
Why almost all k-CNF formulas are easy

Amin Coja-Oghlan1, Michael Krivelevich2 and Dan Vilenchik3

1 Institute for Informatics, Humboldt-University, Berlin, Germany.
coja@informatik.hu-berlin.de.

2 School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
krivelev@post.tau.ac.il.

3 School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
vilenchi@post.tau.ac.il.

Abstract. Finding a satisfying assignment for a k-CNF formula (k ≥ 3), assuming
such exists, is a notoriously hard problem. In this work we consider the uniform distri-
bution over satisfiable k-CNF formulas with a linear number of clauses (clause-variable
ratio greater than some constant). We rigorously analyze the structure of the space
of satisfying assignments of a random formula in that distribution, showing that ba-
sically all satisfying assignments are clustered in one cluster, and agree on all but a
small, though constant proportion, number of variables. This observation enables us to
describe a polynomial time algorithm that finds whp a satisfying assignment for such
formulas, thus asserting that most satisfiable k-CNF formulas are easy (whenever the
clause-variable ratio is greater than some constant). This should be contrasted with the
setting of very sparse k-CNF formulas (which are satisfiable whp), where experimental
results show some regime of clause density to be difficult for many SAT heuristics.
One explanation for this phenomena, backed up by partially non-rigorous analytical
tools from statistical physics, is the complicated clustering of the solution space at that
regime, unlike the more “regular” structure that denser formulas possess. Thus in some
sense, our result rigorously supports this explanation.

key words: computational and structural complexity, algorithms and data structures,
message passing algorithms, SAT.

1 Introduction

Constraint satisfaction problems play an important role in many areas of computer
science, e.g. computational complexity theory [9], coding theory [16], and artificial
intelligence [26], to mention just a few. The main challenge is to devise efficient algo-
rithms for finding satisfying assignments (when such exist), or conversely to provide
a certificate of unsatisfiability. One of the best known examples of a constraint satis-
faction problem is k-SAT, which is the first to be proven as NP-complete. Although
satisfactory approximation algorithms are known for several NP-hard problems, the
problem of finding a satisfying assignment (if such exists) is not amongst them. In
fact, H̊astad [17] proved that it is NP-hard to approximate MAX-3SAT (the problem
of finding an assignment that satisfies as many clauses as possible) within a ratio
better than 7/8.

In trying to understand the inherent hardness of the problem, many researchers
analyzed structural properties of formulas drawn from different distributions. One

2 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

such natural distribution is the following: fix c, n > 0 (c may depend on n), choose
m = cn clauses uniformly at random out of 8

(
n
3

)
possible ones. We denote this dis-

tribution by Pn,m. Despite its simplicity, many essential properties of this model are
yet to be understood. In particular, the hardness of deciding if a random formula is
satisfiable, and finding a satisfying assignment for a random formula, are both major
open problems [10, 23].

1.1 Our Contribution

Remarkable phenomena occurring in the random model Pn,m are phase transitions.
With respect to the property of being satisfiable, such a phase transition takes place
too. More precisely, there exists a threshold dk = dk(n) such that a k-CNF formula
with clause-variable ratio greater than dk is not satisfiable whp4, while one with ratio
smaller than dk is [15]. In this work we consider satisfiable k-CNF formulas with
cn clauses, c greater than some sufficiently large constant. In this regime almost all
formulas are not satisfiable, and therefore we consider the following natural extension
of Pn,m, which we denote by Psat

n,m: fix c, n > 0 (c may depend on n), choose m = cn
clauses uniformly at random out of 8

(
n
3

)
possible ones, conditioned on the fact that

the received formula is satisfiable. To simplify the presentation we consider the most
popular setting – the case k = 3, namely random 3SAT, and remark that our results
extend to any fixed k.

Our contribution is composed of three parts. The first part rigorously establishes the
following fact:

Theorem 1. There exists a polynomial time algorithm that whp finds a satisfying
assignment for 3CNF instances from Psat

n,m, m ≥ C0n, C0 a sufficiently large constant.

Thus we partially answer the open problem asking to decide the hardness of Pn,m

[10, 23]. Specifically, we assert that for all but a vanishing fraction of satisfiable 3CNF
formulas over n variables with m clauses, one can efficiently find a satisfying as-
signment (whenever m/n is greater than some constant). Our proof of Theorem 1
is constructive – that is, we present an algorithm that meets the requirements of
Theorem 1.

The second part of our result concerns another exciting area. One of the most sur-
prising recent developments in satisfiability problems comes from statistical physics.
More specifically, in their well-known work, Mezard, Parisi and Zecchina [6] designed
a new algorithm, known as Survey Propagation, for solving k-SAT instances. A partic-
ularly dramatic feature of this method is that it appears to remain effective in solving
very large instances of random k-SAT even with densities very close to the conjectured
satisfiability threshold, a regime where other algorithms (e.g., the WalkSAT method
[27]) typically fail. Nonetheless, despite the considerable progress to date, the rea-
sons underlying the remarkable performance of Survey Propagation are not yet fully
understood, let alone a rigorously analyzed.
4 Writing whp we mean with probability tending to 1 as n goes to infinity.

Almost all k-CNF formulas are easy 3

The difficulty that Survey Propagation apparently overcomes lies in the complicated
structure of the solution space of such formulas. That is, the conjectured picture,
some supporting evidence of which were proved rigorously for k ≥ 8 [24, 1, 25], is that
typically random k-CNF formulas in the near-threshold regime have an exponential
number of clusters of satisfying assignments. While any two assignments in distinct
clusters disagree on at least εn variables, any two assignments within one cluster
coincide on (1−ε)n variables. Furthermore, each cluster has a linear number of frozen
variables (a variable is said to be frozen in some cluster if all satisfying assignments
within that cluster assign it in the same way). The algorithmic difficulty with such
a clustered solution space seems to be that most known algorithms do not “steer”
into one cluster but try to find a “compromise” between the satisfying assignments
in distinct clusters, which actually is impossible.

Complementing this picture rigorously, we show that typically for satisfiable 3CNF
formulas in the above-threshold regime the solution space contains only one cluster,
though its size may be exponential in n. Formally,

Theorem 2. Let F be random 3CNF from Psat
n,m, m ≥ C0n, C0 a sufficiently large

constant. Then whp F enjoys the following properties:

1. All but e−Θ(m/n)n variables are frozen.
2. The formula induced by the non-frozen variables decomposes into connected com-

ponents of at most logarithmic size.
3. Letting β(F) be the number of satisfying assignments of F , we have 1

n log β(G) =
e−Θ(m/n).

4. Any two satisfying assignments differ on at most e−Θ(m/n)n variables

Combining Theorems 1 and 2 supports the following common thesis: the main key
to understanding the hardness (even experimental one) of a certain distribution over
satisfiable formulas lies in the structure of the solution space of a typical formula in
that distribution. Specifically, our results show (at least in our setting) that typically
when a formula has a single cluster of satisfying assignments, though its volume
might be exponential, then the problem is “easy”. On the other hand, when the
clustering is complicated, for example in the near threshold regime, experimental
results predict that many “simple” heuristics fail, while “heavy machinery” such as
Survey Propagation works. Heightening this last point, consider the recent work in [12],
where the näıve Warning Propagation algorithm is rigorously shown to work whp for
3CNF formulas taken from a somewhat different distribution than the one we consider,
nonetheless (as we shall prove) sharing with Psat

n,m the same simple cluster structure.
Fitting the result in [12] to our perspective – when the clustering is simple, then a
simple message passing algorithm works (Warning Propagation), when the clustering is
complicated, then only a much more complicated message passing algorithm is known
(and even this only experimentally) to work (Survey Propagation).

The third part of our result is more “philosophical” in nature. As we already
mentioned, the event of a random formula in Pn,m being satisfiable, when m/n is some

4 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

constant above the satisfiability threshold, is very unlikely. Therefore, the distribution
Psat

n,m differs from the Pn,m distribution significantly. In effect, many techniques that
have become standard in the study of random instances (3CNF formulas and grahps)
just do not carry over to Psat

n,m – at least not directly. In particular, the contriving
event of being satisfiable causes the clauses in Psat

n,m to be dependent.
The inherent difficulty of Psat

n,m has led many researchers to consider the more
approachable, but considerably less natural, planted distribution, pioneered by
Kučera [22] in the context of graph coloring. In the planted distribution, which we
denote by Pplant

n,m , one first fixes some satisfying assignment, and then includes m
clauses uniformly at random out of 7

(
n
3

)
clauses that are satisfied by it. This of

course guarantees that the formula is satisfiable. Planted solution distributions are
favored by many researchers in the context of SAT [14, 4, 20], but also for other graph
optimization problems such as max clique, min bisection, and coloring [2, 3, 5, 19, 11],
to mention just a few.

