quadrilateral, or φ is a closed polygon with at least five edges, all of whose
vertices that lie in the interior of M are outer vertices of A(P). In either case, c2 does not
lie on an exposed chain with at least five edges (as assumed above).

We now fix a facet F and a polyhedron P ∈ P, different from the one containing F in its
boundary, and define the graph GM = (VM , EM), associated with the polygon M = F ∩P ,
as follows. The set VM of vertices of GM consists of all edges of the polygon M that lie on
∂P . For each exposed chain γ that visits at least three edges of M as above, we connect
two vertices v1, v2 ∈ VM by an edge in EM , if they represent two distinct respective edges of
M that are connected by a chord along γ. In addition, if there are two chords connecting
v1, v2, we arbitrarily choose one of them to represent the edge (v1, v2), ensuring that GM

is simple. Our construction implies that the number of edges |EM | is proportional to the
overall size of all exposed chains γ that involve at least three edges of M . The “natural”
drawing ofGM shows that it is planar. Hence, by Euler’s formula, |EM | = O(|VM |). That is,
the overall size of the chains under consideration is proportional to |VM |. Since

∑

F,P |VM |,
summed over all facets F and polyhedra P ∈ P, is O(nk), we obtain that the overall size
of all the exposed chains of length at least five is O(nk), as asserted.
(b) In view of (a), it suffices to consider exposed closed chains of length 3, 4, and 5 (for
longer chains, we can pretend that they are open, by discarding one edge, and then apply
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Figure 5.4: From special quadrilaterals to special vertices. (a) The outer exterior of the three
polyhedra P1, P2 and P3 coincides with the unbounded cell C. These polyhedra create a special
quadrilateral ψ of C. (b) The cross-section through the facet F1 of P1, P2, P3, and ψ. (c) The only
surviving facets that defined ψ are the base F1 of P1, and the two adjacent walls F2 of P2 and F3 of
P3, and thus v is a special vertex of the unbounded cell C′. All four “upper” sides of v are accessible
in C′.

(a)). We first note that such a chain, i.e., the polygon ψ containing it, cannot be a triangle
or a pentagon: As is easily verified, one of the vertices of ψ must then be the intersection
of two adjacent edges that lie on the boundary of the same polyhedron, implying that this
vertex is an outer vertex of A(P), contrary to the definition of chains.

Let us assume then that ψ is a quadrilateral. Thus either ψ is empty (i.e., does not
meet any polyhedron other than P1, P2, P3), or else it must contain an outer vertex of
A(P) in its interior (that is obtained by the intersection of the interior of ψ and another
polyhedron P ′). In the latter case, we simply charge ψ to the outer vertex that it contains
(note that this vertex is charged only once in this manner), and thus the overall number
of charges in this case is O(nk). In the former case, adapting a term from [27], which was
also used in [25] and [112], we call ψ a special quadrilateral of C; see Figure 5.4(a)–(b).

We claim that the number of special quadrilaterals of C is O(nk). In the analysis we
“open up” the polyhedra of P, by sampling only some of their facets. As a consequence,
we now have to regard C as an open cell. We first define the following notions by modifying
similar definitions in [85]: (i) An x-extreme vertex v of C is a vertex whose x-coordinate is
the smallest or largest in the closure of some connected component of N ∩ C, where N is a
sufficiently small ball centered at v; see Figure 5.5(a) for an example (in two dimensions).
(ii) A point p ∈ ∂C, with x-coordinate x0, is said to be critical (with respect to the
x-direction) if for every sufficiently small ball N centered at p there exists a connected
component K of N ∩ C, such that K ∩ πx0 is disconnected, where πξ denotes the plane
x = ξ, but K ∩ πx is connected either for all x < x0, or for all x > x0 sufficiently close to
x0; see Figure 5.5(b) for an example.

We distinguish between different sides of an inner vertex v: Suppose that v is created by



5.1 The Complexity of a Single Cell 95

v

C

R2

R1

q

∆1

C

x0

∆2

(a) (b)

Figure 5.5: (a) The outer exterior of the two rectangles R1, R2 coincides with the unbounded
cell C of their arrangement. The intersection vertex v is a locally x-extreme vertex of C. (b)
The outer exterior of the two tetrahedra ∆1, ∆2 coincides with the unbounded cell C of their
arrangement. The intersection point q of an edge of ∆2 and a facet of ∆1 is a critical point.

the intersection of three facets F1, F2 and F3. The planes spanning these facets subdivide
space into eight open octants. A side of v is a pair (v, O), where O is one of these octants.
Let F denote the set of all the n facets of the polyhedra in P. Consider any subset F ′ ⊂ F
and its arrangement A(F ′). We say that (v, O) is incident to (an open) cell C′ of A(F ′),
if v is a vertex of the closure of C′, and the intersection of O with a sufficiently small
neighborhood of v is contained in C′.

Now let ψ = F1∩P2∩P3 be a special quadrilateral (with four vertices on the boundary
of C), where F1 is a facet of some polyhedron P1, and P2, P3 are two other polyhedra in P.
Suppose that ∂ψ is formed by the intersection of F1 with the facets F2 and F ′

2 of P2, and
F3 and F ′

3 of P3. We refer to the facet F1 as the base of ψ, and to the facets F2, F
′
2, F3, F

′
3

as the walls bounding ψ. See Figure 5.4.
Following the above notation, and continuing to assume that ψ = F1 ∩ P2 ∩ P3 is a

special quadrilateral, let F ′ be a subset of F that contains F1, F2, and F3, and does not
contain F ′

2, F
′
3. Let C′ denote the unbounded (open) cell of A(F ′). We then say that the

vertex v = F1 ∩ F2 ∩ F3 is a special vertex of C′. Clearly, v is a vertex of C′. The halfspace
bounded by the plane through F1 and not containing P1 contains four of the eight sides of
v, and all these four sides are incident to C′. Indeed, removal of F ′

2, F
′
3 exposes all these

sides of v to the unbounded cell. See Figure 5.4.
Following the approach of Clarkson and Shor [53], we choose a random subset F ′ ⊂ F

of expected size n
2
, by selecting each facet of F independently with probability 1

2
. Let

φ′(F ′) be the overall number of special vertices of C′. We then bound the expected number
E [φ′(F ′)] of special vertices of the unbounded cell of A(F ′), as defined above, and show
that the actual number φ(P) of special quadrilaterals of C (before the sampling) is at most
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proportional to E [φ′(F ′)].

We claim that each special vertex v of C′ is a locally x-extreme point of C′. Indeed,
let F1, F2, F3 be the facets incident to v, and let O1, O2, O3, O4 be the four octants of v
that lie in the exterior halfspace of F1 (the one which does not contain P1). All four sides
(v, Oi) of v, for i = 1, . . . , 4, are incident to C′. The plane π that passes through v and
is orthogonal to the x-axis misses exactly one of these octants, showing that v is a locally
x-extreme vertex of C′.

We now apply the analysis of [85], which shows that the number of x-extreme vertices
in a single cell of A(F ′) is proportional to one plus the number of critical points of that
cell. Thus it is sufficient to bound the number of critical points of C′. Each critical point
must be either a vertex of a polyhedron in P, or an outer vertex of A(P), because no inner
vertex can be critical, as is easily verified. Hence, the overall number of critical points of
C′, and thus also the number of special vertices of C′, is only O(nk).

We now bound the number φ(P) of special quadrilaterals in terms of E [φ′(F ′)]. A
special quadrilateral ψ becomes a special vertex if its base and an adjacent pair of its walls
are chosen in F ′ and neither of the two other walls defining ψ is chosen in F ′. Thus the

probability that ψ becomes a special vertex is at least 4
(

1
2

)5
= 1

8
, since there are four pairs

of adjacent walls defining ψ, and the four corresponding events are pairwise disjoint. Hence
E [φ′(F ′)] ≥ 1

8
φ(P), which implies that φ(P) = O(nk), as asserted. This completes the

proof of part (b). 2

Remarks: 1) The proof of (a) is similar to the one given in [112], although the context in
which we apply it, and some of the details, are quite different.
2) The number of special quadrilaterals is tight in the worst case, as follows from a construc-
tion of Aronov et al. [27], where the number of special quadrilaterals in the complement
of the union of the polyhedra in the resulting collection is Ω(nk). In their construction,
the complement of the union is connected, and thus coincides with the unbounded cell in
the arrangement of these polyhedra, so the lower bound immediately follows; see [27] for
further details.
3) The analysis of [85], which shows that the number of x-extreme vertices in a single cell
is proportional to one plus the number of critical points of that cell, can be extended to
any number m of cells (see [85] for the technical details). Thus the analysis in (b) applies
to any number m of cells in the arrangement, and yields a bound of O(m + nk) on the
overall number of special quadrilaterals of these cells (where all four vertices of each special
quadrilateral appear on the boundary of a common cell).

The solution of the recurrences derived in Lemmas 5.1.1 and 5.1.2 is V
(j)
0 (P) ≤ Aj(ε)nk

1+ε,
for any ε > 0 and 0 ≤ j ≤ 4, where the constants Aj(ε) depend only on ε and j. In par-
ticular, the number of inner vertices of the unbounded cell of A(P) is at most A0(ε)nk

1+ε,
for any ε > 0. The proof of this claim is routine but technical, and is thus given in
Appendix 5.A.

Since the number of outer vertices is only O(nk), routine arguments imply that the
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overall complexity (number of vertices, edges, and faces) of C is O(nk1+ε), for any ε > 0,
and that, as asserted above, this carries over to any cell of A(P). The lower bound follows
from a construction of Aronov et al. [27]. In summary, we have obtained our main result:

Theorem 5.1.3 Let P be a collection of k convex polyhedra in R
3 with n facets in total.

The combinatorial complexity of a single cell of A(P) is O(nk1+ε), for any ε > 0, where
the constant of proportionality depends on ε. This bound is almost tight in the worst case,
since there are constructions where the complexity of a single cell is Ω(nkα(k)).

Zone complexity. The preceding analysis can be extended to derive an upper bound on
the overall complexity of the zone of a surface σ in A(P). (Recall that the zone of σ in
A(P) is the set of all open cells of A(P) that are intersected by σ, and the complexity of
the zone is the sum of the complexities of these cells.) We obtain:

Theorem 5.1.4 Let P be a collection of k convex polyhedra in R
3 with n facets in total,

and let σ be an algebraic surface of constant degree, or the boundary of an arbitrary convex
set in 3-space. Then the combinatorial complexity of the zone of σ in A(P) is O(nk1+ε),
for any ε > 0, where the constant of proportionality depends on ε, and on the degree of σ
in the algebraic case.

Proof: Extending the technique presented in [60] and in [85], we cut the boundary of each
polyhedron P ∈ P along its curve of intersection with σ, thus obtaining a new collection
P ′ of O(n) subpatches whose overall complexity is O(n+ k). We leave an arbitrarily small
gap between the resulting subpatches of P , so that all cells of the zone of σ form a single
cell C′ in the arrangement A(P ′). However, each of these patches does not necessarily
have the shape of a convex polyhedron, and thus the result of Section 5.1 is not directly
applicable in this case. Nevertheless, we can extend the preceding analysis and show that
the combinatorial complexity of C′ is O(nk1+ε), for any ε > 0.

We first claim that the overall number of intersection vertices on σ itself is O(nk). Any
such vertex is the intersection of σ with some edge e = F1∩F2, where F1, F2 are two facets
of two distinct polyhedra P1, P2 ∈ P. Since either σ has constant description complexity
or is the boundary of a three-dimensional convex set, it intersects e in a constant number
of points (two points in the latter case). Since the overall number of edges e of this kind
is O(nk), the asserted bound follows. We now extend the charging scheme described in
Section 5.1, as follows. We trace a segment β starting at a vertex v on ∂C′ (that does not
lie on σ), and stop when one of the critical events listed in Lemma 5.1.1 is encountered
along β. Note that in case (b) β ends at a vertex u of C′ (see Lemma 5.1.1), which may lie
on σ. In this case, we charge v to u, and, as is easily verified, u is charged at most twice in
this manner, and thus the overall number of charges of this kind is O(nk). Combining this
case with the cases listed in Lemma 5.1.1, we obtain the same recurrences as those given in
Lemma 5.1.1. In these recurrences we also use the fact that the number of locally x-extreme
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vertices of C′ is O(nk). This follows by bounding the number of locally x-extreme vertices
by 1 plus the number of critical points of C′, using the general relationship of [85]. In this
case, each critical point is either an outer vertex, as above, or a vertex on σ, so the number
of these points is still O(nk). We thus conclude that the combinatorial complexity of C′ is
O(nk1+ε), for any ε > 0. 2

5.2 Constructing a Single Cell

In this section we present a divide-and-conquer algorithm that constructs the unbounded
cell in an arrangement of bounded convex polyhedra. Specifically, let P = {P1, . . . , Pk} be
a collection of k bounded convex polyhedra in 3-space having n facets in total, and let C
be the unbounded cell of A(P). We present below an efficient algorithm that constructs
C, whose overall running time is O(nk1+ε log3 n), for any ε > 0. At the end of this section
we present a slight modification of the algorithm so that it constructs any specified cell
in A(P), e.g., the cell containing a given marking point p not lying on any polyhedron
boundary.

We apply a variant of the divide-and-conquer scheme presented in [92]. We partition
the given polyhedra into r roughly equal subsets P1, . . . ,Pr, each of which consists of ⌈k

r
⌉

polyhedra, where r is a sufficiently large constant that we will fix shortly. Let ni be the
overall number of facets of the polyhedra of Pi, for i = 1, . . . , r, and let Pi,j = Pi∪Pj , for 1 ≤
i < j ≤ r. We recursively compute the unbounded cells Ci,j of the arrangements A(Pi,j),
and “merge” them (that is, superimpose them) to extract from them the unbounded cell
C in the entire arrangement A(P). As we will show, the merge step can be performed
in overall time O

(

rnk1+ε log3 n
)

= O
(

nk1+ε log3 n
)

, for any ε > 0, which implies the
following recurrence for the maximum time T (k, n) for constructing the unbounded cell in
an arrangement of k convex polyhedra with n facets in total:

T (k, n) ≤
∑

1≤i<j≤r

T

(

2k

r
, ni + nj

)

+ cnk1+ε log3 n, (5.2)

where c is a sufficiently large constant that depends on r, and where
∑r

i=1 ni = n. Using
induction on k, it is easy to see that T (k, n) = O(nk1+ε log3 n), for any ε > 0, where the
constant of proportionality depends on our choice of r and ε.

The merge step of the algorithm uses the following ray shooting technique (similar ideas
were used in [23]). Suppose we are at a vertex v ∈ ∂C that lies on three facets F , F ′, F ′′

of three respective polyhedra P ∈ Pi, P
′ ∈ Pj , P

′′ ∈ Pl, for some triple of distinct indices
i, j, l. (Vertices that lie on facets of polyhedra in only two subcollections Pi, Pj , are easier
to handle.) We shoot from v along the intersection segment e = F ∩ F ′ in the direction
that proceeds from v along ∂C (that is, away from P ′′), until we hit a new polyhedron,
thereby reaching a new vertex v′ of ∂C. We then shoot from v′ along its two other incident
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Figure 5.6: The merge step. (a) Shooting along an edge of ∂C (the white portion) within F . (b) The
short blue segment crosses a contiguous subsequence of long red segments within σ(µ). (c) Vertical
extensions that connect different components of E on F .

edges along ∂C, and keep exploring ∂C in this manner until no new vertices are found. See
Figure 5.6(a). At this point we have traced a complete connected component of 1-skeleton
E of ∂C, i.e., the union of the edges of ∂C. We now look for a new vertex of ∂C that lies
on a different connected component of E, and repeat the above procedure until the entire
1-skeleton E is constructed. Completing the representation of C is then quite routine (and
thus omitted).

To complete the presentation of the algorithm, we need to describe two steps: (i) How
to perform the ray shootings. (ii) How to find a point on each connected component of E.

We note that a variant of both of these steps was previously introduced by Aronov and
Sharir [23], where they present an algorithm that constructs m cells in an arrangement of
n convex plates that lie in planes with only a constant number of orientations. However,
we improve and generalize both steps of the algorithm: (i) Our ray-shooting machinery
supports O(log3 n) query time in more general setups, whereas the query time in the ray-
shooting machinery of [23] is O(logn) times the number of distinct orientations (which can
be very expensive in our case). (ii) We simplify the second step of the algorithm of [23] by
exploiting the topological properties stated in Lemma 5.2.1 — see below.

Consider task (i). Fix a facet F of some polyhedron P ∈ Pi, and consider the problem
of shooting within F from a vertex v along an edge e of some ∂Ci,j . Fix a third subcollection
Pl, and consider the subtask of finding the first point (if any) where the portion of e along
which we shoot hits some polyhedron of Pl. This is equivalent to asking for the first segment
of ∂Ci,l lying on F that this portion of e hits. We need to repeat this step for each l 6= i, j,
and take among all the (at most) r − 2 output vertices the one that is nearest to v, or the
other endpoint of e if it does not hit any other segment.

We thus face the following “trichromatic” subproblem. We have three fixed subcollec-
tions, Pi, Pj , Pl, to which we refer as the green collection, the red collection, and the blue
collection, respectively. We fix a green facet F , and denote by R = RF the set of all edges
of ∂Ci,j on F (green-red edges) and by B = BF the set of all edges of ∂Ci,l on F (green-blue
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edges). To simplify the notation, we refer to the edges of R (resp., B) simply as red (resp.,
blue). We thus need to preprocess these two sets to support efficient ray-shooting queries
that involve the red and the blue edges — see below.

