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Abstract

Coloring a k-colorable graph using k colors (k ≥ 3) is a notoriously hard problem. Considering
average case analysis allows for better results. In this work we consider the uniform distribution
over k-colorable graphs with n vertices and exactly cn edges, c greater than some sufficiently large
constant. We rigorously show that all proper k-colorings of most such graphs are clustered in one
cluster, and agree on all but a small, though constant, portion of the vertices. We also describe a
polynomial time algorithm that whp finds a proper k-coloring of such a random k-colorable graph,
thus asserting that most such graphs are easy to color. This should be contrasted with the setting
of very sparse random graphs (which are k-colorable whp), where experimental results show some
regime of edge density to be difficult for many coloring heuristics.

1 Introduction

A k-coloring f of a graph G = (V,E) is a mapping from its set of vertices V to {1, 2, ..., k}. f is a
proper coloring of G if for every edge (u, v) ∈ E, f(u) 6= f(v). The minimal k s.t. G admits a proper
k-coloring is called the chromatic number, commonly denoted by χ(G). In this work we think of
k > 2 as some fixed integer, say k = 3 or k = 100.

1.1 Phase Transitions, Clusters, and Graph Coloring Heuristics

The problem of properly k-coloring a k-colorable graph is one of the most famous NP-hard problems.
The plethora of worst-case NP-hardness results for problems in graph theory motivates the study of
heuristics that give “useful” answers for “typical” subset of the problem instances, where “useful”
and “typical” are usually not well defined. One way of evaluating and comparing heuristics is by
running them on a collection of input graphs (“benchmarks”), and checking which heuristic usually
gives better results. Though empirical results are sometimes informative, we seek more rigorous
measures of evaluating heuristics. Although satisfactory approximation algorithms are known for
several NP-hard problems, the coloring problem is not amongst them. In fact, Feige and Kilian [16]
prove that no polynomial time algorithm approximates χ(G) within a factor of n1−ε for all input
graphs G on n vertices, unless ZPP=NP.
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When very little can be done in the “worst case”, comparing heuristics’ behavior on “typical”, or
“average”, instances comes to mind. One possibility of rigourously modeling such “average” instances
is to use random models. In the context of graph coloring, the Gn,p and Gn,m models, pioneered by
Erdős and Rényi, might appear to be the most natural candidates. A random graph G in Gn,p

consists of n vertices, and each of the
(
n
2

)
possible edges is included w.p. p = p(n) independently

of the others. In Gn,m, m = m(n) edges are picked uniformly at random. Bollobás [9] and ÃLuczak
[24] calculated the probable value of χ(Gn,p) to be whp 1 approximately n ln(1 − p)/(2 ln(np)) for
p ∈ [C0/n, 0.99]. Thus, the chromatic number of Gn,p is typically rather high (roughly comparable
with the average degree np of the random graph) – higher than k, when thinking of k as some fixed
integer, say k = 3, and allowing the average degree np to be arbitrarily large.

Remarkable phenomena occurring in the random graph Gn,m are phase transitions. With
respect to the property of being k-colorable, such a phase transition takes place too. More precisely,
there exists a threshold dk = dk(n) such that graphs with average degree 2m/n > (1 + ε)dk do not
admit any proper k-coloring whp, while graphs with a lower average degree 2m/n < (1 − ε)dk will
have one whp [1]. In fact, experimental results show that random graphs with average degree just
below the k-colorability threshold (which are thus k-colorable whp) are “hard” for many coloring
heuristics. One possible explanation for this, backed up by partially non-rigorous analytical tools
from statistical physics [27], is the surmise that k-colorable graphs with average degree just below the
threshold show a clustering phenomenon of the solution space. That is, typically random graphs
with density close to the threshold dk have an exponential number of clusters of k-colorings. While
any two k-colorings in distinct clusters disagree on at least εn vertices, any two k-colorings within
one cluster coincide on (1− ε)n vertices. Furthermore, each cluster has a linear number of “frozen”
vertices (a subset of vertices U ⊆ V is said to be frozen in G if in every proper k-coloring of G all
vertices in U receive the same color. A vertex is said to be frozen if it belongs to a frozen subset
of vertices). Recently some supporting evidence for this theory was proved rigorously for random
k-SAT, k ≥ 8 [25, 5, 26]

Now, the algorithmic difficulty with such a clustered solution space seems to be that the algorithm
does not “steer” into one cluster but tries to find a “compromise” between the colorings in distinct
clusters, which actually is impossible. By contrast, the recent Survey Propagation algorithm can
apparently cope with the existence of a huge number of clusters [11], though no rigorous analysis of
the algorithm is known.

In this work we consider the regime of denser graphs, i.e. the average degree will be by a constant
factor higher than the k-colorability threshold. In this regime, almost all graphs are not k-colorable,
and therefore we shall condition on the event that the random graph is k-colorable. Thus, we consider
the most natural distribution on k-colorable graphs with given numbers n of vertices and m of edges,
namely, the uniform distribution Guniform

n,m,k . For m/n ≥ C0, C0 a sufficiently large constant, we are
able to rigorously prove that the space of all proper k-colorings of a typical graph in Guniform

n,m,k has
the following structure: an exponential number of proper k-colorings arranged in a single cluster.
We also describe a polynomial time algorithm that whp k-colors Guniform

n,m,k with m ≥ C0n edges .

Thus, our result shows that when a k-colorable graph has a single cluster of k-colorings, though
its volume may be exponential, then typically the problem is easy. This in some sense complements in
a rigorous way the results in [27, 12] (where it is conjectured that when the clustering is complicated,
more sophisticated algorithms are needed). Besides, standard probabilistic calculations show that
when m ≥ Cn log n, C a sufficiently large constant, a random k-colorable graph will have whp only
one proper k-coloring; indeed, it is known that such graphs are even easier to color than in the case

1When writing whp (“with high probability”) we mean with probability tending to 1 as n goes to infinity.

2



m = O(n), which is the focus of this paper. A further appealing implication of our result is the
fact that almost all k-colorable graphs, sparse or dense, can be efficiently colored. This extends a
previous result from [29] concerning dense graphs (i.e., m = Θ(n2)).

1.2 Results and Techniques

In this section we state our main results precisely. First, we discuss the structure of the solution
space (i.e., the set of all proper k-colorings) of Guniform

n,m,k . Formally we prove:

Theorem 1.1. (clustering phenomena) Let G be random graph from Guniform
n,m,k , m ≥ C0(k)n, C0(k)

a sufficiently large constant that depends on k. Then whp G enjoys the following properties:

1. All but e−Θ(m/n)n vertices are frozen.

2. The graph induced by the non-frozen vertices decomposes into connected components of at most
logarithmic size.

3. Letting β(G) be the number of proper k-colorings of G, we have 1
n log β(G) = e−Θ(m/n).

Notice that property 1 implies in particular that any two proper k-colorings differ on at most
e−Θ(m/n)n vertices. The above characterization of the solution space of Guniform

n,m,k leads to the fol-
lowing algorithmic result:

Theorem 1.2. (algorithm) There exists a polynomial time algorithm that whp properly k-colors a
random graph from Guniform

n,m,k , m ≥ C1(k)n, C1(k) a sufficiently large constant that depends on k.

Specifically, we prove that the polynomial time algorithm in Theorem 1.2 is the one presented by
Alon and Kahale [6] (more details in Section 4). Our analysis gives for C0, C1 = Θ(k4), but no
serious attempt was made to optimize the power of k.

The Erdős-Rényi graph Gn,m and its well known variant Gn,p are both very well understood and
have received much attention during the past years. However, the event of a random graph in Gn,m

being k colorable, when k is fixed and the average degree 2m/n is above the k-colorability threshold,
is very unlikely. Therefore, the distribution Guniform

n,m,k differs from Gn,m significantly. In effect, many
techniques that have become standard in the study of Gn,m just do not carry over to Guniform

n,m,k – at
least not directly. In particular, the contriving event of being k-colorable causes the edges in Guniform

n,m,k

to be dependent. The inherent difficulty of Guniform
n,m,k has led many researchers to consider the more

approachable, but considerably less natural, planted distribution introduced by Kučera [23] and
denoted throughout by Gplant

n,m,k. In this context we can selectively mention [6, 8, 10, 13, 22]. In
the planted distribution, one first fixes some k-coloring (that is a partition of the vertices into k
color classes), and then picks uniformly at random m edges that respect this coloring. Due to the
“constructive” definition of Gplant

n,m,k, the techniques developed in the study of Gn,m can be applied to

Gplant
n,m,k immediately, whence the model is rather well understood [6].

Of course the Gplant
n,m,k model is somewhat artificial and therefore provides a less natural model

of random instances than Guniform
n,m,k . Nevertheless, devising new ideas for analyzing Guniform

n,m,k , in this

paper we show that Guniform
n,m,k and Gplant

n,m,k actually share many structural graph properties such as the
existence of a single cluster of solutions. As a consequence, we can prove that a certain algorithm,
designed with Gplant

n,m,k in mind, works for Guniform
n,m,k as well. In other words, presenting new methods
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for analyzing heuristics on random graphs, we can show that algorithmic techniques invented for the
somewhat artificial Gplant

n,m,k model extend to the canonical Guniform
n,m,k .

To obtain these results, we use two main techniques. Gplant
n,m,k (and the analogous Gplant

n,p,k in which
every edge respecting the planted k-coloring is included with probability p) is already very well
understood, and in particular the probability of some graph properties that interest us can be easily
estimated for Gplant

n,m,k using standard probabilistic calculations. It then remains to find a reasonable

“exchange rate” between Gplant
n,m,k and Guniform

n,m,k . We use this approach to estimate the probability of

“complicated” graph properties, which hold with extremely high probability in Gplant
n,m,k. The other

method is directly analyzing Guniform
n,p,k , crucially overcoming edge-dependency issues. This method

tends to be more complicated than the first one, and involves intricate counting arguments.

1.3 Related Work

The k-colorability problem exhibits a sharp threshold phenomena in the sense that there exists a
function dk(n) s.t. a random graph from Gn,m is whp k-colorable if 2m/n < (1− ε)dk(n) and is whp
not k-colorable if 2m/n > (1 + ε)dk(n) (cf. [1]). For example, it is known that d3(n) ≥ 4.03n [3] and
d3(n) ≤ 5.044n [2]. Therefore, a typical graph in Gn,m with m = cn will not be k-colorable (when
thinking of k as a fixed integer, say k = 3, and allowing the average degree c to be an arbitrary
constant, say c = 100, or even a growing function of n). Thus, when considering relatively dense
random graphs, one should take care when defining the underlying distribution, e.g. consider Gplant

n,m,k

or Guniform
n,m,k .

Almost all polynomial-time coloring heuristics suggested so far were analyzed when the input
graph is sampled according to Gplant

n,p,k , or various semi-random variants thereof (and similarly for
other graph problems such as clique, independent set, and random satisfiability problems). Alon and
Kahale [6] suggest a polynomial time algorithm, based on spectral techniques, that whp properly k-
colors a random graph from Gplant

n,p,k , np ≥ C0k
2, C0 a sufficiently large constant. Combining techniques

from [6] and [13], Böttcher [10] suggests an expected polynomial time algorithm for Gplant
n,p,k based on

SDP (semi-definite programming) for the same p values. Much work was done also on semi-random
variants of Gplant

n,p,k , e.g. [8, 13, 17, 22].

On the other hand, very little is known on non-planted distributions over k-colorable graph, such
as Guniform

n,m,k . In this context one can mention the work of Prömel and Steger [28] who analyze Guniform
n,m,k

but with a parameterization which causes Guniform
n,m,k and Gplant

n,m,k to coincide, thus not shedding light on
the setting of interest in this work. Similarly, Dyer and Frieze [15] deal with very dense graphs (of
average degree Ω(n)).

1.4 Paper’s Structure

The rest of the paper is structured as follows. We first discuss in Section 2 some general proper-
ties that a random graph in Guniform

n,m,k typically possesses. Then in Section 3 we discuss some more
properties that correspond to the clustering phenomena – this in turn will imply Theorem 1.1. The
algorithmic perspective is discussed in Section 4 along with a proof of Theorem 1.2. Concluding
remarks are given in Section 7. Sections 5 and 6 complete the technical details missing in Sections
2 and 3.
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2 General Properties of Guniform
n,m,k

In this section we discuss general properties that a random graph in Guniform
n,m,k typically possesses.

These properties are not particular to Guniform
n,m,k , rather are common (maybe in a slightly different

formulation) to many graph distributions, for example Gn,p and Gn,m.

We start by discussing the discrepancy property (such discussions are ample for Gn,p and Gplant
n,p,k ,

e.g. [6, 19, 20]). This discussion may be of interest of its own, as generally discrepancy properties
play a fundamental role in the proof of many important graph properties such as expansion, the
spectra of the adjacency matrix, etc, and indeed the discrepancy property plays in our case a major
role both in the algorithmic perspective and in the analysis of the clustering phenomena. Therefore,
the new approach taken here in establishing the discrepancy property may be of use in other settings
where edges are dependent. For another example of proving discrepancy in a model where edges are
dependent the reader is referred to [7].

Proposition 2.1. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant.
Then whp the following holds for every proper k-coloring ϕ of G. Let V1, . . . , Vk be the k color classes
of ϕ, and set p = p(ϕ) s.t. m =

(∑
i<j |Vi||Vj |

)
p holds. Let G′ be the graph obtained from G by

removing vertices with degree greater than 10np. There exists a constant c s.t. for every two sets of
vertices A,B, |A| = a ≤ |B| = b, at least ones of the following two conditions holds for G′:

• e(A,B) ≤ c · µ(A,B),

• e(A,B) · ln( e(A,B)
µ(A,B)) ≤ c · b · ln n

b ,

where µ(A,B) = |A||B|p.

Note that if A and B in Proposition 2.1 are disjoint then µ(A,B) is the expected number of
edges between A and B, had the underlying probability space been Gplant

n,m,k with ϕ as the planted
assignment. Otherwise, µ(A, B) is an upper bound on that value.

The proof of this proposition is an example of the direct analysis approach. That is, overcoming
the edge-dependency issue, using an intricate counting argument, we directly analyze Guniform

n,m,k .