Of course the Pplant
n,m model is somewhat artificial and therefore provides a less

natural model of random instances than Psat
n,m. Nevertheless, devising new ideas for

analyzing Psat
n,m we show that Psat

n,m and Pplant
n,m actually share many structural prop-

erties such as the existence of a single cluster of solutions. As a consequence, we
can prove that a certain algorithm, designed with Pplant

n,m in mind, works for Psat
n,m as

well (this algorithm is used to prove Theorem 1). In other words, by presenting new
methods for analyzing heuristics on random instances, we can show that algorithmic
techniques invented for the somewhat artificial planted model extend to the canonical
uniform setting.

We proceed with related work and a detailed exposition of our techniques.

1.2 Related Work and Techniques

Almost all exact polynomial-time heuristics suggested so far for random instances
(either SAT or graph optimization problems) were analyzed when the input is sampled
according to a planted-solution distribution, or various semi-random variants thereof.
Alon and Kahale [2] suggest a polynomial time algorithm based on spectral techniques
that whp properly k-colors a random graph from the planted k-coloring distribution
(the distribution of graphs generated by partitioning the n vertices into k equally-
sized color classes, and including every edge connecting two different color classes with
probability p = p(n)), for graphs with average degree greater than some constant. In
the SAT context, Flaxman’s algorithm, drawing on ideas from [2], solves whp planted
3SAT instances where the clause-variable ratio is greater than some constant. Also
[13, 12, 21] address the planted 3SAT distribution.

On the other hand, very little work was done on non-planted distributions, such
as Psat

n,m. In this context one can mention the work of Chen [7] which provides an
exponential time algorithm for Psat

n,m with m/n greater than some constant. Ben-
Sasson et al. [4] also study Psat

n,m but with m/n = Ω(log n), a regime where Psat
n,m and

Pplant
n,m coincide (since typically there is only one satisfying assignment). [4] ask whether

Almost all k-CNF formulas are easy 5

one can characterize Psat
n,m for m/n = o(log n), and in particular they ask whether

there exists a polynomial time algorithm that finds whp a satisfying assignment in this
regime. In this work we answer their question positively. One should also mention the
recent work of [8], where the uniform distribution over k-colorable graphs with average
degree greater than some constant is analyzed. Specifically, [8] shows that a similar
clustering phenomenon to the one described in Theorem 2 also occurs for k-colorable
graphs with constant average degree. Furthermore, [8] shows that the algorithm by
Alon and Kahale [2] works whp for such graphs as well. The techniques that we use
are similar in flavor to the ones introduced in [8], though k-SAT is fundamentally
different from k-colorability.

To obtain our results, we use two main techniques. As we mentioned, Pplant
n,m is

already very well understood, and the probability of some structural properties that
we discuss can be easily estimated for Pplant

n,m using standard probabilistic calculations.
It then remains to find a reasonable “exchange rate” between Pplant

n,m and Psat
n,m. We

use this approach to estimate the probability of “complicated” properties, which hold
with extremely high probability in Pplant

n,m . The other method is directly analyzing
Psat

n,m, crucially overcoming the clause-dependency issue. This method tends to be
more involved than the first one, and necessitates intricate counting arguments.

1.3 Paper’s Structure

The rest of the paper is structured as follows. In Section 2 we discuss relevant struc-
tural properties that a typical formula in Psat

n,m possesses. One consequence of this
discussion will be a proof of Theorem 2. We then prove Theorem 1 in Section 3 by
presenting an algorithm and showing that it meets the requirements of Theorem 1.
Concluding remarks are given in Section 5. Due to lack of space most propositions
are given without a proof which can be found in complete in the appendix. We do
however include two complete proofs – one that uses the exchange-rate technique
(Section 2.2), and one directly analyzing Psat

n,m (Section 4).

2 Properties of a Random Instance from Psat
n,m

In this section we analyze the structure of a typical formula in Psat
n,m. One direct

consequence of the discussion in this section is a proof of Theorem 2, another is that
the algorithm that we describe in Section 3 meets the requirements of Theorem 1.

Here and throughout we think of m as O(n log n). Otherwise, typically a formula in
Psat

n,m with m ≥ C0n log n, C0 some sufficiently large constant, has only one satisfying
assignment (as implied by the proof of Proposition 6), and therefore by the definition
of Pplant

n,m , it holds that Psat
n,m and Pplant

n,m are statistically close. Then a simple second
moment calculation shows that the Majority Vote, discussed ahead, will reconstruct
the satisfying assignment whp for Pplant

n,m in that regime. The interesting case remains
m = O(n log n).

6 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

2.1 Setting the Exchange Rate

Let A be some property of CNF formulas (it would be convenient for the reader to
think of A as a “bad” property). We start by determining the exchange rate for Pr[A]
when moving from the planted distribution to the uniform one.

For a property A we use Pruniform,m[A] to denote the probability of A occurring
under Psat

n,m, and Prplanted,m[A] for Pplant
n,m . The following lemma asserts the exchange

rate Pplant
n,m → Psat

n,m. The proof is rather involved technically and embeds interest-
ing results of their own – for example, bounding the expected number of satisfying
assignments of a formula in Psat

n,m.

Lemma 1. (Pplant
n,m → Psat

n,m) Let A be some property of 3CNF formulas, then

Pruniform,m[A] ≤ ene−m/(3n) · Prplanted,m[A].

Remark 1. Observe that the exchange rate between the planted distribution and the
uniform is exponential in n. Thus we can use Lemma 1 whenever the “bad” event A
happens with exponentially small probability in Pplant

n,m . It is pretty straightforward
to obtain an exchange rate of 2n (which is far less useful, at least in our analysis);
working out ene−m/(3n)

, though, demands more careful and non-trivial arguments. Full
details are in the appendix.

2.2 The Majority Vote

For a 3CNF formula F and a variable x we let N+(x) be the set of clauses in F in
which x appears positively (namely, as the literal x), and N−(x) be the set of clauses
in which x appears negatively (that is, as x̄). The Majority Vote assignment over F ,
which we denote by MAJ, assigns every x according to the sign of |N+(x)| − |N−(x)|
(TRUE if the difference is positive and FALSE otherwise).

To show the usefulness of the Majority Vote in Psat
n,m we work our way through

Pplant
n,m , and use the exchange-rate technique. Consider F in Pplant

n,m , and let ϕ be its
planted assignment. Consider a variable x whose assignment is w.l.o.g. ϕ(x) = TRUE.
In every clause of F that contains x, x appears positively with probability 4/7, and
negatively with probability 3/7. Therefore in expectation the sign of |N+(x)|−|N−(x)|
agrees with ϕ(x). More formally, one can prove the following fact (see [21] for the
complete proof):

Lemma 2. Let F be distributed according to Pplant
n,m with m ≥ C0n, C0 a sufficiently

large constant. Let FMAJ be a random variable counting the number of variables in F
on which MAJ disagrees with the planted assignment. There exists a constant a0 > 0
(independent of m,n) and a positive monotonically increasing function f s.t. for every
a ≥ a0 it holds that

Pr[FMAJ ≥ e−m/(an)n] ≤ e−ne−m/(f(a)n)
.

Almost all k-CNF formulas are easy 7

Proposition 1. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suf-

ficiently large constant. Then whp there exists a satisfying assignment ϕ of F that
differs from MAJ on at most e−Θ(m/n)n variables.

Proof. Set a0 = f−1(3) (f is the function promised in Lemma 2, f−1(3) is taken
according to the denominator in ene−m/(3n)

from Lemma 1), and a1 = 2a0. Let A be
the following property: “there exists no satisfying assignment s.t. MAJ is at distance
at most e−m/(a1n)n from it” (by distance we mean the Hamming distance). Using the
exchange-rate technique we obtain:

Pruniform,m[A] ≤︸︷︷︸
Lemma 1

ene−m/(3n) · Prplanted,m[A] ≤︸︷︷︸
Lemma 2

ene−m/(3n) · e−ne−m/(f(a1)n)

= en(e−m/(3n)−e−m/(f(a1)n)) = o(1).

The last equality is by the choice of a1 and the fact that f is increasing, that is
f(a1) = f(2a0) > f(a0) = 3 and therefore e−m/(3n) − e−m/(f(a1)n) < 0.