Efficient ray-shooting machinery. Our ray-shooting machinery uses a hereditary seg-
ment tree data structure T (see [45, 117]) that stores the set S = R ∪ B of the red and
the blue segments on F , using their projections on the x-axis (in an appropriate generic
two-dimensional coordinate frame attached to F ). Put N = |S|. Each interior node µ of T
represents an interval along the x-axis, which is the union of the “atomic intervals” associ-
ated with the leaves of the subtree rooted at µ. Let σ(µ) be the vertical slab containing all
points whose x-coordinates lie in the interval that µ represents. A segment s ∈ S is said to
be long in a slab σ(µ) if s crosses σ(µ) from side to side, otherwise, if at least one endpoint
of s lies in σ(µ), s is short in σ(µ). We store in each node µ of T two respective long lists of
red and of blue long segments, and two additional respective short lists of red and of blue
short segments, as follows. If a segment s is long in σ(µ) but not in the parent slab of σ(µ),
then we store s in the appropriate red or blue long list of µ (the standard segment tree
rule). The short red (blue) list of µ contains all red (blue) segments stored in all long red
(blue) lists of the proper descendants of µ. As shown in [45, 117], the overall size of the lists
stored in all the nodes of T , and the time to construct them, is O(N logN). As observed
in [45, 117], each red-blue intersection point arises as the intersection of a long segment
and another (short or long) segment in exactly one slab σ(µ). We sort each of the long red
lists within each slab σ(µ) in their (well-defined total) ascending vertical order (i.e., the
order in the y-direction, in the F -coordinate frame), and store them, in this order, at the
leaves of a balanced binary tree Tµ. Since the red long segments are pairwise disjoint, the
set of the red long segments that a blue (short or long) segment b crosses (within σ(µ))
is a contiguous subsequence of the red long list, and can be represented as the disjoint
union of O(logN) subtrees of Tµ; see Figure 5.6(b) and [45, 117]. We thus query Tµ with
each blue segment b that is stored at µ, and store b at each of the O(logN) subtrees of Tµ

that constitute the output to the query. We thus obtain in each node ν of Tµ a complete
bipartite graph Rν × Bν , where Rν is the set of red long segments stored at the leaves of
the subtree rooted at ν, and Bν is the set of all blue segments (long and short) that reach ν
in their query. Every pair of segments e ∈ Rν , e

′ ∈ Bν intersect each other (within σ(µ)).
We construct an analogous structure for the blue long list and the red segments in σ(µ).
The overall running time needed to construct the trees Tµ and the corresponding bipartite
graphs, over all nodes µ of T , is O(N log2N).

Suppose now, that we query with a ray that starts at some point u, and proceeds from
u along a portion ρ′ of a red segment ρ. For each node µ of T that stores ρ in one of its
lists we do the following. If ρ is stored in the short list of µ, we locate the two endpoints
of ρ′ in the blue long list of µ, and report the first blue long segment (nearest to u) lying
between these two endpoints. If ρ is stored in the long list of µ, then we visit each of the
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O(logN) nodes ν of Tµ on the search path to ρ, and, searching in the corresponding Bν ,
find the first blue segment in that list hit by ρ′. The overall query time in Tµ is O(log2N),
thus the query takes a total of O(log3N) time. The final output of the query is the first
blue segment that the ray hits, among all reported blue segments.

In summary, we maintain for each facet F of a polyhedron P ∈ Pi, for 1 ≤ i ≤ r, r− 1
trees T as above, which correspond to all r−1 sets of edges of ∂Ci,j , for j 6= i, that lie on F ,
and each ray-shooting query accesses r−2 such trees. Since r is a constant, a ray-shooting
query can be performed in overall time O(log3 n).

Tracing all the components of E. Consider next task (ii), of finding a point on each
connected component of 1-skeleton E of ∂C. We first show

Lemma 5.2.1 Let K be a connected component of
⋃P. Then the intersection of ∂K and

∂C (i.e., the common boundary of K and C) is connected.

Proof: In the proof, we replace C by its closure, and thus regard C as a closed set. Recall
also that we assume that the polyhedra in P are in general position. We use the three-
dimensional version of the Jordan curve theorem, which asserts that a closed surface in R

3 (a
connected embedded 2-manifold without boundary) separates the three-dimensional space
into two connected (disjoint) components (see, e.g., [89, Proposition 2B.1]). Specifically,
we proceed as follows.

Let H be a connected component of the common boundary of K and C. We claim that
H is a closed 2-manifold (without boundary). Indeed, being a manifold is a local condition.
Let p be a point on H , and let N be a sufficiently small neighborhood of p. Then, due
to the general position assumptions, N ∩ K is either (locally) (i) a halfspace, in case p
lies in the interior of a two-dimensional face of H , or (ii) a convex dihedral wedge (or its
complement), if p appears on an edge of H , or (iii) a trihedral cone, if p coincides with
a vertex of H (the cone is the complement of a convex cone in case p coincides with an
inner vertex, and non-convex (with a non-convex complement) if p coincides with an outer
vertex). Therefore in all the above cases N ∩H is locally a disk, and thus K is a connected
polyhedral set whose boundary is a (possibly not connected) polyhedral 2-manifold without
boundary, and so is C.

Assume now, for the sake of contradiction, that the common boundary of K and C has
at least two connected components. Let H1, H2 be two of these boundary components.
Then, applying the three-dimensional variant of the Jordan curve theorem, we obtain that
H1 separates R

3 into two disjoint open connected regions R1, R2, where R1 contains K and
R2 contains C. Since C is connected, the second boundary component must be contained
in R2. But then it is clear that K cannot be connected, which results in a contradiction. 2

We first describe how we construct, for each connected component K of
⋃P, the entire

portion EK of E that lies on ∂K. Let F be a fixed facet of some P ∈ Pi. F contains
r − 1 planar subdivisions Sj, each formed by the edges of ∂Ci,j on F , for some j 6= i. We
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first remove those vertices of each union Ci,j on F that lie inside other unions Ci,l (this can
be accomplished by r − 2 point locations of each vertex in the other subdivisions). We
then draw one or two vertical extensions (upwards and/or downwards in the y-direction
of the F -frame) from each surviving vertex of each subdivision Sj , into the interior of the
corresponding regions F ∩∂Ci,j , and stop as soon as these extensions meet another segment
(that belongs to one of the r−1 subdivisions), or reach the boundary of F ; see Figure 5.6(c)
for an example. This can be easily done in time O(r|F | logn) = O(|F | logn), where |F | is
the total number of edges of the unions ∂Ci,j on F , for j 6= i.

Consider the graph G whose vertices are the vertices of EK and the endpoints of the
vertical extensions that lie on edges of EK, and whose edge set is the union of the edges of
EK and the above vertical extensions (where edges that contain vertical extension endpoints
are partitioned into sub-edges at these points). We claim that G is connected. Indeed, we
observe, using Lemma 5.2.1, that each pair u, v of vertices of G is connected along a path
π on the common boundary of C and K. Consider any connected portion π′ of π that
intersects some facet F . It is easily checked that the endpoints of π′ lie on edges of ∂C
(and of ∂K). Since the vertical extensions on F decompose F ∩ ∂C into simply connected
regions, we can replace π′ by the concatenation of appropriate boundary portions of the
regions intersected by π′, and thus obtain a new path π∗ that connects u to v and is
composed only of edges of G. (Technically, some portions of π∗ may not traverse complete
edges of G, in which case we simply discard these portions.) Hence G is connected.

Let K be a connected component of
⋃P, and let EK denote E ∩ ∂K ⊆ ∂C, as above.

Suppose we are given a starting point vertex of EK. Having found such a vertex, we start
the repeated ray-shooting procedure along ∂C, in the manner described above, but with the
following modification. When the shooting reveals a new edge e of EK, we check whether e
contains any endpoint of some vertical extension. For any such extension, we add its other
(one or two) contacts with EK to the set of points from which further ray shootings should
be attempted. See Figure 5.6(c). In other words, the modified ray-shooting mechanism
traces the graph G defined above. Since G is connected and the union of its edges contains
EK, we construct the entire EK in this manner. Finding a starting point on each EK is
done as follows. The highest vertex v of a polytope that has not yet been traversed is a
candidate for a new starting point, provided that the upward vertical ray from v either does
not hit any other polyhedra or hits a polyhedron at a point that belongs to the already
traced boundary of C. This shooting can be accomplished in overall time O(k2 log n), using
standard techniques involving vertical ray-shooting in 3-space (see, e.g., [23] for a variant
of this technique).

In conclusion, the overall running time of the merge step is easily seen to beO(nk1+ε log3 n),
for any ε > 0. As argued above, this also bounds the running time of the entire algorithm.

Constructing any specified cell in A(P). We now show how to slightly modify the
previous algorithm so that it constructs the cell of A(P) containing a given marking point
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p (not lying on any polyhedron boundary). With a slight abuse of notation, let C denote
this cell. Let us denote by P ′ the subset of the polyhedra of P that contain p in their
interior (as in the case of the unbounded cell, we may have P ′ = ∅); clearly, C is contained
in
⋂P ′.

We now construct
⋂P ′ in O(n logn) time, as the intersection of O(n) halfspaces. Next,

we pass some plane π0 through p, and split any polyhedron P ∈ P \P ′ that π0 crosses into
two subpolyhedra P−, P+, both bounded by π0, which the algorithm regards symbolically
as slightly separated from each other. Let P∗ denote the new set of polyhedra (excluding
those in P ′). We next construct the unbounded cell of A(P∗ \ P ′) in O(nk1+ε log3 n) time,
for any ε > 0. Finally, we merge these two cells using our merge procedure (in this case we
only merge two cells rather than O(r2) cells as in the original description of this procedure).

We summarize below our analysis:

Theorem 5.2.2 Let P be a collection of k bounded convex polyhedra in R
3 with n facets in

total, and let p be a given marking point not lying on any polyhedron boundary. Then the
cell C of the arrangement A(P) that contains p can be constructed in time O(nk1+ε log3 n),
for any ε > 0, where the constant of proportionality depends on ε.

Discussion. We note that our algorithm, though efficient, is not output-sensitive, since
the number of vertices that appear on the boundary of some of the recursively computed
unbounded cells Ci,j may be significantly larger than those that appear on the boundary of
the (final) unbounded cell C. In this case, the merge step eliminates most of these vertices
when C is constructed.

5.3 Concluding Remarks

We have presented a nearly tight bound on the combinatorial complexity of a single cell
in an arrangement of k convex polyhedra in R

3 with n facets in total, thus settling a
conjecture of Aronov et al. [27], which asserts that the complexity of a single component of
the complement of the union of these polyhedra is close to O(nk). We have also extended
our result to derive an upper bound on the overall complexity of the zone of a low-degree
algebraic surface patch, or the boundary of an arbitrary convex set, in an arrangement of
k convex polyhedra in 3-space with n facets in total. Finally, we presented a deterministic
algorithm that constructs a single cell of an arrangement of this kind in overall running
time O(nk1+ε log3 n), for any ε > 0.

We note that the combinatorial upper bound that we obtained in this study can be
used to improve other combinatorial bounds on substructures in arrangements of convex
polyhedra in higher dimensions. Consider the problem of bounding the combinatorial com-
plexity of the lower envelope of k convex polyhedra in R

4 with n facets in total. The
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three-dimensional version of this problem was solved by Huttenlocher et al. [92], who pre-
sented an upper bound of O(nkα(nk)). In their technique, they divide the polyhedra into
two subcollections of approximately equal size, referred to as the “red” collection R and
the “blue” collection B. Then they bound the increase in the number of red faces caused
by the addition of the facets of the blue polyhedra to the already existing red envelope,
and vice versa, and, using an appropriate recursion scheme, show that the overall combina-
torial complexity of the lower envelope is proportional to the increase (when each of R, B
contains roughly k

2
polyhedra). As shown in [92], the increase is bounded by the number of

reflex vertices in the arrangement and the overall complexity of the zone of the boundary
of each blue facet F in the three-dimensional arrangement AF induced by intersecting F
(currently being added to the envelope) with all original red facets and previously added
blue facets. An inspection of the proof given in [92] shows that it can be extended to four
dimensions. The number of reflex vertices in the four-dimensional arrangement is easily
seen to be O(n2k). The overall complexity of all these zones is bounded as follows. Let F
be a blue facet. The intersection of F with each previously added polyhedron (or with an
added portion of a blue polyhedron) is a three-dimensional convex polyhedron (possibly
bounded by a portion of the boundary of F ). Let PF be the collection of these polyhedra,
and let tF be the overall number of their facets. Applying the bounds stated in this study,
the zone complexity of the boundary of F in the arrangement A(PF ) is O(tFk

1+ε), for
any ε > 0, and since

∑

P∈B

∑

F∈P tF = O(n2) (as can be easily verified), it follows that
the overall complexity of these zones, over all blue facets F , is O(n2k1+ε), for any ε > 0.
Thus the overall increase is bounded by O(n2k1+ε), which implies that the combinatorial
complexity of the lower envelope is O(n2k1+ε), for any ε > 0. That is, we have

Theorem 5.3.1 The combinatorial complexity of the lower envelope of k convex polyhedra
in R

4 with n facets in total is O(n2k1+ε), for any ε > 0, where the constant of proportionality
depends on ε.

An open problem that this study leaves is to tighten the small remaining gap between
the upper and the lower bounds on the complexity of a single cell, or at least to improve
the bound to O(nk · polylog(k)). We note that in an attempt to derive a tighter bound,
we tried to apply the techniques of Aronov and Sharir [24] and Tagansky [126] for upper
bounding the complexity of a single cell in an arrangement of n (d − 1)-simplices in R

d,
as well as the technique of Aronov et al. [27] for bounding the complexity of the union
of k convex polyhedra in R

3 with n facets in total. Nevertheless, we did not manage to
adapt these techniques so that they yield bounds that depend also on k. However, for small
values of k, we can use the bound O(k3 + nk log k), presented by Aronov et al. [27], on the
complexity of the union of the polyhedra. In this case, one can easily conclude that the
complexity of the unbounded cell in the arrangement of the polyhedra is O(nk log k), for
any k ≤ √n.

It would be intersecting to extend our results to higher dimensions. An easy lower
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bound in d-dimensions, where d > 2 is even, is obtained by the construction presented by
Aronov et al. [27], in which we consider a planar collection of k

d/2
convex polygons with a

total of n
d/2

edges, so that the unbounded face in the two-dimensional arrangement induced

by these polygons has Ω(nα(k)) vertices on its boundary (see [26]). Next, we consider
a family of d/2 mutually orthogonal 2-flats in d-space, and place one copy of the two-
dimensional configuration into each 2-flat. We then extend each polygon into a prism in
the remaining d− 2 coordinates. As shown in [27], the number of vertices on the boundary
of the unbounded cell in the arrangement induced by the k prisms, having a total of n
facets, is at least Ω(nd/2αd/2(k)). The construction for odd d > 3 is similar and yields
Ω(kn⌊d/2⌋α⌊d/2⌋(k)) vertices on the boundary of the unbounded cell in the arrangement
(see [27] for further details). The best known upper bound in d > 3 dimensions is O(nd−1+ε),
for any ε > 0, presented by Basu [33]. Nevertheless, obtaining a sharp upper bound seems
at the moment elusive, and requires developing new topological arguments that help to
bound the number of extreme points and critical points that appear on the boundary of a
single cell in the arrangement.

Finally, another technical problem that this study raises is to improve the dependence
of the running time on n by a logarithmic factor. It would seem that this could be done
using fractional cascading [44] in the ray-shooting machinery, but so far we have not been
able to apply this enhancement.
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5.A Appendix - Solving the recurrence

In this appendix we solve the recurrence inequalities given in Lemma 5.1.1, using induction
on the number k of input polyhedra, and show that V

(j)
0 (P) ≤ Aj(ε)nk

1+ε, for any ε > 0
and 0 ≤ j ≤ 4, where the constants Aj(ε) depend only on ε and j. The proof is a
straightforward generalization of the analysis of [85]. For the sake of completeness, we
repeat some of the details given in [85], and modify the analysis to fit into the context of
our problem.

Lemma 5.1.1 clearly holds for all k ≤ k0, for any fixed constant threshold k0, by choosing
the coefficients Aj = Aj(ε) sufficiently large. Consider the case where k > k0, and suppose
that the claim holds for all k′ < k. Using the induction hypothesis, it is easily verified that,
for 0 ≤ j ≤ 4,

E[V
(j)
0 (R)] ≤ Aj

n

ξ

(

k

ξ

)1+ε

,

and that E[V
(5)
0 (R)] = O

(

nk
ξ2

)

. Indeed, consider the case j ≤ 4. Since the size of R is fixed

and equal to k
ξ
, we have E[V

(j)
0 (R)] ≤ AjE[nR]

(

k
ξ

)1+ε

, where nR is the overall number of

facets of the polyhedra in R. Setting r = k
ξ
, each original facet f is chosen with probability

(k−1
r−1)
(kr)

= r
k

= 1
ξ

(this is the probability that the polyhedron containing f is chosen), from

which the claim follows easily. The case j = 5 is handled in exactly the same manner.
We first rewrite (5.1), using a different parameter ξj for each 0 ≤ j ≤ 4, as follows

V
(j)
0 (P) ≤ c

(

ξ2
jE[V

(0)
0 (R)] + ξ3

jE[V
(j+1)
0 (R)] + nk

)

, (5.3)

for appropriate positive constants c > 1 and 1 < ξj ≤ k, for 0 ≤ j ≤ 4, that are sufficiently
large. In particular, we have for j = 4,

V
(4)
0 (P) ≤ c

(

ξ2
4E[V

(0)
0 (R)] + (ξ4 + 1)nk

)

.

We put ξj = ξε
j+1, for 0 ≤ j ≤ 4. We now apply the induction hypothesis in the right-

hand side of (5.3), and conclude that the asserted bounds continue to hold for k, n as well,
provided that the following inequalities are satisfied:

A4 ≥
cA0

ξε
4

+ cξ1−ε
4 +

c

ξε
4

, (5.4)

Aj ≥
cA0

ξε
j

+ cξ1−ε
j Aj+1 +

c

ξε
j

, (5.5)

for j = 0, . . . , 3.
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We choose

A4 > 2c

(

ξ1−ε
4 +

1

ξε
4

)

and Aj =
(5− j)c4−j

ξε
j

ξε
4A4,

and require that
5c5

ξε5

4

<
1

2
. (5.6)

Using simple algebraic arguments, the inequality in (5.4) is equivalent to

A4 ≥
5c5A4

ξε5

4

+ c

(

ξ1−ε
4 +

1

ξε
4

)

,

and due to (5.6), the choice of A4 satisfies the inequality, as is easily verified. Applying
again inequality (5.6), it follows that the general inequality in (5.5) is implied by

c ≤
(

c4−j − 1

2

)

A4ξ
ε
4.

