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1 First Lecture
All the graphs considered here are finite, simple, loop-free, etc. Unless otherwise mentioned, they will
also be undirected. The following (very standard) notation is used throughout the notes. For a graph G
we set m = |E(G)| and n = |V (G)|. We use N(x) to denote the neighborhood of a vertex x, and d(x)
to denote its degree (so d(x) = |N(x)|). We will use δ(G) to denote the smallest degree of a vertex in
G, and ∆(G) to denote the largest degree. We use e(G) to denote the number of edges of a graph G (so
e(G) = |E(G)|). We will sometimes use e(S) to denote the number of edges inside a vertex set S which is
the subset of the vertex set of some graph. Similarly e(A,B) will denote the number of edges connecting
a vertex in A to a vertex in B. The complete graph on n vertices is denoted Kn, while the complete
r-partite graph with partitions of sizes n1, n2, . . . , nr is denoted Kn1,...,nr .

We will frequently use Jensen’s inequality, which states that if f is a convex function then for every
x1, ..., xn and α1, ..., αn with 0 ≤ αi ≤ 1 and

∑
i αi = 1 we have

f

(
n∑
i=1

αixi

)
≤

n∑
i=1

αif(xi)

Exercise. Prove Jensen’s Inequality (hint: use induction on n).
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1.1 Mantel’s Theorem
Theorem 1.1 (Mantel). If G is a triangle-free graph, then m ≤

⌊
n2

4

⌋
. Furthermore, the only triangle-free

graph with
⌊
n2

4

⌋
edges is the complete bipartite graph Kbn/2c,dn/2e.

Proof (First): It is easy to verify the proposition for n = 3 and n = 4, so assume n > 4 and note that it
is enough to prove by induction that m ≤ n2/4. Let (x, y) be an edge in G. Clearly x and y cannot have
a common neighbor (otherwise the graph will have a triangle), hence d(x) + d(y) ≤ n. By removing x
and y, we get a triangle-free graph H = G−{x, y}, which has, by induction, at most (n−2)2

4 edges. Thus

m ≤ (n− 2)2

4 + n− 1 = n2

4 .

Now, if m =
⌊
n2

4

⌋
, then all the above inequalities must be equalities. In particular, we must have

d(x)+d(y) = n. It is then easy to see that this implies that N(x)∪N(y) = V (G). Since G is triangle-free,
we know that N(x) and N(y) are both independent sets, implying that G is bipartite (with bipartition
N(x), N(y)). Finally, note that the only bipartite graph on n vertices with

⌊
n2

4

⌋
edges is Kbn/2c,dn/2e.

Exercise. Prove Mantel’s Theorem using induction on n, but remove only a single vertex each time.

Proof (Second): As G is triangle-free we infer (as in the previous proof) that d(x) + d(y) ≤ n for every
edge xy ∈ E(G). Summing this inequality over all the edges we get∑

xy∈E
(d(x) + d(y)) ≤ mn .

On the other hand, by Jensen’s inequality

∑
xy∈E

(d(x) + d(y)) =
∑
x

d2(x) ≥
↑

Jensen

n

(∑
d(x)
n

)2
=
↑∑

x
d(x)=2m

n
4m2

n2 = 4m
2

n

thus 4m
2

n ≤ mn, giving the desired bound. Furthermore if m =
⌊
n2

4

⌋
, then all the above inequalities must

be equalities. In particular, we must have d(x) + d(y) = n for any edge xy ∈ E(G). As in the previous
proof, this means that G must be Kbn/2c,dn/2e.

Proof (Third): Let A be an independent set of maximal size in G. Since G is triangle-free we know
that N(x) is an independent set for every x, implying that ∆(G) ≤ |A| (where we use ∆(G) to denote
the maximum degree of a vertex in G). Setting B = V \A, we see that as A is an independent set, every
edge touches B. Therefore,

m ≤
∑
x∈B

d(x) ≤ |B|∆(G) ≤ |B||A| ≤
(
|A|+ |B|

2

)2
= n2

4 ,

implying the desired bound on m. Finally, if m =
⌊
n2

4

⌋
, then the above inequalities are equalities and so

B must be an independent set, implying that G is bipartite. As in previous proofs, this means that G
must be Kbn/2c,dn/2e.
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Proof (Fourth): Let x = (x1, . . . , xn) ∈ Rn be a vector satisfying
∑
xi = 1 and 0 ≤ xi ≤ 1. Define

f(x) =
∑
ij∈E xixj . We first observe that taking x = ( 1

n , . . . ,
1
n ) gives an x for which f(x) ≥ m

n2 . We
now claim that f(x) ≤ 1

4 for every x. Indeed, if ij /∈ E then shifting the weight assigned to xi to xj
(assuming the weight of the neighbors of xj is at least as large as the weight assigned to the neighbors of
xi) does not decrease the value of f . If we repeat this process we get that f is maximized when all the
weight is concentrated on a clique. As G is K3-free, the weight is concentrated on two vertices, hence
f(x) = xixj ≤ 1

4 . Combining the above two observations, we see that m
n2 ≤ 1

4 .