As a corollary of Proposition 2.1 we get the following fact – Corollary 2.2. This fact (in a
somewhat different formulation) is proved e.g. in [6] for the planted setting, and is common in the
study of random graphs in general.

Corollary 2.2. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Guniform
n,m,k ,

m ≥ C0k
4n, C0 = C0(δ) a sufficiently large constant. Then whp there exists no subgraph of G on at

most δn/(1000k) vertices in which the average degree is at least δm/(nk).

The next property, whose proof builds upon the discrepancy property just stated, concerns the
spectral properties of the adjacency matrix of a typical graph in Guniform

n,m,k . Let us start by giving
some intuition for considering the spectrum of the graph. For the sake of simplicity assume k = 3.
Suppose that every vertex in G had exactly d neighbors in every color class other than its own.
Let F be the 2-dimensional subspace of all vectors x = (xv : v ∈ V ) which are constant on every
color class, and whose sum is 0. A simple calculation shows that any non-zero element of F is an
eigenvector of A = A(G) (A being the adjacency matrix of G) with eigenvalue −d. Moreover, if E is
the union of random matchings, one can show that −d is whp the smallest eigenvalue of A and that
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F is precisely the eigenspace corresponding to −d. Thus, any linear combination t of en−1 and en is
constant on every color class (en−1, en being the two smallest eigenvectors of A). If the median of t
is 0 and its l2-norm is

√
2n, then t takes the values 0, 1 or -1 depending on the color class, and this

gives a proper coloring of G. In our model these regularity assumptions do not hold, and therefore
the spectral step only gives an approximation of some proper k-coloring. A further complication in
our setting is the fact that the edges of G are not independent, which is the usual assumption in
papers where the spectrum of random graphs is analyzed, for example [6, 19, 20]. Therefore the
analysis in our case is more complicated.

Notation. Let G = (V, E) be distributed according to Guniform
n,m,k . Let davg = 2m/n be the average

degree in G, G′ = (V ′, E′) be the graph obtained from G by deleting all vertices of degree greater
than 2davg, and A′ be the adjacency matrix of G′. For a symmetric matrix M ∈ Rq×q, denote by
λ1 ≥ λ2 ≥ . . . ≥ λq the eigenvalues of M , by e1, e2, . . . , eq the corresponding eigenvectors, chosen so
that they form an orthonormal basis of Rq, and ‖M‖ = maxi |λi|. Given a n × n matrix M that
corresponds in some way to a n-vertexed graph, we usually index the rows and columns of M by
the vertices of the graph. For example, given two vertex sets Vi, Vj ⊆ V , we let JVi×Vj be the n× n
matrix whose entries are Ju,v = 1 if (u, v) ∈ Vi × Vj , and Ju,v = 0 otherwise.

Proposition 2.3. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant.
G′ has whp a k-coloring V1, . . . , Vk such that the following holds. Let A′ be the adjacency matrix of
G′, p = m−1 · ∑i<j ViVj, and M ′ =

(∑
i 6=j pJVi×Vj

)
− A′. Then ‖M ′‖ ≤ (davg/k)0.9. Moreover,

|V \ V ′| ≤ n/davg.

Let us sketch how Proposition 2.3 completes the motivation we just gave. For a k-coloring
V1, . . . , Vk of G we let 1Vi ∈ Rn denote the vector whose entries are 1 for Vi and 0 otherwise, 1 be the
all-one vector, and ξ(i,j) = 1Vi − 1Vj . Generalizing the above discussion for any fixed k (assuming
again that every vertex in G has exactly d neighbors in every color class other than its own), then
one can easily verify that the ξ(i,j)’s are eigenvectors of A(G) with eigenvalue −d. Furthermore,
together with the all-one vector, 1, they span a k-dimensional subspace K ⊆ Rn. It is also easy
to verify that K⊥M ′ (M ′ as defined in Proposition 2.3). Therefore, M ′ is a shift of A′ so that the
k eigenvectors corresponding the to largest eigenvalues (in absolute value) – are projected out. If
we further assume that d = davg/(k − 1) (that is, every vertex has the same number of vertices in
every color class other than its own), then ‖M ′‖ ≤ (davg/k)0.9 tells us that the other eigenvalues
of A, the ones perpendicular to K, are negligible w.r.t. to the ones corresponding to K. Therefore
the “dominant” part of A corresponds to the eigenvalues of the proper coloring, even when these
eigenvectors are somewhat distorted due to the “noise” coming from the irregularly of the graph.

3 The Clustering Phenomenon

In this section we analyze the solution space (proper k-colorings) of a typical random graph in
Guniform

n,m,k , m ≥ Ckn, Ck a sufficiently large constant, and prove Theorem 1.1. Our techniques should
be contrasted with the techniques used to analyze the solution space of near-threshold (both above
and below) instances. In this context one can mention the work in [25, 4, 5, 26], where the structure
of the solution space was analyzed directly (mainly using second moment calculations). This is
possible due to the fair simpleness of the underlying probabilistic model (edges are chosen uniformly
at random, in Gn,m, or independently of each other in Gn,p). In our setting, Guniform

n,m,k , the edges are
far from being independent of each other, and therefore trying to characterize directly the relations
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between the different k-colorings may lead to a dead-end. In this paper we take a different approach.
We start by studying the structure of a typical graph in Guniform

n,m,k . We are able to characterize such
graphs in a manner which reveals the geometrical structure of the solution space. In particular, this
suffices to prove Theorem 1.1.

We describe a subset of the vertices, referred to as the core vertices, which plays a crucial role in
understanding Guniform

n,m,k , both algorithmically and w.r.t. the clustering phenomena. To get intuition,

first consider the distribution Gplant
n,m,k, and the case k = 3 (that is, 3-colorable graphs with exactly m

edges). Every vertex v is expected to have m/n neighbors in every color class other than its own.
Suppose indeed that this is the case. To complete the discussion we need two extra facts.

Fact 3.1. Let G be a random graph in Gplant
n,m,3, m/n ≥ C0, C0 a sufficiently large constant. Then

whp there exists no subgraph of G containing at most n/1000 vertices whose average degree is at
least m/n.

Fact 3.2. Let G be a random graph in Gplant
n,m,3, m/n ≥ C0, C0 a sufficiently large constant. Then

whp there exists no two proper 3-colorings of G at distances at least n/1000 from each other.

“Distance” should be interpreted in the natural sense, a precise definition is given later on. Fact
3.1, with somewhat different constants is proven in [6] (and also in this paper – Corollary 2.2 for
the uniform setting), and Fact 3.2 is proven using first moment calculations (similar arguments to
Lemma 6.18 ahead).

Now suppose that these two facts are indeed true (which is typically the case), and further assume
that every vertex has the expected number of neighbors in every color class (which is typically not
the case when m/n is constant). Then we claim that the graph is uniquely 3-colorable. If not, then
let ψ be a proper 3-coloring of the graph, not equal to the planted 3-coloring ϕ. Let U be the set
of vertices that are colored differently in ϕ and ψ. Every u ∈ U , say ψ(u) = c, must have at least
m/n neighbors in G[U ] – the neighbors of u in G which are colored c according to ϕ. However,
|U | ≤ n/1000 due to Fact 3.2, but the minimal degree in G[U ] is at least m/n, contradicting Fact
3.1.

Observe that if this is the case, then all vertices of the graph are frozen. When m/n ≥ C0 log n,
then whp every vertex in G has roughly m/n neighbors in every color class other than its own, and
combined with the two facts, one derives that typically such graphs in Gplant

n,m,3 are uniquely 3-colorable.
However, when m/n = O(1) this is whp not the case. In particular, whp e−Θ(m/n)n vertices will be
isolated (degree 0). Nevertheless, in the case m/n = O(1) there exists a large subgraph of G showing
a very similar behavior to the aforementioned one, both in the planted and the uniform setting. The
set of vertices inducing this subgraph is called a core. A similar notion of core, though in a different
context, was first introduced by Alon and Kahale [6].

Definition 3.3. A set of vertices H is called a δ-core of G = (V, E) w.r.t. a proper k-coloring ψ of
the vertices of G with color classes V1, . . . , Vk, if the following properties hold for every v ∈ H:

• v has at least (1− δ)|Vi|pi neighbors in H ∩ Vi for every i 6= ψ(v).

• v has at most δr neighbors from V \ H,

where pi = 2m
n · 1

n−|Vi| and r = maxi |Vi|pi.
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We proceed by asserting some properties that a core typically possesses. Before doing so, we
assert two facts that do not concern directly the core, but play an important role in proving the
core’s properties. A graph G is said to be ε-balanced if it a admits a proper k-coloring in which
every color class is of size (1± ε)n

k . We say that a graph is balanced if it is 0-balanced.

In the common definition of Gplant
n,m,k all color classes of the planted k-coloring are of the same

cardinality, namely n/k. Therefore, all graphs in Gplant
n,m,k have at least one balanced k-coloring (the

planted one). In the uniform setting this need not be the case, at least not a-priori. However, as the
following proposition asserts, this is basically the case whp.

Proposition 3.4. Let m ≥ (10k)4, then whp a random graph in Guniform
n,m,k is 0.01-balanced.

Propositions of similar flavor to Proposition 3.4 were proven in similar contexts e.g. [28], and
involve rather simple counting arguments. The second property to be established is the following. A
graph G in Guniform

n,m,k is said to be c-concentrated w.r.t. a proper k-coloring ψ of G if every coloring
at distance at least n/c from ψ leaves at least m/c2 monochromatic edges.

Proposition 3.5. Let δ ∈ [0, 1] be some positive number. Let G be a random graph in Guniform
n,m,k ,

m ≥ C0k
4n, C0 = C0(δ) a sufficiently large constant. Then whp there exists a proper k-coloring ϕ

of G w.r.t. which G is δ/(1000k)-concentrated.

We now proceed with the core’s properties.

Proposition 3.6. Let δ ∈ (0, 1) be some positive number. Let G be a random graph in Guniform
n,m,k ,

m ≥ C0k
4n, C0 = C0(δ) a sufficiently large constant. Then there exist two constants a0(δ), a1(δ) > 0

(independent of m,n) so that whp there exists a proper k-coloring ϕ of G w.r.t. which there exists a
δ-core H satisfying:

• |H| ≥ (1− e−m/(a0nk9))n.

• The number of edges spanned by H is at least (1− e−m/(a1nk9))m.

• Every color class Vi of ϕ satisfies 0.99n/k ≤ |Vi| ≤ 1.01n/k.

As discussed above for the planted model, if the average degree is sufficiently high (at least
logarithmic), then typically H = V . This is also typically the case in Guniform

n,m,k with m/n ≥ C0 log n.
When m/n = O(1), this is no longer true (in either model), as for example whp there is a linear
number of vertices with degree d for every constant d (in particular d = 0).

Proposition 3.7. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant.
Let H be some δ-core of G for which Proposition 3.6 holds, and let ϕ be the underlying k-coloring. If
G satisfies Proposition 3.5 w.r.t. ϕ, and in addition G satisfies Corollary 2.2, then G[H] is uniquely
k-colorable.

Here and throughout we consider two k-colorings to be the same if one is a permutation of the
color classes of the other.

Proposition 3.8. If H,H′ are δ-cores of G, and both are uniquely k-colorable, then H ∪ H′ is a
δ-core as well. Hence, whp there is a unique maximal δ-core.
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Proof. Let H, H′ be two δ-cores of G with corresponding colorings V1, . . . , Vk and V ′
1 , . . . , V

′
k. We

denote by. By the uniqueness of the coloring it holds that every Vi ∩ H intersects exactly one V ′
j .

Therefore, w.l.o.g. we may assume that Vi ∩ H ⊆ V ′
i for every i. Hence, it is easily verified that

H ∪H′ meets the definition of a core (Definition 3.3) w.r.t. V1, . . . , Vk (which equals V ′
1 , . . . , V

′
k). ¥

For the rest of the paper, when we refer to a δ-core w.r.t. some coloring, we mean the maximal
(unique) one.

Proposition 3.9. Fix δ ∈ (0, 1) and let G be a random graph in Guniform
n,m,k , m ≥ C0k

4n, C0 a
sufficiently large constant. Let H be a δ-core of G, and let G[V \ H] be the graph induced by the
non-core vertices. If |H| ≥ (1−e−Θ(m/(nk9)))n, then whp the largest connected component in G[V \H]
is of size O(log n).

Some of the properties discussed in this section were proved in the planted setting Gplant
n,m,k, e.g. in

[6, 10]. Nevertheless, these proofs use the fact that the edges are chosen uniformly at random. This is
of course not the case in the uniform setting (as most choices of m edges uniformly at random result
in a graph which is not k-colorable). Therefore, a different approach is needed. One proof technique
which we use to prove the core’s properties is similar in some sense to the union bound. We first
bound the probability that a graph in Gplant

n,m,k does not have the desired property, then we find an

exchange rate between the probability of a certain “bad” event occurring in Gplant
n,m,k vs. Guniform

n,m,k . This

technique can be applied to “bad” properties that occur with extremely low probability in Gplant
n,m,k

(in the order of e−Θ(n)), as the exchange rate that we establish is exponential in n. A detailed
exposition of the exchange rate technique is given in Section 5. Unfortunately, some properties, for
example Proposition 3.9, hold only with probability 1− 1/poly(n) in Gplant

n,m,k. Therefore the exchange
rate technique is of no use. Crucially overcoming the edge-dependency issue we directly analyze
the uniform distribution. This proof technique, employed e.g. in the proof of Proposition 2.1 and
Proposition 3.9, is technically involved, and exemplifies an analysis of a distribution where the events
(edge-choice in our case) are dependent, and this dependency seems rather difficult to quantify (and
therefore none of the “standard” probabilistic method tools are applicable, at least not immediately).