2.3 The Discrepancy Property

A well known result in the theory of random graphs is that a random graph whp will
not contain a small yet unexpectedly dense subgraph. This is also the case for Pn,m

(when considering the graph induced by the formula). This property holds only with
probability 1 − 1/poly(n) (for example, with probability 1/poly(n) a fixed clique on
a constant number of vertices will appear). Thus the exchange-rate technique is of
no use in this case (as the exchange rate factor is exponential in n). Overcoming the
clause-dependency issue, using an intricate counting argument, we directly analyze
Psat

n,m to prove:

Proposition 2. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suffi-

ciently large constant. Then whp there exists no subset of variables U s.t.

– |U | ≤ n/2000,
– There are |U | · m

50n clauses in F that contain two variables from U .

The full proof is given in Section 4.

Remark 2. To see how Proposition 2 corresponds to the random graph context, con-
sider the graph induced by the formula F (the vertices are the variables, and two
variables share an edge if there exists some clause containing them both) and observe
that every clause that contains at least two variables from U contributes an edge to
the subgraph induced by U . Thus if we have many such clauses, this subgraph will
be prohibitively dense. Since F is random so is its induced graph, and therefore the
latter will typically not occur. In our case F is random but the clauses are dependent
– making the analysis more complicated.

8 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

2.4 The Core Variables

We describe a subset of the variables, referred to as the core variables, which plays a
crucial role in the understanding of Psat

n,m. Recall that a variable is said to be frozen
in F if in every satisfying assignment it takes the same assignment. The notion of
core captures this phenomenon. In addition, a core typically contains all but a small
(though constant) fraction of the variables. This implies that a large fraction of the
variables is frozen, a fact which must leave imprints on various structural properties of
the formula. These imprints allow efficient heuristics to recover a satisfying assignment
of the core. A second implication of this is an upper bound on the number of possible
satisfying assignments, and on the distance between every such two. Thus the notion
of core gives a catheterization of the cluster structure of the solution space (matching
the properties described in Theorem 2).

Definition 1. (support) Given a 3CNF formula F , and some assignment ψ to the
variables, we say that a literal x supports a clause C (in which it appears) w.r.t. ψ if
x is the only literal that evaluates to true in C under ψ.

Definition 2. (core) A set of variables H is called a core of F w.r.t. to a satisfying
assignment ψ, if the following three properties hold:

– Every variable x ∈ H supports at least m/(5n) clauses in F [H] w.r.t. ψ (F [H]
being the subformula containing the clauses where all three variables belong to H).

– x appears in at most m/(10n) clauses in F \ F [H].

Remark 3. The proof of Theorem 2 (structure of the solution space) uses only the
first property in Definition 2. However, since the core is also used for the algorithmic
perspective, the second property is needed for the analysis of the algorithm.

Remark 4. The choice of m/(5n) corresponds to slightly less than the expected sup-
port of a variable w.r.t. the planted assignment (which is roughly 3m/(14n)), had the
underlying probability space been Pplant

n,m .

We proceed by asserting some relevant properties that such a core typically possesses.

Proposition 3. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suffi-

ciently large constant. Then whp there exits a satisfying assignment ϕ of F w.r.t.
which there exists a core H and |H| ≥ (1− e−Θ(m/n))n.

The proof of Proposition 3 uses the exchange-rate technique, similar to the proof
of Proposition 1 (a proof of Proposition 3 in the planted setting is given in [21], similar
to Lemma 2). Details omitted.

The next proposition ties between the core variables and the property of the
Majority Vote, and is crucial to the analysis of the algorithm. The proposition follows
by noticing that ϕ in Lemma 2 and in its core-size counterpart is the same – the
planted assignment. Thus, one can apply the exchange-rate technique on the combined
property.

Almost all k-CNF formulas are easy 9

Proposition 4. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suffi-

ciently large constant. Then whp there exists a satisfying assignment ϕ s.t. the fol-
lowing two properties hold:

– MAJ differs from ϕ on at most e−Θ(m/n)n variables
– There exists a core H w.r.t. ϕ as promised in Proposition 3.

The next proposition characterizes the structure of the formula induced by the non-
core variables. The connected components of a formulaF are the sub-formulas F [C1], . . . ,F [Ck],
where C1, C2, . . . , Ck are the the connected components in the graph induced by F .
Given a core H of F w.r.t. a satisfying assignment ϕ, we denote by Fϕ

out(H) the sub-
formula of F which is the outcome of the following procedure: set the variables H in
F according to ϕ and simplify F .

Proposition 5. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suffi-

ciently large constant. Let H be the core promised in Proposition 3. Then whp the
largest connected component in Fϕ

out(H) is of size O(log n).

Proposition 5 also holds only with probability 1− 1/poly(n), had F been distributed
according to Pplant

n,m . Thus, similar to Proposition 2 the analysis is an involved counting
argument (in this case even more complicated). Full details are in the appendix.

Lastly, we establish the “frozenness” property of the core variables. The proof
uses Proposition 2 to show that there are no “close” satisfying assignments, and the
exchange-rate technique to prove that there are no “far” ones. Full details are in the
appendix.

Proposition 6. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suffi-

ciently large constant. Let H be the core promised in Proposition 3. Then whp the
assignment of H in all satisfying assignments of F is the same.

3 Proof of Theorems 1 and 2

Theorem 2 is an immediate corollary of Propositions 3, 5 and 6 . Propositions 3
and 6 imply that all but a e−Θ(m/n)n of the variables are frozen. Therefore, there are
at most 2e−Θ(m/n)n possible ways to set the assignment of the remaining variables.
Furthermore, every two satisfying assignments of F can differ on the assignment of
at most e−Θ(m/n)n variables (that of the non-core variables). Proposition 5 completes
the proof with the characterization of the formula induced by the non-frozen variables
(which are a subset of the non-core ones).

Before proving Theorem 1 we present an algorithm which we claim meets the re-
quirements of Theorem 1. The algorithm is basically the one given in [14].

Remark 5. The versed reader in the area will notice some differences from the original
algorithm in [14]. However, since we consider a different distribution than the one in
[14], one can describe a simplified version of that algorithm (e.g., replace the spectral
step with a Majority Vote).

10 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

SAT(F)
Step 1: Majority Vote
1. π1 ← Majority Vote over F.

Step 2: Reassignment
2. for i = 1 to log n
3. for all x ∈ V
4. if x supports less than m/(5n) clauses w.r.t. πi then πi+1 ← πi with x flipped.
5. end for.
6. end for.
Step 3: Unassignment
7. set ψ1 = πlog n, i = 1.
8. while ∃x s.t. x supports less than m/(10n) clauses w.r.t. ψi

9. set ψi+1 ← ψi with x unassigned.

10. i ← i + 1.
11. end while.
Step 4: Exhaustive Search
12. Let ξ be the final partial assignment.
13. let A be the set of assigned variables in ξ.
14. exhaustively search Fξ

out(A), component by component.

We now prove that the algorithm SAT meets the requirements of Theorem 1. We
say that F is typical in Psat

n,m if Propositions 2, 4 and 5 hold for it. The discussion in
Section 2 guarantees that whp F is typical. Therefore, to prove Theorem 1 it suffices
to consider a typical F and prove that SAT (always) finds a satisfying assignment for
F .

We let H be the core promised in Proposition 3, and ϕ – the satisfying assignment
w.r.t. which H is defined. In all the following propositions we assume F is typical (we
don’t explicitly state it every time for the sake of brevity). Similar propositions to
Propositions 7–9 were proven in [14] for example. For completeness, all proofs are
given in the appendix.

Proposition 7. Let ψ1 be the assignment defined in line 7 of SAT. Then ψ1 agrees
with ϕ on the assignment of all variables in H.

Proposition 8. Let ξ be the partial assignment defined in line 12 of SAT. Then all
assigned variables in ξ are assigned according to ϕ, and all the variables in H are
assigned.

Proposition 9. The exhaustive search, Step 4 of SAT, completes in polynomial time
with a satisfying assignment of F .

Theorem 1 then follows.

4 Proof of Proposition 2

Let V be the set of n variables, and let U be some fixed subset of V , |U | = u. Let
H be a fixed formula over V with exactly um

50n clauses s.t. each clause contains at

Almost all k-CNF formulas are easy 11

least two variables from U . A formula F is said to be H-poor if it contains H as a
sub-formula.

Furthermore, let PH signify the set of all H-poor satisfiable formulas with exactly
m clauses, and A the set of all satisfiable formulas with exactly m edges. Our first
objective is to establish the following.

Lemma 3. |PH | ≤ (em/n3)um/(50n)|A|.

