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Abstract. In this paper we study a new approach to the satisfiability problem, which we call
the Support Paradigm. Given a CNF formula F and an assignment ψ to its variables, we say
that a literal x supports a clause C in F w.r.t. ψ if x is the only literal that evaluates to true in
C. Our focus in this work will be simulated-annealing SAT heuristics – that is, a heuristic which
starts at some assignment to the variables, and iteratively, using some predefined greedy rule,
tries to minimize the number of unsatisfied clauses until a satisfying assignment is reached. We
say that such a heuristic is part of the Support Paradigm if the greedy rule uses the support
as its main criterion. We present a new algorithm in the Support Paradigm and rigorously
prove its effectiveness on a certain distribution over satisfiable 3CNF formulas, known as the
planted distribution. One motivation for this work is recent experimental results showing that
some simple variants of the RWalkSAT algorithm, which base their greedy rules on the notion of
support, remain effective for random 3CNF formulas in the “hard” near-threshold regime, while
for example RWalkSAT, which disregards the support, is already inefficient in a much earlier
stage.

1 Introduction and Results

Given a computational problem it is desirable to have algorithms that produce optimal results,
are efficient (polynomial time), and work on every input instance. For many combinatorial
problems, amongst which is SAT, this goal is too ambitious, as shown by the theory of NP-
completeness. Hence one should set goals that are more modest. In this work we shall be
interested in the heuristical approach, which relaxes the universality requirement. Here we
define a heuristic to be a polynomial time algorithm that produces optimal results on typical
inputs. The notion of a typical input, however, is rather fuzzy. One possibility to define typical
instances is the use of random models. One such popular model is the following, which we
denote by Pn,m: fix c, n > 0 (c may depend on n), choose m = cn clauses uniformly at
random out of 8

(
n
3

)
possible ones. Despite its simplicity, many essential properties of this

model are yet to be understood. In particular, the hardness of deciding if a random formula
is satisfiable, and finding a satisfying assignment for a random formula, are both major open
problems [12, 23].

Remarkable phenomena occurring in the random model Pn,m are phase transitions.
With respect to the property of being satisfiable, such a phase transition takes place too [17].
More precisely, there exists a threshold d = d(k, n) such that a k-CNF formula with clause-
variable ratio greater than d is not satisfiable whp1, while one with ratio smaller than d is.
For k = 3 the threshold is known to be at least 3.42 [19] and at most 4.506 [20].

One way of evaluating and comparing heuristics is by running them on a collection of
input instances (”benchmarks”), and checking which heuristic usually gives better results.
1 When writing whp we mean with probability tending to 1 as n goes to infinity.
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Empirical results are sometimes informative, but we also seek more rigorous measures of
evaluating heuristics. In this paper we study a new heuristical approach to the satisfiability
problem, which we call the Support Paradigm.

Definition 1. (support) Given a 3CNF formula F and some assignment ψ to its variables,
we say that a literal x supports a clause C (in which it appears) w.r.t. ψ if x is the only
literal that evaluates to true in C under ψ.

Our focus in this work will be simulated-annealing SAT heuristics – that is, a heuristic which
starts at some assignment to the variables, and iteratively, using some predefined greedy rule,
tries to minimize the number of unsatisfied clauses until a satisfying assignment is reached (or
failure due to exceeding some maximal number of allowed steps, if the heuristic is to remain
polynomial). We say that such a heuristic is part of the Support Paradigm if the greedy
rule relies on the support as its main criterion. In this work we present a new algorithm in
the Support Paradigm and rigorously prove its effectiveness on a certain distribution over
satisfiable 3CNF formulas, known as the planted distribution.

One motivation for this work is recent experimental results showing that some simple
variants of the well known RWalkSAT algorithm [25], which base their greedy rules on the
notion of support, remain effective for random 3CNF formulas in the “hard” near-threshold
regime [27, 5]. Specifically, these algorithms are efficient in finding a satisfying assignments
for random instances in Pn,m with clause-variable ratio of about 4.21 (while the conjectured
satisfiability threshold for 3SAT is roughly 4.26). In contrast, the “original” RWalkSAT heuris-
tic, which is not part of the Support Paradigm, consumes super-polynomial time already for
clause-variable ratio of 2.65 [26].

2 Our Contribution

Motivated by a search of a unifying rule that explains this phenomenon, we define the Support
Paradigm. We present a new algorithm which is part of the Support Paradigm and rigorously
show its effectiveness for the Planted 3SAT distribution with clause-variable ratio greater than
some constant (an exact definition of the Planted 3SAT distribution is given in Section 2.1).
Therefore in some exact sense we provide evidence to the usefulness of the notion of support
and a possible explanation for the clear advantage that [27, 5] possesses over RWalkSAT.