3.1 Proof of Theorem 1.1

Theorem 1.1 is now an easy consequence of the above discussion. Proposition 3.6 asserts that whp a
graph in Guniform

n,m,k , with the suitable parametrization, will have a big core w.r.t. some proper k-coloring
of the vertex set – namely, all but e−Θ(m/n)n vertices belong to the core. Proposition 3.8 then entails
that the core is uniquely k-colorable. Namely, in all proper k-colorings, the core vertices are frozen.
Furthermore, this also implies that there is only one cluster of proper k-colorings, in which every
two colorings differ on the color of at most e−Θ(m/n)n vertices. Also, the number of different proper
k-colorings is bounded by exp{e−Θ(m/n)n} (all the possibilities of coloring the non-core vertices).
Lastly, Proposition 3.9 asserts the “simpleness” of the subgraph induced by the non-core vertices.

4 The Algorithmic Perspective

In Sections 2 and 3 we implicitly proved that a typical graph in Guniform
n,m,k and in Gplant

n,m,k share many
structural properties: spectral properties of the adjacency matrix, the existence of a core, and some
properties that it typically enjoys, the non-existence of small yet unexpectedly dense subgraphs
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(Corollary 2.2), and so on. In effect, it will turn out that coloring heuristics that prove efficient for
Gplant

n,m,k (e.g. [6, 13]) are useful in the uniform setting as well. In particular we shall prove that the
coloring algorithm given in [6], designed with the planted distribution in mind, also works in the
uniform case. Thus, one merit of our work is justifying the somewhat unnatural usage of planted-
solution distributions in average case analysis.

For the sake of completeness we start by giving a short description of Alon and Kahale’s algorithm,
and discuss the outline of their proof. When describing the algorithm we have a sparse graph in
mind, namely m/n = c, c a constant satisfying c ≥ C0k

4 (in the denser setting, m/n = Ω(log n),
matters actually get much simpler).

In the description of the algorithm we use the subprocedure SpectralApprox(G, k), which we
describe in Section 4.1.

Alon-Kahale(G, k):
step 1: spectral approximation.
1. SpectralApprox(G, k).
step 2: recoloring procedure.
2. for i = 1 to log n do:

2.a for all v ∈ V simultaneously color v with the least popular color amongst its neighbors.
step 3: uncoloring procedure.
3. while ∃v ∈ V with less than m/(n(k − 1)) neighbors colored in some other color do:

3.a uncolor v.
step 4: Exhaustive Search.
4. let U ⊆ V be the set of uncolored vertices.
5. consider the graph G[U ].

5.a if there exists a connected component of size at least log n – fail.
5.b otherwise, exhaustively extend the coloring of V \ U to G[U ].

Figure 1: Alon and Kahale’s coloring algorithm

The following theorem is given in [6] (there it is stated with k = 3 but the authors point out that it
generalizes to any constant k):

Theorem 4.1. The algorithm Alon-Kahale whp properly k-colors a random graph from Gplant
n,m,k, m ≥

C0k
2n, C0 a sufficiently large constant.

The algorithm and Theorem 4.1 are originally presented for Gplant
n,p,k , however as pointed out by

the authors, and as Lemma 5.1 implies, one can safely state it for Gplant
n,m,k.

The proof of Theorem 4.1 (according to [6]) proceeds as follows. First, four graph properties
are described, and claimed to hold whp for a random graph in Gplant

n,m,k with the parametrization of
Theorem 4.1. The graph properties are:

P1. The matrix M ′ defined as in Proposition 2.3 satisfies ‖M ′‖ ≤ d0.9, where d = 2m/(nk).

P2. There exists no subgraph of G containing at most n/(1000k) vertices whose average degree is
at least m/(nk).
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P3. There exists a 0.99-core H (w.r.t. the planted coloring) whose size is at least (1− e−Θ(m/n))n

P4. The largest connected component in the the subgraph induced by the non-core vertices is of
size O(log n).

P2 is stated in [6] in a slightly different formulation, and arguably the proof of Theorem 4.1 is a
bit simpler when using P2 in our formulation.

Now call a graph that possesses P1-P4 typical. Alon and Kahale [6] first prove that indeed whp
a graph sampled from Gplant

n,m,k is typical. Therefore, one may restrict oneself to typical graphs when
proving Theorem 4.1. The proof of the theorem is composed of the following assertions, which are
also to be found in [6]. For a planted graph G, we denote by ϕ its planted k-coloring.

Proposition 4.2. Assuming G is typical, SpectralApprox(G, k) produces a k-coloring which differs
from ϕ on at most n/(1000k) vertices.

Proposition 4.3. Assuming G is typical and Proposition 4.2 holds, after the recoloring step ends,
the core is colored according to the planted k-coloring ϕ.

Proposition 4.4. Assuming G is typical and Proposition 4.3 holds, the core vertices survive the
uncoloring step, and every vertex that survives the uncoloring step is colored according to ϕ.

Proposition 4.5. Assuming G is typical and Proposition 4.4 holds, the exhaustive search completes
in polynomial time with a proper k-coloring of the entire graph.

The proof of Propositions 4.2-4.5, given of course in [6], relies only on P1-P4. Therefore to prove
Theorem 1.2 it suffices to prove that whp a graph in Guniform

n,m,k enjoys properties P1-P4. One delicate
point that needs to be discussed is the fact that an instance from Guniform

n,m,k does not have a planted
coloring. Nevertheless, it suffices to show that there exists a proper k-coloring w.r.t. which P1-P4
hold (as the algorithm is not required to find any particular coloring, just a proper one).

P1 is given by Proposition 2.3, P2 by Corollary 2.2, P3 in Proposition 3.6, and P4 in Proposition
3.9. Propositions 3.6 and 2.3, as stated, do not guarantee a-priori that P1 and P3 should correspond
to the same proper k-coloring (which is required to prove Theorem 4.1). Nevertheless, going through
the proofs of these propositions it is easily verified that indeed this is the case.

Remark 4.6. Alon and Kahale analyze only the case k = 3, that is 3 colorable graphs. For k = 3
one can do with a rather simple procedure in the spectral step. Though the authors of [6] state that
their result generalizes to any fixed k, no clue is given as for the extension of the spectral step to the
case k > 3. One contribution of this work is to explicitly fill out this missing detail – the procedure
SpcetralApprox. Thus, we also give a full proof of Proposition 4.2 in Section 6.3.

4.1 The procedure SpectralApprox(G, k).

Before presenting the procedure SpectralApprox(G, k) let us give some motivation. Suppose that
G has only one proper k-coloring with color classes V1, . . . , Vk, and let E =

∑
i6=j pJVi×Vj (JVi×Vj is

defined in the notation paragraph before Proposition 2.3 and p satisfies m =
(∑

i<j |Vi||Vj |
)

p ). The
matrix E just reflects the coloring V1, . . . , Vk. Namely, if we think of p as the “edge density” of the
bipartite graph consisting of the Vi-Vj-edges (i 6= j), then E reflects the expected edge distribution
of the k-partite graph G. In fact, if we could compute E efficiently then we could easily obtain the
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coloring V1, . . . , Vk of G using the following simple greedy rule: u and v belong to the same color
class iff ‖Ev − Eu‖ = 0, where ‖x‖ denotes the `2 norm of a vector x ∈ Rn, and Ev denotes the
vth column of the matrix E . Though we are not given E we can obtain a fair approximation of it.
Specifically, let Â signify the rank k approximation of A(G), obtained as follows. Let λ1, . . . , λk be
the largest eigenvalues of A(G) in absolute value, and let e1, . . . , ek be corresponding eigenvectors.
Then Â =

∑k
i=1 λieie

T
i . As we shall prove in Section 6.3, Â approximates E is some sense and

therefore one can use Â to compute a good approximation of a proper k-coloring of G. Recall that
for a graph G we use G′ to denote the graph obtained from G by deleting all vertices of degree
greater than 2davg (davg = 2m/n is the average degree in G).

SpectralApprox(G, k):

1. Compute Â for A(G′).

2. For each v ∈ V ′ determine the set Sv = {w ∈ V : ‖Âv − Âw‖2 ≤ 0.01np2/k}.
3. Let X = ∅.
4. For i = 1, . . . , k find a vertex xi such that Xi = |Sxi \X| ≥ (1− 10−10)n

k ; add Xi to X.

5. Output the classes X1, . . . , Xk.

Figure 2: SpectralApprox(G, k)

5 The Exchange Rate Technique

Let A be some graph property (it would be convenient for the reader to think of A as a ”bad”
property). We start by determining the exchange rate for Pr[A] between the different distributions.
Recall that in the uniform distribution there need not be a balanced k-coloring, as opposed to the
common definition of the planted distribution where the planted k-coloring is balanced (i.e. all color
classes are of size n/k). Therefore more refined definitions are needed. In addition to the “regular”
parameters m,n (or p, n) of the planted/uniform distribution, we introduce k additional parameters
ε1, ε2, . . . , εk ∈ (−1, k − 1],

∑
εi = 0, which characterize the sizes of the different color classes of a

proper k-coloring. Specifically, we denote by Gplant
n,p,k,ε̄, ε̄ = (ε1, ε2, . . . , εk), the distribution where first

the vertices are partitioned in to k color classes so that |Vi| = (1 + εi)n/k for every i. Then, every
Vi − Vj edge is included w.p. p. Similarly we define Gplant

n,m,k,ε̄. We define Guniform
n,m,k,ε̄ to be the uniform

distribution over k-colorable graphs that have at least one proper k-coloring where the color classes
satisfy |Vi| = (1 + εi)n/k.

We use the following notation to denote the probability of A under the various distributions:
Pruniform,m,ε̄[A] denotes the probability of property A occurring under Guniform

n,m,k,ε̄ , Prplanted,m,ε̄[A] for

Gplant
n,m,k,ε̄, and Prplanted,n,p,ε̄[A] for Gplant

n,p,k,ε̄.

We shall be mostly interested in the case m =
(∑

i<j |Vi||Vj |
)

p, namely m is the expected

number of edges in Gplant
n,p,k,ε̄. The following lemma, which is proved using rather standard probabilistic

calculations, establishes the exchange rate for Gplant
n,p,k,ε̄ → Gplant

n,m,k,ε̄.
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Lemma 5.1. (Gplant
n,p,k,ε̄ → Gplant

n,m,k,ε̄) Let A be some graph property. The following is true when m and

p satisfy m =
(∑

i<j |Vi||Vj |
)

p:

Prplanted,m,ε̄[A] ≤ O(
√

m) · Prplanted,n,p,ε̄[A].

Proof.(Outline) Let G be a random graph sampled according to Gplant
n,p,k,ε̄. G has property A w.p.

Prplanted,n,p,ε̄[A]. Since the distribution of edges in Gplant
n,p,k,ε̄ is binomial, and m is chosen to be the

expected number of edges, standard calculations show that w.p. Ω(1/
√

m), G has exactly m edges.
Also observe that Gplant

n,m,k,ε̄ = Gplant
n,p,k,ε̄| {The graph has exactly m edges}. Therefore Prplanted,m,ε̄[A] =

Prplanted,n,p,ε̄[A]/Ω(1/
√

m) = O(
√

m) · Prplanted,n,p,ε̄[A]. ¥

Next, we obtain Gplant
n,m,k,ε̄ → Guniform

n,m,k,ε̄ , which is rather involved technically and whose proof embeds
interesting results of their own – for example, bounding the expected number of proper k-colorings
of a graph in Guniform

n,m,k,ε̄ . The passage Gplant
n,m,k,ε̄ → Guniform

n,m,k,ε̄ is composed of the following two lemmas.

Lemma 5.2. Let A be some graph property, then

Pruniform,m,ε̄[A] ≤ C1(n, k, ε̄) · Prplanted,m,ε̄[A],

where C1(n, k, ε̄) stands for the expected number of proper k-colorings that a random graph in Guniform
n,m,k,ε̄

has.

Lemma 5.3. Let ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01, then

C1(n, k, ε̄) ≤ eke−m/(10nk9)n.

The following proposition formulates the exchange rate technique in a “practical” way.

Proposition 5.4. Let A be some graph property. Then

Pruniform,m[A] ≤ o(1) + nk · eke−m/(10nk9)n · max
ε̄:∀i,|εi|≤0.01

Prplanted,m,ε̄[A]

Proof. Let K be set of all k-colorable graphs with exactly m edges, and let Kε̄ be all k-colorable
graphs that have at least one proper k-coloring with color classes according to ε̄. Proposition 3.4
asserts that ⋃

ε̄:∀i,|εi|≤0.01

Kε̄ = (1− o(1))K.

Set
αε̄ = eke−m/(10nk9)n · Prplanted,m,ε̄[A],

α = max
ε̄:∀i,|εi|≤0.01

αε̄.

Lemmas 5.2 and 5.3 ensure that at most αε̄–fraction of the graphs in Kε̄ have property A. Therefore,
the number of graphs in K that have property A is at most

(
o(1) + nk · α

)
|K|.
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The nk factor comes from the fact that there are at most nk ways to choose ε̄ (that is, at most nk

different Kε̄’s). ¥

Proof.(Lemma 5.2) Fix ε̄ = (ε1, ε2, . . . , εk) and let B(n, k, ε̄) be the total number of proper k-
colorings on n vertices with the prescribed sizes of the color classes (when we consider two colorings
to be the same if one is just a permutation of the color classes of the other). Throughout this section,
when referring to a k-coloring, we mean a coloring with the prescribed sizes of the color classes, when
ε̄ is clear from the context. Recall that C1(n, k, ε̄) is defined to be the expected number of proper
k-colorings that a random graph in Guniform

n,m,k,ε̄ has, and C2(n, k, ε̄) is defined similarly for Gplant
n,m,k,ε̄. Let

ti be the number of graphs on n vertices and m edges which have exactly i proper k-colorings. Let
pi be the probability that a graph with exactly i proper k-colorings is sampled from Guniform

n,m,k,ε̄ , and

let qi be defined similarly for Gplant
n,m,k,ε̄. For a k-coloring ϕ, let ∆n,m,ϕ be the number of graphs on n

vertices with m edges for which ϕ is a proper k-coloring. Observe that due to symmetry ∆n,m,ϕ is
the same for every ϕ – thus we omit the ϕ subscript. In the above notation

pi =
ti∑kn

j=1 tj
,

qi = ti · i

B(n, k, ε̄)
· 1
∆n,m

.