1.2 Turán’s Theorem
Theorem 1.2 (Turán’s Theorem (weak version)). If G is Kr+1-free then m ≤ (1− 1

r )n
2

2 .

Definition. Turán’s graph, denoted Tr(n), is the complete r-partite graph on n vertices which is the
result of partitioning n vertices into r almost equally sized partitions (bn/rc , dn/re) and taking all edges
connecting two different partition classes (note that if n ≤ r then Tr(n) = Kn). Denote the number of
edges in Turán’s graph by tr(n) = |E(Tr(n))|.

Fact. Turán’s graph Tr(n), maximizes the number of edges among all r-partite graphs on n vertices, and
it is the only graph which does so.

Exercise. Prove the above assertions.

Theorem 1.3 (Turán’s Theorem (strong version)). If G is Kr+1-free then m ≤ tr(n). Furthermore,
equality holds if and only if G = Tr(n).

Proof (First): We start with the weak version, and proceed by induction on n, noting that the assertion
is trivial for n ≤ r (why?). Assume G is maximal Kr+1-free graph, hence it has a Kr subgraph. We
denote this copy of Kr by X, and the rest of G by Y . Since G is Kr+1-free, the number of edges from
any vertex in Y to X is at most r − 1, therefore the number of edges between X and Y is bounded by
(n− r)(r − 1). By induction the number of edges in Y is bounded by (1− 1

r ) (n−r)2

2 , thus the number of
edges in G is at most (

r

2

)
+ (n− r)(r − 1) +

(
1− 1

r

)
(n− r)2

2 =
(

1− 1
r

)
n2

2 ,

proving the weak statement.
A close look at the above proof gives the strong statement as well. We again proceed by induction on

n, noting that both assertions are trivial for n ≤ r. We first observe that removing a single vertex from
each of the clusters of Tr(n) gives Tr(n− r), implying that(

r

2

)
+ (n− r)(r − 1) + tr(n− r) = tr(n) .

This implies the first part of the strong version. As to the second part, note that if m = tr(n), then
Y must contain tr(n − r) edges and induction then gives that G restricted to Y must be isomorphic to
Tr(n − r) and is in particular a complete r-partite graph. Furthermore, equality also means that every
vertex of Y must be connected to exactly r − 1 of the vertices of X. It is then easy to see that since G
is Kr+1-free that this means that G is also r-partite (we can add each vertex x of X to the cluster of
Tr(n−r) that has the vertices that are connected to all the vertices of X besides x. Convince yourself that
this is well-defined). Since Tr(n) is the only r-partite graph with tr(n) edges, the proof is complete.
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Proof (Second): We will prove that if G is a Kr+1-free graph on n vertices with the maximum possible
number of edges, then it must be a complete k-partite graph. Since G is assumed to be Kr+1-free this
means that k ≤ r, and so m ≤ tr(n) and that equality can only hold if G = Tr(n) (again, since Tr(n) is
the only r-partite graph with tr(n) edges).

Showing that G is a complete k-partite graph for some k is equivalent to showing that for any triple
of vertices x, y, z ∈ V , if xz /∈ E and yz /∈ E then xy /∈ E. So assume xz /∈ E and yz /∈ E but xy ∈ E.
If d(z) < d(x), we can replace z by a vertex x′ which will be connected to all of N(x) (and thus to
y). The resulting graph will still be Kr+1-free and will contain more edges. Hence, we can assume that
d(z) ≥ d(x) and similarly d(z) ≥ d(y). Replacing both x and y by two vertices z′ and z′′ connected to
N(z) (and thus not connected to each other or to z), it is easy to check that we get a graph that is still
Kr+1-free and contains more edges than G which is again a contradiction.