The notion of support also has a constructive interpretation when considering things from
the statistical-mechanics point of view. In this discipline, the combinatorial object 3CNF is a
diluted 3-spin spin glass system. Every assignment to the variables corresponds to an energy
level of the system, where the free energy of the system in a certain state is the number
of clauses not satisfied by the given assignment. Thus, the question of whether the 3CNF
is satisfiable or not is equivalent to the question whether the ground state energy of this
diluted 3-spin spin glass system is zero. One of the main theoretical bases, at least from a
physical point of view, underlying Survey Propagation [8] is the structure of the energy states
for near-threshold random 3CNF formulas.

Having said that, one immediately notices that the notion of support is tightly connected
to the notion of free energy. For example, flipping the assignment of the variable with the
lowest (maybe zero) support corresponds to making a move which incurs the least increase in
the free energy of the system; or, lowering the energy of the system (by flipping the assignment
of a variable which appears in at least one unsatisfied clause) corresponds to increasing the
number of clauses that belong to the support of some variable, and so forth.
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Another exciting area where the notion of support plays a role is the following. Using
partially non-rigorous analytical tools from statistical mechanics [24], the following structure
of the solution space of k-CNF formulas with clause-variable ratio just below the satisfiability
threshold was suggested. Typically such formulas have an exponential number of clusters
of satisfying assignments. Any two assignments in distinct clusters disagree on a fair number
of variables and any two assignments within one cluster coincide on many variables. Fur-
thermore, each cluster has a linear number of frozen variables whose assignment coincide
in all satisfying assignments within that cluster. This picture was recently proved rigorously
for k-SAT with k ≥ 8 in [1]. This structure is believed by many to be responsible for the
“hardness” of the near-threshold formulas.

In this work we prove that the notion of support plays a crucial role in explaining the
existence of frozen variables, at least for the Planted 3SAT distribution with clause-variable
ratio greater than some constant. For example, if a variable has zero-support w.r.t. some
satisfying assignment, then it cannot be frozen – flip its assignment and the new assignment,
which lies in the same cluster, remains satisfying. The other direction is more tricky (that is
what happens when a variable has a large support w.r.t. some satisfying assignment) – and
the argument is more involved.

2.1 The Planted Model

In this work we consider the regime of satisfiable 3CNF formulas with clause-variable ratio
which is some sufficiently large constant above the satisfiability threshold. In this regime
almost all formulas are not satisfiable, and therefore Pn,m is not suitable for the study of
satisfiability heuristics. We choose to consider the Planted 3SAT distribution, which
we shall denote by Pplant

n,p . A formula in the planted distribution is chosen by first fixing
an assignment, and then including every one of 7

(
n
3

)
clauses that are satisfied by it with

probability p = p(n). This of course guarantees that non-zero probability is assigned only to
satisfiable 3CNF formulas.

Planted distributions provide a good model for many real world statistical problems. They
correspond to situations where the constraints are correlated in such a way as to be consistent
(or statistically correlated) with a pre-specified assignment of the variables x1, . . . , xn. Planted
models are also of interest in computational complexity [12]

It is favored by many researchers in the context of SAT [16, 6, 21], and also for other opti-
mization problems such as max clique, min bisection, and coloring [3, 4, 7, 18, 13] to mention
just a few. Another nice feature of planted-solution distributions is the fact that they are
efficiently sampleable.

Furthermore, as recent results in [10, 11] imply, our results can be reproved in the uniform
setting as well (to be specific, the uniform distribution over satisfiable 3CNF formulas with
m = cn clauses, c greater than some sufficiently large constant).

We now formally state our result. We state it for 3SAT though it generalizes to k-SAT
for any fixed k.

Theorem 1. Let F be random formula from Pplant
n,p , with n2p ≥ C0, C0 a sufficiently large

constant. Then whp the algorithm SupportSAT(F ) finds a satisfying assignment of F using
polynomial time.
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The algorithm SupportSAT(F ), which belongs to the Support Paradigm, is described in
Figure 2 of Section 4. The proof of Theorem 1 also reveals an interesting connection between
the notion of support and the notion of frozeness (as defined above). Details in Sections 5.1
and 8.

2.2 Paper’s Structure

We proceed with some more background and related work, Section 3. In Section 4 we present
our algorithm and analyze its performance in Sections 5–7, which contain all the technical
details. Concluding remarks are given in Section 8.