Further observe that

B(n, k, ε̄) ·∆n,m =
kn∑

j=1

j · tj .

This is because every graph with j balanced k-colorings was counted exactly j times in the product
B(n, k, ε̄) ·∆n,m. Lastly,

C1(n, k, ε̄) =
kn∑

i=1

i · pi =
∑kn

i=1 i · ti∑kn

i=1 ti
,

C2(n, k, ε̄) =
kn∑

i=1

i · qi =
∑kn

i=1 i2 · ti
B(n, k, ε̄) ·∆n,m

=
∑kn

i=1 i2 · ti∑kn

i=1 i · ti
.

Next we obtain the following bound:

Pruniform,m,ε̄[A]
Prplanted,m,ε̄[A]

≤ max
i

pi

qi
.

This is established in the following discussion. Let KA be the set of graphs in Guniform
n,m,k,ε̄ for which

property A holds.

Pruniform,m,ε̄[A] =
∑

G∈KA
Pruniform,m,ε̄[G], P rplanted,m,ε̄[A] =

∑

G∈KA
Prplanted,m,ε̄[G].

Now let b = maxi
pi

qi
. For every G in KA it holds that Pruniform,m,ε̄[G] ≤ b·Prplanted,m,ε̄[G]. Therefore,

∑

G∈KA
Pruniform,m,ε̄[G] ≤

∑

G∈KA
b · Prplanted,m,ε̄[G] = b ·

∑

G∈KA
Prplanted,m,ε̄[G].

It now remains to estimate maxi
pi

qi
.
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Pruniform,m,ε̄[A]
Prplanted,m,ε̄[A]

≤ max
i

pi

qi
= max

i

(
ti∑kn

j=1 tj

)
·
(

B(n, k, ε̄) ·∆n,m

i · ti

)

= max
i

(
1
i
·
∑kn

j=1 j · tj∑kn

j=1 tj

)
=

(∑kn

j=1 j · tj∑kn

j=1 tj

)
·
(

max
i

1
i

)
= C1(n, k, ε̄).

¥

Since directly estimating C1(n, k, ε̄) seems an intricate task, the following lemma is very useful.

Lemma 5.5. C1(n, k, ε̄) ≤ C2(n, k, ε̄).

Proof. To prove C1(n, k, ε̄) ≤ C2(n, k, ε̄), one needs to prove that

(
kn∑

i=1

i · ti
)2

≤
(

kn∑

i=1

ti

)
·
(

kn∑

i=1

i2 · ti
)

.

This is just Cauchy-Schwartz, (
∑

ai · bi)
2 ≤ (∑

a2
i

) · (∑ b2
i

)
, with ai =

√
ti and bi = i · √ti. ¥

The following lemma then finishes the proof of Lemma 5.3.

Lemma 5.6. Let ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01. Then it holds:

C2(n, k, ε̄) ≤ eke−m/(10nk9)n.

Proof. Let G be a graph randomly sampled according to Gplant
n,m,k,ε̄ and let ϕ = (V1, V2, ..., Vk) be its

planted k-coloring. Let Sk be the group of permutations over the numbers {1, .., k}. For a k-coloring
ψ = (U1, U2, ..., Uk), we define the distance between ψ and ϕ to be

dist(ψ, ϕ) = min
σ∈Sk

∑

v∈V

Iv(ψ, ϕσ), (1)

where Iv(ψ, ϕσ) =
{

1, ϕσ(v) 6= ψ(v).
0, otherwise.

,

ϕσ(v) = σ(i) for v ∈ Vi, and ψ(v) = j for v ∈ Uj . Put in words, dist(ψ, ϕ) is the number of
vertices which belong to different color classes under ψ and ϕ, when taking the minimum over all
possible k! permutations of the color classes in ϕ.

Let cr be the probability that a k-coloring (with color classes according to ε̄) at distance r from
ϕ is also a proper coloring of G. Therefore,

C2(n, k, ε̄) ≤
n∑

r=0

(
n

r

)
krcr.

Our first task is therefore to upper bound cr.

Lemma 5.7. If ε̄ = (ε1, ε2, . . . , εk) is s.t. ∀i |εi| ≤ 0.01 then cr ≤ e−mr/(10nk9).
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We are now ready to bound C2(n, k, ε̄).

C2(n, k, ε̄) ≤
n∑

r=0

(
n

r

)
krcr =

n∑

r=0

(
n

r

)
kre−mr/(10nk9) =

n∑

r=0

(
n

r

)(
ke−m/(10nk9)

)r
1n−r

=
(
1 + ke−m/(10nk9)

)n
≤ eke−m/(10nk9)·n

¥

Before proving Lemma 5.7 we establish two more facts.

Lemma 5.8. Let ψ = (U1, U2, ..., Uk) be some k-coloring at distance r from ϕ. Then there exist
i, j, j′ s.t. |Ui ∩ Vj |, |Ui ∩ V ′

j | ≥ r
3k·(k−1) .

Proof. If not, then for every i there exists some j = j(i) s.t.

|Ui ∩ Vj | ≥ |Vj | − (k − 1) · r

3k · (k − 1)

The last inequality is due to r ≤ n. Observe that this mapping is a bijection, since if i 6= i′

and j(i) = j(i′) then |Ui ∩ Vj | ≥ 0.99n
k − r

3k ≥ 0.6n
k and also |Ui′ ∩ Vj | ≥ 0.6n

k , but this implies
Ui∩Ui′ 6= ∅, contradicting the definition of ψ. Let σ be the permutation j(·) that was just defined, and
consider ϕσ (namely, ϕ with color-classes permuted according to σ). Since |Ui ∩ Vσ(i)| ≥ |Vσ(i)| − r

3k ,
dist(ψ, ϕ) ≤ k · r

3k = r
3 , contradicting the choice of r. ¥

Lemma 5.9. Fix δ, |δ| ≤ 0.01, and let r1 ≥ r2 ≥ ... ≥ rk ≥ 0 be a sequence of k integers satisfying∑k
i=1 ri = (1+δ)n

k and r2 ≥ r
3k·(k−1) . Then

∑

1≤i<j≤k

ri · rj ≥
(

(1 + δ)n
k

− r

3k · (k − 1)

)
· r

3k · (k − 1)
.

Proof. Let r = (r1, r2, ...rk), and f(r) =
∑

1≤i<j≤k ri ·rj . Assuming ri ≤ rj , define a new sequence r′

by r′i = ri−1, r′j = rj+1 and r′q = rq for q 6= i, j. One can verify that f(r′) = f(r)+ri−rj−1. Since we
chose ri ≤ rj , f(r′) < f(r). It follows that f(r) takes its minimum (under the conditions r2 ≥ r

3k·(k−1)

and
∑k

i=1 ri = (1+δ)n
k ) when r3 = r4 = ... = rk = 0, r2 = r

3k·(k−1) and r1 = (1+δ)n
k − r

3k·(k−1) . The
minimum is then (

(1 + δ)n
k

− r

3k · (k − 1)

)
· r

3k · (k − 1)
,

as promised. ¥

Proof.(Lemma 5.7) Let ψ be a k-coloring coloring at distance r from ϕ. Let i0 be the index
promised in Lemma 5.8 (the one indexing Ui). Let ri = |Ui0 ∩ Vi|, and let f(r) =

∑
1≤i<j≤k ri · rj .

The conditions of Lemma 5.9 hold due to Lemma 5.8 and
∑k

i=1 ri =
∑k

i=1 |Ui0 ∩Vi| = |Ui0 | = (1+δ)n
k

(for some |δ| ≤ 0.01). Lemma 5.9 then implies that

f(r) ≥
(

(1 + δ)n
k

− r

3k · (k − 1)

)
· r

3k · (k − 1)
≥ n

2k
· r

3k2
.
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The last inequality is due to r ≤ n and |δ| ≤ 0.01. Further observe that f(r) counts exactly the
number of edges in {Ui0 ∩ Vi} × {Ui0 ∩ Vj} for i 6= j, which are all proper under ϕ but not under ψ.
Set e =

∑
i<j |Vi||Vj |, and observe that e ≥ (

k
2

) (
0.99n

k

)2. Therefore,

cr ≤
(

e− f(r)
m

)
·
(

e

m

)−1

≤
(

e− nr
6k9

m

)
·
(

e

m

)−1

≤ e−0.992mr/(6k9n) ≤ e−mr/(10k9n). (2)

The third inequality is due to: (
a−x

b

)
(
a
b

) ≤
(

1− b

a

)x

≤ e−bx/a.

¥

6 Complete Proofs for Sections 2 and 3

6.1 Proof of Proposition 2.1 (Discrepancy)

The discrepancy property for random graphs was proven in several occasions. We follow the proof
given in [19] (Section 2.2.5 in that paper) for Gn,p. We do not give the complete details, just point
out how to adjust that proof to fit Guniform

n,m,k . For the sake of clarity of presentation we consider the
case where the graph has a proper k-coloring where all color classes are of size n/k. The case where
all color classes are nearly balanced is treated very similarly, as in Section 5 (the case where some
color class is “far” from being balanced can be disregarded, Proposition 3.4).

The proof branches according to the sizes of the sets A and B. For “big” sets we prove that
the first property holds, and for “small” sets – we prove that the second one holds. Throughout
the discussion we assume p satisfies m =

(
k
2

) (
n
k

)2
p. Fix two sets of vertices A and B, and first

consider the case |B| ≥ n/e. Observe that e(A, B) ≤ |A| · 10np by the bounded-degree property of
G′. Therefore,

e(A,B) ≤ |A| · 10np = (|A||B|p) · (10n/|B|) ≤ 30|A||B|p.

Thus, the first property holds. Now consider the case |B| ≤ n/e. The proof in [19] uses some variant
of the Chernoff bound to bound the number of edges between A and B. Since the edges in the
uniform setting are not independent, one needs to reprove the Chernoff bound, or a some variant
thereof, in Guniform

n,m,k (for the case where the random variables are edge indicators). This will be our
goal in the next few paragraphs. The crucial step in the proof of the Chernoff bound is restating the
expectation of a product of r.v. (random variables) as the product of their expectations (which is
possible in the original proof due to independence, but in our setting this is not the case as the edges
are not chosen independently of each other). Lemmas 6.1 and 6.3 establish this fact in our setting.

Lemma 6.1. Let X1, X2, . . . , Xd be d non-negative random variables taking values in Ω, |Ω| < ∞.
Then the following holds:

E[X1 ·X2 · · ·Xd] ≤ max
i1,i2,...,id−1∈Ω

E[X1] · E[X2|X1 = i1] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1].

Proof. The proof is by induction on d – the number of random variables. The case d = 1 is
immediate. Now to prove the induction step,
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E[X1 ·X2 · · ·Xd] =
∑

i1∈Ω

Pr[X1 = i1] · E[X1 ·X2 · · ·Xd|X1 = i1] =
∑

i1∈Ω

i1E[X2 · · ·Xd|X1 = i1] · Pr[X1 = i1]

≤︸︷︷︸
induction hyp.

∑

i1∈Ω

i1Pr[X1 = i1] · max
i2,...,id−1∈Ω

E[X2|X1 = i1] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1]

=
(

max
i2,...,id−1∈Ω

E[X2|X1 = i1] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1]
)
·
∑

i1∈Ω

i1Pr[X1 = i1]

= E[X1] ·
(

max
i2,...,id−1∈Ω

E[X2|X1 = i1] · E[X3|X1 = i1, X2 = i2] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1]
)

= max
i1,i2,...,id−1∈Ω

E[X1] · E[X2|X1 = i1] · E[X3|X1 = i1, X2 = i2] · · ·E[Xd|X1 = i1, . . . , Xd−1 = id−1].

We apply the induction hypothesis to random variables Yi of the form Xi|(X1 = i1), i ≥ 2, and
notice that Y3|(Y2 = i2) is simply X3|(X1 = i1, X2 = i2). ¥

Let Xe be an indicator random variable which is 1 iff the edge e = (i, j) is present in G′. We let
X̂e = etXe , where t is some fixed positive number. Observe that X̂e can take two possible values, et

or 1. The next lemma quantifies in some useful sense the dependency between the edges. We defer
its proof to the end of this section.

Lemma 6.2. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant. Let

p be s.t. m =
(
k
2

) (
n
k

)2
p. Let Xe1 , . . . , Xed

be d edge-indicator random variables. Let b1, . . . , bd−1

take arbitrary values in {1, et}. Then

Pr[X̂e1 = et|X̂e1 = b1, . . . , X̂ed−1
= bd−1] ≤ 2p.

The next lemma shows how to move from expectation of product to product of expectations.

Lemma 6.3. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant. Let

p be s.t. m =
(
k
2

) (
n
k

)2
p. Let Xe1 , . . . , Xed

be d edge-indicator random variables. Let X̂ej = etXej ,
let µ = p · d. Then

E[X̂e1 · · · X̂ed
] ≤ exp{2µ(et − 1)}.

Proof. By Lemma 6.1,

E[X̂e1 · · · X̂ed
] ≤ max

b1,...,bd−1∈{1,et}
E[X̂e1 ] · E[X̂e2 |X̂i1 = b1] · · ·E[X̂ed

|X̂e1 = b1, . . . , X̂ed−1
= bd−1]

Therefore,

E[X̂ij = et|X̂i1 = b1, . . . , X̂ij−1 = bj−1] ≤ 2pet + (1− 2p) = 1 + 2p(et − 1) ≤ exp{2p(et − 1)}.

The last inequality is due to 1 + x < ex (Taylor of ex around 0). Finally,

E[X̂i1 · · · X̂id ] ≤ max
b1,...,bd−1∈{1,et}

E[X̂i1 ] · E[X̂i2 |X̂i1 = b1] · · ·E[X̂id |X̂i1 = b1, . . . , X̂id−1
= bd−1]

≤
∏

j=1,...,d

exp{2p(et − 1)} = exp{2p · d(et − 1)} = exp{2µ(et − 1)}.
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¥

Let µ∗ = E[
∑

j=1..d Xij ] be the expected number of edges under the uniform distribution. Lastly, we
make the following observation, which allows us to establish a connection between µ∗ and µ = p · d
(which is later used in the proof of the Chernoff bound in the uniform setting).