This immediately implies that the probability of an H-poor formula in Psat
n,m is at

most (em/n3)um/(50n). Next take the union bound over all possible sub-formulas H
(s.t. |U | ≤ n/2000 – as required by Proposition 2) to show that whp none is contained
in a random Psat

n,m formula.
To prove Lemma 3 we shall set up an auxiliary bipartite graph G with ver-

tex set V (G) = PH ∪ A. This graph will have the property that the average de-
gree of a vertex in PH is ∆, while that of a vertex in A is ∆′, where in addition
∆′/∆ ≤ (em/n3)um/(50n). Since ∆#PH = ∆′#A, by double counting, we thus ob-
tain Lemma 3. We describe a nondeterministic procedure P that receives a formula
F ∈ PH and produces a new formula F ′ ∈ A. In our auxiliary graph G, we connect a
right-side node F with a left-side one F ′, if F ′ can be obtained from F by applying
P to F . P is the following procedure:

given a H-poor formula F do:

– Choose a set C of um/(50n) fresh clauses (that are not yet in F)
– Obtain F ′ from F by removing all um/(50n) clauses of H and adding C.
– Output F ′ if it is satisfiable.

Therefore,

∆ ≥
(

n3

um/(50n)

)
.

This is because we have to choose um/(50n) clauses out of at least 7
(
n
3

) −m ≥ n3

possible ones (since F was satisfiable to begin with, there are at least 7
(
n
3

)
clauses

that are satisfied by the assignment that satisfies F , and we can assume that m =
O(n log n)). Conversely, consider the following nondeterministic procedure to recover
a formula F from F ′. Out of m possible clauses in F ′, choose um/(50n). Take them
out, and reinstall the original clauses of H. Therefore,

∆′ ≤
(

m

um/(50n)

)
.

Using standard bounds on the binomial coefficients, the required bound on ∆′/∆ is
obtained and Lemma 3 follows.

We are now ready to bound the probability that a random formula F in Psat
n,m

violates the condition of Proposition 2. Using the union bound this probability is at

12 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

most

n/2000∑

u=1

(
n

u

)(
8n

(
u
2

)

um/(50n)

)
·
(em

n3

)um/(50n)
≤

n/2000∑

u=1

(en

u

)u
(

600un2

m

)um/(50n) (em

n3

)um/(50n)

≤
n/2000∑

u=1

(en

u

)u
(

1800u
n

)uC0/50

≤
n/2000∑

u=1

(
en

u
· 1800u

n
·
(

1800u
n

)C0/50−1
)u

≤
n/2000∑

u=1

(
5400 ·

(
1800u

n

)C0/100
)u

= o(1)

The last equality is due to (u/n) ≤ 1/2000, so the last sum decreases faster than a
geometric series with quotient and first element equal 1/poly(n), and therefore the
whole sum is o(1).

5 Discussion

Though Pn,m has a very simple description (fix c, n > 0 and choose m = cn clauses
uniformly at random out of 8

(
n
3

)
possible ones), and is very fundamental to under-

standing the hardness of 3SAT, it still baffles many researchers and altogether remains
very poorly understood. In particular, the hardness of deciding if a random formula is
satisfiable, and finding a satisfying assignment for a random formula, are both major
open problems [10, 23].

Trying to shed some light on this problem we consider the uniform distribution
over satisfiable 3CNF formulas, Psat

n,m, with clause-variable ratio greater than some
sufficiently large constant. We characterize the typical structure of the solution space
of such formulas, and show that a relatively simple efficient algorithm recovers whp a
satisfying assignment of such formulas, thus asserting that almost all 3CNF formulas
(when the clause-variable ratio is sufficiently large, yet possibly constant) are easy.
To obtain our result we had to come up with new analytical tools that apply to a
number of further NP-hard problems, including k-colorability. Our result also implies
that the algorithmic techniques developed for random formulas from the planted
distribution, e.g. [14, 12, 13, 21], can be extended to the significantly more natural
uniform distribution.

Moreover, our result supports the assumption that the empirical hardness of some
SAT distributions is mainly dictated by the structure of the solution space of a typical
formula in that distribution. Specifically, the conjectured complicated clustering in the
“hard” near-threshold regime versus the more “regular” structure that denser “easy”
formulas possess.

Almost all k-CNF formulas are easy 13

References

1. D. Achlioptas and F. Ricci-Tersenghi. On the solution-space geometry of random constraint
satisfaction problems. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 130–139, 2006.

2. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable graphs. SIAM J.
on Comput., 26(6):1733–1748, 1997.

3. N. Alon, M. Krivelevich, and B. Sudakov. Finding a large hidden clique in a random graph.
Random Structures and Algorithms, 13(3-4):457–466, 1998.

4. E. Ben-Sasson, Y. Bilu, and D. Gutfreund. Finding a randomly planted assignment in a random
3CNF . manuscript, 2002.

5. A. Blum and J. Spencer. Coloring random and semi-random k-colorable graphs. J. of Algorithms,
19(2):204–234, 1995.

6. A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for satisfiability.
Random Structures and Algorithms, 27:201–226, 2005.

7. H. Chen. An algorithm for sat above the threshold. In 6th International Conference on Theory
and Applications of Satisfiability Testing, pages 14–24, 2003.

8. A. Coja-Oghlan, M. Krivelevich, and D. Vilenchik. Why almost all k-colorable graphs are easy.
In STACS, 2007. to appear.

9. S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd ACM Symp. on Theory
of Computing, pages 151–158, 1971.

10. U. Feige. Relations between average case complexity and approximation complexity. In Proc.
34th ACM Symp. on Theory of Computing, pages 534–543, 2002.

11. U. Feige and R. Krauthgamer. Finding and certifying a large hidden clique in a semirandom
graph. Random Structures and Algorithms, 16(2):195–208, 2000.

12. U. Feige, E. Mossel, and D. Vilenchik. Complete convergence of message passing algorithms for
some satisfiability problems. In Random, pages 339–350, 2006.

13. U. Feige and D. Vilenchik. A local search algorithm for 3SAT. Technical report, The Weizmann
Institute of Science, 2004.

14. A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In Proc. 14th ACM-
SIAM Symp. on Discrete Algorithms, pages 357–363, 2003.

15. E. Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer. Math. Soc.,
12(4):1017–1054, 1999.

16. R. G. Gallager. Low-Density Parity-Check Codes. SMIT Press, Cambridge, 1963.
17. J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
18. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the

American Statistical Association, 58:13–30, 1963.
19. C. Hui and A. M. Frieze. Coloring bipartite hypergraphs. In Proceedings of the 5th Interna-

tional IPCO Conference on Integer Programming and Combinatorial Optimization, pages 345–
358, 1996.

20. E. Koutsoupias and C. H. Papadimitriou. On the greedy algorithm for satisfiability. Info. Process.
Letters, 43(1):53–55, 1992.

21. M. Krivelevich and D. Vilenchik. Solving random satisfiable 3cnf formulas in expected polyno-
mial time. In Proc. 17th ACM-SIAM Symp. on Discrete Algorithms, pages 454–463, 2006.

22. L. Kučera. Expected behavior of graph coloring algorithms. In Proc. Fundamentals of Com-
putation Theory, volume 56 of Lecture Notes in Comput. Sci., pages 447–451. Springer, Berlin,
1977.

23. L. Levin. Average case complete problems. SIAM J. Comput., 15(1):285–286, 1986.
24. M. Mezard, T. Mora, and R. Zecchina. Clustering of solutions in the random satisfiability

problem. Physical Review Letters, 94:197–205, 2005.
25. T. Mora, M. Mezard, and R. Zecchina. Pairs of sat assignments and clustering in random boolean

formulae, 2005.
26. J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.
27. B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satisfiability testing. In

Proceedings of the Second DIMACS Challange on Cliques, Coloring, and Satisfiability, 1993.

14 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

A Proof of Lemma 1

Basically, what we show is that Pruniform,m[A] is at most the expected number of
satisfying assignments that a formula in Psat

n,m has times Prplanted,m[A]. To make this
bound useful we need to bound this expectation (which is possibly an interesting
result on its own right).

More formally, let C1(n) be the expected number of satisfying assignments of a
formula in Psat

n,m, and C2(n) is defined similarly for Pplant
n,m . Let ti be the number of

formulas on n variables and m clauses which have exactly i satisfying assignments. Let
pi be the probability that a formula with exactly i satisfying assignments is sampled
from Psat

n,m, and let qi be defined similarly for Pplant
n,m . For a satisfying assignment ϕ,

let ∆n,m,ϕ be the number of formulas on n variables with m clauses that are satisfied
by ϕ. Observe that due to symmetry ∆n,m,ϕ is the same for every ϕ – thus we omit
the ϕ subscript. In the above notation

pi =
ti∑2n

j=1 tj
,

qi = ti · i

2n
· 1
∆n,m

.

Further observe that

2n ·∆n,m =
2n∑

i=1

i · ti.

