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Abstract

For a set of positive integers A, let pA(n) denote the number of ways to write n as a sum of

integers from A, and let p(n) denote the usual partition function. In the early 40s, Erdős extended

the classical Hardy–Ramanujan formula for p(n) by showing that A has density α if and only if

log pA(n) ∼ log p(αn). Nathanson asked if Erdős’s theorem holds also with respect to A’s lower

density, namely, whether A has lower-density α if and only if log pA(n)/ log p(αn) has lower limit

1. We answer this question negatively by constructing, for every α > 0, a set of integers A of

lower density α, satisfying

lim inf
n→∞

log pA(n)

log p(αn)
≥

(√
6

π
− oα(1)

)
log(1/α) .

We further show that the above bound is best possible (up to the oα(1) term), thus determining

the exact extremal relation between the lower density of a set of integers and the lower limit of

its partition function. We also prove an analogous theorem with respect to the upper density of

a set of integers, answering another question of Nathanson.

1 Introduction

A partition of an integer n is a sequence of positive integers a1 ≤ a2 ≤ . . . whose sum is n. The

classical partition function p(n) denotes the number of partitions of n. More generally, for a set of

positive integers A, we denote by pA(n) the number of partitions of n using integers taken from A.

The study of various properties of these restricted partition functions is amongst the oldest topics in

mathematics. Some classical examples are Euler’s Pentagonal Numbers Theorem and the Rogers–

Ramanujan identities. The reader is referred to [1, 2, 3] for a more thorough background on this

topic. Our goal in this paper is to obtain asymptotic estimates for such restricted partition functions.

Arguably, the most well known result of this type is the classical Hardy–Ramanujan formula [10]

(discovered independently by Uspensky [21]) stating1 that

p(n) ∼ 1

4n
√

3
e
π
√

2n
3 . (1)
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1The results of [10, 21] actually give much more accurate asymptotic estimates for p(n).
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Following [10], asymptotic estimates for pA(n) were obtained for various sets A. For example,

already Hardy and Ramanujan [11] obtained bounds analogous to (1) when A is the set of primes,

when A is the set of odd integers, and when A is the set of kth powers of positive integers. Szekeres

[19, 20] obtained tight asymptotic bounds for partitions avoiding large numbers, that is, when2

A = [1,m(n)] for various functions m(n), see also [4, 18]. In the other direction, Diximier and Nicolas

[5] studied partitions avoiding small integers, namely, when A = [m(n), n] for various functions m(n),

see also [13, 14]. Finally, Nathanson [16] and Erdős and Lehner [7] studied the case of A of fixed

size.

In a remarkable paper from the early 40’s, Erdős [6] gave an elementary proof of a slightly weaker

version of (1). He further extended (1) by showing that if A is a set of density α with3 gcd(A) = 1,

then pA(n) behaves like p(αn), more precisely 4

lim
n→∞

log pA(n)

log p(αn)
= lim

n→∞

log pA(n)

π
√

2αn/3
= 1 . (2)

More surprisingly, using the Hardy–Littlewood Tauberian Theorem [9], Erdős proved5 an “inverse

theorem”, stating that if A satisfies (2) then A has density α. Together, these two theorems imply

that A has density α if and only if (2) holds. Other inverse theorems of this type were obtained in

[8, 12, 22].

Given Erdős’s theorem [6], it is natural to ask if the lower and upper densities of A also uniquely

determine the lower and upper limits of pA(n). That is, whether A has lower density α (respectively,

upper density β) if and only if lim infn→∞
log pA(n)
log p(αn) = 1 (respectively, lim supn→∞

log pA(n)
log p(βn) = 1). This

question was first raised by Nathanson [15], who further proved the following theorem, which is a

strengthening6 of the first theorem of Erdős mentioned above.

Theorem 1.1 (Nathanson [15]). Suppose A is a set of integers with gcd(A) = 1 of lower density α

and upper density β. Then

lim inf
n→∞

log pA(n)

log p(αn)
≥ 1 and lim sup

n→∞

log pA(n)

log p(βn)
≤ 1 . (3)

Nathanson [15] asked if the above inequalities are in fact equalities, namely, whether one can

prove inverse theorems (in the sense of Erdős’s inverse theorem mentioned above) with respect to

the lower and upper densities of A. Our main qualitative results in this paper are that (perhaps

unexpectedly) the answers to both questions are negative. As we explain below, we moreover give

optimal quantitative results relating the lower/upper densities of A and the lower/upper limits of

pA(n).

Our first result deals with the upper density of A. It shows that for all small enough β there is a

set A of upper density β so that lim supn→∞
log pA(n)
log p(βn) < 1. We in fact determine precisely how small

2We use [a, b] to denote the integers {a, . . . , b}. We also use [a] to denote the integers {1, . . . , a}.
3Note that if gcd(A) = d > 1 then trivially pA(n) = 0 whenever n is not divisible by d. In our proofs it will be very

easy to guarantee that gcd(A) = 1 since all the sets A we construct contain two consecutive integers.
4For simplicity, we frequently remove floor/ceiling notation when they make no real difference. For example, in (2)

the αn should really be bαnc. Also, throughout the paper, logarithms are natural unless stated otherwise.
5A remark for the history buff: this result was actually stated as an open problem in the preliminary version of [6]

and then sketched in the published version. A full proof was given by Nathanson [15], see also [17].
6Note that when α = β (i.e. when A has density α) this theorem is equivalent to Erdős’s first theorem.
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can this upper limit be. This, in particular, implies a negative answer to Nathanson’s question for

all small enough β.