3 Related Work

The seminal work of Alon and Kahale [3] paved the road towards average case analysis of al-
gorithms on sparse (constant average degree) random instances. [3] present an algorithm that
whp k-colors planted k-colorable graphs (the distribution of graphs generated by partitioning
the n vertices into k equally-sized color classes, and including every edge connecting two
different color classes with probability p = p(n)) with a sufficiently large constant expected
degree. Building upon their techniques, Flaxman [16] presents an efficient algorithm for Pplant

n,p

(the same regime that we study). The algorithm in [16] also proceeds in steps, starting with
a spectral step, which typically obtains a fair approximation of the planted assignment, and
ending with an exhaustive search. In addition some other algorithms were analyzed when the
input is sampled according to Pplant

n,p [15, 14, 22].

In [9] a simulated annealing algorithm for satisfiability is studied. In fact, this algorithm
is also part of the Support Paradigm, and in some parts our algorithm is inspired by [9].
The algorithm in [9] is exponential -time and is analyzed for the uniform distribution over
satisfiable 3CNF formulas with a sufficiently large, yet constant, clause-variable ratio. The
authors leave as an open question whether one can find a polynomial time algorithm that
solves whp such instances. This question was recently answered, positively, in [11] (though the
algorithm described in [11] is not a simulated-annealing one, and is not part of the Support
Paradigm). The analysis in [11] implies that Theorem 1 can be restated for the uniform
distribution as well (with clause-variable ratio greater than some constant). Therefore our
result settles the open question in [9] to show that a similar, arguably simpler, simulated-
annealing algorithm solves the uniform distribution in polynomial time.

Our main goal in this work is not to show how one can solve planted instances, as this
problem has been already settled in many papers as we just pointed out. Our starting point
in this work is an experimentally observed phenomenon – the remarkable success of simple
algorithms that use the notion of support for near-threshold random 3CNF formulas, while
many other algorithms fail in that regime. Then we ask whether these experimental results
can be justified rigorously. In search of a unifying rule that explains this phenomenon we
define the Support Paradigm and use the planted distribution as a case study for a rigorous
analysis of an algorithm in that paradigm.

This is similar in spirit to the work in [2] were it is shown that RWalkSat is efficient for
Pn,m with m/n ≤ 1.63, and is inefficient for Pplant

n,p with n2p greater than some constant; to
the work in [15] where a certain version of the k-opt heuristic is shown to work on Pplant

n,p ; and
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the work in [14] where the behavior of the well known Warning Propagation message passing
algorithm was analyzed for Pplant

n,p (in both the latter, Pplant
n,p is in the same regime that we

consider).

4 The Algorithm

We start with a high-level description of the algorithm. Given a formula F and an assignment
ψ to its variables, we say that a variable x is “suspicious” if it supports very few clauses w.r.t.
ψ (we soon quantify “very few” in an exact sense). Our algorithm is composed of two parts.
The main part is a simple simulated annealing procedure in which we iteratively flip the
assignment of suspicious variables. From a physical point of view, this part can be viewed
as a fast cool-down process. When reaching low temperature, a large portion of the formula
is already satisfied. If the remaining part of the formula is “simple”, then one can find a
satisfying assignment for it using some simple of-the-shelf heuristic.

The fast cool-down process is done mainly via a procedure that we call a Directed Walk
(inspired by the work of [9]), and then another procedure with a more refined criterion. This
corresponds to Steps 1 and 2 in the description of SupportSAT below (Figure 2). Step 2
typically ends up with an assignment which is very close to a satisfying one. Step 3 completes
the job using a simple exhaustive search. As typically the unsatisfied part left at the end of
Step 2 is “simple”, the exhaustive search takes polynomial time (by typically we mean whp
over formulas from the planted distribution).

Remark 1. The reader may wonder at this point if one can do without Step 3 of SupportSAT.
Namely, can one push the greedy part of the algorithm (Steps 1 and 2) to typically find a
satisfying assignment? The answer is probably no, at least not in our planted setting. To
see this observe that every variable is expected to appear in 7

(
n
2

)
p = Θ(n2p) clauses, which

may be constant in our case. Further, the number of clauses in which a variables appears
is binomially distributed. Thus, with constant probability some variables never appear, or
appear very scarcely (say once or twice). Therefore in some sense they don’t show enough
structure to allow a greedy procedure of the sort we presented to set them “correctly”. On
the other hand, these variables induce a “simple” formula, for which exhaustive search is
efficient for example.

We now introduce the subprocedure Directed Walk (the name will become clear soon), which
is possibly of its own interest. The input to Directed Walk is a 3CNF formula F and a number
ε ∈ [0, 1].

Directed Walk(F, ε)
1. ψ1 ← an arbitrary assignment to the variables.

2. for i = 2 to 3/ε
ψi ← ψi−1 with the assignment of the εn variables with the lowest

support in F w.r.t. ψi−1 – flipped.

3. return ψ3/ε.