Lemma 6.4. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant. Let
p∗ be the probability that an edge (i, j) is present in G, then

p∗ = m

(
n

2

)−1

Proof. First observe that indeed p∗ is well defined, namely it is the same for every edge e = (i, j).
This is of course true due to symmetry. Let Xw be an edge-indicator variable as before. Observe
that:

m =
∑

i<j,e=(i,j)

Xe ⇒ m = E[m] = E[
∑

i<j,e=(i,j)

Xe] =
∑

i<j,e=(i,j)

E[Xe] =
(

n

2

)
p∗,

which implies the lemma. ¥

An immediate corollary of this lemma is that µ∗ = p∗d ≥ pd/2 = µ/2, and that µ∗ ≤ µ. This is by
the choice of p, and the fact that k ≥ 3. Now we are ready to re-prove (the variant of) the Chernoff
bound in the uniform setting (we defer the proof of Lemma 6.2 to the end of this discussion).

Proposition 6.5. Let G be a random graph in Guniform
n,m,k ,m ≥ C0k

10n,C0 a sufficiently large constant.

Let p be s.t. m =
(
k
2

) (
n
k

)2
p. Let Xe1 , . . . , Xed

be d edge-indicator random variables, and X =∑
1,...,d Xei. Let µ = pd as before. Then

Pr[X > (1 + λ)µ] ≤
(

e2λ

(1 + λ)(1+λ)/2

)µ

.

Corollary 6.6. For r ≥ 200, the above inequality reads

Pr[X > rµ] ≤ e−µ(r ln r)/30.

Proof.(Corollary)

e2λ

(1 + λ)(1+λ)/2
= exp{2λ− (1/2)(1 + λ) ln(1 + λ)} ≤ exp{λ(2− ln λ/2)} ≤ exp{−(λ ln λ)/20}

The last inequality is true for λ = 199 for example. Now set r = 1 + λ. ¥

Proof.(Proposition 6.5) For any t > 0,

Pr[X > (1 + λ)µ] ≤ Pr[X > (1 + λ)µ∗] = Pr[exp{tX} > exp{t(1 + λ)µ∗}] ≤ E[exp{tX}]
exp{t(1 + λ)µ∗}

≤ exp{2µ(et − 1)}
exp{t(1 + λ)µ∗} ≤

exp{2µ(et − 1)}
exp{t(1 + λ)µ/2}

This is true for any t, and in particular for t = ln(1 + λ), which gives the desired result. The first
inequality is true since µ∗ ≤ µ. The second inequality is the Markov inequality. The third inequality

19



is by noticing that E[exp{tX}] is exactly E[X̂e1 · · · X̂ed
], and using Lemma 6.3. The last inequality

is by the fact that µ∗ ≥ µ/2.

Comparing our proof with the one in [19]. The case |B| ≥ n/e we already proved. The case
|B| ≤ n/e uses the formulation of the Chernoff bound asserted in Corollary 6.6, though with the
constant 3 in the exponent of the right hand side rather than 30. This only affects the constant c in
Proposition 2.1. However one is only required to show that such a constant exists, and in this work
we make no attempt to optimize any of the constants.

Proof.(Lemma 6.2) Recall that we need to bound Pr[X̂ij = et|X̂i1 = b1, . . . , X̂ij−1 = bj−1]. The
fact that X̂i1 = b1, . . . , X̂ij−1 = bj−1 basically implies some constellation of the edges i1, . . . , ij−1,
according to the b-values (if bij = 1 then the edge ij was not included since Xij = 0). Consider this
constellation of edges, and let s be the number of edges that are present. If s > m− 1, then such a
graph cannot be sampled, and therefore Pr[X̂ij = et|X̂i1 = b1, . . . , X̂ij−1 = bj−1] = 0 ≤ 2p. Thus we
are left with the case s ≤ m− 1.

Let e = ij , a graph G is said to be e-bad if it contains e. Furthermore, let Pe signify the set of
all e-bad (balancedly) k-colorable graphs with exactly m edges that also contain the constellation
implied by the b values at hand. In addition, denote by G the set of all (balancedly) k-colorable
graphs with exactly m edges that contains this constellation as well. Our objective is to establish
the following.

Pe ≤ (2p)|G|. (3)

Observe that this immediately implies that the probability of an e-bad graph in Guniform
n,m,k given the

above constellation is at most 2p. To prove Equation (3) we shall set up a bipartite auxiliary graph
A with vertex set V (A) = Pe ∪ G. This graph will have the property that the average degree
of vertices in Pe is ∆, while for G the average degree is ∆′, where ∆′/∆ ≤ 2p = 2m/E, where
E =

(
k
2

) (
n
k

)2. Since ∆|Pe| = ∆′|G|, by double counting, we thus obtain Equation (3). We describe
a procedure that receives a graph G ∈ Pe and produces a new graph G′ ∈ G. In our auxiliary graph
A, we connect a right-side node G with a left-side one G′, if G′ can be obtained from G by this
procedure. The procedure is the following simple one. Given an e-bad graph G, remove the edge e,
and place it instead of a non-edge of G, while respecting at least one balanced proper k-coloring of
the graph. The number of possible graphs G′ that can be obtained via the above procedure is at
least E −m− s ≥ E/2 , thus ∆ ≥ E/2. This is because we have to choose a place for the displaced
edge amongst all possible ones. Conversely, consider the following procedure to recover a graph G
from G′. Out of m possible edges, choose one. Remove it and place it between i and j. Therefore
∆′ ≤ m (there at most m possibilities to guess that edge). ¥

This concludes the proof of the discrepancy property. ¥

6.2 Proof of Corollary 2.2 (Discrepancy)

Assume that Proposition 2.1 holds with c ≤ 30 (which is the case whp, as implied by the proof of
Proposition 2.1), and suppose in contradiction that there exists a subgraph H (on h vertices) of G
violating the condition of the corollary. Then for such a graph H, e(H, H) > hδm/(2nk). However,

cµ(H, H) = ch2p ≤ δn

1000k
cph =

δn

1000k
· 2mk

n2(k − 1)
· ch < hδm/(2nk),
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contradicting the first condition of Proposition 2.1, and also

e(H, H) ln
e(H, H)
µ(H, H)

≥ δhm

2nk
ln

(
δhm

2nk
· n2

2mh2

)
≥ δhC0k

9

2
ln

(
n

h
· 4k

δ

)
=

δhC0k
9

2

(
ln

n

h
− ln

4k

δ

)

= hc ln
n

h
+ h

(
δC0k

9

2
− c

)
ln

n

h
− δhC0k

9

2
ln

δ

4k
≥

hc ln
n

h
+ h ln(1000k/δ)

δC0k9

2
−c − h ln(4k/δ)

δC0k9

2 = hc ln
n

h
+ ln

(
1000kδ

4kδ

) δC0k9

2

·
(

δ

1000k

)c

=

hc ln
n

h
+ h ln

250
δC0k9

2

(1000kδ−1)c
> hc ln

n

h
,

Contradicting the second condition of Proposition 2.1. The last (strict) inequality holds since

250
δC0k9

2

(δ/(1000k))c > 1 for a sufficiently large constant C0.

6.3 Proof of Propositions 2.3 and 4.2 (Spectral Analysis)

We start by analyzing the procedure SepctralApprox – that is proving Proposition 4.2. We assume
that Proposition 2.3 holds, which is the case whp, and using this fact we show that Â, the rank-k
approximation of A(G′) (see Section 4.1) approximates E in some useful sense. Of course, we know
the adjacency matrix A(G′). Furthermore, we know that ‖M ′‖ = ‖E−A(G′)‖ is “small” (Proposition
2.3). That is, A(G′) is a good approximation of E in the operator norm. However, we can’t exploit
this fact directly in order to obtain a good entry-wise approximation of E . Indeed, instead of getting
a matrix that approximates E in the operator norm, an approximation B of E in the Frobenius norm

‖E −B‖F =
√ ∑

v,w∈V ′
(Bvw − Evw)2

would be more useful.

The analysis of SpectralApprox is based on the following lemma, which shows that for most
vertices v the v-column Âv of Â is close to the v-column Ev of E .

Lemma 6.7. Let Z = {v ∈ V ′ : ‖Âv − Ev‖2 ≥ 10−10np2/k}. Then |Z| ≤ nd−0.1, where d = davg/k,
davg = 2m/n.

Proof.
∑

v∈V ′
‖Ev − Âv‖2 = ‖E − Â‖2

F ≤ 2k‖E − Â‖2 ≤ 2k(‖E −A(G′)‖2 + ‖Â(G′)− Â‖2) ≤ 4k‖E −A(G′)‖2

= 4k‖M ′‖2 ≤ 4kd1.8 ≤ d1.81.

The first inequality is by the fact that for a matrix B of rank q it holds that ‖B‖2 ≤ q‖B‖2
F , and

the fact that both E , Â have rank k and therefore E − Â has rank at most 2k. The second iequality
is just the triangle inequalty, and the third inequality is by the fact that ‖Â(G′)− Â‖ ≤ ‖E −A(G′)|
because Â is a rank-k approximation of A(G′), and therefore minimizes ‖Â(G′)−B‖ over all matrices
B of rank k. The next-to-last inequality is due to Proposition 2.3.
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Finally we derive that |Z| · 10−10np2/k ≤ d1.81, so that |Z| ≤ 1010 d1.81k
np2 ≤ nd−0.1. Here we

assume that the coloring V1, . . . , Vk is nearly balanced. That is, for every i, |Vi − n/k| ≤ 0.01n/k,
and therefore p = Θ(m/n2). ¥

Lemma 6.7 implies that for most vertices v, w belonging to the same color class Vi the difference
‖Âv−Âw‖ is small, whereas for most u ∈ Vj , j 6= i, the distance ‖Âv−Âu‖ is large. This implies that
the classes X1, . . . , Xk provide a good approximation of the coloring V1, . . . , Vk (up to a permutation
of the indices, of course).

Proposition 6.8. There is a permutation σ of {1, . . . , k} such that Xi4V ′
i ≤ 10−9n/k2.

Proof. We show by induction on i that in each step there is a vertex vi such that |Svi | \ X ≥
(1−10−10)n

k . Moreover, we shall prove that for the vertex vi chosen by the algorithm there is a class
V ′

σ(i) such that Xi \ V ′
σ(i) ⊂ Z. Let 1 ≤ i ≤ k, and suppose that these statemtents are true for all

1 ≤ i′ < i.

Let j ∈ {1, . . . , k} \ {σ(1), . . . , σ(i − 1)}. Then by Lemma 6.7 there is a vertex v∗ ∈ V ′
j \ Z.

Moreover, since all u ∈ V ′
j \ Z we have

‖Âv∗ − Âu‖2 ≤ 2(‖Âv∗ − Ev∗‖2 + ‖Eu − Âu‖2) ≤ 0.01
np2

k
.

Hence, Sv∗ ⊃ V ′
j \ Z. Furthermore, V ′

j ∩X ⊂ Z by the induction hypothesis. Therefore, |Sv∗ | \X ≥
|V ′

j | \ Z ≥ (1 − 10−10)n
k . Thus, it is possible for the algorithm to choose a vertex vi such that

|Svi | \X ≥ (1− 10−10)n
k .

Now, let vi be the vertex with this property chosen by the algorithm, and pick some w ∈ Svi \
(X ∪ Z); such a vertex w exists due to the upper bound on |Z| from Lemma 6.7. Then we have

‖Âvi − Ew‖2 ≤ ‖Âvi − Âw‖2 + 2‖Âvi + Âw‖ · ‖Ew − Âw‖+ ‖Ew − Âw‖2 ≤ 0.02np2

k
.

Further, we have w 6∈ ⋃
1≤j<i V

′
σ(j). For assume that w ∈ V ′

σ(j) for some 1 ≤ j < i. Then for all
u ∈ Svi \ V ′

σ(j) we have

‖Âu − Ew‖2 ≤ (‖Âv − Ew‖+ ‖Âu − Âv‖)2 ≤ 0.1np2

k
. (4)

However, since u,w belong to different color classes, we have ‖Eu − Ew‖2 ≥ np2/k. Thus, (4) entails
that ‖Âu − Eu‖2 ≥ 0.1np2

k , whence u ∈ Z. Consequently, if w ∈ V ′
σ(j) for some 1 ≤ j < i, then

Svi \ V ′
σ(j) ⊂ Z. As by induction |V ′

σ(j) \ Xj | ≤ 0.1n
k and |Svi | ≥ 0.6n

k , this implies that |Z| ≥ n
2k ,

which contradicts Lemma 6.7.

Hence, we have estabished that w 6∈ ⋃
1≤j<i V

′
σ(j), and we let σ(i) be such that w ∈ V ′

σ(i).

Finally, we claim that Svi \ V ′
σ(i) ⊂ Z. For let u ∈ Svi \ V ′

σ(i). Then ‖Âu−Ew‖2 ≤ 0.1np2

k (cf. (4)).

Hence, as ‖Eu − Ew‖2 ≥ np2/k, we conclude that ‖Âu − Eu‖2 ≥ 0.1np2/k. Thus, u ∈ Z. ¥

This completes the proof of Proposition 4.2. We now proceed with the proof of Proposition 2.3.
The proof of Proposition 2.3 is based on a proper modification of techniques developed by Kahn and
Szemerédi in [20], where the authors show that the second largest eigenvalue in absolute value of a
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random d-regular graph is almost surely O(
√

d). Since in our case the graph is not regular, and the
edges are not chosen independently, a few modifications are needed.

In what follows, we let V1, . . . , Vk be a partition of V = {1, . . . , n} such that |Vi − n
k | < 0.1n

k
for all 1 ≤ i ≤ k. Moreover, let 0 < p < 1 be such that

∑
1≤i<j≤k ViVjp = m, and set d = np/k.

Further, let G signify a random graph with planted coloring V1, . . . , Vk in which each possible edge
compatible with this coloring is present with probability p independently.

In order to prove Proposition 2.3, we shall first analyze the spectral properties of G. Then,
we shall combine this information with Proposition 5.4 and the discrepancy property established
in Proposition 2.1 in order to obtain the desired result on the spectrum of a uniformly distributed
k-colorable graph.