Theorem 1.2. For every 0 < β < 1 there is a set of integers A with gcd(A) = 1 of upper density β

satisfying

lim sup
n→∞

log pA(n)

log p(βn)
≤
√

6 log 2

π
+ oβ(1) . (4)

Furthermore, the constant above is best possible. Namely, any A of upper density β satisfies

lim sup
n→∞

log pA(n)

log p(βn)
≥
√

6 log 2

π
+ oβ(1) . (5)

Our second and main result deals with the lower density of A. Contrary to the case of the upper

density, if A has lower density α then lim infn→∞
log pA(n)
log p(αn) cannot even be bounded from above by

an absolute constant. Again, this implies a negative answer to Nathanson’s question for all small

enough α.

Theorem 1.3. For every 0 < α < 1 there is a set of integers A of lower density α with gcd(A) = 1

satisfying

lim inf
n→∞

log pA(n)

log p(αn)
≥ (1− oα(1))

√
6

π
log(1/α) . (6)

Furthermore, the above lower bound is best possible. Namely, any A of lower density α satisfies

lim inf
n→∞

log pA(n)

log p(αn)
≤ (1 + oα(1))

√
6

π
log(1/α) . (7)

Proof and paper overview: The proof of Theorem 1.3 appears in Section 2 and the proof of

Theorem 1.2 appears in Section 3. All the proofs in this paper are elementary in the number theoretic

sense [17], that is, they rely on combinatorial/counting arguments and do not use complex analysis

which is frequently used when studying partition functions. We find it quite surprising that such

elementary methods can yield the precise results stated in Theorems 1.2 and 1.3. The results that

are the most challenging to prove are those stated in (4) and (6). In both cases, the constructions

of the sets A are quite simple and rely on the following finitary intuition: if one has to choose a

subset A ⊆ [n] of size αn so as to maximize pA(m), one would choose S = {1, . . . , αn}, since small

integers give more “freedom”7. Similarly, taking S = {n − αn, . . . , n} would minimize pA(m). The

constructions of A in both proofs are then an infinite variant of this finitary intuition. While the

constructions of the sets A are simple, their analysis is quite involved, relying among other things,

on special cases of the results of Szekeres [19, 20] and Diximier–Nicolas [5] mentioned above. While

the original proofs of these two results were highly non-elementary, we will provide short and self-

contained proofs of the special cases we need in this paper, see Lemmas 2.6 and 2.7. The latter proof

might be of independent interest.

7See Lemma 2.5 where this intuition is formalized.
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2 Proof of Theorem 1.3

We start with the proof of Theorem 1.3 equation (6). To this end, we will first consider the “easy”

cases, handled by Lemma 2.1 below, and then move on to consider the harder cases, which will be

dealt with in the proof itself later on. This proof will require a certain amount of preparation which

will be given after the proof of Lemma 2.1.

In the next proof, as well as in the rest of this section, we will frequently use the basic inequalities(
n
k

)k ≤ (
n
k

)
≤
(
en
k

)k
and (n/e)n ≤ n! ≤ en(n/e)n. Furthermore, throughout the paper we will

frequently use the fact that there are
(
n+k−1
k−1

)
solutions in nonnegative integers to the equation∑k

i=1 xi = n.

Lemma 2.1. For every 0 < α < 1 there exists n1 = n1(α) such that the following holds for every

integer n > n1. Letting A = {1} ∪ [n, αn2] we have the following for all m ∈ [16αn2, αn4/16]

log pA(m) ≥ (2 log(1/α)− 8)
√
αm . (8)

Proof. Let 0 < α < 1 and let n be a positive integer with n > n1 = n1(α) which will be specified

later. Let m ∈ [16αn2, αn4]. The proof splits into two cases depending on the value of m.

Case 1: Assume 16αn2 ≤ m ≤ 4α3n4. Our assumption in this case implies the following two

inequalities:

2
√
αm

(
n+

√
m/16α

)
≤ m , (9)√

m/16α ≤ αn2/2 . (10)

Therefore, provided n1 ≥ 2/α we can deduce from (10) that

n+
√
m/16α ≤ αn2 .

Setting B = {1} ∪ [n, n+
√
m/16α] we infer that,

B ⊆ {1} ∪
[
n, αn2

]
⊆ A ,

implying that it is enough to prove a lower bound with respect to pB(m) in (8). We map each

solution in nonnegative integers of the equation

√
m/16α∑
k=0

xk = 2
√
αm (11)

to a partition of m with parts in B as follows: if (xk)

√
m/16α

k=0 is a solution in nonnegative integers

of (11) then for every k we take the integer n + k exactly xk times and finally take 1 exactly

m−
∑√m/16α

k=0 xk = 2
√
αm times. This map is well defined as by (9) and (11) we have,

√
m/16α∑
k=0

xk(n+ k) ≤ (n+
√
m/16α)

√
m/16α∑
k=0

xk = 2
√
αm(n+

√
m/16α) ≤ m .
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Moreover, provided n1 ≥ 2 the above map is an injection as 1 6∈ [n, n +
√
m/16α]. Combining the

above observations we have

pA(m) ≥ pB(m) ≥
(

2
√
αm+

√
m/16α

2
√
αm− 1

)
≥
( √

m/16α

2
√
αm− 1

)

≥

( √
m/16α

2
√
αm− 1

)2
√
αm−1

≥
(

1

8α

)2
√
αm−1

≥ exp
(
(2 log(1/α)− 8)

√
αm
)
,

where that last inequity holds provided n ≥ 1/4
√
α.