Fig. 1. Directed Walk
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The name “Directed Walk” comes from the fact that as opposed to RWalkSat (‘R’ stands
for Random), where the choice of which variables to flip blends randomness, here one employs
a decisive deterministic rule, thus the walk is in some sense directed. Directed Walk can be
used with other measurements – e.g. flip the assignment of the εn variables whose flipping
will gain the maximal number of satisfied clauses, and so forth. In fact, using the last rule
with ε = 1/n is exactly the algorithm in [21]. Actually, one can generalize Directed Walk to
receive the “directing rule” as an argument, and then have a general template (and analysis)
for such algorithms. More details in Section 6.

We are now ready to present our main algorithm.

Notations. We let Support(x, ψ) be the support of a variable x w.r.t. an assignment ψ,
where the formula is clear from the context. We let ψ(x) be the assignment ψ with the
assignment of x flipped. For a formula F and a subset U of the variables we denote by F [U ]
the subformula containing all clauses with some variable in U . By partial assignment we
mean an assignment where some variables may take the value UNASSIGNED. For a partial
assignment ψ, Support(x, ψ) counts only clauses where all variables are assigned.

SupportSAT(F )
Step 1: Directed Walk

1. ψ1 ← Directed Walk(F, 10−4).
Step 2: refining the assignment
2. for i = 1 to log n
3. for all x ∈ V
4. if Support(x, ψi) ≤ n2p/10 then ψi+1 ← ψ

(x)
i

5. end for.
6. end for.
7. let τ be the final assignment.
Step 3: the exhaustive search
8. set τ1 = τ , j = 1.
9. while ∃x s.t. Support(x, τj) ≤ n2p/10
10. set τj+1 ← τj with x unassigned.

11. j ← j + 1.
12. end while.
13. Let ξ be the final partial assignment.
14. let U be the set of unassigned variables in ξ.
15. exhaustively search F [U ], separately in every connected component.

Fig. 2. SupportSAT

Lines 8-12 in SupportSAT are intended to isolate the part of the formula which is not
satisfied by the first two steps (maybe with some additional satisfied clauses) and is to be
exhaustively searched. To do so we chose an unassignment procedure, rather than just take
all clauses which τ fails to satisfy. For a variable to survive the unassignmnet step it has to
show large support with other assigned variables. Throughout we proclaim “large support” to
be synonymous with “high-certainty” for being correctly assigned – and indeed, the variables
that survive the unassignment step are typically correctly assigned (namely, their assignment
agrees with the planted one), and in fact only few variables get unassigned.
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5 Properties of a Random Instance from Pplant
n,p

In this section we analyze the structure of a typical formula in Pplant
n,p . These properties will

come handy when analyzing the algorithm SupportSAT in Section 7. One consequence of the
discussion in this section is showing how the notion of support plays a crucial role in the
existence of frozen variables in Pplant

n,p (see Section 5.1).
All the propositions in this section appear also in [3, 16] for example (maybe stated a bit

differently). We therefore only state the propositions and give an outline of the proof (which
can be easily reconstructed into a full proof).

The following proposition excludes the case where F contains a small subformula in which
many variables appear many times (much more than expected).

Proposition 1. Let F be distributed according to Psat
n,p, with n2p ≥ C0, C0 some sufficiently

large constant. Then whp there exists no subset of variables U s.t.

– |U | ≤ n/104,
– There are n2p|U |/500 clauses in F that contain two variables from U .

Proof. The proof uses the union bound technique. For a fixed set U of k variables, the
number of clauses containing two variables from U is

(
k

2

)
(n− 2)23 ≤ 4k2n.

Each of these clauses is included independently w.p. p. Thus, the probability that n2pk/500
of them are included is at most

(
4k2n

n2pk/500

)
pn2pk/500 ≤

(
2000 · e · k

n

)n2pk/500

.

Summing over all possible sets U of size up to n/104, one obtains that the probability for
such a “bad” set U in F is at most

n/104∑

k=1

(
n

k

)(
2000 · e · k

n

)n2pk/500

= ... = o(1).

The “...” can easily be filled with standard calculations. ¥

5.1 The Core Variables

We describe a subset of the variables, referred to as the core variables, which plays a crucial
role in the analysis of the algorithm and in the understanding of Pplant

n,p . Recall that a variable
is said to be frozen in F if in every satisfying assignment it takes the same value. The notion
of core captures this phenomenon, while the main property defining the core has to do with
the notion of support. In addition, a core typically contains all but a small (though constant)
fraction of the variables.
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Definition 2. (core) A set of variables H is called a t-core of F w.r.t. to a satisfying as-
signment ψ, if the following two properties hold:

– Every variable v ∈ H supports least t clauses in F w.r.t. ψ, where all variables in these
clauses belong to H.