6.3.1 Proof of Proposition 2.3 (Outline)

As the indicator vectors ~1V1 , . . . ,~1Vk
corresponding to the k planted color classes of G play a distin-

guished role, we shall first analyze the spectral properties of G on the orthogonal complement of the
space spanned by these vectors.

Lemma 6.9. With probability ≥ 1 − exp(−n) the adjacency matrix A = (avw)v,w∈V of G satisfies
the following.

Suppose that ξ, η ∈ Rn are unit vectors perpendicular to (~1Vi)1≤i≤k. Let

L(ξ, η) =
{

(v, w) ∈ V × V : |ξvηw| ≤
√

p/n
}

. (5)

Then
∣∣∣∑(v,w)∈L avwξvηw

∣∣∣ ≤ (np)3/4.

Furthermore, regarding the vectors ~1V1 , . . . ,~1Vk
, we prove the following in Section 6.3.3.

Lemma 6.10. Let G′ be the graph obtained from G by removing all vertices of degree > 2np. Then
with probability ≥ 1− exp(−nd−10) the matrix M ′ =

∑
i6=j pJVi×Vj∩V (G′)2 −A′ satisfies

‖M ′~1Vi∩V (G′)‖ ≤ d0.66√n.

Furthermore, we employ the following result, which was established by Kahn and Szemeredi [20]
for regular graphs. A proof of the present setting can be found in [19].

Lemma 6.11. Suppose that H = (V, E) is a graph of maximum degree ≤ 2np that satisfies the
discrepancy property stated in Proposition 2.1. Let AH = (aH

vw)v,w∈V be the adjacency matrix of H.
Then for all unit vectors ξ, η ∈ Rn we have

∑

(v,w)∈V 2\L(ξ,η)

aH
vw |ξvηw| ≤ C

√
np.

Proof of Proposition 2.3. Let G∗ = Guniform
n,m,k be a random k-colorable graph, and let G′∗ be the

subgraph obtained by removing all vertices of degree > 2np. Let V ′ = V (G′∗), and let A∗ =
(a∗ vw)v,w∈V ′ be the adjacency matrix of G′∗. By Lemmas 5.1 and 5.2, we can infer from Lemma 6.9
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that whp G′∗ has a k-coloring V ′
1 , . . . , V

′
k such that for all unit vectors ξ, η ∈ RV ′ that are perpendicular

to {~1V ′i : 1 ≤ i ≤ k} we have ∣∣∣∣∣∣
∑

(v,w)∈L′(ξ,η)

a∗ vwξvηw

∣∣∣∣∣∣
≤ (np)3/4, (6)

where L′(ξ, η) =
{

(v, w) ∈ V ′ × V ′ : |ξvηw| ≤
√

p/n
}

. In addition, combining Proposition 2.1 and
Lemma 6.11, we conclude that

∣∣∣∣∣∣
∑

(v,w)∈(V ′×V ′)\L′(ξ,η)

a∗ vwξvηw

∣∣∣∣∣∣
≤ (np)3/4 (7)

for all such ξ, η. Thus, combining (6) and (7), we conclude that

∀ξ, η ∈ RV ′ , ‖ξ‖ = ‖η‖ = 1, ξ, η ⊥ {~1V ′i : 1 ≤ i ≤ k} :
∣∣〈M ′ξ, η

〉∣∣ ≤ 2(np)3/4. (8)

Furthermore, invoking Lemmas 5.1 and 5.2 once more, we conclude from Lemma 6.10 that whp

∀1 ≤ i ≤ k : ‖M ′~1V ′i ‖ ≤ d0.66√n ≤ ‖~1V ′i ‖(np)3/4. (9)

Finally, combining (8) and (9), we obtain ‖M ′‖ ≤ 8(np)3/4 < d0.9, as claimed.

6.3.2 Proof of Lemma 6.9

Alon and Kahale [6] established the following estimate.

Lemma 6.12. Let 1 ≤ i < j ≤ k. Then with probability ≥ 1 − exp(−2n) the adjacency matrix
A = (avw)v,w∈V of G satisfies the following.

Suppose that ξ ∈ RVi, η ∈ RVj are unit vectors such that ξ ⊥ ~1Vi, η ⊥ ~1Vj . Let

Lij =
{

(v, w) ∈ Vi × Vj : |ξvηw| ≤
√

p/n
}

.

Then
∣∣∣∑(v,w)∈Lij

avwξvηw

∣∣∣ ≤ c
√

np for a certain constant c > 0.

To prove Lemma 6.9, we shall just apply the bound provided by Lemma 6.12 to each pair
1 ≤ i, j ≤ k, i 6= j. Thus, let ξ, η ∈ RV be such that ξ, η ⊥ ~1Vi for all 1 ≤ i ≤ k. Then Lemma 6.12
entails that with probability ≥ 1− k2 exp(−2n) ≥ 1− exp(−n) we have

∣∣∣∣∣∣
∑

(v,w)∈L

avwξvηw

∣∣∣∣∣∣
≤

∑

1≤i,j≤k, i 6=j

∣∣∣∣∣∣
∑

(v,w)∈Lij

avwξvηw

∣∣∣∣∣∣
≤ ck2√np ≤ (np)3/4.

6.3.3 Proof of Lemma 6.10

The proof is based on the following Chernoff bound.
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Theorem 6.13. Suppose that X is a binomially distributed random variable with mean µ. Let
ϕ(x) = (1 + x) ln(1 + x)− x. Then

P (X ≥ µ + t) ≤ exp
(
−µϕ

(
t

µ

))
≤ exp

(
− t2

2(µ + t/3)

)
(0 < t), (10)

P (X ≤ µ− t) ≤ exp
(
−µϕ

(−t

µ

))
≤ exp

(
− t2

2µ

)
(0 < t < µ). (11)

The Chernoff bound entails the following result on the degree distribution of G.

Lemma 6.14. Let Wij = {v ∈ Vi : |eG(v, Vj) − |Vj |p| > d0.51}, where 1 ≤ i, j ≤ k and i 6= j. Then
P

[∃i, j : |Wij | > nd−10
] ≤ exp(−nd−10).

Proof. Since E(eG(v, Vj)) = |Vj |p, Theorem 6.13 entails that for any i 6= j and any v ∈ Vi we have
P

[|eG(v, Vj)− |Vj |p| > d0.51
] ≤ n exp(−dΩ(1)) ≤ d−100. Therefore, E(|Wij |) ≤ nd−100. Furhermore,

the random variables (eG(v, Vj))v∈Vi are mutually independent, and thus |Wij | is binomially dis-
tributed. Hence, invoking (10) once more, we conclude that P

[|Wij | > nd−10
] ≤ exp(−nd−10 ln d).

Finally, the union bound entails that with probability ≥ 1− k2 exp(−nd−10 ln d) ≥ 1− exp(−nd−10)
the bound |Wij | ≤ nd−10 holds for all i, j simultaneously. ¥

Corollary 6.15. With probability ≥ 1−exp(−nd−10) the random graph G has at most nd−9 vertices
of degree > 2np.

Proof. Any vertex of degree > 2np belongs to
⋃

i6=j Wij , and by Lemma 6.14 with probability
≥ 1− exp(−nd−10) this set has cardinality ≤ k2nd−10 ≤ nd−9. ¥

Lemma 6.16. With probability ≥ exp(−nd−10) the random graph G does not feature two disjoint
sets S, T ⊂ V , |S| ≤ nd−9 ≤ |T |, such that every vertex in T has at least 100 neighbors in S.

Proof. Let s ≤ nd−9 ≤ t. Since each of the possible
(
n
2

)
possible edges occurs in G with probability

≤ p independently, for any set S of size s and any T ⊂ V \ S of size t the probability that all v ∈ T

have 100 neighbors in S is at most
[(

s
100

)
p100

]t ≤ (sp)100t. Moreover, there are
(
n
s

)
ways to choose

S, and then at most
(
n
t

)
ways to choose T . Hence, the probability Ps,t that there exists sets S, T of

sizes s resp. t such that eG(v, S) ≥ 100 for all v ∈ T is at most

Ps,t ≤
(

n

s

)(
n

t

)
(sp)100t ≤ exp(−t).

Furthermore, as there are at most n2 ways to choose s and t, we conclude that the probability of the
event stated in the lemma is at most n2 exp(−t) ≤ exp(−nd−10). ¥

Combining Corollary 6.15 with Lemma 6.16, we obtain the following.

Corollary 6.17. With probability ≥ 1−exp(−nd−10) the random graph G has at most nd−9 vertices
v of degree ≤ 2np that have at least 100 neighbors of degree > 2np.
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Proof of Lemma 6.10. Let G′ be the subgraph of G obtained by removing all vertices of edgee > 2np.
Moreover, let V ′ = V (G′) and V ′

i = Vi ∩ V ′. Let 1 ≤ i ≤ k and set η = M ′~1V ′i . Then ηv = 0 for all
v ∈ V ′

i , and ηv = |V ′
i |p− eG(v, V ′

i ) for all v ∈ V ′ \ Vi. Hence,

‖η‖2 =
∑

j 6=i

∑

v∈V ′j

(|Vi|p− eG(v, V ′
i ))2

≤ 2
∑

j 6=i

∑

v∈V ′j

(|Vi|p− eG(v, Vi))2 + 2
∑

v∈V ′
eG(v, V \ V ′)2. (12)

Due to Lemma 6.14, the first sum on the r.h.s. can be estimated as follows:
∑

j 6=i

∑

v∈V ′j

(|Vi|p− eG(v, Vi))2 ≤ d1.2n + 4(np)2
∑

j 6=i

|Wji|

≤ d1.2n + 4d−10kn(np)2 ≤ 2d1.2n, (13)

because all vertices in V ′ have degree ≤ 2np. Furthermore, as by Corollary 6.17 there are at
most nd−9 vertices v ∈ V ′ that have > 100 neighbors in V \ V ′, and since all v ∈ V ′ satisfy
eG(v, V \ V ′) ≤ 2np, we have

∑

v∈V ′
eG(v, V \ V ′)2 ≤ 104n + 4d−9n(np)2 ≤ 105n. (14)

Finally, plugging (12) and (13) into (14), we obtain the assertion.

6.4 Proof of Proposition 3.4 (Balancedness)

Let Mn,m,k be the set of k-colorable graphs on n vertices with m edges. Let Bn,m,k ⊆ Mn,m,k be
the set of balancedly k-colorable graphs, and let Nn,m,k ⊆ Mn,m,k be the set of non-0.01-balanced
graphs. It suffices to prove that |Nn,m,k|/|Bn,m,k| = o(1). Let ϕ0 be a fixed balanced k-coloring, and
Φ be the set of all non-0.01-balanced-colorings. For a k-coloring ϕ (not necessarily balanced) with
color classes V1, V2, ..., Vk, we let D(ϕ) be the number of k-colorable graphs in Mn,m,k which are
properly colored by ϕ. Then

D(ϕ) =
(∑

1≤i<j≤k |Vi| · |Vj |
m

)
.

In the balanced case we get

D(ϕ0) =
((

k
2

) (
n
k

)2

m

)
.

Therefore,
|Bn,m,k| ≥ D(ϕ0).

Now consider a non-0.01-balanced-coloring ϕ. ϕ must have at least one color class whose size is
< 0.99n/k or at least one color class whose size is > 1.01n/k. Standard calculations show (convexity
arguments) that D(ϕ) is maximized when one color class is of size 0.99n/k and all the other (k− 1)
classes are of size

(
1 + 0.01

k−1

)
n/k (namely, the 0.01n/k vertices lacking in that color class are evenly

spread amongst the other color classes), and symmetrically for the case that one color class is of size
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> 1.01n/k. Therefore,

|Nn,m,k| ≤|Φ| ·
((

k−1
2

) (
1 + 0.01

k−1

)2 (
n
k

)2 + (k − 1)0.99
(
1 + 0.01

k−1

) (
n
k

)2

m

)
+

|Φ| ·
((

k−1
2

) (
1− 0.01

k−1

)2 (
n
k

)2 + (k − 1)1.01
(
1− 0.01

k−1

) (
n
k

)2

m

)
≤

2 · kn ·
((

1− 1
5000k3

) (
k
2

) (
n
k

)2

m

)
.

Finally,

|Nn,m,k|
|Bn,m,k| ≤2 · kn ·

((
1− 1

5000k3

) (
k
2

) (
n
k

)2

m

)((
k
2

) (
n
k

)2

m

)−1

≤

2 · kn

(
1− m(

k
2

) (
n
k

)2

)(k
2)(n

k )2
/(5000k3)

≤ 2 · kn · e−m/(5000k3) = o(1).

The second and third inequalities are due to
(
a−x

b

)
(
a
b

) ≤
(

1− b

a

)x

≤ e−bx/a.

The last equality is due to the choice of m.

6.5 Proof of Proposition 3.5 (Concentration)

To prove the proposition we employ the exchange rate technique, introduced in Section 5. The
first step is to prove the analogue of Proposition 3.5 in the planted model, and show that it holds
with extremely hight probability, then use Proposition 5.4. Therefore we first consider Gplant

n,m,k,ε̄ for
ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01).

Lemma 6.18. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Gplant
n,m,k,ε̄, m ≥

C0k
4n C0 = C0(δ) a sufficiently large constant. Then with probability at most e−n every k-coloring

at distance δn/(1000k) from ϕ leaves at least δm/(1000k)2 monochromatic edges.

Proof. The basic idea of the proof is to first calculate the expected number of monochromatic edges
induced by a k-coloring at distance at least δn/(1000k) from ϕ, and show that this number is “much”
higher than δm/(1000k)2, then show a concentration result.

Let ψ be an arbitrary k-coloring at distance r ≥ δn/(1000k) from ϕ. A very similar argument
to Lemma 5.7 gives that the probability that a random edge is monochromatic under ψ is at least
1− e−r/(100nk9) ≥ r/(100nk9) (if ψ is nearly-balanced then this is exactly the same argument – just
set m = 1 in equation (2), if ψ is “far” from being balanced, then in particular it is “far” from ϕ,
then this fact is used to lower bound the value f(r) in (2)).