Case 2: Assume n2/4α ≤ m ≤ αn4/16. Note that provided n1 ≥ 4/α2 we have n2/4α ≤ 4α3n4 for

all n > n1, hence Case 1 and Case 2 cover all m ∈ [16αn2, αn4/16]. Our assumption in this case

implies the following two inequalities:√
m/16α

(
n+ 2

√
αm
)
≤ m , (12)

2
√
αm ≤ αn2/2 . (13)

Therefore, provided n1 ≥ 2/α we can deduce from (13) that

n+ 2
√
αm ≤ αn2 .

Setting B = {1} ∪ [n, n+ 2
√
αm] we deduce that,

B ⊆ {1} ∪
[
n+ 1, αn2

]
⊆ A .

Similar to the first case, we may thus prove a lower bound for pB(m) in (8). We map each solution

in nonnegative integers of the equation

2
√
αm∑

k=0

xk =
√
m/16α (14)

to a partition of m with parts in B as follows: if (xk)
√

2αm
k=0 is a solution in nonnegative integers of

(14) then for every k we take the integer n+ k exactly xk times and 1 exactly m−
∑2
√
αm

k=0 xk(n+ k)

times. This map is well defined as by (12) and (14) we have,

2
√
αm∑

k=0

xk(n+ k) ≤ (n+ 2
√
αm)

2
√
αm∑

k=0

xk =
√
m/16α(n+ 2

√
αm) ≤ m .

Moreover, provided n1 ≥ 2 this map is an injection as 1 6∈ [n, n +
√

2αm]. Combining the above

observations we have,

pA(m) ≥ pB(m) ≥
(

2
√
αm+

√
m/16α

2
√
αm

)
≥
(√

m/16α

2
√
αm

)

≥

(√
m/16α

2
√
αm

)2
√
αm

=

(
1

8α

)2
√
αm

≥ exp
(
(2 log(1/α)− 8)

√
αm
)
.
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We will now prove several claims and lemmas which will be used in the proof of Theorem 1.3

equation (6). We start with the following very crude bound which will suffice for our purposes.

Claim 2.2. Suppose n is positive integer and A is a set of positive integers with |A| = k. Then

pA(n) ≤ (n+ 1)k .

Proof. Since each partition of n using integers from A can contain each of these integers at most n

times, the number of such partitions is clearly at most (n+ 1)k.

For positive integers k, n we define pk(n) to be the number of ways to write n as a sum of exactly

k nonnegative integers (without consideration of the ordering of the summands). The following three

lemmas are folklore, and are proved here for the sake of completeness.

Lemma 2.3. Suppose k, n are positive integers. Then,(
n− 1

k − 1

)
≤ k! · pk(n) ≤

(
n+

(
k
2

)
− 1

k − 1

)
.

Proof. There are exactly
(
n−1
k−1

)
ordered partitions of n with k positive parts. This implies the first

inequality. To see the second, suppose y1 ≤ y2 ≤ . . . ≤ yk satisfy
∑k

i=1 yi = n. Defining xi = yi+i−1

for all i, we have
∑k

i=1 xi = n +
(
k
2

)
. As all xi are distinct, each permutation of xis give rise to a

different ordered solution to the equation
∑k

i=1 zi = n+
(
k
2

)
with nonnegative integers. This implies

the second inequality.

In the following lemma, as well as in the rest of the section, we use several times the notation

p[k](n). For clarity, we wish to emphasize that p[k](n) stands for pA(n) where A = [k].

Lemma 2.4. Suppose k, n are positive integers. Then,

p[k](n) = pk(n+ k) .

Proof. As it is well known, p[k](n) is also the number of ways to write n as a sum of at most k

integers. Let (yi)
k
i=1 be a partition of n + k. Setting xi = yi − 1 we obtain a partition of n with at

most k parts. This process is invertible and therefore we obtain the assertion of the lemma.

Lemma 2.5. Suppose A is a set of positive integers with |A| = k. Then,

pA(n) ≤ p[k](n) .

Proof. Let f be the bijection between A and [k] defined by sending the ith largest integer of A to

i. We now define an injection g between the partitions of n with parts in A and partitions of n with

parts in [k]. Given a partition x = (xi)
`
i=0 of n with parts in A, we define g(x) to be the partition

y = (yi)
`+`′

i=0 where `′ = m −
∑`

i=0 f(xi) and yi is defined to be f(xi) for all 0 ≤ i ≤ ` and 1 for

all ` < i ≤ `′. To see that this is an injection let x = (xi)
`1
i=1, x

′ = (x′)`2i=1 be two partitions of n

with all parts in A and assume that g(x) = g(x′). Let a the minimal integer in A. Since f is a

bijection each of the integers in A besides a must appear in x and x′ the same number of times.

Since
∑`1

i=1 ai =
∑`2

i=1 bi = n, the integer a appears the same number of times in x and x′. This

completes the proof.
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We now turn to prove the two key lemmas that will be used in the proof of (6). The first is

Lemma 2.6 below. We remark that this result can be derived (with some effort) from the more

precise bound due to Szekeres [19, 20] (see also [4, 18]), but the self contained elementary proof

below is significantly simpler.

Lemma 2.6. For every 0 < γ < 1 there exists n2 = n2(γ) such that for all n > n2 we have

log p[γ
√
n](n) = (2γ log(1/γ) + Θ(γ))

√
n .