– v appears in at most t/10 clauses in F where not all variables belong to H.

We proceed by asserting some relevant facts that such a core typically possesses.

Proposition 2. Let F be distributed according to Pplant
n,p , with n2p ≥ C0, C0 some sufficiently

large constant. Then whp there exits a t-core H with t = n2p/4, w.r.t. the planted assignment.
Furthermore, whp |H| ≥ (1− e−Θ(n2p))n.

Note that t is chosen to be half of the expected support of a variable.

Proof. Consider the following procedure, which we prove – defines a core. We use ϕ to denote
the planted assignment.

Let B be the set of variables whose support in F w.r.t. ϕ is at most n2p/3.

1. set H0 = V \B.
2. while there exists a variable ai ∈ Hi for which one of the following holds:

– it supports less than n2p/4 clauses where all variables belong to Hi.
– it appears in more than n2p/40 clauses where not all variables belong to Hi.

do define Hi+1 = Hi \ {ai}.
3. let am be the last variable removed in step 2. Define H = Hm+1.

The set H which this procedure outputs is a t-core (according to Definition 2) by its
construction, with t = n2p/4.

Let H̄ = V \ H, and set δ = e−Θ(n2p). Partition the variables in H̄ into variables that
belong to B, and variables that were removed in the iterative step, H̄ it = H0 \H. If |H̄| ≥ δn,
then at least one of B, H̄ it has cardinality at least δn/2. Consequently,

Pr[|H̄| ≥ δn] ≤ Pr[|B| ≥ δn/2]︸ ︷︷ ︸
(a)

+Pr[|H̄ it| ≥ δn/2
∣∣ |B| ≤ δn/2]︸ ︷︷ ︸

(b)

.

To bound (a), we use the following lemma, whose proof consists of standard probabilistic
arguments; details omitted.

Lemma 1. Let F be random formula from Pplant
n,p , n2p ≥ C0, C0 a sufficiently large constant,

and let FSUPP be a random variable counting the number of variables in F whose support
w.r.t. ϕ is less than n2p/3. Then, whp FSUPP ≤ e−Θ(n2p)n.

To bound (b), observe that every variable that is removed in iteration i of the iterative
step (Step 2), supports at least (n2p/3− n2p/4) = n2p/12 clauses in which at least another
variable belongs to {a1, a2, ..., ai−1} ∪ B, or appears in n2p/40 clauses each containing at
least one of the latter variables. Consider iteration δn/2. Assuming |B| ≤ δn/2, by the end
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of this iteration there exists a set containing at most δn variables, and there are at least
n2p/40 · δn/2 · 1/3 = n2p/240 · δn clauses containing at least two variables from it (we divide
by 3 as every clause might have been counted 3 times). This however contradicts Proposition 1
as δ = e−Θ(n2p) << 10−4.

¥

The next two propositions are given without a proof as their proofs are quite technical
and can be found in complete in [16] and [11] respectively.

Proposition 3. Let F be distributed according to Pplant
n,p , with n2p ≥ C0, C0 some sufficiently

large constant. Let H be a t-core of G, and let F [V \ H] be the formula induced by the non-
core variables. If |H| ≥ (1− e−Θ(n2p))n then whp the graph induced by F [V \ H] contains no
connected component of size greater than log n.

“The graph induced by a CNF formula” means the graph whose vertices are the variables,
and two variables share an edge if there exists some clause containing them both.

The following fact establishes the “frozenness” of the core variables. Its proof can be found
in [11], we just note that the first property in Definition 2 (the support) plays a major role
in the proof.

Proposition 4. Let F be distributed according to Pplant
n,p , with n2p ≥ C0, C0 some sufficiently

large constant. Let H be the core promised in Proposition 2. Then whp H is uniquely satisfiable

6 Analysis of Directed Walk

In this section we analyze the typical behavior of Directed Walk for Pplant
n,p , n2p greater than

some sufficiently large constant. Directed Walk, as defined in Figure 1, uses the measure of
support to determine which variables flip their assignment in every round. Nevertheless, one
can use other measures – such as the number of unsatisfied clauses in which a variable appears,
the number of satisfied clauses gained by flipping the variable, and so on. Our analysis can
be easily fit to other measures that satisfy some sufficient conditions, which are implicit in
Lemma 2 (and stated explicitly in Remark 3). In fact, our analysis implies the main result
in [21]. The following proposition summarizes the main quality of Directed Walk.

Proposition 5. Let F be distributed according to Pplant
n,p , n2p ≥ C0, C0 some sufficiently

large constant. Then whp Directed Walk(F, 10−4) enjoys the following property: after at most
3 ·104 rounds, the output assignment differs from the planted one on at most n/104 variables.