Let Xr be a random variable counting the number of monochromatic edges in G induced by ψ.
Then we have:

E[Xr] ≥ mr/(100nk9)
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Now set α = 0.9 (that is, for r = n/(1000k) it holds that m/(1000k)2 ≤ (1 − α)E[Xr]). Using
for example the Chernoff bound (which is applicable since it is known that Xr is more concentrated
than the corresponding quantity if the draws were made with replacement [21] – and then they would
have been independent) one obtains that:

Pr[Xr ≤ m/(1000k)2] ≤Pr[Xr ≤ (1− α)mr/(100nk9)] ≤ Pr[Xr ≤ (1− α)E[Xr]] ≤
≤e−α2E[Xr]/3 ≤ e−mr/(400nk9).

Taking the union bound over all possible k-colorings, one obtains that the probability of a k-colorings
at distance greater than δn/(1000k) from ϕ leaving less than than δm/(1000k)2 monochromatic edges
is at most

n∑

r=δn/(1000k)

(
n

r

)
kre−mr/(400nk9) ≤

n∑

β=δn/(1000k)

(
enk

r

)r

e−mr/(400nk9) ≤
1∑

r=δn/(1000k)

(
enk · e−C0k/400

r

)r

≤

1∑

r=δn/(1000k)

(
3000k2 · δ−1 · e−C0k/400

)r
≤

n∑

r=δn/(1000k)

(
e−C0k/500

)r
≤ e−n.

The last inequality is due to the fact that the last sum is a geometric series with quotient e−C0k/500,
and the fact that we can take C0 to be a sufficiently large constant (recall that δ is fixed w.r.t. C0).
¥

We now use Proposition 5.4 to complete the proof of Proposition 3.5. Let A be the bad event
that the sampled graph G is not δ/(1000k)-concentrated for some δ ∈ (0, 1].

Pruniform,m[A] ≤ o(1) + nk · eke−m/(10nk9)n · e−n = o(1).

In the latter we use the fact that k is constant.

6.6 Proof of Proposition 3.6 (Core Size)

To prove this proposition we again employ the exchange rate technique. Thus we first consider
Gplant

n,m,k,ε̄ for ε̄ = (ε1, ε2, . . . , εk) s.t. ∀i |εi| ≤ 0.01.

Lemma 6.19. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Gplant
n,p,k,ε̄, m ≥

C0k
4n, C0 = C0(δ) a sufficiently large constant. Then there exist a constant g0 = g0(δ) > 0

(independent of m,n) so that for every g ≥ g0 with probability (1 − ee−m/(gnk9)n) there exists a δ-
core H w.r.t. the planted assignment. Furthermore, |H| ≥ (1 − e−m/(a0nk9))n and the number of
edges spanned by H is at least (1− e−m/(a1nk9))m, where a0(g), a1(g) are two positive monotonically
increasing functions of g.

This lemma, formulated somewhat differently, is proven in [10] for the case k = 3, and ε̄ = 0. The
proof easily generalizes to any constant k, and ε̄ as above. We give its outline here for the sake of
completeness.

Proof.(Outline) Recall the definitions pi = 2m
n · 1

n−|Vi| and r = maxi |Vi|pi, where Vi is the ith

color class of the planted k-coloring ϕ.
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Consider the following iterative procedure for defining a δ-core w.r.t. ϕ. Set H(0) to be all vertices
that have degree at least (1− δ/2)|Vi|pi in every color class Vi of ϕ other than their own. Iteratively,
remove a vertex v from H(i) if either v has less than (1 − δ)|Vj |pj neighbors in Vj ∩ H(i) for some
j 6= ϕ(v), or v has more than δr neighbors in G[V \ H(i)], to receive Hi+1. Let t be the iteration
where H(t) = H(t+1), and set H = H(t).

First observe that the set H indeed meets the requirements in Definition 3.3. It now remains
to prove that the set H is large. The main idea of the proof is to observe that to begin with very
few vertices are eliminated – the degree of a vertex v in every other color class is on average pi|V i|.
Therefore using large-deviation inequalities, one can bound the number of vertices that were removed
before the iterative step began. If too many vertices were removed in the iterative step then a small
yet dense subgraph exists (as every vertex that is removed contributes at least δ|Vi|pi/2 edges to
the subgraph induced on V \ H). Corollary 2.2 (which can also be stated in the context of Gplant

n,p,k )
bounds the probability of the latter occurring. It now remains to do the calculations carefully.

As for the number of edges spanned by the core. Assume that |H| ≥ (1 − e−m/(a0nk9))n. Using
the Chernoff bound for example one can prove that there exits a d0 (specifically, d0 = O(m/n)) s.t.
for d ≥ d0, Pr[deg(v) ≥ d] ≤ e−d/100. Therefore, the expected number of edges spanned by the
non-core vertices is at most

e−m/(a0nk9)n · d0 + n
n∑

d=d0

de−d/100 = e−m/(b0nk9)n + e−d/200n ≤ e−m/(c0nk9)n,

where b0, c0 are some monastically increasing functions of a0. The first inequality uses the fact that
d0 = O(m/n), and the fact that the sum is smaller that the sum of a decreasing geometric series
with q = e−d/150 (for a sufficiently large m/n). Now using large-deviation inequalities one can prove
that with sufficiently high probability, this is indeed the case.

Finally, observe that the cardinalates of the color classes of ϕ meet the third requirement in
Proposition 3.6 (that is, they are of size (1± 0.01)n/k, by the choice of ε̄). ¥

We now use Proposition 5.4 to assert this fact in the uniform case. Let g be s.t. ee−m/(gnk9)n ·nk ·
eke−m/(10nk9)n = o(1). Let A be the event that there exists some δ so that the sampled graph G has
no proper k-coloring w.r.t. which there exists a δ-core of size at least (1− e−m/(a0nk9))n that spans
at least (1− e−m/(a1nk9))m edges (where a0, a1 are chosen according to this g).

Pruniform,m[A] ≤ o(1) + nk · eke−m/(10nk9)n · ee−m/(gnk9)n = o(1).

The last equality is by the choice of g.

6.7 Proof of Proposition 3.7 (Uniqueness of Coloring)

Let H be some δ-core with ϕ the underlying k-coloring of G, which meets the requirements of
Proposition 3.6. First observe that the k-coloring w.r.t. which G is c-concentrated (in the proof of
Proposition 3.5) is the same as the k-coloring w.r.t. which there exists a large core (in the proof of
Proposition 3.6) – this is because the proof of both propositions uses the exchange rate technique,
and in the planted setting this assignment is the planted one in both cases. Therefore we may assume
that G is (1 − δ)/(1000k)-concentrated w.r.t. ϕ (Proposition 3.6 concerns δ ∈ (0, 1), and therefore
1− δ ∈ (0, 1) as well).
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Let ψ be a proper k-coloring of G[H] so that ψ differs from ϕ on H (if no such ψ exists then we
are done). By the conditions of Proposition 3.7, G[H] spans at least (1−e−Θ(m/(nk9)))m edges. Thus
it must be that ψ differs from ϕ on the coloring of at most (1 − δ)n/(1000k) vertices (otherwise,
ψ leaves at least (1 − δ)m/(1000k)2 >> (1 − e−Θ(m/(nk9)))m monochromatic edges in G – due to
concentration, and in particular it does not properly k-color G[H]).

Let v ∈ H be some vertex on whose assignment ϕ and ψ disagree, and w.l.o.g assume that v is
colored i in ϕ and j in ψ. Now consider the neighbors of v in H which are colored j under ϕ. It
must be that these vertices are not colored j under ψ, but rather some other color j′. Now one can
consider the neighbors of a vertex in N(v) which are colored by j′ in ϕ, on which again, ψ and ϕ
must disagree. Put differently, let U be the set of vertices in the core on which ψ and ϕ disagrees on.
By the discussion above and the first requirement in Definition 3.3 it holds that every vertex v ∈ U
has at least

min
i

(1− δ)pi|Vi| ≥ (1− δ)
2m

n

0.99n/k

n− 0.99n/k
≥ (1− δ)m/(nk)

neighbors in U (pi was defined in Definition 3.3). By our assumption on U , |U | ≤ (1− δ)n/(1000k),
this however contradicts Corollary 2.2 (when plugging in 1− δ in Corollary 2.2).

6.8 Proof of Proposition 3.9 (Connected Components)

Let d = 2m
kn . Let us say that G is bounded if the following conditions hold.

B1. For all X ⊂ V such that |X| ≤ n/d2 we have e(X) ≤ 10|X|.
B2. The maximum degree of G is ≤ ln2 n.

B2. If H is a subgraph of G on |V (H)| ≥ (1− d−10)n vertices, and if H has a k-coloring V1, . . . , Vk

such that e(v, Vj) ≥ 0.9d for all v ∈ Vi and all 1 ≤ i, j ≤ k, i 6= j, then H is uniquely k-colorable.

Moreover, we call G ε-feasible if G has an induced subgraph H with the following properties.

F1. |V (H)| ≥ (1− ε exp(−
√

d))n and |E(H)| ≥ (1− d−1)m.

F2. There is a k-coloring V1, . . . , Vk of G such that |H| ∩ Vi ≥ (1− 10−8ε)n/k for all i.

F3. Every vertex v ∈ H ∩ Vi satisfies e(v, Vj ∩H) ≥ (1− ε)d for all j 6= i.

F4. All v ∈ H satisfy e(v, V \H) ≤ εd.

F5. H is uniquely k-colorable.

If H, K are two induced subgraphs of G that satisfy F1–F5, then the same is true for H ∪ K.
Therefore, G has a unique maximal induced subgraph that enjoys F1–F5; this subgraph will be
denoted by Gδ in the sequel.

Lemma 6.20. Let δ ∈ (0, 1] be some positive number. Let G be a random graph in Guniform
n,m,k , m ≥

C0k
4n, C0 = C0(δ) a sufficiently large constant. Then whp G is bounded and δ-feasible.

This lemma is a direct consequence of Propositions 2.1, 3.6, 3.7.

Let T ⊂ V be a set of size t = dlog ne, and let τ be a tree with vertex set T . Moreover, let us
call G (T, τ)-poor if
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• G is bounded,

• G is 0.01-feasible,

• G contains τ as a subgraph,

• T does not intersect G0.02.

Denote by G the set of all k-colorable graphs with vertex set V = {1, . . . , n} and exactly m edges,
and let P(T, τ) signify the set of all (T, τ)-poor k-colorable graphs G ∈ G. Below we shall establish
the following.

Lemma 6.21. We have
(
n
t

)
tt−2|P(T, τ)| = o(|G|).

Before we prove Lemma 6.21, let us note that it implies Proposition 3.9 immediately.

Proof of Proposition 3.9. Since there are
(
n
t

)
ways to choose a vertex set T of size t, and then tt−2

ways to place a tree into that set, Lemmas 6.20 and 6.21 entail that

P
[
Guniform

n,m,k violates the property stated in Proposition 3.9
]

≤ P
[
Guniform

n,m,k is not ε-feasible for some ε ∈ {0.01, 0.015, 0.02} or not bounded
]

+P
[
∃T, τ : Guniform

n,m,k is (T, τ)-poor
]
≤ o(1) +

∑

T,τ

|P(T, τ)|
|G| = o(1),

as claimed.

Thus, the remaining task is to prove Lemma 6.21. To this end, we fix a set T and a tree τ and
set up a bipartite auxiliary graph A = A(T, τ) with vertex set V (A) = P(T, τ) ⊕ G; for brevity we
set P = P(T, τ). The auxiliary graph will enjoy the following property.

In A every vertex G ∈ PT,τ has degree at least ∆, while every vertex G′ ∈ G has
degree at most ∆′, where

(
n
t

)
tt−2∆′ = o(∆). (15)

Since ∆|P(T, τ)| ≤ |E(A)| ≤ ∆′|G|, Lemma 6.21 follows direcly from (15).

To describe the construction of G, we let I be the set of all v ∈ T that have degree ≤ 4 in τ ; then
|I| ≥ t/2, because τ is a tree. Furthermore, for each G ∈ P(T, τ) we let V1(G), . . . , Vk(G) signify the
lexicographically first k-coloring of G, and we set

I1(G) = {v ∈ I : eG(v, V \G0.02) ≥ 0.001d},
I2(G) = {v ∈ I : ∃j : v 6∈ Vj(G) ∧ eG(v, Vj(G) ∩G0.02) ≤ 0.999d} \ I1(G).

If G is (T, τ)-poor, then all vertices v ∈ I are outside of the 0.02-core G0.02; hence, due to F3 and F4
we have I = I1(G) ∪ I2(G). Thus, we decompose P into two parts P1 = {G ∈ P : |I1|(G) ≥ 0.15t},
P2 = P \ P1

As a next step, we will construct two subgraphs A1, A2 of A, both of which constists of the
Pi-G-edges of A. Thus, A = A1 ∪A2, so that (15) will be a consequence of the following statement.

In Aj every vertex G ∈ Pj has degree at least ∆j , while every vertex G′ ∈ G has
degree at most ∆′

j , where
(
n
t

)
tt−2∆′

j = o(∆j) (j = 1, 2). (16)
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In the remainder of this section, we present the constructions of A1,A2,A3 and establish (16). To
facilitate these constructions, we say that a pair {x, y} of vertices is compatible if {x, y} 6∈ E(G), x, y
lie in G0.01, and x, y belong to different classes of the unique coloring of G0.01. Moreover, we say
that a set F of pairs of vertices is compatible if every pair in F is compatible and no vertex v ∈ V
occurs in more than one pair.

Lemma 6.22. Let G ∈ P and let 1 ≤ s ≤ n0.1. Then there exist
(
n2/4

s

)
compatible sets F of size s.