Since the right-hand side increases as j decreases, it suffices to verify the above inequality
for j = 4, which trivially holds by our choice of A4. This completes the induction step, and
thus establishes the solution of the recurrence for the functions V

(j)
0 (P). 2
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Chapter 6

The Union of Fat Tetrahedra in
Three Dimensions

In this chapter we show that the combinatorial complexity of the boundary of the union
of n fat tetrahedra in 3-space is O(n2+ε), for any ε > 0, and that this bound is almost
tight in the worst case. The main results and analysis are given in Section 6.1, and then
we show the (relatively easy) extension to the case of fat arbitrarily oriented triangular
prisms. Using a simple specialization of our technique, we derive in Section 6.2 an almost
linear bound on the combinatorial complexity of the union of fat triangles in the plane. We
give concluding remarks and present open problems in Section 6.3.

6.1 The Union of Fat Tetrahedra

6.1.1 Preliminaries and overview

We borrow the following notation from Pach et al. [112] (some of which has already been
mentioned in the introduction). A dihedral (resp., trihedral) wedge is the intersection of two
(resp., three) halfspaces. A dihedral (resp., trihedral) wedge is α-fat if its dihedral (resp.,
solid) angle is at least α. A trihedral wedge is also associated with the three dihedral angles
at its edges. It is easily verified that there exists constant α′ > 0, which depends only on
α, such that, for any α-fat trihedral wedge, each of its three dihedral angles is at least α′ 1.

Similar definitions and observations apply to α-fat tetrahedra, namely, tetrahedra all
of whose solid angles are at least α. In particular, there exist (the same) constant α′ > 0,
such that, for any α-fat tetrahedron, each of its six dihedral angles is at least α′.

Let T = {T1, . . . , Tn} be a collection of n α-fat tetrahedra in 3-space, and let U =
⋃ T

denote their union. For simplicity of the analysis, we assume that the given tetrahedra are

1By intersecting the wedge with a sphere centered at it apex, this amounts to asserting that if the
(normalized) area of a spherical triangle is at least α then each of its angles is at least α′.
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∆

Ci+1

v

Ci

Figure 6.1: Illustrating a step in the construction of the Dobkin-Kirkpatrick hierarchical decompo-
sition: The vertex v is peeled off Ci, the convex hull of the “hole” that it leaves is constructed, and
the new facets are connected to v by tetrahedra that fill up this portion of Ci \ Ci+1.

in general position (see Chapter 5 for similar definitions, and [27] for an argument that this
involves no loss of generality). This general position assumption implies that each vertex of
the arrangement A(T ) of the (facets of the) tetrahedra of T lies on exactly three tetrahedra
facets, and is thus incident upon only a constant number of edges and faces. This is easily
seen to imply that the combinatorial complexity of U is O(|V (T )|), where V (T ) is the set
of vertices of A(T ) that appear on the boundary of the union.

We classify the vertices of A(T ) as in Chapter 5, that is, an intersection vertex v of
A(T ) (i.e., not a vertex of one of the tetrahedra of T ) is either outer or inner. Trivially,
the number of outer vertices in the entire arrangement A(T ) is O(n2), so our main goal is
to bound the number of inner vertices that appear on ∂U . The main result of this chapter
is:

Theorem 6.1.1 The complexity of the union of n α-fat tetrahedra in R
3 is O(n2+ε), for

any ε > 0, where the constant of proportionality depends on ε and α. The bound is almost
tight in the worst case.

It is relatively easy (using standard techniques; see, e.g., [124]) to construct a set of n
α-fat tetrahedra that yield Ω(n2α(n)) vertices on the boundary of their union (see also [110,
112] for further details). We thus devote the remainder of this section to deriving the upper
bound stated in Theorem 6.1.1.

Curve-sensitive cuttings. We use a divide-and-conquer approach, based on a simple
variant of curve-sensitive cuttings (see Section 1.1.4, Chapter 3, and [95]). Specifically, let
F be the set of all facets of the tetrahedra in T . For any r ≤ n there exists a (1/r)-cutting
Ξ for F , which is a partition of R

3 into O(r3 log3 r) simplices, such that every simplex (also
referred to as a cell of Ξ) is crossed by at most n/r facets of F , with the additional property
that any edge of a tetrahedron in T crosses at most O(r log2 r) cells of Ξ.
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One can obtain such a cutting using the following (simple) construction (see also Chap-
ter 3 for a similar construction)2. We first draw a random sample R of O(r log r) of the
planes containing the facets of F , and add to that collection four additional planes that
define a sufficiently large simplex σ0 that encloses all the vertices of A(F). We form the
arrangement A(R) of R, consider only its portion within σ0, and triangulate each of its
cells C contained in σ0, using the Dobkin-Kirkpatrick hierarchical decomposition of convex
polytopes [58].

The number of simplices is proportional to the overall complexity of A(R), and is thus
O(r3 log3 r). The ε-net theory [49, 90] implies that, with high probability, each simplex of
the resulting decomposition is crossed by at most n/r (planes containing) facets of F . We
pick one sample R for which this property holds, and fix it in the foregoing analysis.

So far, the use of the Dobkin-Kirkpatrick hierarchy is not essential—many other trian-
gulation schemes for the cells of A(R) (e.g., bottom-vertex triangulation) would do equally
well. However, the Dobkin-Kirkpatrick hierarchy is crucial for our divide-and-conquer ap-
proach in a manner that will be described later on.

Here is a brief review of the technique, given for the sake of completeness, and also
because we will exploit several features of the construction in our analysis. Let C ⊆ σ0 be
a fixed (bounded) cell of A(R), which is a convex polytope. The hierarchical decomposition
of C is a sequence C1, . . . , Ck of k ≥ 1 convex polytopes, such that (i) C1 = C and Ck is a
simplex, (ii) Ci+1 ⊂ Ci, for 1 ≤ i < k, (iii) V (Ci+1) ⊂ V (Ci), for 1 ≤ i < k, where V (P )
is the set of the vertices of a polytope P , and (iv) the vertices in V (Ci) \ V (Ci+1) form an
independent set in the planar skeleton graph of ∂Ci, for 1 ≤ i < k.

It is shown in [58] that there always exists a hierarchical decomposition for C that satis-
fies k = O(log |V (Ci)|),

∑k
i=1 |V (Ci)| = O(|V (C)|), and maxi maxv∈V (Ci)\V (Ci+1) deg(v, Ci) ≤

c, for some absolute constant c ≥ 3, where deg(v, Ci) is the degree of v in the skeleton graph
of ∂Ci. Specifically, we obtain Ci+1 from Ci by the following steps: (a) Find an indepen-
dent subset V ∗

i ⊆ V (Ci) of vertices of degree at most c, whose size is Θ(|V (Ci)|) (e.g., an
independent set of size |V (Ci)|/24 whose vertices have degree at most 11 can be shown to
exist, as a simple consequence of Euler’s polyhedral formula). (b) For each v ∈ V ∗

i , remove
v and its adjacent edges and facets from Ci. (c) The removal of such a vertex v leaves a
“hole” in Ci. The convex hull of the set of neighboring vertices of v is constructed, and its
outer (triangular) facets are added as new facets of Ci+1, thereby closing the hole that v
has left 3. (d) Finally, the gap between ∂Ci and Ci+1 in the neighborhood of v (formally,
the connected component of int(Ci) \ Ci+1 whose closure contains v) is triangulated into
O(1) simplices by connecting v with each of the new facets of Ci+1 that bound the gap; see
Figure 6.1 for an illustration.

2For simplicity, we do not use the refined technique of [47, 102], which improves the size of the cutting
down to O(r3), since it does not affect the asymptotic bound that we obtain on the complexity of the
union, and since the analysis is cleaner without this refinement.

3The independence of V ∗

i guarantees that the holes, and their hulls, are openly pairwise disjoint.
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A simplicial subcell ∆ is said to be generated at step i if it has a vertex v that is removed
from Ci; that is, ∆ is one of the simplices that fill up the gap formed by the removal of v.
Note that the three other vertices of ∆ belong to Ci+1.

The Dobkin-Kirkpatrick decomposition has several useful properties that we will exploit.
One of these properties is that a line that crosses a cell τ of A(R) crosses only O(log r)
of its simplices (it can visit at most two gaps of Ci \ Ci+1, for each of the logarithmically
many indices i). Since a line (or, rather, an edge of a tetrahedron in T ) crosses at most
O(r log r) cells of A(R) (it has to cross a plane of R to move from one cell to another), it
crosses at most O(r log2 r) simplices, as claimed.

The problem decomposition—an overview. We construct the cutting Ξ, as just
described, with a sufficiently large constant value of r, and bound the number of inner
vertices of the union in each cell of Ξ separately. Fix a cell ∆ of Ξ. We classify each facet
F ∈ F that intersects ∆ as being either long in ∆, if ∂F ∩ ∆ = ∅, or short, otherwise
(similar definitions have been used in Chapter 3). As just discussed, the number of cells ∆
in which F is short is O(r log2 r).

Let us fix a tetrahedron T ∈ T . For each cell ∆ of Ξ, either (i) ∆ is disjoint from T ,
or (ii) ∆ is fully contained in T , or (iii) ∆ intersects only one or two facets of T , or (iv) ∆
intersects at least three facets of T . In case (i) T has no effect on the union within ∆. In
case (ii) ∆ is fully covered and does not contain any portion of the boundary of the union.
In case (iii) we say that T meets ∆ as a dihedral wedge (which can also be a halfspace),
and call T a D-tetrahedron in ∆, and in case (iv) we say that T meets ∆ as a tetrahedron
or a trihedral wedge, and call T a T-tetrahedron in ∆.

If ∆ meets only one facet F of T , we replace T by the halfspace bounded by that facet
and containing T . Similarly, if ∆ meets two facets of T , we replace T by the dihedral wedge
formed by the planes supporting these facets and containing T . Clearly, these replacements
do not affect the union of the tetrahedra within ∆. The case where at least three facets of
T meet ∆ (case (iv)) is more involved—this is after all the situation we started with. What
saves us is the property that the number of T-tetrahedra is small on average. This is one of
the main technical insights in our analysis, and is established below in Lemmas 6.1.3 and
6.1.4.

Each inner intersection vertex v of the union that appears in ∆ is consequently classified
as either DDD, if all three facets that are incident to v belong to three respective D-
tetrahedra in ∆, DDT, if two of these facets belong to two respective D-tetrahedra and
one belongs to a T-tetrahedron, DTT, if one of these facets belongs to a D-tetrahedron
and two belong to two respective T-tetrahedra, or TTT, if all three facets belong to three
respective T-tetrahedra. In all four cases, the three relevant tetrahedra are distinct.
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Figure 6.2: The proof of Lemma 6.1.2.

6.1.2 T-tetrahedra are scarce

Our next goal is to show that, for each tetrahedron T ∈ T , the overall number of simplices ∆
of Ξ, such that T crosses ∆ and is a T-tetrahedron in ∆, is only O(r log2 r). We emphasize
that this part of the analysis does not use the fatness of T — the bound holds for any
tetrahedron T .

Let us fix a tetrahedron T of T , and consider the set of simplices ∆ in Ξ that meet at
least three facets of T . It suffices to consider only simplices ∆ in which all facets of T are
long: The edge-sensitivity of the cutting implies that the overall number of simplices ∆
that are crossed by an edge of T is O(r log2 r).

We establish the above bound in two steps, in the respective Lemmas 6.1.3 and 6.1.4.
In the first step (Lemma 6.1.3) we bound the number of cells of the untriangulated ar-
rangement A(R) that meet at least three facets of T ; a crucial ingredient of the analysis is
established in Lemma 6.1.2. Then we fix such a cell C, and bound (in Lemma 6.1.4) the
number of sub-simplices of Ξ in C that have this property. We first prove the following
geometric property:

Lemma 6.1.2 Let W be a trihedral wedge with apex a, let h1, h2 be two planes, whose
intersection line crosses W . For i = 1, 2, denote by h+

i the halfspace bounded by hi and
containing a, and by h−i the complementary halfspace. Then at least one of the wedges
C = h+

1 ∩ h−2 , C ′ = h−1 ∩ h+
2 is crossed by at most two facets of W .

Proof: Project everything onto some plane h0 orthogonal to both h1, h2, and denote the
projection of object u by u0. The line ℓ = h1 ∩ h2 projects to a point ℓ0, and h0

1, h
0
2 are

two lines passing through ℓ0 and partitioning h0 into four quadrants, so that one of them,
Q0, contains a0, and the two quadrants Q,Q′ adjacent to Q0 are the projections of C, C ′,
respectively.
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Let F1, F2, F3 be the facets of W , and let ei denote the edge incident to Fi and Fi+1, for
i = 1, 2, 3 (where e3 is incident to F3 and F1, and we also denote it by e0). The edges ei

project to three respective rays e0i that emanate from a0. Note that, due to the assumption
that ℓ crosses W , ℓ0 must be contained in the projection of W . We next consider the
following two possibilities:
(a) e01, e

0
2, e

0
3 are contained in a common halfplane, bounded by a line λ through a0. Assume,

without loss of generality, that e02 lies between e01 and e03. Then F 0
1 and F 0

2 are openly
disjoint, so at least one of them, say F 0

1 , does not contain ℓ0; see Figure 6.2(a). In this case
the ray ρ from a0 through ℓ0 is disjoint from F 0

1 (except for its apex). We next claim that
F 0

1 lies fully in one of the halfplanes bounded by (the line containing) ρ. It will then easily
follow that F 0

1 cannot meet both Q and Q′, because each of them is fully contained on a
different side of the line containing ρ. Indeed, if the ray opposite to ρ is contained in F 0

1 ,
then it implies that ℓ0 and F 0

1 lie on different sides of λ, but then ℓ0 is disjoint from the
projection of W , contradicting our assumption.

(b) e01, e
0
2, e

0
3 are not contained in a common halfplane. In this case, all three projections F 0

1 ,
F 0

2 , F 0
3 are openly disjoint and cover h0, so ℓ0 is contained in exactly one of them, say F 0

2 .
See Figure 6.2(b). The line λ through a0 and ℓ0 fully contains one of the two other facets,
say F 0

3 , on one side. As in (a), each of the quadrants Q, Q′ lies fully on one (distinct) side
of this line. Hence, one of these quadrants cannot meet F 0

3 , a contradiction that completes
the proof. 2

Lemma 6.1.3 Let T be an arbitrary tetrahedron. The overall number of cells C of A(R),
for which at least three facets of T meet C, each as a long facet in C, is O(r log r).

Proof: Let F1, F2, F3 be a triple of facets of T , let W be the trihedral wedge induced by
these facets, and let a denote its apex (which is a vertex of T ). We show below that the
overall number of cells C of A(R), for which all three facets of W meet C, each as a long
facet in C, is O(r log r) (note that if Fi is long in C then the extended facet of W is also
long). By repeating this argument for each triple of facets of T , the lemma follows.

Let H0 denote the set of all the planes in R that intersect W . Each such plane intersects
W in either a wedge or a triangle (which might be unbounded). We first dispose of all planes
that intersect W in a wedge. Each such plane h is disjoint from one of the facets of W , and
thus one of the halfspaces that it induces, say, the positive side h+ of h, meets only two
facets of W . Thus all the cells of A(R) under consideration are contained in h−. Hence
all these cells lie in the convex polyhedron K, which is the intersection of the respective
halfspaces h− induced by the above “good” planes h.

Let H denote the set of “bad” planes in H0; each of them intersects W in a (possibly
unbounded) triangle. Let C denote the collection of all cells of A(H) that meet all three
facets of W but do not meet any edge of W . Fix a facet F1 of W , form the intersections
C∩F1, over all cells C ∈ C, and denote by C1 the resulting collection of polygons. Note that
C1 is a collection of cells of the 2-dimensional arrangement, within the plane hF1 containing
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Figure 6.3: (a) The cross section of a cell of A(H) on F1, and the pair of lines ℓ1, ℓ2 that it charges.
(b) The vertices v1,2 and v3,4 cannot both be edges of G, because the polygon P3,4 (partially shaded)
is fully contained in the wedge spanned by the respective planes containing ℓ1, ℓ2 (and opposite to the
wedge that contains P1,2), which meets only two facets of W .

F1, of the set L1 of the intersection lines between the planes of H and hF1 . The number
of unbounded polygons in C1 is thus O(|H|) = O(r log r), so we focus on the bounded
elements of this collection. Fix such a polygon P , and let v be its vertex which is the most
counterclockwise as seen from the apex a (from some fixed side of hF1). Denote the two
intersection lines that are incident to v and bound P by ℓ1, ℓ2, where ℓ1 separates P and
a within hF1, and ℓ2 does not separate them; see Figure 6.3(a). We then charge P to the
pair (ℓ1, ℓ2); clearly, the charge is unique (the two respective planes h1, h2, which intersect
hF1 in ℓ1, ℓ2, can intersect only once on F1).

Let G be the graph whose vertices are the intersection lines ℓ ≡ h ∩ hF1 , for h ∈ H,
and whose edges are all the charged pairs (ℓ1, ℓ2) just defined. We claim that G is planar.
It will then follow that the number of edges of G is at most 3|H| − 6 = O(r log r), which
thus also bounds the number of cells of A(H) that meet all three facets of W . Any such
cell C induces at most one cell of A(R) that can touch all three facets of W , namely the
intersection C ∩K. Hence the number of such cells of A(R) is also O(r log r).