Proof. Let 0 < γ < 1 be a real number and let n be an integer with n > n2 = n2(γ) where n2 will

be specified later. Setting k = γ
√
n, Lemmas 2.3 and 2.4 implies that(

n+ γ
√
n− 1

γ
√
n− 1

)
≤ (γ

√
n)! · p[γ

√
n](n) ≤

(
n+ γ

√
n+

(
γ
√
n

2

)
− 1

γ
√
n− 1

)
. (15)

Therefore we have,

p[γ
√
n](n) ≤

(n+γ
√
n+(γ

√
n

2 )−1

γ
√
n−1

)
(γ
√
n)!

≤

(
2n
γ
√
n

)
(γ
√
n)!

≤
(

2e2

γ2

)γ√n
≤ e(2γ log(1/γ)+4γ)

√
n ,

where the second inequality holds provided γ
√
n2 +

(γ√n2

2

)
−1 ≤ n2. As to the lower bound we have,

p[γ
√
n](n) ≥

(n+γ
√
n−1

γ
√
n−1

)
(γ
√
n)!

≥
(√

n

γ

)γ√n−1(
e

γ
√
n

)γ√n 1

eγ
√
n

=

(
e

γ2

)γ√n 1

en
= e(2γ log(1/γ)+γ)

√
n−log(en) ≥ e(2γ log(1/γ)+γ/2)

√
n ,

where the second inequality holds provided n2 > 1/γ2, and the third inequality holds provided

log(en2) ≤ γ√n2/2.

The second key lemma we will need is Lemma 2.7 below. We remark that (16) below is Theorem

2.6 in [5], see also [13] for a refined version of this result. We give a self contained elementary proof

of (16) which is significantly simpler and also allows us to derive the stronger statement stated after

(16).

Lemma 2.7. There exists a positive real λ0 such that for every λ ≥ λ0 there exists n3 = n3(λ) such

that for every integer n > n3 we have

log p[λ
√
n,n](n) =

(
2 log(λ)±Θ(log log(λ))

λ

)√
n . (16)

Furthermore, for every positive real ε ≤ 1 the lower bound holds also for log p[λ
√
n,εn](n) provided

λ ≥ λ0(ε) and n ≥ n3(λ, ε).
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Proof. Let λ ≥ λ0 be a real number where the value of λ0 will be specified later and let n be an

integer with n > n3 = n3(λ) which will be specified later. We first claim that

p[λ
√
n,n](n) ≤ p[

√
n/λ](n) = p√n/λ(n+

√
n/λ) .

To justify the inequality we observe that each partition of n with all integers from [λ
√
n, n] uses at

most
√
n/λ integers. As noted earlier it is well know that the number of partitions of n with at most√

n/λ parts is precisely p[
√
n/λ](n). Finally, the equality holds by Lemma 2.4. Applying Lemma 2.3

invoked with n replaced by n+
√
n/λ and k =

√
n/λ we obtain,

p[λ
√
n,n](n) ≤

(n+
√
n/λ+(

√
n/λ
2 )−1

√
n/λ−1

)
(
√
n/λ)!

≤

(
3n√
n/λ

)
(
√
n/λ)!

≤
(
3eλ
√
n
)√n/λ( eλ√

n

)√n/λ
=
(
3e2λ2

)√n/λ ≤ e( 2 log(λ)+4
λ

)√
n
,

where the second inequality holds provided
√
n3/λ ≤ n3,

√
n3/λ − 1 ≤ 3n3/2 and provided λ0 > 1

and as
(√

n/λ
2

)
− 1 ≤ n/λ2. This concludes the proof of the upper bound of (16).

For the lower bound of (16) we claim that for any positive integer k we have

p[λ
√
n,n](n) ≥ pk(n− k · bλ

√
nc) . (17)

To see this we define the following one to one correspondence. For every partition of n− k · bλ
√
nc

with positive integers (xi)
k
i=1 we define (yi)

k
i=1 with yi = xi + bλ

√
nc. This is clearly a one to one

correspondence and furthermore (yi)
k
i=1 is partition of n with all parts taken from [λ

√
n, n]. Setting

k =

⌊ √
n

λ+ λ/ log(λ)

⌋
in (17) and applying Lemma 2.3 we obtain,

p[λ
√
n,n](n) ≥

(n−kbλnc−1
k−1

)
k!

≥
( n

log(λ)+1 − 1
√
n

λ+λ/ log(λ) − 1

)/( √
n

λ+ λ/ log(λ)

)
!

≥
( n

2(log(λ)+1)
√
n

λ+λ/ log(λ) − 1

)/( √
n

λ+ λ/ log(λ)

)
!

≥
(

λ
√
n

2 log(λ)

) √
n

λ+λ/ log(λ)
(
e(λ+ λ/ log(λ))√

n

) √
n

λ+λ/ log(λ) 2(log(λ) + 1)

en

=

(
eλ2

(
1

2 log(λ)
+

1

2 log2(λ)

))√n
λ
−

√
n

λ(log(λ)+1) 2(log(λ) + 1)

en

≥
(

λ

log(λ)

) 2
√
n
λ
− 4

√
n

λ log(λ)

= exp

(
(log(λ)− log log(λ))

(
2
√
n

λ
− 4

√
n

λ log(λ)

))
≥ exp

(
(2 log(λ)− 3 log log(λ))

√
n

λ

)
,
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where the third inequality holds provided n3
2(log(λ)+1) ≥ 1 and provided λ0 ≥ 1, the fifth inequality

holds provided log
(

en3
2(log(λ)+1)

)
≤ (log(λ)−log log(λ))

√
n3

λ log(λ) , and the sixth inequality holds provided

log log(λ0) ≥ 4.