Proof. Let Z1, . . . , Zk signify the unique k-coloring of G0.01, and let C be a complete k-partite
graph with the color classes Z1, . . . , Zk. Since G satisfies F2, C has at least

∑
1≤i<j≤k ‖Zi||Zj | ≥

(0.9− k−1)
(
n
2

)
edges. Furthermore, let S be a set of s edges of C chosen uniformly at random. Then

the probability that S does not contain an edge of G is

(|E(C)| −m

s

)(|E(C)|
s

)−1

=
s−1∏

j=0

1− m

|E(C)| − j
= 1− o(1),

because |E(C)| = Ω(n2), while ms = o(n2). Moreover, the probability that a specific vertex v occurs
twice in S is at most

n2

(|E(C)|
s− 2

)(|E(C)|
s

)−1

≤ O(s2n−2) = o(n−1).

Hence, by the union bound with probability 1 − o(1) a randomly chosen S will touch no vertex v
more than once. Thus, with probability 1 − o(1) a randomly chosen S is compatible, so that the
number of compatible sets is ≥ (1− o(1))

(|E(C)|
s

) ≥ (
n2/2

s

)
. ¥

Construction of A1. The construction of A1 is based on the following observation.

Lemma 6.23. Suppose that G ∈ P2. There exist sets U ⊂ I1(G), |U | = d0.1te, and W ⊂ V \ (τ ∪
G0.02) such that e(v, W ) ≥ 10−4d for all v ∈ U , and e(w, U) ≤ 104 for all w ∈ W .

Proof. Let J ⊂ I1(G) be a set of size 0.15t, and let K ⊂ J be the set of all vertices w ∈ V \(G0.02∪τ)
that are adjacent with a vertex in J . Moreover, let L ⊂ K be the set of all w ∈ K such that
e(v, J) ≥ 104. Then the boundedness property of G implies that |L| ≤ 0.01t. Furthermore, letting
Q = {v ∈ J : e(v, L) > 104}, we have |Q| ≤ 0.001t (once more due to the boundedness of G). Now,
let U = J \ Q and W = K \ L. Then each w ∈ W has ≤ 104 neighbors in U . Moreover, if v ∈ U ,
then e(v,W ) ≥ e(v, V \ (G0.02 ∪ τ))− e(v, L) ≥ 0.001d− 10− 104 ≥ 10−4d. ¥

Our objective is to associate to each G ∈ P1 a large number of “target graphs” G′ ∈ G such that no
G′ occurs as a target graph too frequently. To this end, we consider the following nondeterministic
procedure that maps G to a target graph G′. For each possible outcome G′ we include the edge
{G,G′} into A1. Set γ = d10−4de and u = d0.1te.

C1. Choose a compatible set F of size t− 1 + γu.

C2. Choose sets U and W as in Lemma 6.23.

C3. For each v ∈ U choose a set {w1(v), . . . , wγ(v)} of neighbors of v in W .
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C4. Obtain G′ from G by removing the edges of τ along with the edges {v, wi(v)} (v ∈ U, 1 ≤ i ≤ γ)
and adding the edges F .

Lemma 6.22 entails that the number of graphs G′ that can be obtained from each G via the above
procedure is at least

∆1 =
(

n2/2
t− 1 + γu

)
(17)

(because there are at least this many choices in step C1). Conversely, to recover G from G′, we
consider the following nondeterministic procedure.

R1. Choose a set F ′ of t− 1 + γu edges of G′.

R2. Choose a set U ′ ⊂ T of size u.

R3. For each such v ∈ U ′ choose a set N ′
v of γ vertices outside of the 0.015-core of G′.

R4. Output the graph G′′ obtained from G′ by removing the edges F ′ and adding the edges {v, w},
v ∈ U ′, w ∈ N ′

v along with the edges of τ .

Lemma 6.24. If {G,G′} is an edge of A1, then G′ is 0.015-feasible and the process R1–R4 applied
to G′ can yield the output G′′ = G.

Proof. Let F , U , W , and ({w1(v), . . . , wγ(v)})v∈U be the sets chosen by C1–C4 to obtain G′ from G.
If R1–R4 chooses F ′ = F , U ′ = U , N ′

v = {w1(v), . . . , wγ(v)} for all v ∈ U , then the ourcome will be
G′′ = G. Thus, we just need to show that it is feasible for R1–R4 to choose N ′

v = {w1(v), . . . , wγ(v)},
i.e., that G′ is 0.015-feasible and the vertices wj(v) do not belong to the 0.015-core of G′.

To see that G′ is 0.015-feasible, let X be the vertex set of G0.01. We claim that X satisfies
F1–F5 with respect to G′ with ε = 0.01. For F1 is an immediate consequence of the fact that G
is 0.01-feasible. Moreover, as C4 adds a compatible set F and only removes edges that contain a
vertex outside of X, the unique k-coloring of G0.01 remains the unique k-coloring of the set X in G′,
whence F2–F5 follow. Thus, G′ is indeed 0.01-feasible, and hence 0.015-feasible as well.

Finally, to show that the vertex set Y of G′
0.015 is contained in that of G0.02, we show that Y

is 0.02-feasible in G. For the induced subgraph G [Y ] is uniquely k-colorable, because all edges in
E(G′) \E(G) lie in the uniquely k-colorable subgraph G0.01 of G. Hence, Y satisfies F5, and F1–F2
just follow from the fact that Y is 0.015-feasible in G′. Moreover, as no vertex v ∈ V occurs in the
set E(G) \ E(G′) of edges removed in C4 more than γ times, Y also satisfies F3 and F4 in G with
ε = 0.02. ¥

Lemma 6.25. If G′ is an outcome of C1–C4 for some G ∈ P1, then the number of possibles
nondeterministc choices in the R1–R4 is at most ∆′

1 = 2t
(

m
t−1+γu

)(
exp(−

√
d)n

γ

)u
.

Proof. The first factor accounts for the number of ways to choose F ′. Moreover, there are clearly
at most 2t ways to choose U ′. To bound the number of choices of R3, note that for each v ∈ U ′

there are at most
(
n−|V (G′0.015)|

γ

)
ways to choose the set N ′

v. As the construction C1–C4 ensures
that G′

0.015 contains the 0.01-core G0.01 of G, our assumption that G is 0.01-feasible entails that
|V (G′

0.015)| ≥ n(1− exp(−
√

d)). ¥

Finally, combining (17) with Lemmas 6.24 and 6.25, and observing that
(
n
t

)
tt−2∆′

1 = o(∆1), we
obtain (16) for j = 1.
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Construction of A2. Let G ∈ P2, and let V1(G), . . . , Vk(G) be the lexicographically first k-coloring
of G. We split the set I2(G) into k subsets

I2j(G) = {v ∈ I2 : v 6∈ Vj(G) ∧ e(v, Vj(G) ∩G0.02) ≤ 0.999d} (1 ≤ j ≤ k).

Moreover, we split P2 into subsets

P2j = {G ∈ P2 : |I2j(G)| ≥ 0.1t/k} \
⋃

1≤i<j

P2i (1 ≤ j ≤ k).

Without loss of generality, we shall just consider the case G ∈ P21 in the sequel.

As in the construction of A1 we consider a nondeterministic procedure that maps G ∈ P2 to
G′ ∈ G. Let u = d0.1t/ke and γ = d10−9de.

C1. Choose a compatible set F of size t− 1.

C2. Choose a subset U ⊂ I21(G) of size u.

C3. Choose a matching M ⊂ E(G0.01) of size γu such that no vertex v is adjacent to more than 100
vertices that occur in M . Moreover, for each v ∈ U choose a set Nv ⊂ V1 ∩G0.01 of size γ such
that the sets (Nv)v∈U are pairwise disjoint, e(v, Nv) = 0, and no vertex of Nv occurs in M .

C4. Obtain G′ from G by removing the edges of τ and the matching M , adding the edges F , and
connecting each v ∈ U with all w ∈ Nv.

For each G ∈ P21 and each possible outcome G′ of C1–C4 we include the edges {G, G′} into A2.
The following lemma provides a lower bound on the degree of G ∈ P21 in A2.

Lemma 6.26. Each G ∈ P21 has at least ∆21 = 1
2

(
n2/4
t−1

)(
(1−10−9)m

γu

)(
(1−10−9)n/k

γ

)u
images G′.

Proof. By Lemma 6.22 there are
(
n2/4
t−1

)
ways to choose F . Furthermore, F1 implies that G0.01

contains at least (1 − 10−9)m edges. Moreover, since the maximum degree of G is ≤ ln2 n by B2,
G0.01 has at least (1− o(1))

((1−10−9)m
0.1δdt/k

)
matchings of size 0.1δdt/k. Finally, since |V1| ≥ (1− 10−9)n

k

by F2, there are (1− o(1))
((1−10−9)n/k

δd

)0.1t/k
ways to choose the sets (Nv)v∈U . ¥

Conversely, we consider the following nondeterministic procedure for obtaining a graph G′′ from
an outcome G′ of C1–C4.

R1. Choose a set F ′ ⊂ E(G′) of size t− 1.

R2. Determine the unique coloring V ′
1 , . . . , V

′
k of G′

0.015. Then, choose a set U ′ ⊂ T of size u and
an index l such that each v ∈ U ′ has at most 0.9999d neighbors in V ′

l . Moreover, choose a set
M ′ of γu pairs of vertices such that each e ∈ M ′ consists of two vertices belonging to different
classes of V ′

1 , . . . , V
′
k.

R3. For each v ∈ U ′ choose a set N ′
v of neighbors of v in V ′

l such that |N ′
v| = γ.

R4. Obtain a graph G′′ from G′ by removing F ′ and all edges {v, w} with v ∈ U ′, w ∈ N ′
v, and

adding the edges of τ and M ′.
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Lemma 6.27. If {G,G′} is an edge of A2, then G′ is 0.015-feasible and the process R1–R4 applied
to G′ can yield the output G′′ = G.

Proof. Suppose that G′ has been obtained from G by choosing the matching M , the set U , the sets
(Nv)v∈U , and the feasible set F . To recover G′′ = G′, we shall prove that G′ is 0.15 feasible and that
the process R1–R4 can choose M ′ = M , F ′ = F , and N ′

v = Nv.

To show that G′ is 0.15 feasible, let Z be the set of all vertices that occur in M and H =
V (G0.01) \ Z. We claim that H is 0.015-feasible in G′. For H satisfies the assumption of condition
B3 in G, whence G [H] = G′ [H] is uniquely k-colorable. Moreover, since |Z| = O(lnn), H satisfies
F1, F2, F3, and F5. Further, since the sets Nv are pairwise disjoint, we have eG′(v, V \ H) ≤
eG(v, V \H) + 1 ≤ eG(v, V \G0.01) + 101, because no vertex of G has more than 100 neighbors in Z.
Therefore, H is 0.015-feasible in G′.

Indeed, we have shown that V (G′
0.015) ⊃ V (G0.01) \ Z. Hence, as G′

0.015 is uniquely k-colorable,
for a suitable value of l we have V ′

l ⊃
⋃

v∈U Nv. Moreover, since V (G′
0.015) ⊂ V (G0.02), all v ∈ U

satisfy e(v, V ′
l ) ≤ 0.9999d. Therefore, it is feasible for R1–R4 to choose M ′ = M , F ′ = F , and

N ′
v = Nv, thereby recovering G′′ = G. ¥

In the light of Lemma 6.27 we can bound the degrees of G′ ∈ G in A2 as follows.

Lemma 6.28. If G′ has been obtained from G via C1–C4, then during R1–R4 there are at most
∆′

2 =
(

m
t−1

)
2t

(
(1−k−1)(n

2)
γu

)(
0.9999d

γ

)u
ways to choose F ′, the sets N ′

v, and M ′. Hence, the degree of any
G′ ∈ G in A2 is ≤ k∆′

2.

Proof. There are exactly
(

m
t−1

)
ways to choose F ′ and at most 2t ways of choosing U ′. Furthermore,

by Turan’s theorem there are at most
(
(1−k−1)(n

2)
γu

)
ways to choose M ′. Finally, since each v ∈ U ′ has

at most 0.9999d neighbors in V ′
1 , there are at most

(
0.9999d

γ

)
ways to choose N ′

v. ¥

Combining the bounds from Lemmas 6.26 and 6.28, we obtain

∆3

∆′
3

≥ Ω(n−1)
( n

4dk

)t−1
(

(1− 10−9)2mn/k

0.9999(1− k−1)n2d/2

)0.1δdt/k

≥
( n

4dk

)t−1
(

(1− 10−9)2

0.9999

)γu

≥ exp(Ω(γu))
(

n

t

)
tt−2

Thus, we have established (16) for j = 3.

7 Conclusion

In this work we consider the uniform distribution over k-colorable graphs, Guniform
n,m,k , with average

degree greater than some sufficiently large constant. We characterize the typical structure of the
solution space of such graphs to show that typically there exists only one cluster of proper k-colorings,
whose size may be exponential in n, in which almost all vertices are frozen. We also prove that a
relatively simple efficient algorithm recovers whp a proper k-coloring of such graphs, thus asserting
that almost all k-colorable graphs are easy to color.

To obtain our results we had to come up with new analytical tools that apply to a number of
further NP-hard problems, including the satisfiability problem. Our result also implies that the
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algorithmic techniques developed for random formulas from the planted distribution, e.g. [10, 6], can
be extended to the significantly more natural uniform distribution [14].

Combining Theorems 1.1 and 1.2 rigorously supports the following common thesis: the main
key to understanding the hardness (even experimental one) of a certain distribution over k-colorable
graphs lies in the structure of the solution space of a typical graph in that distribution. Specifically,
our results show (at least in our setting) that typically when a graph has a single cluster of proper k-
colorings, though its volume may be exponential in n, then the problem is “easy”. On the other hand,
when the clustering is complicated, for example in the near threshold regime, experimental results
predict that many “simple” heuristics fail, while “heavy machinery” such as Survey Propagation
works. Heightening this last point, regard the recent work in [18] which considers the planted 3SAT
distribution. There it is proved that the näıve Warning Propagation algorithm works whp for planted
3CNF formulas with a suitable parametrization which, amongst other characteristics, typically have
one cluster of satisfying assignments. Fitting the result into our perspective – when the clustering is
simple, then a simple message passing algorithm works (Warning Propagation), when the clustering
is complicated, then only a much more complicated message passing algorithm is known (and even
this only experimentally) to work (Survey Propagation).

Acknowledgements: we thank Uriel Feige for useful discussions.
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