This is because every formula with j satisfying assignments is counted exactly j times
in the product 2n ·∆n,m. Lastly,

C1(n) =
2n∑

i=1

i · pi =
∑2n

i=1 i · ti∑2n

i=1 ti
,

C2(n) =
2n∑

i=1

i · qi =
∑2n

i=1 i2 · ti
2n ·∆n,m

=
∑2n

i=1 i2 · ti∑2n

i=1 i · ti
.

Lemma 4. Let A be some property of 3CNF formulas, then

Pruniform,m[A] ≤ C1(n) · Prplanted,m[A].

Proof. First we obtain the following bound.

Pruniform,m[A]
Prplanted,m[A]

≤ max
i

pi

qi
.

This follows from the following discussion. Let TA be the set of satisfiable formulas
for which property A holds.

Pruniform,m[A] =
∑

F∈TA

Pruniform,m[F], P rplanted,m[A] =
∑

F∈TA

Prplanted,m[F].

Almost all k-CNF formulas are easy 15

Now let b = maxi
pi

qi
. For every satisfiable 3CNF F it holds that Pruniform,m[F] ≤

b · Prplanted,m[F]. Therefore,
∑

F∈TA

Pruniform,m[F] ≤
∑

F∈TA

b · Prplanted,m[F] = b ·
∑

F∈TA

Prplanted,m[F].

It now remains to estimate maxi
pi

qi
.

Pruniform,m[A]
Prplanted,m[A]

≤ max
i

pi

qi
= max

i

(
ti∑2n

j=1 tj

)
·
(

2n ·∆n,m

i · ti

)

= max
i

(
1
i
·
∑kn

j=1 j · tj∑2n

j=1 tj

)
=

(∑2n

j=1 j · tj∑2n

j=1 tj

)
·
(

max
i

1
i

)
= C1(n).

Since directly estimating C1(n) seems an intricate task, the following lemma is very
useful.

Lemma 5. C1(n) ≤ C2(n)

Proof. To prove C1(n) ≤ C2(n), one needs to prove that

(
2n∑

i=1

i · ti
)2

≤
(

2n∑

i=1

ti

)
·
(

2n∑

i=1

i2 · ti
)

.

This is just Cauchy-Schwartz, (
∑

ai · bi)
2 ≤ (∑

a2
i

) · (∑
b2
i

)
, with ai =

√
ti and

bi = i · √ti.

Corollary 1. (Pplant
n,m → Psat

n,m) Let A be some property of 3CNF formulas, then

Pruniform,m[A] ≤ C2(n) · Prplanted,m[A].

Proposition 10. Let F be distributed according to Pplant
n,m . Then C2(n) ≤ ene−m/(3n)

(for every ratio m/n).

Proof. Let F be a planted instance with ϕ its planted assignment. Before estimating
C2(n), we make the following observation. Let Ak be the event that an assignment
at distance k from ϕ satisfies a clause which is also satisfied by ϕ. Easy counting
arguments show that

Pr[Ak] =

1 ·
(
n−k

3

)
(
n
3

)
︸ ︷︷ ︸

clause containing variables on which both assignments agree

+
6
7
·
(

1−
(
n−k

3

)
(
n
3

)
)

︸ ︷︷ ︸
clause in which both disagree on at least one variable

=

6
7

+
1
7

(
(n− k)(n− k − 1)(n− k − 2)

n(n− 1)(n− 2)

)
=

6
7

+
1
7

(
1− k

n

)3

+ o(1) ≤ 1− k

3n

16 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

F contains m clauses, thus the probability that an assignment ψ at distance k also
satisfies F is (Pr[Ak])m = (1− k

3n)m ≤ e−mk/(3n).

Therefore,

C2(n) ≤
n∑

k=0

(
n

k

)
· 2k · e−mk/(3n) ≤

n∑

k=0

(
n

k

) (
e−m/(3n)

)k
· 1n−k

=
(
1 + e−m/(3n)

)n
≤ ene−m/(3n)

.

Remark 6. Observe that if for example m/n ≥ 4 log n, then C2(n) = 1+o(1). That is,
besides the planted assignment, one expects additional o(1) satisfying assignments.
Put differently, (using the Markov inequality) when m/n ≥ 4 log n then whp there is
only one satisfying assignment. This is then the regime where Psat

n,m and Pplant
n,m are

statistically close.

B Proof of Proposition 6

Let ϕ be the satisfying assignment w.r.t. which the core H is defined. To prove Propo-
sition 6 we prove that there are no satisfying assignments “far” from ϕ (Proposition
11) and also no “close” ones (Proposition 13).

Proposition 11. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suf-

ficiently large constant, and let ϕ be the satisfying assignment w.r.t. which the core
was defined. Then whp there exists no satisfying assignment of F that disagrees with
ϕ on at least n/2000 variables in H.

To prove this proposition, we first prove that this property holds in Pplant
n,m with ex-

tremely high probability, and then use Lemma 1 to complete the proof. To prove that
this property holds for Pplant

n,m we show that every assignment at distance ≥ n/2000
from the planted assignment does not satisfy at least m/5000 clauses in F , and since
the core (which is defined w.r.t. the planted assignment in the planted case) typically
contains all but e−Θ(m/n)m of the clauses, there must be some clause in F [H] which
is left unsatisfied as well.

Proposition 12. Let F be distributed according to Pplant
n,m with m ≥ C0n, C0 a suf-

ficiently large constant, and let ϕ be its planted assignment. Then with probability at
least 1− 2−n, every assignment ψ at distance at least n/2000 from ϕ does not satisfy
at least m/105 clauses in F .

Proof. The basic idea of the proof is to first calculate the expected number of clauses
not satisfied by an assignment at distance at least n/2000 from ϕ, and show that this
number is “much” higher than m/105, then show a concentration result.

Let ψ be an assignment at distance βn from ϕ. Let Xβ be a random variable
counting the number of clauses in F that ψ does not satisfy. Then we have:

E[Xβ] ≥ βm/14.

Almost all k-CNF formulas are easy 17

To see this observe that the probability that ψ satisfies a clause that is also satisfied
by ϕ is at most:

1 ·
(
n−βn

3

)
(
n
3

)
︸ ︷︷ ︸

clause containing variables on which both assignments agree

+
6
7
·
(

1−
(
n−βn

3

)
(
n
3

)
)

︸ ︷︷ ︸
clause in which both disagree on at least one variable

=
6
7

+
1
7

((
n−βn

3

)
(
n
3

)
)
≤ 6

7
+

1
7
· e−3βn/n ≤ 6

7
+

1
7
·
(

1− β

2

)
= 1− β/14

The second inequality uses the fact that β ≤ 1, and the first inequality uses
(
a−x

b

)
(
a
b

) ≤
(

1− b

a

)x

≤ e−bx/a.

Now set δ = 1 − 14·2000
105 = 0.72 (that is, m/105 = (1 − δ) ·m/(2000 · 14)). Using

for example the Chernoff bound (which is applicable since it is known that Xβ is
more concentrated than the corresponding quantity if the draws were made with
replacement [18] – and then they would have been independent) one obtains that:

Pr[Xβ ≤ e−5bm] ≤ Pr[Xβ ≤ (1−δ)βm/14] ≤ Pr[Xβ ≤ (1−δ)E[Xβ]] ≤ e−δ2E[Xβ]/3 ≤ e−βm/6.

Taking the union bound over all possible assignments, one obtains that the prob-
ability of an assignment at distance greater than n/2000 from ϕ not satisfying less
than m/105 clauses is at most

1∑

β=1/2000

(
n

βn

)
2βne−βm/6 ≤

1∑

β=1/2000

(
2e

β

)βn

e−βm/6 ≤
1∑

β=1/2000

(
2e · e−C0/6

β

)βn

≤

1∑

β=1/2000

(
6 · e−C0/6 · 2000

)βn
≤

n∑

k=n/2000

(
e−C0/10

)k
≤ 2−n.

The last inequality is due to the fact that the last sum is a geometric series with
quotient e−C0/10, and the first element equals e−C0n/20,000 = o(2−n) (for a sufficiently
large C0).

Proposition 13. Let F be distributed according to Psat
n,m with m ≥ C0n, C0 a suffi-

ciently large constant. Let H be some core of F , and let ϕ be the underlying assign-
ment. Then whp there exists no satisfying assignment of F that disagrees with ϕ on
at most n/2000 variables of H.