As for the furthermore part of the theorem, fix 0 < ε ≤ 1 and note the correspondence we used

above when proving the lower bound of (16), took partitions of n−k · bλ
√
nc that use k integers and

mapped them to partitions of n using integers in [λ
√
n,
(

2λ+ log(λ)
λ+λ log(λ)

)√
n+ n

log(λ)+1 ]. Therefore,

if we assume that 2
ε ≤ log(λ0) + 1 and

√
n3 ≥ 2

ε

(
2λ+ log(λ)

λ+λ log(λ)

)
then we in fact obtain the same

lower bound stated in (16) even if using only integers from the interval [λ
√
n, εn].

We now use Lemmas 2.1, 2.6 and 2.7 in order to prove Theorem 1.3 equation (6).

Proof of Theorem 1.3 equation (6). By (1) it is sufficient to prove that there exists a set of

positive integers A with lower density α and gcd(A) = 1 satisfying

log pA(m) ≥ (2 log(1/α)−Θ(log log(α)))
√
αm . (18)

To this end suppose α < α0 where α0 is a small positive real which will be specified later. Let n be

an integer with n > n0 where n0 = n0(α) is some positive integer which will be specified later and

will also be greater than 1/α. We claim that the set A which we introduce next satisfies (18). Define

a sequence of sets Ai recursively as follows. Set f(0) = 1, and f(1) = n0, and for any positive integer

i let f(i+ 1) = f(i)2, Ai+1 = [f(i), αf(i+ 1)]. Finally take A =
⋃
n≥1An. It is easy to see that the

lower density of A is α, and since n0 > 1/α we have 1 ∈ A1 ⊆ A which implies that gcd(A) = 1.

Provided

n0 > n1(α) (19)

we may use Lemma 2.1 invoked with n replaced by f(i) ≥ n0 for i ≥ 1, which asserts the following

for all m ∈ [16αf(i+ 1), αf(i+ 2)/16],

p{1}∪[f(i),αf(i+1)](m) ≥ e(2 log(1/α)−8)
√
αm .

For all i ≥ 2 the set {1}∪[f(i), αf(i+1)] is a subset of A and thus we obtain (18) for all m ≥ αf(3)/16

except for m ∈ [αf(i + 1)/16, 16αf(i + 1)] where i ≥ 2. Therefore, to complete the proof of (18) it

remains to consider only m ∈ [αf(i+ 1)/16, 16αf(i+ 1)] where i ≥ 2 is some integer.

Therefore for the rest of the proof let us fix i ≥ 2. For simplicity of presentation denote f(i+ 1)

by n2 and then f(i) = n and f(i− 1) =
√
n. Let c be a real number with 1/16 ≤ c ≤ 16 and set

m = c · α · n2 .

Since A contains both {1} ∪Ai = {1} ∪ [
√
n, αn] and Ai+1 = [n, αn2] we deduce the following for all

0 ≤ δ ≤ 1,

pA(m) ≥
m∑
k=0

p{1}∪[
√
n,αn](k) · p[n,αn2](m− k)

≥ p{1}∪[
√
n,αn](δm) · p[n,αn2]((1− δ)m) .
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Hence to establish (18) it is enough to show that there exists 0 < δ < 1 such that for all 1/16 ≤ c ≤ 16

we have

log(p{1}∪[
√
n,αn](δm)) + log(p[n,αn2]((1− δ)m)) ≥ (2 log(1/α)−Θ(log log(1/α)))

√
αm . (20)

To simplify (20) we observe that

p[αn](δm) =
δm∑
k=0

p[2,
√
n−1](k) · p{1}∪[

√
n,αn](δm− k) ≤ (δm+ 1)(δm+ 1)

√
n · p{1}∪[

√
n,αn](δm) , (21)

where the inequality holds by Claim 2.2 and by the monotonicity of p{1}∪[
√
n,αn]. Hence, provided

α log log(1/α)
√
n0/16 ≥ 2 log(8n0) , (22)

to obtain (20) it is enough to prove that there exists 0 < δ < 1 such that the following holds for all

1/16 ≤ c ≤ 16

log(p[αn](δm)) + log(p[n,αn2]((1− δ)m)) ≥ (2 log(1/α)−Θ(log log(1/α)))
√
αm . (23)

Provided δ and α satisfy the right-hand inequality (the left-hand inequality holds as c ≥ 1/16)

α

δ · c
≤ α

δ/16
≤ 1 , (24)

and n0 satisfies

δm ≥ δα · n0/16 > n2

(√
α

16δ

)
≥ n2

(√
α

δ · c

)
, (25)

we may apply Lemma 2.6 invoked with γ replaced by
√

α
δ·c and with n replaced by δm and obtain,

log
(
p[αn](δm)

)
≥

(
2

√
α

δ · c
log

(√
c · δ
α

)
+ Θ

(√
α

δ · c

))√
δm

=

(
α log

(
c · δ
α

)
+ Θ (α)

)
n

≥
(
α log

(
δ

α

)
+ Θ (α)

)
n , (26)

where the second inequality holds as c ≥ 1/16.

From now on let us assume (with foresight) that the δ which establishes (23) is less than 1/2.