To establish the claim, assume, without loss of generality, that a is the origin in hF1,
and apply the standard duality transform that maps points (u, v) to the respective lines
ux+ vy+ 1 = 0 and vice versa (where lines through a are ignored). This duality maps the
lines ℓ in L1 to points ℓ∗, and each of the above pairs (ℓ1, ℓ2) is mapped to the segment
connecting the points ℓ∗1, ℓ

∗
2 dual to the respective lines ℓ1, ℓ2. By construction, and by the

properties of this duality, any point q within the polygon P ∈ C1 which is represented by
(ℓ1, ℓ2), is mapped to a line q∗ that separates the origin o and ℓ∗1, and has ℓ∗2 on the same
side as the origin. That is, q∗ intersects the segment ℓ∗1ℓ

∗
2. Conversely, for any line q∗ that

separates ℓ∗1 and ℓ∗2 as above, its primal point q must lie in the wedge between ℓ1 and ℓ2
that contains P . Moreover, if q∗ separates ℓ∗1 and ℓ∗2 in the opposite way (i.e., so that the
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origin and ℓ∗1 lie on the same side of q∗), q lies in the opposite wedge between ℓ1 and ℓ2.

The collection of dual segments, as constructed above, defines a straight-line embedding
of G in the dual plane, and we claim that this drawing is crossing-free. Indeed, suppose
to the contrary that two edges ℓ∗1ℓ

∗
2, ℓ

∗
3ℓ

∗
4 of the drawing cross each other. The preceding

discussion then implies that, back in the primal plane hF1 , each of the resulting vertices
v1,2 = ℓ1∩ℓ2, v3,4 = ℓ3∩ℓ4 lies in the double wedge of the other vertex that does not contain
a. Denote by P1,2 (resp., P3,4) the polygon of C1 whose most counterclockwise vertex is v1,2

(resp., v3,4). In particular, one of these vertices, say v1,2 lies clockwise to the other vertex
v3,4, in which case v1,2 must lie in the wedge of ℓ3, ℓ4 that contains P3,4, and v3,4 must lie
in the wedge of ℓ1, ℓ2 opposite to the one containing P1,2. Let C1,2 (resp., C3,4) denote the
cell of A(H) that contains P1,2 (resp., P3,4); also, for i = 1, . . . , 4, let hi denote the plane
of H containing ℓi. Then, since C1,2 meets all three facets of W , it follows by Lemma 6.1.2
that the wedge spanned by h1, h2, and opposite to the wedge containing P1,2 (and C1,2),
meets only two facets of W , but then C3,4 (which is clearly contained in this wedge, since
it meets the wedge, and, being a cell of A(H), cannot cross h1 or h2) cannot meet all three
facets of W , contrary to assumption; see Figure 6.3(b). This contradiction implies that G
is planar, and this, as argued above, implies the assertion of the lemma. 2

Remark: As already noted, Lemma 6.1.3 is fairly general, and makes no assumption about
fatness of T . In fact, we believe that in certain circumstances it might also be generalized
to situations where T is the boundary of a non-polyhedral convex shape. In this case, the
assertion would be that the number of cells of A(R) that touch at least three pairwise
disjoint connected sub-regions on T is O(r log r) (perhaps with some additional restrictions
on these sub-regions, or with a larger number of sub-regions). We consider the lemma to
be of independent interest, and believe that it (and/or extensions of it of the kind just
suggested) will find additional applications in related problems.

Lemma 6.1.4 Let T ∈ T be a fixed tetrahedron, and let C be a cell of A(R) that meets at
least three facets of T , but not any vertex of T . Then the number of simplicial subcells ∆
of C that meet at least three facets of T , each as a long facet in ∆, is O(log r).

Proof: As in Lemma 6.1.3, it is sufficient to assume that T is a trihedral wedge, and to
show that the number of simplicial subcells ∆ of C that meet all three facets of T , each as
a long facet in ∆, is O(log r).

We first claim that if all the three facets F1, F2, F3 of T are long in ∆, there must be
one (triangular) facet F∆ of ∆ that meets all these facets. This easily follows from the fact
that each of these facets intersects ∆ in either a triangle or a quadrilateral, which yields at
least 9 intersections between facets of T and facets of ∆. Since ∆ has four facets, at least
one of them must meet all three facets of T , as claimed. In addition, each of F1, F2, F3

intersects F∆ in a distinct pair of edges, as is easily verified; see Figure 6.4.

Let Ci denote the convex polytope obtained from C after i − 1 steps of the Dobkin-
Kirkpatrick hierarchical decomposition, for i ≥ 1 (see [58] and earlier in this section).
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F∆

F1

Figure 6.4: One facet F∆ of ∆ meets all three facets of T , in the depicted manner.

Recall that a simplicial subcell ∆ is said to be generated at step i if it has a vertex v that
is removed from Ci; that is, v belongs to the independent set of vertices of Ci collected
at the i-th step. Recall also that v and its adjacent edges and facets are removed, they
leave a hole in Ci. The convex hull of the other vertices of that hole is constructed, and its
(triangular) facets are connected to v to form O(1) simplices that fill up the corresponding
gap between Ci and Ci+1, and ∆ is one of these simplices. Note that the three other vertices
of ∆ belong to Ci+1, and that all three edges of ∆ incident to v lie on the boundary of Ci.
See Figure 6.1.

In what follows, we fix a decomposition step i, and show that there are only O(1)
simplices ∆ of C that are generated at step i and have the properties in the lemma. The
discussion above implies that for each such simplex ∆, the corresponding facet F∆ appears
either on the boundary of Ci, or on the boundary of Ci+1, or as an “internal” facet of a
hole of Ci that is connected to the peeled-off vertex v of ∆, as described above.

Let u denote the apex of T . By assumption, u /∈ C. Let F (i) denote the collection of all
facets F∆ of simplicial subcells ∆ of C that are generated at step i, such that F∆ meets all
three facets of T and such that these facets are all long in ∆. To simplify the analysis, we
first prune away facets from F (i), until F (i) has the property that, for each peeled-off vertex
v of Ci there is at most one simplex ∆ incident to v, generated at step i, and contributing
a facet to F (i). By construction, this reduces the size of F (i) by at most a constant factor.

We partition F (i) into the following seven subcollections:

• F (i)
1 , which consists of all facets of Ci in F (i) that are visible from u (regarding Ci itself

as opaque); that is, the relative interiors of all the segments connecting u to points on any

F∆ ∈ F (i)
1 do not meet ∂Ci;

• F (i)
2 , which consists of all facets of Ci in F (i) that are invisible from u; that is, all the

segments connecting u to any F∆ ∈ F (i)
2 cross ∂Ci (once) before reaching F∆;

• F (i)
3 , which consists of all facets of Ci+1 in F (i) that are not facets of Ci and are visible

from u (regarding Ci+1 itself as opaque); that is, the relative interiors of all the segments

connecting u to points on any F∆ ∈ F (i)
3 do not meet ∂Ci+1; any such segment crosses ∂Ci

(once) before reaching F∆;
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Figure 6.5: (a) The facets F∆, F∆′
are internal to two distinct holes generated at step i, and are

fully visible from u (with Ci+1 opaque). The ray ρ that hits F∆ at q and then F∆′
at q′ must cross

∂Ci at least twice between q and q′, which is impossible. (b) Illustrating the proof that no ray from

u can cross two distinct facets in F (i)
7 .

• F (i)
4 , which consists of all facets of Ci+1 in F (i) that are not facets of Ci and are invisible

from u; that is, all the segments connecting u to any F∆ ∈ F (i)
4 cross ∂Ci+1 (once) before

reaching F∆; as in the previous case, any such segment also crosses ∂Ci (once) before
reaching F∆;

• F (i)
5 , which consists of all facets in F (i) that are internal to the holes (components of

Ci \ Ci+1) generated at step i, and are fully visible from u (in the presence of Ci+1 as an
opaque object);

• F (i)
6 , same as F (i)

5 , but consisting of facets that are fully invisible from u (fully occluded
by Ci+1); and

• F (i)
7 , same as F (i)

5 , F∆
6 , but consisting of facets that are partially visible from u (partially

occluded by Ci+1).

We next claim that each subset F (i)
k consists of at most one facet. This implies that

F (i) has constant size, which, since the decomposition has only O(log r) steps, implies the
bound stated in the lemma. We first need the following easy technical claim.

Claim: If we project the triangles of F (i)
k , for any fixed 1 ≤ k ≤ 7, centrally from u, the

projected triangles are pairwise disjoint.

Proof: The claim easily follows for F (i)
1 , F (i)

2 , F (i)
3 , F (i)

4 by definition and by the con-

vexity of Ci, Ci+1. Consider F (i)
5 , and assume to the contrary that it contains two facets

F∆, F∆′
, such that a ray ρ emanating from u meets both of them, hitting, say, first F∆

and then F∆′
at two respective points q, q′. By the initial pruning process, F∆ and F∆′

lie
in different holes of Ci \ Ci+1. By definition of F (i)

5 , qq′ is disjoint from Ci+1, and is fully



6.1 The Union of Fat Tetrahedra 119

τ

l2

l1

l3

Figure 6.6: The centrally projected facets of some F (i)
k , and the central projections l1, l2, l3 of the

three respective facets F1, F2, F3 of T . The triangle τ is the unique triangle that meets all three
edges l1, l2, l3.

contained in Ci, by convexity. This, however, is impossible, because qq′ has to cross from
some hole of Ci \ Ci+1 to a different one, and the boundary of such a hole is contained in
∂Ci∪∂Ci+1, and thus qq′ must cross ∂Ci (at least twice), a contradiction; see Figure 6.5(a)
for an illustration.

The case of F (i)
6 is argued similarly. Here again qq′ is disjoint from Ci+1, because uq

must have already crossed ∂Ci+1 twice. Finally, for F (i)
7 , we argue as follows. As above, the

segment qq′ is fully contained in Ci and crosses from one hole of Ci \Ci+1 to another hole,
so it must cross ∂Ci+1 twice. Since F∆ is partially occluded by Ci+1, there exists another
ray ρ′ from u that first crosses ∂Ci+1 and then hits F∆. This, however, is impossible, since
it would have implied that F∆ and ∂Ci+1 cross each other; this is proved by continuity,
moving ρ towards ρ′, within the plane that they span, and is illustrated in Figure 6.5(b).
This completes the proof of the claim. 2

Let us now fix one of the subsets F (i)
k . The central projection of ∂T from u is a triangle

whose three edges l1, l2, l3 are the “head-on” projections of the respective facets F1, F2, F3.
Each facet F∆ ∈ F (i)

k projects to a triangle that meets all three edges l1, l2, l3. However,

since the projections of the facets F∆ of F (i)
k are pairwise disjoint, at most one of them can

touch all three edges l1, l2, l3, as is easily checked; see Figure 6.6.
As argued above, this completes the proof of the lemma. 2

We have thus established the following theorem:

Theorem 6.1.5 For any tetrahedron T , the overall number of simplicial cells ∆ of Ξ that
meet at least three facets of T is O(r log2 r).

Proof: Lemma 6.1.3 shows that only O(r log r) cells C of A(R) meet three facets of T .
Of those, at most four contain an apex of T , and they have a total of O(r log r) sub-
simplices. For any other cell, only O(log r) of its simplices have this property, as shown in
Lemma 6.1.4. 2

Remark: With some additional care, the proof of Lemma 6.1.4 can be extended to the
case where C contains an apex of T . However, as just argued, the validity of Theorem 6.1.5
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does not require this stronger property.

6.1.3 The overall recursive analysis

We now apply the following recursive scheme (a similar scheme has been presented in Chap-
ter 3 (see also [72]), and for the sake of completeness we repeat some of these details). Each
step of the analysis involves a simplex ∆0, which, in the initial step, is the entire 3-space,
(or, rather, a sufficiently large simplex that contains all the vertices in the arrangement of
the tetrahedra), and in further recursive steps is a cell of a cutting of some larger simplex,
from the preceding recursive level.

We construct a (1/r)-cutting Ξ of the arrangement of the planes that support facets of
the tetrahedra that cross ∆0, using the Dobkin-Kirkpatrick hierarchical decomposition of
each cell of the corresponding arrangement, as described above. Let ∆ be a simplicial cell
of Ξ and let D∆ (resp., T ∆) denote the set of D-tetrahedra (resp., T-tetrahedra) within ∆.
Put ND = N∆

D := |D∆|, and NT = N∆
T := |T ∆|. (In the actual construction of the cutting

we draw two respective random samples of O(r log r) planes, where the first sample is taken
from the facets of the D-tetrahedra in ∆0, and second one is taken from the facets of the
T-tetrahedra in ∆0. This guarantees, with high probability, the property that the number

of D-tetrahedra (resp., T-tetrahedra) in each subcell of ∆0 is at most |D∆0 |
r

(resp., |T ∆0 |
r

)).

During each step of the recursion, after partitioning ∆0 into smaller subcells ∆, we
immediately dispose of any new DDD and DDT vertices within each subcell ∆, and show
that the overall number of these vertices is O

(

(ND +NT )NT
1+ε
)

, for any ε > 0. These
vertices are not considered during any further recursive substep, but only the remaining
DTT and TTT vertices.

The recursion bottoms out when NT ≤ c, for some absolute constant c ≥ 3. In this
case we bound the number of the remaining inner DTT and TTT vertices of the union in
a brute-force manner, and thus obtain an overall bound of O(NT

2ND +NT
3) = O(ND + 1)

on the number of these vertices.

To bound the number of DDD vertices in ∆, we replace each tetrahedron in D∆ by
the equivalent halfspace or dihedral wedge, and face the problem of bounding the overall
number of vertices appearing on the boundary of the union of ND halfspaces and α′-fat
dihedral wedges4 (where, as argued earlier, α′ > 0 is a constant that depends only on α). As
shown in [112], the number of such vertices is O(N2+ε

D ), for any ε > 0, where the constant
of proportionality depends on ε and α. In an additional major step of the analysis, we
derive, in Section 6.1.4 below, a similar bound on the number of DDT-vertices.

The recursive scheme. With all this machinery at hand, we can now proceed to the
proof of Theorem 6.1.1. The analysis begins with the initial cell ∆0, with N∆0

T = n,

4Clearly, any DDD-vertex of the full union in ∆ is also a vertex of the union of D∆.
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N∆0
D = 0, and recursively subdivides ∆0, using a (1/r)-cutting of the preceding kind, for

some sufficiently large constant parameter r. (See Chapter 3 for similar considerations.)

For simplicity, write in what follows n
T

= N∆0
T , and n

D
= N∆0

D . Theorem 6.1.5 implies
that there are only O(rn

T
log2 r) crossings between the cells of Ξ and their T-tetrahedra.

It thus follows that, for any r2 log2 r ≤ s ≤ M = O(r3 log3 r), where M is the size of Ξ,

the number of cells in Ξ that are crossed by at least
rn

T
log2 r

s
T-tetrahedra is at most

O(s). (The case s < r2 log2 r cannot arise, since each cell of Ξ is intersected by at most
n
T

r

tetrahedra of T ∆0.) We partition the set of cells of Ξ into at most log
(

M
r2 log2 r

)

= Θ(log r)

subsets, so that the i-th subset Ξi contains O(2ir2 log2 r) cells ∆ of Ξ, each of which satisfies

n
T

2ir
≤ N∆

T = |T ∆| ≤ 2n
T

2ir
,

for i = 1, . . . , log
(

M
r2 log2 r

)

. Note that |T ∆| = O
(n

T

r2

)

for each of the O(r3 log3 r) cells

∆ in the last subset. For the number of D-tetrahedra in any cell ∆, we use the bound
N∆

D = |D∆| ≤ n
D

+n
T

r
, for each ∆ ∈ Ξ.

As in Chapter 3 (and [72]), we recurse in each cell ∆ of Ξ, where the goal of the
recursive step at ∆ is to obtain an upper bound for the number of DTT and TTT vertices
in ∆ (including vertices of these kinds that appear on ∂∆). Thus, before entering the
recursion, we need to bound the number of new DDD and DDT vertices within ∆ (or on its
boundary). These are vertices v that were DTT or TTT vertices at the parent cell ∆0 of
∆, but have become DDT or DDD vertices at ∆. Partition D∆0 into k = ⌈n

D
/n

T
⌉ subsets

D1, . . . ,Dk, each consisting of at most n
T

D-tetrahedra. The preceding observations imply
that any new DDD or DDT vertex in ∆ must be a DDD or a DDT vertex of the union
of the wedges and tetrahedra of Dj ∪ T ∆0, clipped to ∆, for some j = 1, . . . , k (because it
was a DTT or a TTT-vertex in ∆0, and so involves at most one wedge of D∆0). By the
results of [112] and of Section 6.1.4, the number of such vertices, for any fixed j, is thus
O(n

T
2+ε), for any ε > 0. Hence, summing over j = 1, . . . , k, the overall number of new

DDD and DDT vertices in ∆ is O(kn
T

2+ε) = O((nD +n
T
)n

T
1+ε), for any ε > 0. Repeating

the analysis to each subcell ∆ of ∆0, and recalling that r is a constant, the overall number
of new DDD and DDT vertices within the children of ∆0 is

O(r3 log3 r · (n
D

+ n
T
)n

T

1+ε) = O((n
D

+ n
T
)n

T

1+ε),

for any ε > 0.

Let U(NT , ND) denote the maximum number of DTT- and TTT-vertices that appear
on the boundary of the union at a recursive step involving up to NT T-tetrahedra and ND
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D-tetrahedra. Then U satisfies the following recurrence:

U(NT , ND) ≤























O
(

(ND +NT )N1+ε
T

)

+
∑

log
“

M
r2 log2 r

”

i=0 O(2ir2 log2 r)U
(

2NT
2ir

, ND+NT
r

)

, if NT > c,

O(ND + 1), if NT ≤ c,

where ε > 0 is arbitrary, c ≥ 3 is an appropriate constant, and where the constant of
proportionality in the first expression depends on (ε, α and on) r. It is straightforward to
verify (see also Chapter 3 and [72]), that the solution of this recurrence is U(NT , ND) =
O(NT (NT +ND)1+ε), for any ε > 0, with a constant of proportionality that depends on ε
and on α.