Remark 2. The constant 104 is arbitrary. In fact, one can show that whp Directed Walk(F, ε)
finds after 3/ε rounds an assignment at distance at most εn from the planted one, for ε as
small as e−Θ(n2p). This is (up to a constant in the exponent that does not depend on n, p)
exactly the approximation ratio of the Majority Vote [15, 6]. Therefore, if one considers Pplant

n,p

with n2p ≥ C0 log n, then whp Directed Walk finds the planted assignment. Indeed, this is
what [21] proves, though the directing measure is not the support.

Before proving the proposition we need some further observations.
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Definition 3. (misleading assignments) Let F be a satisfiable CNF formula and ϕ a satis-
fying assignment of F . We call an assignment ψ k-misleading w.r.t. ϕ if there exists a set of
2k variables t1, . . . , tk, f1, . . . , fk s.t. for every i, j = 1, . . . , k:

– ϕ(ti) = ψ(ti), ϕ(fi) 6= ψ(fi),
– Support(ti, ψ) ≤ Support(fj , ψ).

Definition 4. (ε-directable) We say that F is ε-directable w.r.t. a satisfying assignment ϕ
of F if there exists no k-misleading assignments w.r.t. ϕ, k = εn/3, at Hamming distance
greater than εn from ϕ

Proposition 6. Let F be distributed according to Pplant
n,p , n2p ≥ C0, C0 some sufficiently

large constant, and let ϕ be its planted assignment. Then whp F is 10−4–directable w.r.t. ϕ.

The proof of Proposition 6 is given by the following lemma.

Lemma 2. Fix ε ∈ (0, 1) and let ϕ,ψ be two assignments at distance ≥ εn from each other.
Let F be distributed according to Pplant

n,p , n2p ≥ C0, C0 some sufficiently large constant, with
ϕ its planted assignment. Then the probability that ψ is εn/3-misleading w.r.t. ϕ is at most
3−n.

The union bound guarantees that whp no misleading ψ exists, as there are at most 2n possible
ways to choose ψ. To prove Lemma 2 we need the following easy fact whose proof consists of
standard probabilistic arguments.

Lemma 3. Let β ∈ (0, 1). Let B1 = Binom(p,
(
N
2

)
), B2 = Binom(p,

(
N
2

) − (
βN
2

)
). Then

Pr[B1 ≤ B2] ≤ e−g(β)pN2
, where g : (0, 1) → (0,∞) is a monotonically increasing function.

Proof.(Lemma 2) Suppose that ψ is at distance βn from ϕ. Let t, f be two variables s.t.
ψ(t) = ϕ(t), ψ(f) 6= ϕ(f). t supports

(
n
2

)
clauses w.r.t. ψ, and every one of them could have

been included in F (since ϕ satisfies all of them). On the other hand, f supports
(
n
2

)
clauses

w.r.t. ψ, but clauses where both ϕ and ψ agree on the assignment of the other two variables,
cannot be included in ϕ, as they are not satisfied by ϕ – and there are

(
(1−β)n

2

)
of them.

Therefore we get:

Pr[Sup(t, ψ) ≤ Sup(f, ψ)] ≤ Pr[Bin(p,

(
n

2

)
) ≤ Bin(p,

(
n

2

)
−

(
(1− β)n

2

)
)] ≤ e−g(1−β)n2p.

(1)

Further observe that the sets of clauses that any two variables support w.r.t. to some
assignment are always disjoint (sice the supporting variable is unique, by definition). If ψ is
k-misleading w.r.t. ϕ, then in particular there exist k pairs of variables (t1, f1), . . . , (tk, fk)
s.t. Support(ti, ψ) ≤ Support(fi, ψ). The probability for this is at most

e−g(1−β)n2p·εn/3 ≤ e−(g(1−β)C0·ε/3)n =
(
e−g(1−β)C0·ε/3

)n
≤ 12−n.

The last inequality is due to 1 − β ≤ 1 − ε and therefore g(1 − β) ≤ g(1 − ε), where ε
is some fixed number, while C0 can be an arbitrarily large. Finally observe that there are at
most 2n · 2n = 4n ways to choose the sets of ti’s and fj ’s. Now apply the union bound to
receive the lemma. ¥
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Remark 3. In order for a measure function M to fit the proof of Proposition 5 it suffices for
M to obey Equation (1) (maybe with some other function g′), and also

Pr[M(t) ≤ M(f)|M(ti1) ≤ M(fi1), . . . , M(tir) ≤ M(fir)] ≤ Pr[M(ti) ≤ M(fi)],

for every r-subset of the variables (i, r ≤ k).