Provided α0 is small enough so that

1√
(1− δ)c · α

≥ 1√
16α

≥ λ0

(
1

16

)
≥ λ0

(
1

16(1− δ)

)
, (27)

and n0 satisfies

(1− δ)m ≥ α · n2
0

16
≥ n3

(
1√
α/32

,
1

16

)
≥ n3

(
1√

(1− δ)c · α
,

1

16(1− δ)

)
, (28)
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we may apply Lemma 2.7 invoked with ε = 1
16(1−δ) , λ = 1√

(1−δ)c·α
, and with n replaced by (1− δ)m.

As 1/16 ≤ c ≤ 16 and 0 < δ < 1/2 we obtain,

log
(
p[n,m/16]((1− δ)m)

)
≥

2 log
(

1/
√

(1− δ)c · α
)
−Θ

(
log log

(
1/
√

(1− δ)c · α
))

1/
√

(1− δ)c · α

√(1− δ)m

≥ (1− δ)c · α
(

log

(
1

α

)
−Θ

(
log log

(
1

α

)))
n . (29)

Since m/16 ≤ αn2 (29) implies

log
(
p[n,αn2]((1− δ)m)

)
≥ (1− δ)c · α log

(
1

α

)
n−Θ

(
α log log

(
1

α

))
n . (30)

All that is left is to choose the optimal δ that will maximize the sum of (26) and (30). It is not

hard to see that (up to lower order terms) the optimal choice is δ = 1/ log(1/α), and that with this

choice of δ, we can choose α0 small enough so that (24) and (27) will hold, and then choose n0 large

enough so that n0 > 1/α and (19), (22), (25) and (28) will hold. Plugging δ = 1/ log(1/α) in (26)

we obtain,

log
(
p[αn](δm)

)
≥
(
α log

(
1

α log(1/α)

)
+ Θ (α)

)
n = α log(1/α)n−Θ(α log log(1/α))n . (31)

Similarly plugging δ = 1/ log(1/α) in (30) we obtain,

log
(
p[n,αn2]((1− δ)m)

)
≥
(

1− 1

log(α)

)
c · α log

(
1

α

)
n−Θ

(
α log log

(
1

α

))
n

≥ c · α log(1/α)n−Θ(α log log(1/α))n (32)

Combining (31) and (32) we obtain

log(p[αn](δm)) + log(p[n,αn2]((1− δ)m)) ≥ ((1 + c) log(1/α)−Θ(log log(1/α)))αn

= ((1/
√
c+
√
c) log(1/α)−Θ(log log(1/α)))

√
αm

≥ (2 log(1/α)−Θ(log log(1/α)))
√
αm ,

where the last inequality holds as 1/x + x ≥ 2 for all x > 0. This is (23), and the proof is

completed.

We now turn to the proof of Theorem 1.3 equation (7). We will need the following lemma.

Lemma 2.8. There exists α0 > 0 such that for all 0 < α < α0 there exists an integer n0 = n0(α) such

that the following holds for every integer n > n0. If A is a set of positive integers with |A∩ [n]| = αn

then we have the following where m = αn2,

pA(m) ≤ e(2 log(1/α)+Θ(log log(1/α)))
√
αm .
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Proof. Let A1 = A ∩ [n] and A2 = A ∩ [n+ 1,m]. We have,

pA(m) =

m∑
k=0

pA1(k) · pA2(m− k) ≤ (m+ 1) · max
k∈[m]

pA1(k) · max
k∈[m]

pA2(k) .

Hence it is enough to show that the following holds for all k ∈ [m] and j = 1, 2,

pAj (k) ≤ e(log(1/α)+Θ(log log(1/α)))
√
αm . (33)

Using Lemma 2.5 and the monotonicity of p[αn] we deduce that,

pA1(k) ≤ p[αn](k) ≤ p[αn](m) = p[
√
αm](m) .

Provided n0 is large enough we may use Lemma 2.6 invoked with n replaced by m and γ replaced

by
√
α and obtain

log p[
√
αm](m) ≤ (2

√
α log(1/

√
α) + Θ(

√
α))
√
m = (log(1/α) + Θ(1))

√
αm .

Combining the above we obtain (33) for j = 1.

We now prove (33) for j = 2. We first note that if k ∈ [n] then (33) trivially holds since in this

case pA2(k) = 0. Assume now k ∈ [n+1,m]. We may use Lemma 2.7 with λ = 1/
√
α and n replaced

by k provided α0 is small enough so that 1/
√
α0 > λ0 and k > n0 > n3(1/

√
α). We obtain

log p
[
√
k/α,k]

(k) ≤
(

2 log(1/
√
α) + Θ(log log(1/

√
α))

1/
√
α

)√
k

= (log(1/α) + Θ(log log(1/α)))
√
αk

≤ (log(1/α) + Θ(log log(1/α)))
√
αm.

Since k ≤ m = αn2 then
√
k/α ≤ n and therefore A2 ∩ [k] ⊆ [n+ 1, k] ⊆ [

√
k/α, k] and thus

pA2(k) = pA2∩[k](k) ≤ p
[
√
k/α,k]

(k).

Combining the above we obtain (33) for j = 2.

Now using the above lemma we prove Theorem 1.3 equation (7).