Substituting the initial values NT = n, ND = 0, we conclude that the overall combina-
torial complexity of the union is O(n2+ε), for any ε > 0, as asserted. This completes the
proof of Theorem 6.1.1. modulo the still missing analysis of the number of DDT-vertices.

Since a cube in 3-space can be partitioned into a constant number of α-fat tetrahedra,
for some appropriate constant parameter α > 0, we obtain the following extension of the
bound in [112]:

Corollary 6.1.6 The complexity of the union of n arbitrarily oriented cubes in R
3, of

arbitrary side lengths, is O(n2+ε), for any ε > 0, where the constant of proportionality
depends on ε.

Similar results can be obtained for any collection of polyhedral objects that can be
decomposed into, or covered by, a total of n α-fat tetrahedra.

A similar, almost verbatim, analysis yields the bound O(n2+ε), for any ε > 0, for the
complexity of the union of n α-fat trihedral wedges. For the sake of completeness, we state
this result explicitly:

Corollary 6.1.7 The complexity of the union of n α-fat trihedral wedges is O(n2+ε), for
any ε > 0, where the constant of proportionality depends on ε and α.

Our analysis can easily be extended to the problem of bounding the complexity of the
union of n α-fat arbitrarily oriented triangular prisms, with cross-sections of arbitrary sizes.
In this case, we apply a similar decomposition scheme as in the case of α-fat tetrahedra,
exploiting similar properties to those stated in Lemmas 6.1.3 and 6.1.4 for the case where
T is a triangular prism (rather than a trihedral wedge) — simply think of a prism as a
wedge with apex at infinity. A lower bound construction that yields Ω(n2α(n)) vertices
on the boundary of the union can be supplied using similar techniques as in the original
problem. We thus obtain:
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Corollary 6.1.8 The complexity of the union of n arbitrarily oriented α-fat triangular
prisms, with cross-sections of arbitrary sizes, in R

3, is O(n2+ε), for any ε > 0, where the
constant of proportionality depends on ε and α. The bound is almost tight in the worst
case.

Similar results can be obtained for any collection of polyhedral prisms that can be
decomposed into, or covered by a total of n α-fat triangular prisms.

6.1.4 The number of DDT-vertices

In this section we provide the missing ingredient of the preceding analysis, showing that
the number of DDT-vertices is nearly-quadratic.

We thus have, at each step of the analysis, a simplex ∆, a set D = D∆ of ND α′-fat
dihedral wedges, and a set T = T ∆ of NT α-fat tetrahedra5. Our goal is to obtain a
nearly-quadratic bound on the number of DDT vertices on the boundary of the union of
D ∪ T within ∆. We may assume that NT ≤ ND. Otherwise, we apply (in “reverse”) the
partitioning trick used in the preceding analysis. That is, we partition T arbitrarily into
k = ⌈NT/ND⌉ subsets T1, . . . , Tk, of size at most ND each, establish a bound O(N2+ε

D ) on
the number of DDT-vertices on each union D∪Ti, i = 1, . . . , k, and add up the bounds, to
obtain an overall bound of O(NTN

1+ε
D ). In other words, the goal is to establish the upper

bound O(N2+ε
D ) on the number of DDT-vertices, assuming that NT ≤ ND.

Let L denote the set of the xy-projections of the edges (lines) of the wedges in D.
(We assume that the coordinate system is generic, so none of these lines projects to a
single point.) We construct a (1/r)-cutting Ξ of the planar arrangement A(L), by taking
a random sample R of O(r log r) lines of L, for some sufficiently large constant parameter
r, constructing the planar arrangement A(R), and triangulating each of its cells using the
two-dimensional version of the Dobkin-Kirkpatrick hierarchical decomposition of a convex
polygon [58]. We obtain O(r2 log2 r) triangles, and we may assume that the sample R is
such that each triangle is crossed by at most ND/r lines of L (this indeed happens with high
probability). We lift each cell of A(R), and each of its sub-triangles, into a vertical prism
(or rather its portion within the current simplex ∆ ). Each triangular prism σ is crossed
by at most ND/r edges of the wedges of D. Any other wedge either misses σ altogether,
or each of its bounding halfplanes that meets σ crosses σ completely, cutting it into two
disconnected pieces (as if it were a plane).

We now claim that, given a fixed tetrahedron T ∈ T , the overall number of vertical
triangular prisms σ, erected over the cells of Ξ, such that σ meets at least three facets of T ,
is O(r log2 r). Indeed, a facet F of T whose bounding edges do not meet σ must intersect
σ in a triangle whose boundary is contained in ∂σ. Since T ∩ σ is convex, there can be

5Some of these tetrahedra may be trihedral wedges, in case only three of the facets of a tetrahedron T
appear in ∆. However, to simplify the presentation, we will refer in what follows to all the elements of T
as tetrahedra.
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at most two such facets. Hence σ meets at least one of the edges e of T . That is, the
projection e∗ of e crosses the triangular cell of Ξ which is the base of σ. However, applying
a simplified version of the argument used above for 3-dimensional arrangements, e∗ can
cross only O(r log r) cells of A(R), and only O(log r) triangles within each cell, from which
the claim follows.

Summing up, we have so far O(r2 log2 r) subproblems, each defined within a triangular
prism σ, and involves the following sets of objects: (i) The set Dσ of dihedral wedges of D
whose edges cross σ; (ii) the set Pσ of dihedral wedges of D that cross σ but whose edges do
not cross σ (we can think of each member of Pσ as either a halfspace or a region enclosed
between a pair of planes crossing σ); (iii) the set T σ of tetrahedra such that at least three
of their facets cross σ; and (iv) the set Wσ of tetrahedra that cross σ, and at most two of
their facets cross σ. Put NDσ := |Dσ|, NPσ := |Pσ|, NT σ := |T σ|, and NWσ := |Wσ|. As
just argued,

∑

σ NT σ = O(NT · r log2 r).

The goal is to bound the number of inner vertices v, within σ, of the union Dσ ∪ Pσ ∪
T σ ∪Wσ, such that v is incident to the boundaries of two objects in Dσ ∪ Pσ, and of one
object in T σ ∪Wσ. We classify each inner vertex v in σ of this kind as either DDW, if v is
incident to the boundaries of two objects in Dσ and one object in Wσ, DPW, if the three
objects whose boundaries are incident to v are in Dσ, Pσ, and Wσ, respectively, PPW, if
two of these objects are in Pσ and one in Wσ, DDT, if two of these objects are in Dσ and
one in T σ, DPT, if the objects are in Dσ, Pσ, and T σ, respectively, or PPT, if two of the
objects are in Pσ and one in T σ.

Since each vertex of type DDW, DPW, or PPW lies on the boundary of the union of
α′-fat dihedral wedges (or halfspaces), it follows, by applying the results of [112], that the
number of such vertices is O((NDσ + NPσ + NWσ)2+ε), for any ε > 0. Summing over all
prisms σ, and using the facts that r is constant and that NT ≤ ND, we obtain the overall
bound O(N2+ε

D ), for any ε > 0. The general bound, using the partitioning trick described
above, is O((ND + NT )N1+ε

D ), for any ε > 0. We next show how to bound the number of
the remaining types of vertices.

Assume for the moment that we have managed to establish a nearly-quadratic bound,
of the form O((ND +NT )N1+ε

D ), for any ε > 0, on the number of PPT-vertices and DPT-
vertices (which will be accomplished in the next two steps of the analysis). Then we are
only left with the task of bounding the number of DDT-vertices within σ, which we do
recursively. To recap, there are O(r2 log2 r) such recursive subproblems, over all triangular
prisms σ, in each of which we apply the nearly-quadratic bound on the number of vertices of
all the remaining types, and continue to bound the number of DDT-vertices in a recursive
manner.

The recursion bottoms out when either NT ≤ c or ND ≤ c, for some absolute constant
c ≥ 3. We then bound the number of the remaining vertices of the union under consider-
ation (that is, inner vertices whose type is still DDT) in a brute-force manner, and thus
obtain an overall bound of O(ND

2NT ) = O(N2
D +NT ) on the number of these vertices.
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Let U1(NT , ND) denote the maximum number of DDT-vertices that appear on the
boundary of the union at a recursive step involving ND dihedral wedges and NT tetrahedra.
Then U1 satisfies the recurrence:

U1(NT , ND) ≤



























O
(

(ND +NT )N1+ε
D

)

+

∑
log

“

M
r log2 r

”

i=0 O(2ir log2 r)U1

(

2NT
2i
, ND

r

)

, if min{NT ,ND} > c,

O(N2
D +NT ), if min{NT ,ND} ≤ c,

(6.1)

where ε > 0 is arbitrary, c ≥ 3 is an appropriate constant, M = O(r2 log2 r) is the overall
number of prisms in the decomposition, and where the constants of proportionality in the
non-recursive terms depend on r (and on ε, α). This follows from the fact that the number
of prisms σ with NT

2i
≤ NT σ <

2NT
2i

is at most O(2ir log2 r). As above, it is easy to verify
that the solution of this recurrence is U1(NT , ND) = O((ND + NT )N1+ε

D ), for any ε > 0,
with a constant of proportionality that depends on ε and on α.

The number of PPT-vertices. To bound the number of PPT vertices, we launch
a new recursive analysis, which, as the analysis in Section 6.1.3, is based on cuttings
in arrangements of planes in 3-space. Recycling for the moment some of the previous
notations, we have, at each step, a subproblem within some simplex ∆0, involving a set
P = P∆0 of pairs of planes, at least one of which crosses ∆0 (but their intersection line
does not cross ∆0), and a set T = T ∆0 of tetrahedra, so that, for each T ∈ T , at least
three of its facets cross ∆0. Put NP = |P∆0|, NT = |T ∆0|. Initially, ∆0 is the (clipped)
vertical triangular prism σ of some specific recursive instance of the above recursion that
handles DDT vertices.

We first draw a random sample R ⊂ P∆0 of O(r log r) pairs of planes, for some suffi-
ciently large constant parameter r, and construct the sampled arrangement A(R) within
∆0. We then collect only the cells in the complement of the union of the wedges enclosed
between each sampled pair of planes (within ∆0). Since the wedges are all α′-fat, the
analysis of [112] implies that the overall number of these cells is O(r2+ε), for any ε > 0.
Furthermore, since R is a collection of planes within ∆0, each cell that we consider is a
convex (possibly unbounded) polyhedron. We next triangulate each of these cells C using
the Dobkin-Kirkpatrick hierarchical decomposition of convex polytopes (see the beginning
of this section and [58]), and obtain an overall number of O(r2+ε) simplicial subcells. Using
similar considerations as in the original problem, we may assume that each simplicial cell
∆ of the resulting decomposition is crossed by at most NP/r wedge boundaries (pairs of
planes) in P∆0 , and each edge of any tetrahedron in T ∆0 crosses at most O(r log2 r) cells.
In addition, Theorem 6.1.5 implies that the overall number of simplicial cells, each of which
meets at least three facets of any fixed tetrahedron T ∈ T ∆0 , is O(r log2 r).
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Note that, in this problem, the decomposition generates only two types of vertices,
PPW and PPT. We thus apply the above decomposition recursively, where we dispose
immediately (i.e., derive a nearly-quadratic bound on the number) of all PPW-vertices
within each cell ∆ of the decomposition, and bound the number of the (remaining) PPT-
vertices recursively. At the bottom of the recurrence we bound the number of PPT-vertices
by brute force, as above. An appropriate variant of the preceding analysis leads to a
recurrence relationship similar to (6.1), with the difference that (i) NP replaces ND, and
(ii) the upper bound on M is O(r2+ε), rather than O(r2 log2 r); this, however, has no effect
on the asymptotic solution of the recurrence. That is, we obtain that the maximum number
of PPT-vertices that appear on the boundary of the union at a recursive step, involving
NP α′-fat dihedral wedges (which behave like pairs of planes) and NT α-fat tetrahedra, is
O((NP +NT )N1+ε

P ), for any ε > 0.

The number of DPT-vertices. Here too we bound the number of DPT-vertices using
a separate recursive analysis, where, at each step, we have a subproblem within some
simplex ∆0, involving a set D = D∆0 of dihedral wedges whose boundary edges cross ∆0,
a set P = P∆0 of pairs of planes, at least one of which crosses ∆0, and a set T = T ∆0 of
tetrahedra, so that, for each T ∈ T , at least three of its facets cross ∆0. Put ND = |D∆0|,
NP = |P∆0 |, and NT = |T ∆0 |. Initially, ∆0 is a (clipped) vertical triangular prism, as
above.

We choose some sufficiently large constant parameter r, and draw three random samples,
each of which consists of O(r log r) planes, which contain the facets of the wedges of D∆0,
the facets of the wedges of P∆0 , and the facets of the tetrahedra of T ∆0, respectively. Let
R denote the union of the three samples. We form the arrangement A(R), and triangulate
each of its cells, using, as usual, the Dobkin-Kirkpatrick hierarchical decomposition.

We obtain O(r3 log3 r) simplicial cells in the decomposition. Assuming that the drawn
samples are good, we may assume consequently that each of these cells ∆ is crossed by at
most ND/r dihedral wedges of D∆0, at most NP/r dihedral wedges (bounded by the pairs
of planes) of P∆0 , and at most NT /r tetrahedra of T ∆0 . Each edge of any tetrahedron
in T ∆0 crosses at most O(r log2 r) cells, and the overall number of simplicial cells, each
of which meets at least three facets of a fixed tetrahedron T ∈ T ∆0 , is O(r log2 r). Each
edge ℓ of a dihedral wedge of D∆0 crosses only O(r log2 r) cells, so the overall number of
wedge-cell crossings, for which the edge of the wedge appears in the cell, is O(ND · r log2 r).
In any other crossing of a cell ∆ by a dihedral wedge, the wedge behaves like a pair of
planes, at least one of which crosses ∆.

The decomposition therefore generates, within each simplicial cell ∆, vertices of type
PPW, DPW, PPT, and DPT. The number of vertices of the first three types is nearly-
quadratic, by the bound in [112] and by the preceding analysis, and the number of DPT-
vertices, within each cell ∆, is bounded recursively. As in the original recursive scheme,
presented in Section 6.1.3, at each step of the recursion, we only need to bound the number
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of new PPW, DPW, and PPT vertices within ∆. Each such vertex is incident to the
boundary of a dihedral wedge in D∆0 , a plane in (a pair in) P∆0 , and a tetrahedron
in T ∆0 . We can refine the quadratic bound on the number of these vertices using the
following variant of the partition trick. That is, suppose, without loss of generality, that
ND ≤ NP ≤ NT . Partition T ∆0 into ⌈NT /NP⌉ sets, each of size at most NP . Bound
separately the number of DPT vertices of the above kind for D∆0, P∆0 , and each subset of
T ∆0. The bound is O(N2+ε

P ), for any ε > 0, within each of these subproblems, for a total
of

O

(

N2+ε
P · NT

NP

)

= O(NTN
1+ε
P ),

for any ε > 0. Considering also the other symmetric cases, we have thus shown that the
number of new PPW, DPW, and PPT vertices is

O ((NDNP +NDNT +NPNT ) ·max{ND, NP , NT}ε) ,

for any ε > 0.
We do not have to process in further recursive steps dihedral wedges of D∆0 whose edge

does not meet the current cell ∆, as well as tetrahedra of T ∆0 with at most two facets
meeting ∆, since the DPT-vertices that they induce have already been counted.

At the bottom of the recursion (when min{ND, NP , NT} ≤ c, for some absolute constant
c ≥ 3), we bound the number of the remaining inner DPT-vertices of the union in a brute-
force manner, and thus obtain an overall bound of O(NDNPNT ) = O(NDNP + NDNT +
NPNT ) on this number.

Let U2(ND, NP , NT ) denote the maximum number of DPT-vertices that appear on the
boundary of the union at a recursive step within some simplex ∆0, involving a set D∆0 of
ND dihedral wedges, a set P∆0 of NP pairs of planes (dihedral wedges whose edge does not
cross ∆0), and a set T ∆0 of NT tetrahedra. For each i ≥ 1, consider those cells ∆ for which

1

2ir
< max

{

ND∆

ND
,
NT ∆

NT

}

≤ 1

2i−1r
.

Since, as argued above,
∑

∆ND∆ = O(ND · r log2 r), and
∑

∆NT ∆ = O(NT · r log2 r),
it follows that the number of cells ∆, satisfying the above inequalities, is O(2ir2 log2 r).
Moreover, all cells appear in these counts, because, by construction, we have ND∆ ≤ ND/r
and NT ∆ ≤ NT/r, for each cell ∆. Hence, putting N = min{ND, NP , NT}, U2 satisfies the
following recurrence:

U2(ND, NP , NT ) ≤



























O ((NDNP +NDNT +NPNT ) ·max{ND,NP ,NT }ε)+

∑
log

“

M
r2 log2 r

”

i=0 O(2ir2 log2 r)U2

(

2ND
2ir

, NP
r , 2NT

2ir

)

, if N > c,

O(NDNP +NDNT +NPNT ), if N ≤ c,
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where ε > 0 is arbitrary, c ≥ 3 is an appropriate constant, M = O(r3 log3 r) is the overall
number of cells in the decomposition (at the current recursive step), and the non-recursive
terms also depend on r (and on ε, α). Again, it is easy to verify that the solution of
this recurrence is U2(ND, NP , NT ) = O ((NDNP +NDNT +NPNT ) ·max{ND, NP , NT}ε),
for any ε > 0, with a constant of proportionality that depends on ε and on α (see also
Chapter 3 and [72] for similar considerations).

This finally completes the analysis, and establishes Theorem 6.1.1. 2

6.2 The Union of α-Fat Triangles in the Plane

Let T be a collection of n α-fat triangles in the plane (i.e., each angle of any triangle is at
least α). In this section we follow a simple variant of our approach to the three-dimensional
problem, and derive a nearly-linear bound on the combinatorial complexity of the union of
the triangles in T .