Proof. Assume that Proposition 2 (no small yet dense sub-formulas) indeed holds for
F , which is the case whp. Fix an arbitrary t-core H, t = m/(5n), and let ψ be a “bad”
satisfying assignment of F – that is, ψ disagrees with ϕ on the assignment of at most
n/2000 core variables (ϕ is the satisfying assignment w.r.t. which H is defined). Let

18 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

x be some variable on which they disagree (if none exists, then we are done). Now
consider all the clauses that x supports w.r.t. ϕ where all variables belong to H. It
must be that every such clause contains another core variable on which ψ and ϕ
disagree (since every such clause is satisfied by ϕ, and the literal of x is false w.r.t.
ϕ). Put differently, let U be the set of core variables on which ψ and ϕ disagree. By
the discussion above, there are |U | · m

5n clauses each containing two variables from U
(no clause was counted twice since the supporter of a clause is unique by definition).
By the contradiction assumption |U | ≤ n/2000, this however contradicts Proposition
2.

C Proof of Proposition 7

Let Bi be the set of core variables whose assignment in ψi disagrees with ϕ at the
beginning of the ith iteration of the main for-loop – line 2 in SAT. It suffices to prove
that |Bi+1| ≤ |Bi|/2 (if this is true, then after log n iterations Blog n = ∅). Observe
that by Proposition 4 |B0| ≤ n/2000. By contradiction, assume that not in very
iteration |Bi+1| ≤ |Bi|/2, and let j be the first iteration violating the inequality –
|Bj+1| ≥ |Bj |/2. Consider a variable x ∈ Bj+1. If also x ∈ Bj , this means that x’s
assignment was not flipped in the jth iteration, and therefore, x supports at least
m/(5n) clauses w.r.t. ψj . By the second item in the definition of a core, at least
m/(5n)−m/(10n) = m/(10n) of these clauses contain only core variables. Since the
literal of x is true in all these clauses, but in fact should be false under ϕ, each such
clause must contain another variable on which ϕ and ψj disagree, that is another
variable from Bj . If x /∈ Bj , this means that x’s assignment was flipped in the jth

iteration. This is because x supports less than m/(10n) clauses w.r.t. ψj . Since x
supports at least m/(5n) clauses w.r.t. ϕ, it must be that in at least m/(5n) −
m/(10n) = m/(10n) of them, the literal of some other core variable evaluates to
true (rather than false, as it should be w.r.t. ϕ). For conclusion, let U = Bj ∪ Bj+1.
Then there are at least m/(10n) · |Bj+1| clauses containing at least two variables
from U . Now if |Bj+1| ≥ |Bj |/2, then m/(10n) · |Bj+1| ≥ m/(20n) · |U |, contradicting
Proposition 2.

D Proof of Proposition 8

By the definition of core – the Majority Vote assignment sets the core variables
correctly in ψ1 (the assignment defined in line 2 in the algorithm SAT) – that is
according to ϕ (ϕ is the satisfying assignment w.r.t. whichH is defined). Furthermore,
by the definition of core, every core variable supports at least m/(5n) clauses w.r.t.
ϕ, and also w.r.t. ψ1 (the assignment at hand before the unassignment step begins).
Hence all core variables survive the first round of unassignment. By induction it
follows that the core variables survive all rounds. Now suppose by contradiction that
not all assigned variables are assigned according to ϕ when the unassignment step
ends. Let U be the set of variables that remain assigned when the unassignment step
ends, and whose assignment disagrees with ϕ. Every x ∈ U supports at least m/(10n)

Almost all k-CNF formulas are easy 19

clauses w.r.t. to ξ (the partial assignment defined in line 7 of SAT), but each such
clause must contain another variable on which ψ and ϕ disagree (since the clause
is satisfied by ϕ, and ϕ falsifies the literal of x in each such clause). Thus, we have
|U | · m

10n clauses each containing at least two variables from U . Since U∩H = ∅ (by the
first part of this argument) and |H| ≥ (1 − e−Θ(m/n))n (by Proposition 4) it follows
that |U | ≤ e−Θ(m/n)n < n/2000, contradicting Proposition 2.

E Proof of Proposition 9

By Proposition 8, the partial assignment at the beginning of the exhaustive search
step is patrial to some satisfying assignment of the entire formula. Therefore the
exhaustive search will succeed. Further observe that the unassigned variables are a
subset of the non-core variables (Proposition 8). Proposition 5 then guarantees that
the running time of the exhaustive search will be at most polynomial.

F Proof of Proposition 5

Let d = m
n . Let us say that a 3CNF F is bounded if the following conditions hold.

B1. For all X ⊂ V such that #X ≤ n/d2 there are at most 10#X clauses containing
more than two variables from X.

B2. Every variable appears in at most ln2 n clauses.
B3. Let H be a subformula of F on #V (H) ≥ (1 − d−10)n variables, so that every

variable in H supports at least d/50 clauses in H. Then H is uniquely satisfiable.

Moreover, we call F ε-feasible if F has an induced subformula H with the following
properties.

F1. #V (H) ≥ (1− ε exp(−
√

d))n and #H contains at least (1− ε)m clauses.
F2. There exists a satisfying assignment ϕ of F so that every variable x ∈ H supports

at least (1− ε)d/30 clauses in H w.r.t. ϕ.
F3. Every variable in H appears in at most εd clauses where not all variables belong

to H.
F4. H is uniquely satisfiable.

If H, K are two induced subformulas of F that satisfy F1–F4, then the same is true
for H∪K. Therefore, F has a unique maximal induced subformula that enjoys F1–F4;
this subformula will be denoted by Fε in the sequel. Also observe that if F is ε-feasible
then it is also ε′-feasible for ε′ ≤ ε and it holds that V (Fε) ⊆ V (Fε′) (by V (F) we
denote the variable set of a formula F).

Lemma 6. For any fixed ε > 0 Psat
n,m is bounded and ε-feasible whp.

The Lemma follows from the discussion in Section 2. Also observe that Fε, with, say,
ε ≤ 0.02, is a core of F according to Definition 2. Therefore when reading Proposition
5, one can think of the core H as F0.02.

20 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

Let T ⊂ V be a set of size t = dlog ne, and let τ be a tree with vertex set T . Let Fτ

be a fixed collection of clauses such that each edge of τ is induced by some clause of
Fτ . We say that a clause set Fτ is minimal w.r.t. τ if by deleting a clause from Fτ , τ is
not induced by Fτ anymore. By the definition of minimality, |Fτ | ≤ |E(τ)| = |V (τ)|−1
(as τ is a tree). Moreover, let us call F (T, τ, Fτ)-poor if

– F is bounded,

– F is 0.01-feasible,

– F contains Fτ as a subformula,

– V (τ) does not intersect F0.02.

Denote by G the set of all satisfiable 3CNF formulas with variable set V = {x1, . . . , xn}
and exactly m clauses, and let P(T, τ, Fτ) signify the set of all (T, τ, Fτ)-poor formulas
F ∈ G. Below we shall establish the following.

Lemma 7. We have #P(T, τ, Fτ) ≤
(
e−Θ(tm/n) · (m

n3

)#Fτ
)

#G.

Where by #Fτ we denote the number of clauses in Fτ . Before we prove Lemma 7, let
us note that it implies Proposition 5 immediately (thinking of the core H as F0.02).
First let us establish the following two facts.

Theorem 3. (Cayley) The number of spanning trees of Kr is rr−2

Lemma 8. Let τ be a fixed tree on t vertices. The number of minimal sets of clauses
that induce τ is at most

t/2∑

s=0

(
t

2

)
7t−s−1nt−2s−1

Proof. Let Fτ be a minimal spanning set. We proved that a minimal set contains at
most t − 1 clauses. Every clause may cover up to 2 edges (otherwise τ contains a
cycle). We can extend a tree to a minimal set by having s clauses cover 2 edges of τ
and τ − 1− 2s clauses cover one edge. The total number of clauses in Fτ is t− s− 1.
For every clause there are (23 − 1) ways to set the signs of the variables. For every
clause that covers one edge, there are (n − 2) ways to choose the third variable. A
clause that covers 2 edges is determined uniquely by the two edges. We have at most(

t
2

)
ways to form the clauses that cover 2 edges. s may range from 0 to t/2.