Proof of Theorem 1.3 equation (7). Suppose α < α0 where α0 is given by Lemma 2.8 and A is

a set of positive integers with lower density α. Similar to the proof of Theorem 1.3 equation (6) it is

sufficient to prove that there exist infinitely many pairs of integer and real number (mi, αi) satisfying

log pA(mi) ≤ (2 log(1/αi) + Θ(log log(1/αi)))
√
αimi, lim

i→∞
αi = α, and lim

i→∞
mi =∞ . (34)

Since A has lower density α there exists an increasing sequence {ni}∞i=0 of positive integers such that

setting Ai = A ∩ [ni] and αi = |Ai|/ni we have limi→∞ αi = α. Fix i0 large enough so that for all

i > i0 we have α/2 < αi < α0 and ni > n0(α/2) where n0(α/2) is given by Lemma 2.8. Now we may

use Lemma 2.8 invoked with α replaced by αi and n replaced by ni and obtain

pA(mi) ≤ e2(log(1/αi)+Θ(log log(1/αi)))
√
αimi ,

where mi = αin
2
i . Since limi→∞ αi = α and limi→∞mi = ∞ we obtain (34), thus completing the

proof.
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3 Proof of Theorem 1.2

We start with a proof of Theorem 1.2 equation (5) and then move on to proving Theorem 1.2 equation

(4).

Lemma 3.1. Suppose m is a positive integer and A ⊆ [m] with β = |A|/m. Then, there exists

n ∈ [β2m2/4, β(1− β/4)m2] satisfying

log pA(n) ≥ (2 log(2)− on(1))

√
βn

1− β/4
.

Proof. Let A1 be the set of βm/2 smallest integers in A and A2 the set of βm/2 largest integers in

A. Note that any βm/2 integers in A1 sum up to an integer in [β(1− β/2)m2/2]. Furthermore, the

number of options to choose βm/2 integers from A1 (not necessarily distinct) is exactly the same

as the number of nonnegative solutions to
∑βm/2

i=1 xi = βm/2. That can be seen by taking xi to be

the number of times the ith smallest element in A1 is taken. Hence there are
(βm−1
βm/2

)
such choices.

Similarly, any βm/2 integers in A2 (not necessarily distinct) sum up to an integer in [β2m2/4, βm2/2].

Similar to before, the number of ways to choose these integers is
(βm−1
βm/2

)
. Therefore, the number of

ways one can choose βm integers from A, such that half of them are taken from A1 and the other

half from A2 is
(βm−1
βm/2

)2
. Since the sum of these integers is an integer in [β2m2/4, β(1− β/4)m2] we

infer by the pigeonhole principle that there exists n ∈ [β2m2/4, β(1− β/4)m2] satisfying

pA(n) ≥

(βm−1
βm/2

)2
m2

=

( βm
βm/2

)2
4m2

≥ 22βm

4(βm+ 1)2m2
= 2(2−on(1))βm ≥ 2

(2−on(1))
√

βn
1−β/4 .

Proof of Theorem 1.2 equation (5). Let A be a set of positive integers with upper density β <

1/2. By (1) it is sufficient to prove that there exist infinitely many pairs of integer and real numbers

(ni, βi) satisfying

log pA(ni) ≥ (2 log(2)− oni(1))(1 + βi/10)
√
βini , (35)

limi→∞ ni =∞ and limi→∞ βi = β. Since A has upper density β there exists an increasing sequence

of integers {mi}∞i=0 such that setting Ai = A∩ [mi] and βi = |Ai|/mi we have limi→∞ βi = β. Lemma

3.1 implies that for every i there exists ni ∈ [β2
im

2
i /4, βi(1− βi/4)m2

i ] satisfying

log pA(ni) ≥ (2 log(2)− oni(1))

√
βini

1− βi/4
≥ (2 log(2)− oni(1))(1 + βi/10)

√
βini .

Since limi→∞ ni =∞ and limi→∞ βi = β we obtain (35).

To prove Theorem 1.2 equation (4) require the following lemma.

Lemma 3.2. Suppose 0 < β < 1. Then for all n,m positive integers we have,

p[(1−β)n+1,n](m) ≤ e2 log(2)
√

β
1−βm .
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Proof of Lemma 3.2. Assume n > 1/β8 and set γ = m/n2. For simplicity of presentation we let

A denote the set [(1− β)n+ 1, n]. Our goal is then to prove that for any γ > 0 we have,

pA(γn2) ≤ 2
2
√

βγ
1−βn . (36)

Observe that a partition of γn2 using integers from A can use at most γn/(1− β) numbers. Hence,

we can encode each such partition as a solution in nonnegative integers to the inequality
∑βn−1

i=0 xi ≤
γn/(1 − β). This is done by taking xi to be the number of times n − i appears in the partition.

Therefore we obtain,

pA(γn2) ≤
(
γn/(1− β) + βn

γn/(1− β)

)
. (37)

We now use the well known inequality, (
n

k

)
≤ 2H2(k/n)n , (38)

where H2(x) is the binary entropy function defined by

H2(x) = −x log2(x)− (1− x) log2(1− x) .

From (37) and (38) we obtain,

pA(γn2) ≤ 2
H2

(
γ

γ+β(1−β)

)
(γ/(1−β)+β)n

. (39)

Let

fβ(γ) = H2

(
γ

γ + β(1− β)

)
γ/(1− β) + β

√
γ

,

and observe that to prove (36) it is enough to prove that fβ(γ) ≤ 2
√

β
1−β . Noting that fβ(β(1−β)) =

2
√

β
1−β it is enough to prove that f ′β(γ) > 0 for 0 < γ < β(1− β) and f ′β(γ) < 0 for γ > β(1− β).