We first draw a random sample R of O(r log r) of the lines containing the edges of the
triangles in T , for some sufficiently large constant parameter r, and form the arrangement
A(R). We then triangulate each cell of the arrangement, using, e.g., bottom-vertex tri-
angulation. The number of the resulting triangles (we will call them simplices, to avoid
confusion with the triangles of T ) is M = O(r2 log2 r), and, with high probability, each of
these simplices is crossed by at most n/r edges of the triangles in T . We can therefore as-
sume that our sample has this property. Thus the resulting decomposition is a (1/r)-cutting
for the edges of T , and the simplices are the cells of this cutting.

Similarly to the original problem, we fix a triangle T ∈ T , and a cell ∆ of the cutting
that T meets, and classify T as being either a W-triangle in ∆, if ∆ meets only one or two
edges of T , or a T-triangle in ∆, if ∆ meets all the three edges of T . As a consequence,
each intersection vertex v of the union boundary that appears in ∆ is classified as being
either WW, if the two edges that are incident to v belong to two respective W-triangles in
∆, WT, if one of these edges belongs to a W-triangle and the other belongs to a T-triangle,
or TT, if both of these edges belong to two respective T-triangles. (In all three cases, the
relevant triangles are distinct.)

We next observe the easy fact that, for any triangle T ∈ T , there is only a single cell of
the cutting that meets all three edges of T ; see Lemma 6.1.4 and Figure 6.6.

We now apply a recursive scheme, similar to that used in the three-dimensional setup.
Let ∆ be a simplex of the cutting and let W∆ (resp., T ∆) denote the set of W-triangles
(resp., T-triangles) within ∆. Put N∆

W := |W∆|, and N∆
T := |T ∆|. The preceding observa-

tion implies that
∑

∆N
∆
T ≤ NT , where NT is the overall number of triangles.

During each step of the recursion, we immediately dispose of any new WW- and WT-
vertices within each subcell ∆, and continue to bound the number of TT-vertices recursively.
The recursion bottoms out when NT ≤ c, for some absolute constant c ≥ 2. In this case
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the number of the remaining intersection vertices of the union (within the current ∆) is
O(1).

To bound the number of WW-vertices in ∆, we replace each triangle in W∆ by the
equivalent halfplane or wedge, and face the problem of bounding the overall number of
vertices appearing on the boundary of the union of N∆

W halfplanes and α-fat wedges (that
is, wedges whose angle is at least α). As shown in [64], the number of such vertices isO(N∆

W ).
As we will shortly show, the number of WT-vertices in ∆ is O

(

(N∆
T +N∆

W ) · (N∆
W )ε
)

, for
any ε > 0. Summing over all ∆, and using the fact that r is a constant, we get the overall
bound O(N1+ε

T ), for any ε > 0.
Let U1(NT ) denote the maximum number of intersection vertices that appear on the

boundary of the union at a recursive step involving NT triangles. For each 1 ≤ i ≤
log (M/r), where M = O(r2 log2 r) is the overall number of cells in the cutting, the number
of cells ∆ with NT

r2i
< N∆

T ≤ 2NT
r2i

is at most 2ir, and this also holds for the set of all the

remaining cells (with N∆
T ≤ 2NT

r2i
, where i = log (M/r)+1). Recall also that N∆

T , N
∆
W ≤ NT

r
always holds, by construction. Hence U1 satisfies the recurrence:

U1(NT ) ≤















O
(

N1+ε
T

)

+
∑1+log (Mr )

i=1 2ir · U1

(

NT
r2i−1

)

, if NT > c,

O(1), if NT ≤ c,

where ε > 0 is arbitrary, c ≥ 2 is an appropriate constant, and the constants of propor-
tionality in the non-recursive terms depend on r (and on ε, α). Note that we process
recursively only the T-triangles, since vertices incident to W-triangles are estimated and
discarded immediately before processing the new recursive step.

It is easy to verify that the solution of this recurrence is U1(NT ) = O(N1+ε
T ), for any

ε > 0 (slightly larger than the ε in the non-recursive term, but still arbitrarily close to 0),
with a constant of proportionality that depends on ε and on α.

The number of WT-vertices. To complete the analysis, we next establish a near-linear
bound on the number of WT-vertices. The analysis somewhat resembles the derivation of
the upper bound on the number of PPT-vertices in Section 6.1.4. We have, at each step, a
subproblem within some simplex ∆0, involving a setW =W∆0 of wedges, whose boundaries
cross ∆0, and a set T = T ∆0 of triangles, so that, for each T ∈ T , all three of its edges
cross ∆0. Put NW = |W∆0 |, NT = |T ∆0|.

We first draw a random sample R ⊂ W∆0 of O(r log r) wedges, for some sufficiently
large constant parameter r, form and triangulate the arrangement A(R), and collect only
the cells in the complement of the union of these wedges. Since the wedges are all α-fat, it
follows by the analysis of [64] that the overall number of these cells is O(r log r) (where the
constant of proportionality depends on α). Arguing as above, we may assume that each
subcell ∆ of the resulting decomposition is crossed by at most NW/r wedge boundaries in
W∆0 , and there is at most one cell that meets all three edges of any fixed triangle T ∈ T ∆0.
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In this problem, the decomposition generates only two types of vertices that we need to
bound: new WW-vertices (those that are incident to the boundary of at least one triangle
that had been a T-triangle in the parent cell), which we dispose of immediately, and WT-
vertices, which we process recursively. Using [64] and arguing as above, the number of new
WW-vertices is O(NW + NT ). The recurrence bottoms out when min{NT , NW} ≤ c, for
some constant c ≥ 2; we then bound the number of the (remaining) WT-vertices, using
brute force, by O(NW +NT ).

Let U2(NT , NW ) denote the maximum number of WT-vertices that appear on the bound-
ary of the union at a recursive step within some simplex ∆0, involving a set W∆0 of NW

wedges and a set T ∆0 of NT triangles. Arguing as above, one can show that U2 satisfies
the following recurrence:

U2(NT , NW ) ≤















O(NW +NT ) +
∑1+log M

i=1 2i · U2

(

2NT
2i
, NW

r

)

, if min{NT ,NW } > c,

O(NW +NT ), if min{NT ,NW } ≤ c,

where M = O(r log r) is the overall number of cells in the decomposition (at the current
recursive step), c ≥ 2 is an appropriate constant, and the non-recursive terms depend
also on r (and on α). Again, it is easy to verify that the solution of this recurrence is
U2(NT , NW ) = O ((NT +NW ) ·NW

ε), for any ε > 0, with a constant of proportionality
that depends on ε and on α. This completes the analysis, and establishes the following
result:

Theorem 6.2.1 The complexity of the union of n α-fat triangles in the plane is O(n1+ε),
for any ε > 0, where the constant of proportionality depends on ε and α. The bound is
almost tight in the worst case.

Remark: The bound is not as sharp as the one obtained in [107, 116]. We note that
the dependence on α is the same as that for the union of α-fat wedges. Since the lat-
ter dependence is only proportional to 1

α
log 1

α
[116], the same holds for the union of fat

triangles.

6.3 Conclusions

In this chapter we have solved a major open problem in the study of the union of objects
in three dimensions, which has resisted a solution for over a decade. Yet, there is still a
small remaining gap between our upper bound on the complexity of the union of n α-fat
tetrahedra and the corresponding lower bound Ω(n2α(n)) (which we conjecture to be tight).
Closing this gap remains a challenging open problem.

A natural open problem is to extend the new machinery presented in this study to the
problem of bounding the union of other families of geometric objects in 3-space. One such
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problem concerns the union of cylinders (with arbitrary radii); a nearly-quadratic bound
is known only when all the cylinders have equal radii [13]. Another related problem is to
obtain a nearly-quadratic bound on the complexity of the union of n arbitrary α-fat convex
objects of constant description complexity (that is, convex objects c, for which there exist
two concentric balls, B ⊆ c ⊆ B′, such that the ratio between the radii of B′ and B is
at most α, for some fixed α > 1). Weaker goals would be to prove this only for nearly
equal objects of this kind, or obtaining a subcubic bound for the union of such objects of
arbitrary sizes.
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Chapter 7

Regular Vertices of the Union of
Planar Convex Objects

In this chapter we show a nearly-tight upper bound on the number of regular vertices that
appear on the boundary of the union ∂U of n compact convex sets in the plane, each
pair of whose boundaries intersect in at most s points, for some constant s. We present
preliminaries and an overview in Section 7.1, and the full analysis is given in Section 7.2. We
then study an extension to the non-convex case in Section 7.3. We present open problems
and give concluding remarks in Section 7.4.

7.1 Preliminaries and Overview

Let C denote a collection of n convex sets as above. For each C ∈ C, the segment connecting
the leftmost and rightmost points of C is called the spine of C; we assume (without loss of
generality, rotating the coordinate frame if necessary) that it is unique, and denote it by
σC (note that σC is contained in C, due to its convexity).

As already defined, a pair C,C ′ of sets in C are said to intersect regularly if |∂C∩∂C ′| =
2. Each of these two intersection points is called a regular vertex of the arrangement A(C)
of (the boundary curves of the sets in) C. All other intersection vertices are irregular.

We establish an upper bound on the maximum number of regular vertices on the bound-
ary of the union U of C, which improves the earlier bound O(n3/2+ε), for any ε > 0, due to
Aronov et al. [20]. Specifically, we show:

Theorem 7.1.1 Let C be a set of n compact convex sets as above. Then the number of
regular vertices on the boundary of the union of C is at most O(n4/3+ε), for any ε > 0,
where the constant of proportionality depends on ε and on s. This bound is nearly worst-
case tight, that is, there are constructions that yield Ω

(

n4/3
)

regular vertices that appear
on the boundary of the union (already for s = 4).
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Figure 7.1: Demonstration of the transformation rule. (a) ∂C creates with each of the three sets
C1, C2, C3 regular vertices on the boundary of the union. (b) Each of C1, C2, C3 is shrunk by the
chords connecting its intersections with ∂C. (c) Shrinking C by similar shortcuts; wz is replaced by a
nearby chord wz′ to make C and C3 touch at a single point. The shaded region is a new connected
component of the complement of the union (a new “hole”).

Overview of the proof. We first assume that the given sets in C are in general position.
The proof proceeds through the following stages. We apply the shrinking transformation
of [20] to the input collection C. The transformed sets satisfy the following properties
(see [20, Lemma 1] and Figure 7.1 for further details): (i) They are convex. (ii) Any two
boundaries intersect at most s times. (iii) Any two sets C,C ′ ∈ C that intersected regularly
(before the transformation) either become disjoint or touch at a single point. More precisely,
if C, C ′ intersected regularly with at least one point of intersection of their boundaries on
∂U , the transformed sets are openly disjoint and touch each other at a point on the new
union boundary. If they intersected regularly without creating vertices on ∂U , they are now
disjoint. To simplify the notation, we let C denote from now on the set of the transformed
regions.

Note that the spines of the transformed sets may be different from those of the original
sets. Note also that, after this transformation, any regular vertex on the boundary of the
union must be formed by a pair of sets whose spines are disjoint.

We then apply a decomposition scheme that consists of two phases. The first phase
represents all pairs of sets of C with disjoint spines, so that one of these spines lies below
the other (see below for a precise definition), as the disjoint union of complete bipartite
graphs, whose overall complexity is sufficiently small, in a sense to be made precise below.

We then fix one such complete bipartite subgraph A × B, where the spines of the sets
in A all lie below those of the sets of B, and analyze the number of regular vertices that
it contributes to the union boundary. A crucial property of such a graph is that each of
these regular vertices must lie either on the upper envelope of the top boundaries of sets in
A, or on the lower envelope of the bottom boundaries of sets in B. We then form, say, the
upper envelope E+

A of the top boundaries of the sets in A, and decompose it into maximal
connected arcs, each contained in the boundary of a single set, and having disjoint x-spans.

The fact that regular vertices are formed by touching pairs, suggests a second decom-
position phase, in which we transform A×B into a union of complete bipartite subgraphs,



7.2 The Number of Regular Vertices on the Boundary of the Union 135

such that each such subgraph A′ × B′ is associated with some vertical strip Σ, and each
spine σ of a set in B′ lies, within the strip Σ, above every arc δ whose incident set belongs
to A′. It is then easy to show that the number of regular vertices of the union, induced by
pairs of sets in A′ × B′, is only nearly linear in |A′|+ |B′|.

The second decomposition phase is somewhat involved. It consists of decomposition
steps that alternate between the primal and dual planes, where each step is based on a
cutting of a certain line arrangement. While the dual decomposition is more “conventional”,
the primal one is trickier, and requires careful analysis of the way in which the arcs δ interact
with the spines from the other set.

Finally, we collect all these bounds, put them together, and obtain the bound asserted
in the theorem.

7.2 The Number of Regular Vertices on the Boundary

of the Union

Transforming the sets. We begin by applying to C the transformation of Aronov et
al. [20], as explained in the overview. We continue to denote by C the collection of the
shrunk sets.

Let C and C ′ be two members of C that touch each other at a point that lies on ∂U .
Clearly, as already noted, σC and σC′ are disjoint, and one of them, say, σC , lies below the
other, which means that (i) their x-spans have nonempty intersection J ; (ii) σC lies below
σC′ at each x ∈ J .

The first bi-clique decomposition. We collect all pairs of spines so that one of them
lies below the other, as the disjoint union of complete bipartite graphs (bi-cliques), so that
the overall size of their vertex sets is O(n4/3+ε), for any ε > 0. More precisely, the following
stronger property holds.

Lemma 7.2.1 Given a collection C as above, let G be the graph whose vertices are the
regions in C, and whose edges connect pairs of regions (C,C ′), such that σC lies below σC′.
Then there exists a decomposition G =

⋃

iAi × Bi into pairwise edge-disjoint bi-cliques,
such that

∑

i

(

|Ai|2/3|Bi|2/3 + |Ai|+ |Bi|
)

= O(n4/3+ε), (7.1)

for any ε > 0.

Proof: This is a standard result in “batched” range searching, and can be found, e.g.,
in [3, 5, 17, 104]; see also Chapter 3 for a variant of this decomposition. The proof is given
below for the sake of completeness.
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Figure 7.2: (a) The two spines σ, σ′ are disjoint and σ lies below σ′. (b) The left endpoint p′ of σ′

lies above the line ℓ containing σ, and (c) the right endpoint q of σ lies below the line ℓ′ containing
σ′.

Let σ = pq, σ′ = p′q′ be a pair of spines such that σ lies below σ′. This relationship
can be expressed as the disjunction of a constant number of conjunctions of above/below
relationships, over the possible x-orders of p, q, p′ and q′, where each atomic relationship
asserts that an endpoint of one spine lies above or below the line containing the other spine.
For example, if the x-order of the endpoints is p, p′, q, q′, then we require that p′ lie above
the line ℓ containing σ and that q lie below the line ℓ′ containing σ′; see Figure 7.2(a)–(c).
For simplicity of exposition, we describe the construction only for the subgraph of G that
consists of pairs of sets with this specific order of the endpoints of their spines; all other
subcases are handled in a fully symmetric manner.

We apply a multi-level decomposition scheme, where each level produces a decomposi-
tion into bi-cliques that satisfy some of the constraints, and each of them is passed to the
next level to enforce additional constraints. At the two top levels, we produce a collection of
pairwise edge-disjoint bi-cliques, such that, for each of these graphs A1×B1, for each spine
σ = pq ∈ A1 and for each spine σ′ = p′q′ ∈ B1, the x-order of the endpoints is p, p′, q, q′,
and such that the union of these graphs gives all such pairs of spines. This is easily done
using a 2-dimensional range tree construction [3, 72] (see also Chapter 3). The sum of the
vertex sets of the resulting subgraphs is O(n log2 n). Moreover, (a slightly sharper variant
of) (7.1) is easily seen to hold for the decomposition thus far.

The next level enforces, for each resulting subgraph A1 × B1, the condition that p′ lie
above the line ℓ containing σ, for σ ∈ A1 and p′ the left endpoint of a spine σ′ ∈ B1. Put
m1 = |A1| and n1 = |B1|. To accomplish the task at hand, we choose a sufficiently large
constant parameter r, and construct a (1/r)-cutting of the arrangement of the lines that
contain the spines of A1. We obtain O(r2) cells, each of which is crossed by at most m1/r
lines, and contains at most n1/r

2 left endpoints of spines of B1. (The latter property can
be enforced by further splitting some cells of the cutting; also, assuming general position,
we can construct the cutting so that no endpoint of any spine lies on the boundary of any
of the cutting cells.) For each cell ∆, we form the bi-clique A′

2(∆)× B2(∆), where B2(∆)
consists of all spines whose left endpoints are in ∆, and where A′

2(∆) consists of all spines
whose supporting lines pass completely below ∆. These graphs are passed to the next level
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of the structure. We then consider, for each cell ∆, the set A2(∆) of spines of A1 that cross
∆, and the set B2(∆) as defined above. We pass to the dual plane, where the lines of the
spines in A2(∆) are mapped to points and the left endpoints of spines in B2(∆) are mapped
to lines. We construct a (1/r)-cutting of the arrangement of these dual lines, obtaining
O(r2) cells, each of which is crossed by at most |B2(∆)|/r ≤ n1/r

3 lines and contains at
most |A2(∆)|/r2 ≤ m1/r

3 points. As above, we construct, for each cell of the cutting, a
bi-clique from the dual points in the cell and the lines that pass fully above the cell, and
pass all these graphs to the next level. We are left with O(r4) subproblems, each involving
at most m1/r

3 spines of A1 and at most n1/r
3 spines of B1, which we process recursively.

We continue to process each subproblem as above, going back to the primal plane, and
keep alternating in this manner, until we reach subproblems in which either m2

1 < n1, or
n2

1 < m1. In the former (resp., latter) case, we continue the recursive construction only in
the primal (resp., dual) plane, and stop as soon as one of m1, n1 becomes smaller than r,
in which case we produce a collection of singleton bi-cliques.