Proof. (Proposition 5) The proof we give here shares some ideas with the analysis in [9].
We prove that Proposition 5 holds with probability 1 for F s.t. F is 10−4-directable w.r.t.
ϕ. Since this is the case whp, as asserted by Proposition 6, Proposition 5 follows. For two
assignments ψ,ϕ, define T (ψ,ϕ) to be the set of variables on which ψ and ϕ agree, and
F (ψ, ϕ) the set of variables on which they disagree. Let Eε(ψ) be the set of εn variables with
lowest support w.r.t. ψ. Observe that if ϕ is some satisfying assignment of F , and ψ is the
current assignment that Directed Walk(F, ε) considers, then the variables in T (ψ, ϕ) ∩Eε(ψ)
will be “wrongly” flipped. Our goal is then to show that |T (ψ, ϕ) ∩ Eε(ψ)| cannot be too
large.

Set ε = 10−4 (as required by Proposition 5). Suppose at first that for every ψ at distance
≥ εn from ϕ, |T (ψ, ϕ)∩Eε(ψ)| ≤ εn/3. If so, then |F (ψ, ϕ)∩Eε(ψ)| ≥ 2εn/3. Thus, in every
iteration of Directed Walk the distance from ϕ is decreased by at least 2εn/3− εn/3 = εn/3.
The initial distance is at most n. Hence, after at most n/(εn/3) = 3/ε = 3 · 104 rounds, an
assignment ψ′ at distance at most εn from ϕ is reached.

It remains to prove that the above picture is indeed the case. To this end, consider a
“bad” assignment ψ at distance > εn from ϕ but for which |T (ψ,ϕ) ∩ Eε(ψ)| ≥ εn/3. This
implies that |F (ψ, ϕ)∩Eε(ψ)| ≤ 2εn/3. Since the distance between ψ and ϕ is ≥ εn, it holds
that |F (ψ,ϕ)| ≥ εn. The two last observations imply that |F (ψ,ϕ) \ Eε(ψ)| ≥ εn/3.

Set k = εn/3. Let f1, f2, ..., fk be variables in F (ψ, ϕ)\Eε(ψ), and t1, t2, ..., tk be variables
in T (ψ, ϕ)∩Eε(ψ). For every ti, fj , Support(ti, ψ) ≤ Support(fj , ψ) (by the definition of Eε(ψ)
and the choice of the ti’s and the fj ’s). However this means that ψ is k-misleading w.r.t. ϕ,
and the Hamming distance between ψ and ϕ is greater than εn. This however contradicts
that fact that F is ε-directable w.r.t. ϕ. ¥

7 Algorithm’s Analysis – Proof of Theorem 1

We say that a formula F is typical if Propositions 1, 2, 3 and 6 hold for F . The discussion
in Sections 5 and 6 guarantees that indeed whp a formula sampled according to Pplant

n,p , n2p
greater than some sufficiently large constant, is typical. Thus, proving Theorem 1 reduces to
proving that SupportSAT finds a satisfying assignment in polynomial time for typical formulas.
Therefore, in all the propositions below we assume that F is typical. We let H be the core
promised in Proposition 2, and ϕ – the planted assignment of F .

Proposition 7. Let τ be the assignment defined in line 7 of SupportSAT. Then τ agrees with
ϕ on the assignment of all variables in H.

Proof. Let Bi be the set of core variables whose assignment in ψi disagrees with ϕ at the
beginning of the ith iteration of the main for-loop – line 2 in SupportSAT. It suffices to
prove that |Bi+1| ≤ |Bi|/2 (if this is true, then after log n iterations Blog n = ∅). Observe
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that by Proposition 5, |B0| ≤ n/104. By contradiction, assume that not in very iteration
|Bi+1| ≤ |Bi|/2, and let j be the first iteration violating the inequality – |Bj+1| ≥ |Bj |/2.
Consider a variable x ∈ Bj+1. If also x ∈ Bj , this means that x’s assignment was not flipped
in the jth iteration, and therefore, x supports at least n2p/10 clauses w.r.t. ψj . By the second
item in the definition of a core, at least n2p/10 − n2p/40 ≥ n2p/20 of these clauses contain
only core variables. Since the literal of x is true in all these clauses, but in fact should be false
under ϕ, each such clause must contain another variable on which ϕ and ψj disagree, that is
another variable from Bj . If x /∈ Bj , this means that x’s assignment was flipped in the jth

iteration. This is because x supports less than n2p/10 clauses w.r.t. ψj . Since x supports at
least n2p/4 clauses w.r.t. ϕ, it must be that in at least n2p/4− n2p/10 ≥ n2p/8 of them, the
literal of some other core variable evaluates to true (rather than false, as it should be w.r.t. ϕ).
For conclusion, let U = Bj ∪Bj+1. Then there are at least n2p/20 · |Bj+1| clauses containing
at least two variables from U . Now if |Bj+1| ≥ |Bj |/2, then n2p/20 · |Bj+1| ≥ n2p/30 · |U |,
contradicting Proposition 1. ¥

Proposition 8. Let ξ be the partial assignment defined in line 13 of SupportSAT. Then all
assigned variables in ξ are assigned according to ϕ, and all the variables in H are assigned.