We first note that

f ′β(γ) =
β (1− β) log2

(
β(1−β)

β(1−β)+γ

)
− γ log2

(
γ

β(1−β)+γ

)
2 (1− β) γ3/2

.

Since the denominator above is always positive, we focus on the nominator. For every a > 0 define

ga(x) = a log2

(
a

a+ x

)
− x log2

(
x

a+ x

)
.

We will now show that if 0 < x < a then ga(x) > 0 and if x > a then ga(x) < 0, noting that this

implies the required assertion regarding f ′β(γ) upon taking a = β(1 − β). Differentiating ga(x) we

obtain

g′a(x) =
−2a− (a+ x) log

(
x

a+x

)
(a+ x) log(2)

.

8This can be assumed as otherwise [(1− β)n+ 1, n] is empty and the lemma holds trivially.
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To see that ga(x) < 0 for x > a observe that −(a + x) log
(

x
a+x

)
is a decreasing function as its

derivative is −a
x+log

(
1 + a

x

)
which is negative by the well known inequality log(1+x) < x. Therefore

−(a+ x) log
(

x
a+x

)
≤ −2a log(1/2) implying

g′a(x) ≤ −2a(1 + log(1/2))

(a+ x) log(2)
< 0 .

Thus, ga(x) is strictly decreasing for all x > a, implying that ga(x) < 0 for all x > a as ga(a) = 0.

We now prove that ga(x) > 0 for all 0 < x < a. To this end note that

g′′a(x) =
−a(a− x)

x(a+ x)2 log(2)
,

which is negative for all 0 < x < a. Therefore ga(x) is concave in (0, a), implying that ga(x) > 0 for

all x ∈ (0, a) as ga(a) = 0 and limx→0 ga(x) = 0. Thus we have completed the proof that if 0 < x < a

then ga(x) > 0 and if x > a then ga(x) < 0.

Proof of Theorem 1.2 equation (4). Similar to the proof of Theorem 1.2 equation (5) it is enough

to prove that there exists a set of positive integers A with upper density β and gcd(A) = 1 satisfying,

log pA(m) ≤ (2 log(2) + om(1))

√
βm

1− β
≤ (2 log(2) + om(1))(1 + β)

√
βm , (40)

where the second inequality holds provided β ≤ 1/2. To this end fix n0 = d 1
β e. We define A as

follows. Define a sequence of sets Ai recursively. Set A0 = [(1− β)n0 + 1, n0] and f(0) = n0, for any

positive integer i let f(i+1) = 2f(i) and Ai+1 = [(1−β)f(i+1)+1, f(i+ 1)]. Now let A =
⋃
n∈NAn .

It is easy to see that the upper density of A is β. Further, since A contains two consecutive integers

we have gcd(A) = 1. We now prove that this set satisfies the first inequality in (40). Let m be any

positive integer greater than n0 and let i be the unique integer such that m ∈ [f(i) + 1, f(i + 1)].

For simplicity of presentation we set n = f(i) and thus f(i + 1) = 2n. We consider two cases, the

first is when m ∈ [n+ 1, (1− β)2n] and the second is when m ∈ [(1− β)2n + 1, 2n].

Case 1: Assume m ∈ [n+ 1, (1− β)2n]. Let B =
⋃
j≤i−1Aj and note that we have,

pA(m) =
∑

0≤k≤m
pB(k) · pAi(m− k) .

Note further that our choice of f guarantees that |B| ≤ log2(n) ≤ log2(m). This, Claim 2.2 and

Lemma 3.2 give the following bound

pA(m) ≤
∑

0≤k≤m
(k + 1)log2(m) · e2 log(2)

√
β(m−k)

1−β

≤ (m+ 1)(m+ 1)log2(m)e
2 log(2)

√
βm
1−β

≤ e(2 log(2)+om(1))
√

βm
1−β .

Taking logarithm from both sides of the inequality we obtain the first inequality in (40).
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Case 2: Assume m ∈ [(1− β)2n + 1, 2n]. Let B =
⋃
j≤iAj and note that we have,

pA(m) =
∑

0≤k≤m
pB(m− k) · pAi+1(k)

=
∑

0≤k≤(1−β)2n

pB(m− k) · pAi+1(k) +
∑

(1−β)2n+1≤k≤m

pB(m− k) · pAi+1(k)

= pB(m) +
∑

(1−β)2n+1≤k≤m

pB(m− k) · pAi+1(k) .

For all k ≤ m ≤ 2n any partition of k with all parts in Ai+1 uses at most 1/(1− β) integers from

Ai+1 ∩ [m]. Therefore for all k ∈ [(1− β)2n + 1,m] we have

pAi+1(k) ≤ m1/(1−β) .

Next, if k > (1− β)2n then

log2(k) + log2(1/(1− β)) ≥ log2(2n) = n ≥ |B| .

Therefore by Claim 2.2 we obtain that for all k ∈ [(1− β)2n + 1,m] we have

pB(k) ≤ (k + 1)|B| ≤ (m+ 1)log2(k)+log2(1/(1−β)) .

Combining the above two observations we obtain,

pA(m) ≤
∑

0≤k≤m
(m+ 1)log2(k)+log2(1/(1−β))+1/(1−β) ≤ (m+ 1)(m+ 1)log2(m)+4 ≤ eo(

√
m) .
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[13] É. Mosaki, Partitions sans petites parts (II), Journal de Théorie des Nombres de Bordeaux 20
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