Suppose first that
√
m1 ≤ n1 ≤ m2

1. We show below that, for any fixed initial subgraph
A1 × B1, the resulting bi-clique decomposition {A′

2(∆)× B2(∆)}∆, over all cells ∆ of all
the cuttings, satisfies

∑

∆

(

|A′
2(∆)|2/3|B2(∆)|2/3 + |A′

2(∆)|+ |B2(∆)|
)

= (7.2)

O
(

|A1|2/3+ε|B1|2/3+ε + |A1|1+ε + |B1|1+ε
)

,

for any ε > 0, and the same holds for the corresponding decompositions in the dual spaces.
Indeed, let us consider only the primal decompositions, since the dual ones are handled

in exactly the same manner. Since r is taken to be a constant, the sum in (7.2), over the
graphs produced at the top level of the recursion, is at most C(r)

(

|A1|2/3|B1|2/3 + |A1|+ |B1|
)

,
where C(r) is a constant that depends on r. In the next level, we have at most C ′r4 sub-
problems, for some absolute constant C ′ > 0, each involving at most |A1|/r3 spines of A1

and at most |B1|/r3 spines of B1. The overall contribution to the sum in (7.2) by the
bi-cliques produced at this level is at most

C ′r4 · C(r)

(

( |A1|
r3

)2/3( |B1|
r3

)2/3

+
|A1|
r3

+
|B1|
r3

)

=

C ′C(r)
(

|A1|2/3|B1|2/3 + |A1|r + |B1|r
)

.

Continuing in this manner, the contribution to the sum in (7.2) at the j-th level of the
recursion is at most

(C ′)jr4j · C(r)

( |A1|2/3

r2j

|B1|2/3

r2j
+
|A1|
r3j

+
|B1|
r3j

)

=

(C ′)jC(r)
(

|A1|2/3|B1|2/3 + |A1|rj + |B1|rj
)

,
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where, at the last level, rj = min
{

|A1|2/3
|B1|1/3 ,

|B1|2/3
|A1|1/3

}

. Summing over the logarithmically many

levels of the recursion, we obtain the overall bound O(|A1|2/3+ε|B1|2/3+ε), for any ε > 0,
assuming r is sufficiently large.

It remains to consider the cases |A1|2 < |B1|, |B1|2 < |A1|. It suffices to consider only
the first case. Here, after j levels of recursion (only in the primal plane), the contribution
to (7.2) is at most

(C ′′)jr2j · C(r)

(

( |A1|
rj

)2/3( |B1|
r2j

)2/3

+
|A1|
rj

+
|B1|
r2j

)

=

(C ′′)jC(r)
(

|A1|2/3|B1|2/3 + |A1|rj + |B1|
)

,

where C ′′ is another absolute constant, and where the last j satisfies rj = O(|A1|). Sub-
stituting this value, summing over all j, and using the inequality |A1|2 ≤ |B1|, we get the
overall bound O(|B1|1+ε), for any ε > 0. Similarly, when |B1|2 < |A1|, we get the overall
bound O(|A1|1+ε), for any ε > 0.

Note that, in the preceding case
√

|A1| ≤ |B1| ≤ |A1|2, when the recursion bottoms
out, we have sets A′, B′ that satisfy |A′

1|2 ≤ |B′
1| or |B′

1|2 ≤ |A′
1|, so the same analysis adds

to (7.2) the terms O(|A1|1+ε + |B1|1+ε), for any ε > 0, which thus completes the proof of
the claim.

The final level of the structure enforces, for each resulting subgraph A2 × B2, the
condition that q lie below the line ℓ′ containing σ′, for σ′ ∈ B2 and q the right endpoint of
a spine σ ∈ A2. This is done in a fully analogous manner to the preceding step. It is easily
checked that, in complete analogy to the preceding analysis, the bi-clique decomposition
{Aα×Bα}α, that results from the fixed bi-clique A2×B2, over all cells of all the cuttings,
satisfies

∑

α

(

|Aα|2/3|Bα|2/3 + |Aα|+ |Bα|
)

= O
(

|A2|2/3+ε|B2|2/3+ε + |A2|1+ε + |B2|1+ε
)

,

for any ε > 0. Combining this with (7.2), summing over the entire collection of these last-
stage decompositions, and using the fact that (7.1) holds for the initial-level decomposition,
we conclude that (7.1) holds for the overall final decomposition, thus completing the proof
of the lemma. 2

Handling a single bi-clique. Fix one of the resulting graphs A× B. All the spines of
the sets in A lie below all the spines of the sets in B. Put nA = |A| and nB = |B|.

Let v be a regular vertex of the union lying on the top boundary ∂+C and on the bottom
boundary ∂−C ′, for two sets C ∈ A, C ′ ∈ B; clearly, this is the only possible situation.
We claim that v lies either on the upper envelope E+

A of the top boundaries of the sets in
A, or on the lower envelope E−

B of the bottom boundaries of the sets in B. Indeed, if this
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∂−C′
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∂−C2

∂+C1
v

∂+C

σC1

Figure 7.3: If the vertex v does not lie on either E+
A or E−

B , then it is “hidden” from E+
A by ∂+C1,

and from E−
B by ∂−C2, for some C1 ∈ A, C2 ∈ B. But then v is contained in (the interior of) C1∪C2,

contrary to the construction.

were not the case, then v must lie below some top boundary ∂+C1, for C1 ∈ A, and above
some bottom boundary ∂−C2, for C2 ∈ B; see Figure 7.3. By construction, σC1 lies below
σC2 at the x-coordinate xv of v, which implies that the entire vertical segment connecting
∂+C1 and ∂−C2 at xv is fully contained in C1 ∪C2, so v cannot lie on the boundary of the
union, a contradiction that establishes the claim.

Without loss of generality, we consider only the case where v lies on the upper envelope
E+

A of the top boundaries of the sets in A. Since any pair of these boundaries intersect in at
most s points, the number m = mA of connected portions of top boundaries that constitute
E+

A satisfies m ≤ λs+2(nA). Enumerate these arcs from left to right as δ1, . . . , δm, and let
A∗ denote the set of these arcs.

Let H0 denote the subgraph of A∗ × B consisting of all the pairs (δ, C), such that C
forms with (the set of A containing) δ a regular vertex on ∂U (where the two sets touch
each other), and so that (a) the touching point lies on δ and on ∂−C, and (b) δ lies fully
below σC (i.e., the x-span of σC contains that of δ). If (b) does not hold, then an endpoint
of σC lies above δ, and there can be at most two such arcs δ (for any fixed C), so the
number of excluded pairs is at most 2nB. Hence, the number of regular “bichromatic”
vertices formed by A ∪B, lying on E+

A , and not counted in H0, is only O(nB).

Our next step is to construct a collection of complete bipartite graphs {A∗
i ×Bi}i, such

that, for each i, A∗
i ⊂ A∗, Bi ⊂ B, and the union of these graphs is edge-disjoint and covers

H0. In addition: (a) The sum
∑

i(|A∗
i |+ |Bi|) will be small, in a sense to be made precise

below. (b) For each i, there is an x-interval Ii such that, for each δ ∈ A∗
i and C ∈ Bi, the

line ℓC containing the spine σC of C passes fully above δ over Ii (although σC may end
within Ii). (c) For each pair (δ, C) ∈ H0, there exists i such that δ ∈ A∗

i , C ∈ Bi, and the
x-coordinate of the touching point δ ∩ ∂−C lies in Ii.

Suppose we have such a collection at hand. Fix one of the graphs A∗
i × Bi. We claim
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that, for any δ ∈ A∗
i , C ∈ Bi, such that (δ, C) ∈ H0, the relevant touching vertex v of

δ ∩ ∂−C lies on the lower envelope E−
Bi

of the bottom boundaries of the sets in Bi. This
follows using the same arguments as in the preceding step (see also [20]). That is, suppose
to the contrary that v lies above the bottom boundary ∂−C ′ of another set C ′ ∈ Bi.
By assumption, σC′ lies above v (because v ∈ δ) and thus v lies in the interior of C ′,
contradicting the assumption that v is a vertex of the union. Note that it is crucial that
the x-coordinate of v lies in the x-interval Ii as above; see Figure 7.4(a).

In other words, each vertex of this kind is an intersection point of E−
Bi

and the con-
catenation of the arcs in A∗

i . Hence, by merging, in the x-order, the breakpoints of E−
Bi

and the endpoints of the arcs in A∗
i , it easily follows that the number of such vertices is

O(λs+2(|Bi|) + |A∗
i |). Summing this bound over all subgraphs A∗

i × Bi yields an overall
bound for the number of pairs (δ, C) ∈ H0 (to which we add the linear number of pairs
that are not counted in H0, as above). See below for the precise bound.

To obtain the desired cover of H0, we proceed as follows. Let L denote the set of the
lines supporting the spines of the sets in B. Fix a sufficiently large constant parameter r,
and construct a (1/r)-cutting Ξ of the arrangement A(L), as in [47]. It consists of O(r2)
vertical trapezoids, each crossed by at most nB/r lines of L (and thus by at most nB/r
spines of the sets in B).

Consider a pair (δ, C) ∈ H0, where the touching between δ and ∂−C occurs at some
cell τ of Ξ. In this case δ crosses τ (or has an endpoint inside τ), and σC either intersects
τ or lies above τ (i.e., within the common x-span of C and τ , σC lies fully above τ). For
technical reasons, we classify the arcs δ that cross τ as being either short, if either δ has an
endpoint inside τ , or δ does not intersect the top edge of τ , or tall, if δ intersects the top
edge and has no endpoint in τ . Let As

τ be the set of short arcs in τ , and At
τ the set of tall

arcs in τ .
The next lemma shows that the overall number of short arcs, over all cells τ , is small.

Lemma 7.2.2
∑

τ |As
τ | = O(r2 log r + |A∗| log r) .

Proof: Note first that there are at most 2|A∗| pairs (δ, τ), such that δ ends inside τ . We
may therefore ignore these short arcs. Construct a segment tree T on the x-projections of
the cells of Ξ. Consider a node v of the tree, let Ξv denote the set of cells stored at v, and
let Iv denote the x-span of v. The cells in Ξv are linearly ordered in the y-direction, in the
sense that for each x0 ∈ Iv the vertical line x = x0 crosses all of them in a fixed order; see
Figure 7.4(b).

In each cell τ , there are at most two (either tall or short) arcs, whose x-spans overlap,
but not contained in, Iv (the first intersects the vertical line through the left endpoint of
Iv, and the second intersects the vertical line through its right endpoint), for a total of
O(r2 log r) such arcs, over all O(r2 log r) cells τ and all nodes v of T .

We thus continue the analysis for those (short) arcs δ of A∗, whose x-span is contained
in Iv. There is at most one cell τ ∈ Ξv such that δ ∈ As

τ ; see Figure 7.4(c). The number
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Figure 7.4: (a) The boundary touching v, formed by the lower boundary of C and δ, and lying
outside the interval I, can be “hidden” from E−

B by the lower boundary of another C ′ ∈ B. (b)–(c)
The cells τ1, τ2, τ3, cross the x-span Iv of v from left to right. (b) Any vertical line in Iv crosses all
these cells in the same order. (c) The arc δ crosses τ1, τ2, τ3, where τ1 is the unique cell whose top
boundary edge is not crossed by δ; δ is short there and tall at τ2, τ3.

of nodes v at which δ has this property is O(log r), because Iv contains the x-coordinate
of an endpoint (actually, both endpoints) of δ. Hence, the contribution of arcs δ as above
to
∑

τ |As
τ | is O(|A∗| log r). Combining this with the previous bound completes the proof

of the lemma. 2

Remarks: 1) The fact that the arcs δ have pairwise openly disjoint x-projections is crucial
for the bound that we obtain in Lemma 7.2.2. The decomposition of (a cover of) H0 that
we construct is a variant of the decomposition obtained in [20]; however, the analysis in [20]
does not exploit the special structure of the arcs δ, and results in a suboptimal bound.
2) An individual arc δ may cross Ω(r) cells τ , each of whose top boundary is disjoint from
δ. However, Lemma 7.2.2 shows that the overall number of these crossings, summed over
all arcs δ, is relatively small.

Each cell τ for which |As
τ | > |A∗| log r

r2 is next split, by vertical lines, into subcells, such

that each subcell τ ′ satisfies |As
τ ′| ≤ |A∗| log r

r2 ; the number of cells is still O(r2).
Fix a (new) cell τ , and form the complete bipartite graph As

τ ×C∗τ , where C∗τ consists of
all sets C ∈ B such that ℓC passes above τ . We associate the interval Iτ (the x-span of τ)
with this graph. Since r is a constant, we have

∑

τ

(|As
τ |+ |C∗τ |) = O(mA + nB)

(where the constant of proportionality depends on r), and the overall number of boundary
touchings that they involve, over all cells τ , is O(mA + λs+2(nB)).

We next claim that the overall number of boundary touchings on the boundary of the
union, occurring within a cell τ and involving a tall arc in τ , summed over all cells τ , is
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δ1 δ2 δ3

C

σC

τ

v1 v3

Figure 7.5: ∂−C touches δ1 and δ3 inside τ at v1 and v3, respectively, and cannot touch the
intermediate tall arc δ2.

only linear in nB (and thus we need not provide a compact representation for these pairs).
Indeed, let τ be a cell of Ξ, and let ℓC be the line containing the spine σC of a set C, so that
ℓC intersects τ or passes fully above τ . We claim that there are at most two tall arcs in τ
that touch ∂−C at a point that lies on ∂U . Indeed, suppose, to the contrary, that there are
three such arcs δ1, δ2, δ3, which appear on E+

A in that order (from left to right). Consider
the two respective boundary touchings that ∂−C forms with δ1, δ3, at two respective points
v1, v3 inside τ . Then, due to the convexity of C, its portion between v1 and v3 lies below
the top edge of τ , and δ2 lies fully below (and touches) that portion, so it cannot be tall
in τ , a contradiction that establishes the claim; see Figure 7.5. Thus the overall number of
regular vertices of the above kind is O(r2nB) = O(nB), as asserted.

We thus conclude that the overall number of boundary touchings involving both short
and tall arcs, in all subcases considered so far, is O(mA + λs+2(nB)).

We continue the construction recursively, within each cell τ , with As
τ and the subset

Cτ of those C ∈ B whose line ℓC crosses τ . We have |As
τ | ≤ |A∗| log r

r2 = mA log r
r2 , |Cτ | ≤ nB

r
.

However, the next stage of the recursion is performed in the dual plane, and proceeds as
follows. For each resulting cell τ , map As

τ and Cτ to the dual plane. For each C ∈ Cτ , we
map ℓC to a dual point ℓ∗C , and each arc δ in As

τ is mapped to a convex x-monotone curve
δ∗, which is the locus of all points dual to lines that are tangent to δ (possibly at one of
its endpoints) and pass above δ (see [20] and [59] for further details). Thus a line ℓC lies
above an arc δ if and only if the dual point ℓ∗C lies above δ∗. Each pair of dual arcs δ∗1, δ

∗
2

intersect each other exactly once, since any such intersection point is the dual of a common
tangent to δ1, δ2 that passes above both of them, and since δ1, δ2 are two convex curves
that have disjoint x-spans, there is exactly one such common tangent. We now construct
(for each cell τ obtained at the preceding step) a (1/r)-cutting of the arrangement of the

dual arcs δ∗, obtaining O(r2) subcells, each of which is crossed by at most |Asτ |
r
≤ mA log r

r3
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dual arcs δ∗, and contains at most |Cτ |
r2 ≤ nB

r3 dual points ℓ∗C ; see [14] for details.

As above, we construct, for each subcell τ ′ of this cutting, a complete bipartite graph
that connects the dual points in τ ′ to the dual arcs that pass fully below that subcell.
Again, since r is a constant, the sum of the sizes of the vertex sets of these graphs is
O(mA +nB). We are thus left with O(r4) subproblems, each involving at most mA log r

r3 arcs
δ of A∗, and at most nB

r3 sets in B. We now process each subproblem recursively, going
back to the primal plane, and keep alternating in this manner, until we reach subproblems
in which either m2

A < nB, or n2
B < mA. In the former (resp., latter) case, we continue

the recursive construction only in the dual (resp., primal) plane, and stop as soon as one
of mA, nB becomes smaller than r, in which case we output the complete bipartite graph
As

τ × Cτ involving the input sets to the subproblem. Note that in the bottom of the
recurrence the boundary touchings are not necessarily obtained on the lower envelope of
the boundaries of the sets in Cτ , and thus the bound on their number in this particular
case is |As

τ | · |Cτ | = O(|As
τ |+ |Cτ |), where the constant of proportionality depends on r.

The preceding arguments imply that the union of all the bi-cliques constructed by this
procedure, including the interactions with tall arcs and other “leftover” pairs detected by
the decomposition, covers H0. Indeed, for each such pair (δ, C) ∈ H0, the line ℓC containing
the spine σC of C lies fully above δ. Our procedure detects all such pairs (δ, C) either (i)
at the bottom of the recurrence, in which case all these pairs are reported in a brute force
manner, or (ii) at a recursive step, performed in the primal plane and involving a cell τ in
which the boundary touching appears, such that ℓC lies above τ and δ is short in τ , or (iii)
at a recursive step, performed in the dual plane and involving a cell τ ′, such that ℓ∗C lies
inside τ ′ and δ∗ passes fully below it.

Let R(mA, nB) denote the maximum number of boundary touchings on the boundary
of the union, that arise at a recursive step involving mA arcs δ and nB sets C, as above,
and which are formed between one of the arcs δ and the bottom boundary of one of the
sets C. As argued above, the number of such bichromatic touchings, that arise for any of
the complete bipartite graphs generated at this stage, is nearly-linear in the sizes of the
vertex sets of that graph. Hence R satisfies the following recurrence (where in the first
three cases, min{mA, nB} ≥ r):

R(mA, nB) ≤























































O (mA + λs+2(nB)) +O(r4)R
(

mA log r
r3 , nB

r3

)

, if m2
A ≥ nB ≥

√
mA,

O (mA + λs+2(nB)) +O(r2)R
(

mA
r , nB

r2

)

, if nB > m2
A,

O (mA + λs+2(nB)) +O(r2)R
(

mA log r
r2 , nB

r

)

, if mA > n2
B,

O (mA + nB) , if min{mA, nB} < r.
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(a) (b)

Figure 7.6: From incidences to regular vertices.