Proof of Proposition 5. Now observe that the probability of some tree τ of size
log n not intersecting F0.02 is at most

Almost all k-CNF formulas are easy 21

log n/2∑

s=0

(
n

log n

)
· (log n)log n−2

︸ ︷︷ ︸
number of trees of size log n

· 7log n−s−1 · nlog n−2s−1

(
log n

2

)

︸ ︷︷ ︸
extend to a minimal set

·
(m

n3

)log n−s−1
· n−Θ(m/n)

︸ ︷︷ ︸
tree outside F0.02 (Lem. 7)

≤

log n/2∑

s=0

(
e · n
log n

)log n

· (log n)log n · nlog 7+log m/n · nlog n−2s−1−2(log n−s−1) · n−Θ(m/n) =

log n/2∑

s=0

n−Θ(m/n)+log 7+log m/n+1 · nlog n · n− log n+1 =
log n/2∑

s=0

n−Θ(m/n)+log7+log m/n+2

= n−Θ(m/n)

Thus, the remaining task is to prove Lemma 7. To this end we fix a set T of
variables, a tree τ on the variables T , and a minimal inducing set of clauses Fτ . We set
up a bipartite auxiliary graphA = A(T, Fτ , τ) with vertex set V (A) = P(T, Fτ , τ)⊕G;
for brevity we set P = P(T, Fτ , τ). The auxiliary graph will enjoy the following
property. In A every vertex F ∈ P has degree at least ∆, while every vertex F ′ ∈ G
has degree at most ∆′ s.t.

∆′ ≤
(

e−Θ(tm/n) ·
(m

n

)#Fτ
)

∆ (1)

Since ∆#P(T, τ) ≤ #E(A) ≤ ∆′#G, Lemma 7 follows directly from (1).

To describe the construction of A we let I be the set of all x ∈ T that appear in
at most 6 clauses in Fτ ; then #I ≥ t/2, because #Fτ ≤ #V (τ) − 1 (as τ is a tree
and Fτ is minimal). Let ϕ be the unique satisfying assignment of F0.02. We define the
following partition of I:

I1(F) = {x ∈ I : x appears in at least 0.02d clauses where all variables belong to V \ F0.02},
I2(F) = {x ∈ I : x supports at most (1− 0.02)d/30 clauses w.r.t. ϕ where the other two variables

belong to F0.02} \ I1(F).

If F is (T, Fτ , τ)-poor, then all variables x ∈ I are outside of the 0.02-core F0.02;
hence, due to F1–F4 we have I = I1(F) ∪ I2(F). Thus, we decompose P into two
parts P1 = {F ∈ P : #I1(F) ≥ 0.15t}, P2 = P \P1 (that is, #I2(F) is at least 0.85t).

As a next step, we will construct two subgraphs A1, A2 of A, both of which consist
of the Pi-G-edges of A. Thus, A = A1 ∪ A2, so that (1) will be a consequence of the
following statement. In Aj every vertex F ∈ Pj has degree at least ∆j , while every
vertex F ′ ∈ G has degree at most ∆′

j where

∆′
j ≤

(
e−Θ(tm/n) ·

(m

n3

)#Fτ
)

∆j (j = 1, 2). (2)

In the remainder of this section we present the constructions of A1,A2 and estab-
lish (2). To facilitate these constructions we say that a triplet {x, y, z} of variables
is compatible if there is no clause in F involving all three variables, and x, y, z lie
in F0.01. Moreover, we say that a set F of triplets of variables is compatible if every
triplet in F is compatible and no variable x occurs in more than one triplet.

22 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

Lemma 9. Let F ∈ P and let 1 ≤ s ≤ n0.1. There exist
(
n3/4

s

)
compatible sets F of

size s.

Proof. Let ϕ signify the unique satisfying assignment of F0.01, and let C be all the
clauses over the variables of F0.01 that are satisfied by ϕ. Since F satisfies F1, C has
at least 7

(
0.99n

3

) ≥ n3/2 clauses. Furthermore, let S be a set of s clauses of C chosen
uniformly at random. Then the probability that S does not contain a clause of F is

(
#C −m

s

)(
#C
s

)−1

=
s−1∏

j=0

1− m

#C − j
= 1− o(1),

because #C = Ω(n3), while ms = o(n3). Moreover, the probability that a specific
variable x occurs twice in S is at most

(
7n2

2

)(
#C

s− 2

)(
#C
s

)−1

≤ O(s2n−2) = o(n−1).

Hence, by the union bound with probability 1− o(1) a randomly chosen S will touch
no variable x more than once. Thus, with probability 1− o(1) a randomly chosen S

is compatible, so that the number of compatible sets is ≥ (1− o(1))
(
#C
s

) ≥ (
n3/4

s

)
.

Construction of A1. The construction of A1 is based on the following observation.

Lemma 10. Suppose that F ∈ P1. There exist sets U ⊂ I1(F), #U = d0.1te, and
W ⊂ V \ (τ ∪ F0.02) such that for every x ∈ U , x appears in at least d/1000 clauses
where the other two variables belong to W , and for every y ∈ W , y appears in at most
1000 clauses where the other two variables belong to U .

Proof. Let J ⊂ I1(G) be a set of size 0.15t, and let K be the set of all variables
w ∈ V \ (F0.02 ∪ τ) s.t. there exists a clause in F containing w and some variable
from J . Moreover, let L ⊂ K be the set of all w ∈ K such that the number of
clauses containing w and at least one more variables in J is at least 1000. Then the
boundedness property of F implies that #L ≤ 0.01t. Furthermore, letting Q be all
the variables w ∈ J such that the number of clauses containing w and at least one
more variable from L is at least 1000. Then we have #Q ≤ 0.01t (once more due to
the boundedness of F). Now, let U = J \ Q and W = K \ L. Then each w ∈ W
appears in at most 1000 clauses where the other two variables are in U . Moreover, if
v ∈ U , then the number of clauses that contain v and two variables in K is at least
0.02d− 6− 104 ≥ 0.015d Furthermore, U has the required size.

Our objective is to associate with each F ∈ P1 a large number of “target graphs”
F ′ ∈ G such that no F ′ occurs as a target graph too frequently. To this end, we
consider the following nondeterministic procedure that maps F to a target graph F ′.
For each possible outcome F ′ we include the edge {F, F ′} into A1.
Set γ = dd/1000e and u = d0.1te.
C1. Choose a compatible set C of size #Fτ + γu.

Almost all k-CNF formulas are easy 23

C2. Choose sets U and W as in Lemma 10.
C3. For each x ∈ U choose a set Nx of γ clauses of the form (`x ∨ `y ∨ `z), y, z ∈ W .
C4. Obtain F ′ from F by removing the clauses of Fτ along with the clauses of C3

and adding the clauses from C.

Lemmas 9 entails that the number of formulas F ′ that can be obtained from each
F via the above procedure is at least

∆1 =
(

n3/4
#Fτ + γu

)
(3)

(because there are at least this many choices in step C1, and one can always set the
signs of variables in each new clause so that the obtained formula remains satisfiable
– as we started with a satisfiable one). Conversely, to recover F from F ′, we consider
the following nondeterministic procedure.

R1. Choose a set C ′ of #Fτ + γu clauses of F ′.
R2. Choose a set U ′ ⊂ T of size u.
R3. For each such x ∈ U ′ choose a set N ′

x of γ pairs of variables outside of F0.015,
and a way to set the signs of the variables in each clause.

R4. Output the formula F ′′ obtained from F ′ by removing the clauses C ′ and adding
the ones (`x ∨ `y ∨ `z), x ∈ U ′, y, z ∈ N ′

x along with the clauses of Fτ .

Lemma 11. If {F, F ′} is an edge of A1, then F ′ is 0.015-feasible and the process
R1–R4 applied to F ′ can yield the output F ′′ = F .

Proof. Let C, U , W , and (Nx)x∈U be the sets chosen by C1–C4 to obtain F ′ from F .
If R1–R4 chooses F ′ = F , U ′ = U , N ′

x = Nx for all x ∈ U , then the outcome will be
F ′′ = F . Thus, we just need to show that it is feasible for R1–R4 to choose N ′

x = Nx,
i.e., that F ′ is 0.015-feasible and the vertices in N ′

x do not belong to F ′
0.015.

It suffices to show that V (F ′
0.015) ⊆ V (F0.02) (since all the variables in Nx lie

outside F0.02, and in particular outside F ′
0.015).

To see that F ′ is 0.015-feasible, let X be the variable set of F0.01. We claim that
X satisfies F1–F4 with respect to F ′ with ε = 0.01. F1 is an immediate consequence
of the fact that F is 0.01-feasible. Moreover, as C4 adds a compatible set C and only
removes clauses that contain variables outside of X, the unique satisfying assignment
of F0.01 remains then unique for the set X in F ′, whence F2–F4 follow. Thus, F ′ is
indeed 0.01-feasible, and hence 0.015-feasible as well.