Proof. The core variables are assigned according to ϕ when the unassignment begins (Propo-
sition 7). Therefore, by the definition of core, every core variable supports at least n2p/4
clauses w.r.t. ϕ, and also w.r.t. τ1 (the assignment at hand before the unassignment step
begins). Therefore all core variables survive the first round of unassignment. By induction
it follows that the core variables survive all rounds. Now suppose by contradiction that not
all assigned variables are assigned according to ϕ when the unassignment step ends. Let U
be the set of variables that remain assigned when the unassignment step ends, and whose
assignment disagrees with ϕ. Every x ∈ U supports at least n2p/10 clauses w.r.t. to ψ, but
each such clause must contain another variable on which ψ and ϕ disagree (since the clause is
satisfied by ϕ, and ϕ(x) = false). Thus, we have n2p|U |/10 clauses each containing at least
two variables from U . Since U ∩ H = ∅ (by the first part of this argument) it follows that
|U | ≤ e−Θ(n2p)n < n/104, contradicting Proposition 1. ¥

Proposition 9. The exhaustive search in Step 3 of SupportSAT completes in polynomial time
with a satisfying assignment of F .

Proof. By Proposition 8, the partial assignment at the beginning of the exhaustive search
step is patrial to some satisfying assignment of the entire formula. Therefore the exhaustive
search will succeed. Further observe that the unassigned variables are a subset of the non-
core variables (Proposition 8). Proposition 3 then guarantees that the running time of the
exhaustive search will be at most polynomial. ¥

Theorem 1 then follows from Propositions 7-9.
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8 Discussion

Our starting point in this work is an experimentally observed phenomenon – the remarkable
success of simple algorithms that use the notion of support for near-threshold random 3CNF
formulas, while heuristics of similar flavor that don’t use the support are far less effective.
In search of a unifying rule that rigorously explains this phenomenon, we define the Support
Paradigm. We describe an algorithm which is part of this paradigm and rigorously show its
effectiveness for some natural distribution over satisfiable 3CNF formulas (Pplant

n,p with n2p
greater than some sufficiently large constant).

Combining our result with the work in [2] draws the following interesting picture. We show
that some variation of RWalkSAT that takes into account the notion of support succeeds whp
in finding a satisfying assignment for sufficiently “dense” Pplant

n,p formulas. For the same clause-
density regime, [2] shows that RWalkSAT, which disregards the notion of support, fails whp
to find a satisfying assignment, and not even an assignment which is closer than say n/3 to
the planted one. This mirrors the near-threshold picture in the following sense. Experiments
predict that RWalkSAT fails to find a satisfying assignment for random 3SAT instances with
already 2.65n clauses [26], while variants of RWalkSAT which take the support into account
succeed as far as 4.21n clauses [27, 5]. Thus in some rigorous sense we provide evidence for
the fact that using the notion of support gives a clear edge.

To prove Theorem 1 we actually prove the following:

– The simulated-annealing step in SupportSAT (Steps 1 and 2) set (almost all) frozen
variables in F correctly (that is, according to the planted assignment).

– The exhaustive search completes the assignment of the rest.

The latter implies that the frozen variables embed enough “support structure” so that a
support-based simulated-annealing heuristic sets their assignment correctly. This asserts an
interesting connection between the clustering phenomena, the notion of frozen variables and
the success of support-based simulated annealing.

Recall the definition of a core (Definition 2) and Proposition 2 which claims that typically
all but a small fraction of the variables belong to the core. The main ingredient in the
definition of a core is the notion of support. This is also the key ingredient in the proof of
Proposition 4 (given in complete in [11]) – which claims that the core variables are typically
frozen. This observation strengthens the connection between the clustering phenomenon and
the notion of support. Thus our result suggests the notion of support as a central piece in
understanding the structure of typical instances in different SAT distributions, and in turn
their average-case complexity.

Hopefully, our new approach will encourage the development of further heuristics that
prove useful in practice – based on the notion of support. As part of this line of research, it will
be interesting to check experimentally whether the subprocedures that compose SupportSAT
(Directed Walk, or the refinement step, Step 2) are effective in other settings as well, for
example the below-threshold random 3SAT regime.
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