It is then easy to see, using induction on mA and nB, that the solution of this recurrence is

R(mA, nB) = O(m
2/3+ε
A n

2/3+ε
B +m1+ε

A + n1+ε
B ) = O(n

2/3+ε
A n

2/3+ε
B + n1+ε

A + n1+ε
B ), (7.3)

for any ε > 0.
Summing these bounds over all bi-cliques A× B of the first decomposition phase, and

using the bound in (7.1), the upper bound of Theorem 7.1.1 follows.

Lower bounds. We use a construction given in [114]. Construct a system of n lines and
n points with Θ(n4/3) incidences between them (see, e.g., [115]). Map each line to a long
and thin rectangle, and each point to a small disk, in such a way that, for each pair of a
point p incident to a line ℓ, the disk into which p is mapped slightly penetrates the rectangle
into which ℓ is mapped, and all the intersections between the boundaries of the disks and
the rectangles are regular, and lie on the boundary of their union. See Figure 7.6. Clearly,
s = 4 in this construction. Hence, we obtain a collection of 2n convex regions, each pair of
whose boundaries intersect in at most four points, which have Θ(n4/3) regular vertices on
the boundary of their union. This completes the proof of Theorem 7.1.1. 2

7.3 Extensions

In this section, we study the case where the input sets are not necessarily convex, but
still satisfy certain properties, listed below, and obtain improved bounds on the number of
regular vertices that appear on the boundary of their union. These bound are weaker than
the one derived for the convex case, but are still significantly stronger than those derived
in [20] for the general case. Specifically, let C be a collection of n compact simply-connected
sets in the plane with the following properties:

(i) For each C ∈ C, the spine σC of C is contained in C.

(ii) The boundary of each C ∈ C is x-monotone.
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(iii) For each pair C,C ′ ∈ C, the top (resp., bottom) boundary of C intersects in at most
s points each of the top and the bottom boundaries of C ′.

The main result of this section is:

Theorem 7.3.1 Let C be a set of n compact simply-connected sets satisfying properties
(i)–(iii). Then the number of regular vertices on the boundary of the union of C is at most

O
(

n(3s+1)/(2s+1)+ε
)

,

for any ε > 0, where the constant of proportionality depends on ε and on s.

Overview of the proof. The proof somewhat resembles the proof for the convex case,
where the main difference is that we do not apply the transformation of [20] to the input
collection C, since this may cause the boundary of each of the resulting sets to consist of
an arbitrarily large number of different arcs, which the preceding analysis cannot handle.
We therefore modify the preceding analysis to fit into the current scenario.

We first reduce the analysis to the case where the regular vertices are formed by pairs of
sets whose spines are disjoint, arguing that there are only O(n) other regular vertices on ∂U .
(We did not use these considerations in the preceding analysis, since the transformation
of [20] guarantees that each pair of spines of the resulting sets that create regular vertices
on ∂U are disjoint.)

We then apply a similar decomposition scheme to that of the preceding analysis, which
represents all pairs of sets of C with disjoint spines, so that one of these spines lies below
the other, as the disjoint union of complete bipartite graphs.

We then fix one such complete bipartite subgraph A× B, where the spines of the sets
in A all lie below those of the sets of B, and analyze the number of regular vertices that it
contributes to the union boundary. Applying similar arguments as in the preceding analysis,
we conclude that each of these regular vertices must lie either on the upper envelope of the
top boundaries of sets in A, or on the lower envelope of the bottom boundaries of sets in
B. The main difference from the preceding analysis is the manner in which we continue
processing each of these subgraphs A×B: The above property allows us to distribute these
regular vertices among a small number of chains with pairwise disjoint x-projections, so
that each chain is an upper or lower envelope of some subcollection of C.

This latter problem extends the problem of bounding the complexity of m pairwise
disjoint concave chains in an arrangement of n lines, as studied in [82, 83]. We apply a
different analysis, and derive a sharp bound on the complexity of our lower (or upper)
envelope chains, a result that may be of independent interest.

Finally, we collect these bounds, put them together, and obtain the bound asserted in
Theorem 7.3.1.

We now proceed to present the proof in detail.
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(a) (b)

Figure 7.7: (a) If ∂C and ∂C ′ meet regularly, and neither endpoint of any of the spines σC , σC′ is
contained in the other set, then the spines must be disjoint. (b) ∂C and ∂C ′ meet regularly, and C
contains the right endpoint q of σC′ ; the regular vertex v ∈ ∂U can be charged to q.

Reduction to the case of disjoint spines. Let C and C ′ be two members of C that
intersect regularly, so that at least one of the two intersection points lies on ∂U . Suppose
first that σC and σC′ intersect. Then it must be the case that either some endpoint of
σC is contained in C ′, or some endpoint of σC′ is contained in C. Indeed, suppose to the
contrary that neither of these endpoints is contained in the other set. Since ∂C and ∂C ′

meet regularly, at two points u, v, and no endpoint of either spine is contained in the other
set, C ′ ∩ ∂C is a connected arc, delimited by u and v, which is fully contained in the top
boundary or in the bottom boundary of C, and a symmetric property holds for C ∩∂C ′. It
is easily checked that one of these arcs must be contained in the respective top boundary
and the other in the respective bottom boundary. See Figure 7.7(a). Let W be the vertical
strip spanned by these two arcs. Outside W , C and C ′ are disjoint, and thus so are their
spines. Inside W , the segment uv separates the two spines, so they are disjoint there too,
a contradiction that establishes the claim.

Hence either C or C ′ must contain one of the endpoints of the spine of the other set in
its interior, and we can charge the regular vertex (or pair of vertices) to this endpoint, so
that no endpoint is charged more than twice; see Figure 7.7(b). Hence there are only O(n)
such regular vertices on ∂U . It therefore suffices to consider only regular vertices whose
corresponding spines are disjoint.

The bi-clique decomposition. We next collect all pairs of sets, so that the spine of
one set lies below the the spine of the other set, as the disjoint union of bi-cliques Ai×Bi,
so that the overall size of their vertex sets is O(n4/3+ε), for any ε > 0. We use the same
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δ

C

C′v

Figure 7.8: Illustrating the proof that the vertex v ∈ ∂U , where the bottom boundary ∂−C meets δ

regularly, cannot lie above the bottom boundary of another C ′ ∈ C(i)
B .

decomposition as in Lemma 7.2.1. Adapting the analysis in the proof of that lemma, one
can show that the following also holds:

∑

i

(

|Ai|(s+1)/(2s+1)|Bi|2s/(2s+1) + |Ai|+ |Bi|
)

= O
(

n(3s+1)/(2s+1)+ε
)

, (7.4)

for any ε > 0.
We now fix one of the resulting graphs A×B. All the spines of the sets in A lie below

all the spines of the sets in B. Put nA = |A| and nB = |B|. Let v be a regular vertex of
the union lying on the top boundary ∂+C and on the bottom boundary ∂−C ′, for two sets
C ∈ A, C ′ ∈ B; as just discussed, this is the only possible situation if no endpoint of either
spine is contained in the other set. Applying similar arguments to those in Section 7.2, we
observe that v lies either on the upper envelope E+

A of the top boundaries of the sets in A,
or on the lower envelope E−

B of the bottom boundaries of the sets in B. We only consider,
without loss of generality, the case where v lies on the upper envelope E+

A .
As in Section 7.2, E+

A is a concatenation of arcs δ1, . . . , δm, each contained in the bound-

ary of a single set C ∈ A, so that m ≤ λs+2(nA). Let C(i)
B denote the collection of sets

C ∈ B such that ∂−C meets δi regularly. (We may ignore cases where ∂−C meets the
top boundary containing δi regularly, but crosses δi only once. In such cases, C must con-
tain an endpoint of δi, and there can exist at most two vertices on δi with this property.)
We claim that each of these regular vertices lies on the lower envelope of the boundaries
{∂−C | C ∈ C(i)

B }. Indeed, if a set C ∈ C(i)
B is such that its bottom boundary ∂−C meets δi

at a vertex v ∈ ∂U that does not lie on that envelope, then there exists another C ′ ∈ C(i)
B

whose bottom boundary passes below v. Since ∂−C ′ meets δ regularly, one of the intersec-
tion points must lie to the left of v and one must lie to the right of v. But then the entire
portion of δ between these intersection points, and in particular v itself, must be contained
in C ′, contradicting the fact that v ∈ ∂U ; see Figure 7.8.

We thus face the following problem. We are given a collection Γ of nB x-monotone curves
∂−C, for C ∈ B, and wish to bound the overall combinatorial complexity of m ≤ λs+2(nA)
chains, such that the chains have pairwise openly disjoint x-projections, and such that each
chain is a lower envelope of a subset of B; here the complexity of a chain is simply the
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δ1 δ2

γ1
γ2

C1
C2

Figure 7.9: Illustrating the proof that H does not contain Ks+1,2.

number of distinct curves that appear in the chain. This is a special case of a natural
extension of the problem, studied in [82, 83], of bounding the complexity of m pairwise
disjoint concave chains in an arrangement of n lines. (It is a special case since we assume
that the chains have disjoint x-projections; the chains studied in [82, 83] are only assumed
to be pairwise disjoint.)

Even though this abstract formulation yields nontrivial bounds on the combined com-
plexity of the chains, our analysis will “squeeze” the bounds further, by exploiting the
properties that (a) the curves of Γ are the bottom boundaries of regions that satisfy as-
sumptions (i)–(iii), and (b) each curve that appears in some chain has a point (within the
chain) that lies on the boundary of the union of the regions participating in the chains.

Consider the bi-clique H ⊆ ∆ × Γ, whose edges connect those pairs (δ, γ) for which γ
participates in the chain defined by δ, and such that γ appears in at least one chain to the
left of δ and in at least one chain to the right of δ. We claim that H does not contain
a subgraph isomorphic to Ks+1,2. Indeed, suppose to the contrary that there exist arcs
δ1, . . . , δs+1, in this left-to-right order, and two regions C1, C2, whose respective bottom
boundaries γ1, γ2 appear in all the chains induced by the δi’s (and each of them appears
in at least one chain to the left of δ1 and in at least one chain to the right of δs+1). See
Figure 7.9. It is easily checked that γ1 and γ2 must intersect at least once above each of
the arcs δi; this is trivial for “middle” arcs (with 1 < i < s + 1), and follows, say, for the
leftmost arc δ1 by recalling that each of γ1, γ2 must appear in some chain to the left of δ1,
and have a point there that lies on ∂U ; a symmetric argument applies for the rightmost arc
δs+1. This, however, results in a contradiction, since γ1, γ2 intersect in at most s points,
and thus H cannot contain Ks+1,2, as asserted.

It thus follows, by the Kövari-Sós-Turán theorem [111], that the number of edges of
H , and thus the maximum possible complexity K(m,n) of m lower envelope chains in an
arrangement of n curves with the above properties, is O(mns/(s+1) + n). That is, we have

K(m,n) = O
(

mns/(s+1) + n
)

. (7.5)
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Fix a parameter r, whose value will be determined later, and, to simplify the notation,
put n = nB. Let Λk denote the k-th level in the arrangement A(Γ), for k = 0, . . . , n − 1.
As in [101], we can find a shift q ∈ {0, 1, . . . , n

r
−1}, such that the overall complexity of the

levels Λq,Λq+n/r, . . . ,Λq+(r−1)n/r is O(nr). Let Lj denote the portion of the plane between
Λ∗

j−1 := Λq+(j−1)n/r and Λ∗
j := Λq+jn/r (excluding the former and including the latter), for

j = 1, . . . , r − 1; L0 (resp., Lr) is defined as the portion of the plane below and including
Λ∗

0 (resp., above Λ∗
r−1). We refer to Lj as the j-th belt of A(Γ).

For each of the levels Λ∗
j , we consider the sequence of vertices of A(Γ) along Λ∗

j , and
mark the vertices that appear at the places n/r, 2n/r, 3n/r, and so on. For each marked
vertex v, we draw two vertical segments from v, up and down, and extend them till they
hit Λ∗

j+1 (or +∞ for the top level) and Λ∗
j−1 (or −∞ for the bottom level), respectively.

These vertical segments partition the belts into a collection Ξ of a total of O(r2) regions,
each of which is crossed by at most 2n/r curves of Γ; as a matter of fact, the total number
of maximal connected portions of the curves within a single region is also at most 2n/r.
(Indeed, an endpoint of such a component lies either on the left or right vertical edges of
the region, and there are 2n/r such points, or at a vertex of its top or bottom boundary,
and again there are at most 2n/r such vertices.)

Let Wi denote the vertical strip spanned by δi, for i = 1, . . . , m. The chain ξi defined
by δi is the lower envelope of a collection Γi of some number, ki, of curves. Let t = ti
denote the largest index for which ξi appears within Lt, at some point x. By definition, for
each γ ∈ Γi which is defined at x, γ(x) ≥ ξi(x), so all curves of Γi which do not end inside
Wi must intersect Lt (a curve that lies fully above Lt will not appear along ξi at all, and
so will not be included in ξi, by construction). The number of curves that end within Wi,
summed over all Wi, is only 2n, and we ignore these curves in the following analysis. Let
ki,p denote the number of curves of Γi, that appear along ξi within Lt−p, but not within
any lower belt, for p = 0, 1, . . . (recall that all these appearances are confined to Wi). We
have

∑

p≥0 ki,p = ki. See Figure 7.10.

Consider a curve γ ∈ Γi that is counted in ki,p, for some p ≥ 2. Since γ appears in Lt−p

and also in Lt, it must cross (within Wi) at least (p − 1)n/r distinct levels of A(Γ), and
each such crossing defines a vertex of A(Γ) along γ within Wi. Moreover (assuming general
position), each such vertex can be encountered in this way at most twice. It follows that
Wi must contain at least

n

2r
·
∑

p≥2

(p− 1)ki,p ≥
n

2r
·
∑

p≥2

ki,p

vertices of A(Γ). If we denote by X = O(n2) the total number of vertices of A(Γ), we
conclude that

m
∑

i=1

∑

p≥2

ki,p ≤
2rX

n
= O(nr).



150 Regular Vertices of the Union of Planar Convex Objects

δi

Λ∗

2

Λ∗

1

Λ∗

t−1

Λ∗

t

Wi

Lt

Figure 7.10: The belts within the strip Wi spanned by δi.

Recall that our objective is to bound

k∗ := K(m,n) =

m
∑

i=1

ki =

m
∑

i=1

∑

p≥0

ki,p.

We thus obtain

k∗ ≤
m
∑

i=1

(ki,0 + ki,1) +
2rX

n
. (7.6)

In other words, we may assume that each ξi lives within at most two consecutive belts of
Wi. To be more precise, we remove from Γi the arcs that extend downward below belt
Lti−1, and redefine ξi to be the lower envelope of the reduced collection of curves. The
new envelope might now appear in belts that are higher than Lti or are lower than Lti−1,
but each of its arcs must still appear on the envelope within Lti ∪ Lti−1. Thus, restricting
the new envelope to only its portion within Lti ∪ Lti−1, we will still account for all of its
(undiscarded) arcs.

Let us return to the partition Ξ. For each cell τ of Ξ, let mτ denote the number of
(reduced and restricted) chains that appear within τ . Let m

(s)
τ (resp., m

(l)
τ ) denote the

number of short (resp., long) chains in τ , where a chain is short if either it does not appear
in any cell preceding τ within its belt, or it does not appear in any cell succeeding τ within
its belt; a long chain appears within the belt of τ both to its left and to its right. Clearly,

mτ = m(s)
τ +m(l)

τ , and
∑

τ

m(s)
τ ≤ 4m.

Long chains are easy to handle: Since the original chains have pairwise disjoint x-spans,
it follows that a cell τ can have at most one long chain (and then it has no short chains).
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Hence, the contribution of such a cell τ to k∗ is O(n/r), for a total of O(nr). Combining
this bound with (7.6), we have

K(m,n) ≤
∑

τ

K(m(s)
τ , 2n/r) +O(nr).

Substituting the earlier bound (7.5), we obtain

K(m,n) = O

(

∑

τ

(

m(s)
τ (n/r)s/(s+1) + n/r

)

+ nr

)

= O
(

m(n/r)s/(s+1) + nr
)

.

We now choose r = m(s+1)/(2s+1)/n1/(2s+1), where we assume that n1/(s+1) ≤ m ≤ n2;
otherwise K(m,n) = O(m + n), as is easily checked. This implies, substituting back
m = λs+2(nA) and n = nB, that the number of regular vertices on the boundary of the
union, generated by a fixed bi-clique A× B, is at most

O
(

(λs+1(|A|))(s+1)/(2s+1)|B|2s/(2s+1) + λs+2(|A)|+ |B|
)

.

Summing these bounds over all bi-cliques A× B, and using the bound in (7.4), the upper
bound of Theorem 7.3.1 is easily seen to follow.

7.4 Concluding Remarks and Open Problems

We have presented a nearly-optimal bound on the number of regular vertices that appear on
the boundary of the union of n compact convex sets in the plane, each pair of whose bound-
aries intersect in at most some constant number, s, of points. We have also established a
weaker bound for sets that are non-convex but satisfy properties (i)–(iii) of Section 7.3.

A major open problem is to extend our bound to the case where the sets in C are not
convex (and, still, each pair of whose boundaries intersect in up to a constant number of
points). Weaker goals are to extend the bound O

(

n4/3+ε
)

to the case that we studied
in Section 7.3, or even only to the further restricted setting, where each input set has a
constant description complexity. We tend to conjecture that, in all these cases, the actual
bound is close to O

(

n4/3
)

.
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[103] J. Matoušek. Randomized optimal algorithm for slope selection. 39(4):183–187, 1991.
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