Finally, to show that the variable set Y of F ′
0.015 is contained in that of F0.02,

we show that Y is 0.02-feasible in F . Requirement F1 is satisfied since F ′ is 0.015-
feasible (and 0.015 > 0.02). Further observe that if F ′[Y] is uniquely satisfiable then
so is F [Y], this is because when moving from F ′ to F one can either add clauses,
or remove clauses that are uniquely satisfied in F to begin with (therefore removing
them incurs no addition of satisfying assignments) – thus requirement F4 follows.
Now consider the (1 − 0.015)d/30 clauses that every y ∈ Y supports in F ′[Y], then
since F ′ \F contains at most 1 clause involving y (as C is a compatible set), it holds

24 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

that y supports at least (1 − 0.015)d/30 − 1 ≥ (1 − 0.02)d/30 clauses w.r.t. F [Y]
(requirement F2). Lastly, observe that if y appears in at most 0.015d clauses in F ′

where not all variables belong to Y , then in F this number could have been at most
0.015d + γ ≤ 0.02d, by the choice of γ (this establishes requirement F3).

Lemma 12. If F ′ is an outcome of C1–C4 for some F ∈ P1, then the number of pos-
sible nondeterministic choices in the R1–R4 is at most ∆′

1 = 2#T
(

m
#Fτ+γu

)(
exp(−

√
d)n2

γ

)u
.

Proof. The first factor accounts for the number of ways to choose F ′. Moreover, there
are clearly at most 2#T ways to choose U ′ (recall that in our setting #T = log n).
To bound the number of choices of R3, note that for each x ∈ U ′ there are at most((n−|V (F ′0.015)|)

2

γ

)
ways to choose the set N ′

x. By the definition of F ′
0.015 (requirement

F1) it holds that |V (F ′
0.015)| ≥ n(1− exp(−

√
d)).

Finally, combining (3) with Lemma 11 and 12, and using standard estimates for
the binomial coefficients, one obtains (2) for j = 1.

Construction of A2. As in the construction of A1 we consider a nondeterministic
procedure that maps F ∈ P2 to F ′ ∈ G. Let u = d0.1te and γ = d10−9de. Let ϕ be
the unique satisfying assignment of F0.01.

C1. Choose a compatible set C of size #Fτ .
C2. Choose a subset U ⊂ I2(F) of size u.
C3. Choose a set of clauses M ⊂ F0.01 of size γu s.t. every two clauses in M are

variable-disjoint, and no variable x appears in more than 100 clauses with a vari-
able from M . Moreover, for each x ∈ U choose a set Nx of clauses C = (`x∨`y∨`z)
s.t. y, z ∈ F0.02, there in no clause in F that contains both x, z or both x, y, and no
variable in Nx occurs in M . Set the negation in every such C so that x supports
C w.r.t. ϕ. Moreover, the sets (Nx)x∈U should be pairwise disjoint.

C4. Obtain F ′ from F by removing the clauses of Fτ and the set M , adding the
clauses of C, and adding all the clauses (Nx)x∈U .

For each F ∈ P2 and each possible outcome F ′ of C1–C4 we include the edges
{F, F ′} into A2. The following lemma provides a lower bound on the degree of F ∈ P2

in A2.

Lemma 13. Each F ∈ P2 has at least ∆2 = 1
2

(n3/4
#Fτ

) · (m/2
γu

) · (n2
�
1−e−

√
d
�

γ

)u

images
F ′.

Proof. By Lemma 9 there are
(n3/4
#Fτ

)
ways to choose C. Furthermore, property F1

implies that F0.01 contains at least m/2 clauses. Moreover, since every variable appears
in at most ln2 n clauses in F , property B2, and the boundedness of F (property B1
– which assures that for every M of size γu there are not too many variables that
appear in at least 100 clauses with some other variable from M) then F0.01 has at
least (1 − o(1))

(
m/2
γu

)
sets M of size γu. Finally, since #V (F0.02) ≥ (1 − 0.02e−

√
d)n

by F2, there are at least
(n2

�
1−e−

√
d
�

γ

)u

ways to choose the sets (Nx)v∈U .

Almost all k-CNF formulas are easy 25

Conversely, we consider the following nondeterministic procedure for obtaining a
formula F ′′ from an outcome F ′ of C1–C4.

R1. Choose a set of clauses C ′ from F ′ of size #Fτ .
R2. Determine the unique satisfying assignment ϕ of F ′

0.015. Then, choose a set U ′ ⊂
T of size u. Moreover, choose a set M ′ of γu clauses out of all possible ones.

R3. For each x ∈ U ′ out of the clauses that x supports in F ′
0.015, choose γ such

clauses and set N ′
x to be that set of these clauses.

R4. Obtain a formula F ′′ from F ′ by removing C ′ and all clauses in N ′
x, and adding

the clauses of Fτ and M ′.

Lemma 14. If {F, F ′} is an edge of A2, then F ′ is 0.015-feasible and the process
R1–R4 applied to F ′ can yield the output F ′′ = F .

Proof. Suppose that F ′ has been obtained from F by choosing the sets M , U , the
sets (Nx)x∈U , and the compatible set C. To recover F ′′ = F , we shall prove that
F ′ is 0.015 feasible and that the process R1–R4 can choose M ′ = M , C ′ = C, and
N ′

x = Nx.
To see that F ′ is 0.015-feasible, let X be the variable set of F0.01. We claim that X

satisfies F1–F4 with respect to F ′ with ε = 0.015. For F1 is an immediate consequence
of the fact that F is 0.01-feasible. Moreover, as C1 adds a compatible set C, and the
Nx’s are variable disjoint, and of size at most γ, then every x ∈ X appears in at
most 0.01d + γ + 1 ≤ 0.015d clauses where not all variables belong to X. Every
x ∈ X supports at least (1 − 0.01)d/30 clauses where all other variables belong to
X, and since M removes at most 100 clauses per variable, and C is compatible, then
x supports at least (1 − 0.01)d/30 − 100 − 1 ≥ (1 − 0.015)d/30 clauses (w.r.t. the
same satisfying assignment, which remains satisfying for F ′ as well). Lastly, F ′[X]
is uniquely satisfiable by property B3. This in turn implies that the same unique
assignment satisfies F [X] (otherwise, if ϕ′ is the different assignment that satisfies
F [X] then ϕ′ also satisfies F ′[X], as in F ′[X] we either removed clauses or added
clauses which are satisfied by ϕ′ – contradicting the uniqueness).

It is clear that R1–R4 can choose C ′ = C and M ′ = M since we had no restrictions
in step R2. It only remains to show that it is feasible for the reconstruction procedure
to have chosen N ′

x = Nx. To this end, it suffices to show that V (F ′
0.015) ⊆ V (F0.02)

(since all the variables in Nx lie outside F0.02, and then in particular outside F ′
0.015,

and the set of clauses that x supports in F ′
0.015 will then contain the set of clauses

that it supports in F0.02 – as the unique satisfying assignment is the same). Let Y be
the set of variables of F ′

0.015. We show that Y is 0.02-feasible in F . Requirement F1 is
satisfied since F ′ is 0.015-feasible (and 0.015 > 0.02). Further observe that if F ′[Y] is
uniquely satisfiable then so is F [Y], this is because when moving from F ′[Y] to F [Y]
one can either add clauses, or remove clauses that are uniquely satisfied in F to begin
with (therefore removing them incurs no addition of satisfying assignments) – thus
requirement F4 follows. Now consider the (1 − 0.015)d/30 clauses that every y ∈ Y
supports in F ′[Y], then since F ′ \ F contains at most 1 clause involving y (as C is a
compatible set), it holds that y supports at least (1−0.015)d/30−1 ≥ (1−0.02)d/30

26 Amin Coja-Oghlan, Michael Krivelevich and Dan Vilenchik

clauses w.r.t. F [Y] (requirement F2). Lastly, observe that if y appears in at most
0.015d clauses in F ′ where not all variables belong to Y , then since the Nx are of size
γ and variable-disjoint – in F this number could have been at most 0.015d+γ ≤ 0.02d
(by the choice of γ) – this establishes requirement F3.

In the light of Lemma 14 we can bound the degrees of F ′ ∈ G in A2 as follows.

Lemma 15. If G′ has been obtained from G via C1–C4, then during R1–R4 there
are at most ∆′

2 =
(

m
#Fτ

)
2t

(
8(n

3)
γu

)(
d/30

γ

)u
ways to choose F ′, the sets N ′

x, and M ′.

Proof. There are exactly
(

m
#Fτ

)
ways to choose C ′ and at most 2t ways of choosing U ′.

Furthermore, there are at most
(
8(n

3)
γu

)
ways to choose M ′. Finally, since each x ∈ U ′

has at most (1−0.02)d/30+γu ≤ d/30 clauses that it supports w.r.t. F ′
0.015, therefore

there are at most
(
d/2
γ

)
ways to choose N ′

x.

Combining the bounds from Lemmas 13 and 15 establishes (2) for j = 2.