Proof (Third): We will prove by induction on n that if G has tr(n) edges and G is Kr+1-free then
G = Tr(n) (convince yourself that this indeed proves the theorem). The claim is clearly true when n ≤ r.
Let x be a vertex of minimal degree. Then δ(Tr(n)) ≥ d(x) (as Tr(n) maximizes δ(G) in comparison to
every other graph with tr(n) edges). We thus get

e(G\{x}) ≥ e(G)− δ(Tr(n)) = tr(n)− δ(Tr(n)) = tr(n− 1) ,

where the last equality follows from observing that Tr(n−1) is obtained from Tr(n) by removing a vertex
from a cluster of size dn/re, which amounts to removing δ(Tr(n)) edges. Since G\{x} is Kr+1-free, we
get from induction that G\{x} = Tr(n− 1), so in particular G\{x} is r-partite. Since G is Kr+1-free, x
is connected to vertices in at most r − 1 of the partition classes of G\{x} so G is also r-partite and so
must be isomorphic to Tr(n).

The problem of proving existence of independent sets is of course closely related to that of finding
cliques as each independent set corresponds to a clique in the complement graph and vice versa.

Proposition 1.4. For every graph G we have

α(G) ≥
∑
x

1
1 + d(x)

where α(G) is the size of the largest independent set in G.

Proof: Given some arbitrary ordering σ of the vertices of G, say x1, . . . , xn, let Iσ be a vertex set
with the property that xi ∈ I and xixj ∈ E then i < j (all the neighbors of xi appear after it in the
ordering). Obviously Iσ is an independent set. Pick a random ordering σ of the vertices and define
Xv = 1 ⇐⇒ v ∈ I. Then

E
σ

[|Iσ|] = E

[∑
v

Xv

]
=
∑
v

E[Xv] =
∑
v

P [Xv = 1] =
∑
v

1
1 + d(v) .

Thus there is an ordering σ for which |Iσ| ≥
∑
x

1
1+d(x) , and in particularly α(G) ≥

∑
x

1
1+d(x) .

1.3 Ramsey’s Theorem
Theorem 1.5 (Ramsey). For every t there exists N = R(t) such that every 2-coloring of the edges of
KN has a monochromatic Kt subgraph.
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Proof (First): We will show that R(t) ≤ 4t. Take a graph on 22t vertices, and pick an arbitrary vertex
v. At least one of the colors, say black, appears on at least half of the edges incident with v. We now set
x1 = v and color it black (if the popular color was white we color x1 white). Now, remove v and vertices
u so that vu is colored white and note that we are left with at least 22t−1 vertices. We repeat this process
with whatever vertices left, resulting in x2, x3, . . .. After i iterations, there are at least 22t−i vertices left,
hence the process will pick 2t − 1 vertices. At least t of them will have the same color and it is easy to
see that the way we defined them guarantees that they will span a monochromatic clique of size t.

Proof (Second): We prove by induction on s+ t that

R(s, t) ≤
(
s+ t− 2
s− 1

)
,

where R(s, t) is the generalization of R(t) (we want either black Kt or white Ks). Base case: when s = 2
(t = 2 is symmetric) then R(2, t) = t (either all the edges black and we get a black Kt, or we have a
white K2 which is a single white edge). So suppose we have established the required upper bound for
both R(s− 1, t) and R(s, t− 1). We will now prove that

R(s, t) ≤ R(s− 1, t) +R(s, t− 1) . (1.1)

Induction will then imply that

R(s, t) ≤
(
s+ t− 3
s− 2

)
+
(
s+ t− 3
s− 1

)
=
(
s+ t− 2
s− 1

)
.

Take a colored graph on R(s − 1, t) + R(s, t − 1) vertices. Pick an arbitrary vertex x. Denote by
A the vertices connected to x by black edges and by B those connected to it by white edges. Either
|A| ≥ R(s, t − 1) or |B| ≥ R(s − 1, t), w.l.o.g. assume the former. Then, by the induction hypothesis A
has a white Ks or black Kt−1 and together with x it forms a black Kt, and anyway we are done. Hence
(1.1) holds, and we are done.

Corollary 1.6.

R(t) = R(t, t) ≤
(

2t− 2
t− 1

)
≤
(

2t
t

)
= (2t)!

(t!)2 ≈
√

4πt
( 2t
e

)2t[√
2πt

(
t
e

)t]2 = 4t√
πt

Remark. Stirling approximation states that n! ≈
√

2πn
(
n
e

)n
Theorem 1.7. For every t ≥ 3 we have R(t) ≥ 2t/2.

Proof: We first claim that if
(
n
t

)
21−(t

2) < 1 then R(t) ≥ n. We can prove this using a “probabilistic
argument” by noting that if we take a random coloring ofKn then the probability to have a monochromatic
Kt subgraph is at most

(
n
t

)
21−(t

2) so if the above inequality holds then with positive probability there will
be no monochromatic Kt so there must be at least one coloring with no monochromatic Kt. We can also
prove this using an equivalent “counting argument”, as follows; the number of coloring of the complete
graph on n vertices with a monochromatic Kt is bounded by

(
n
t

)
· 2 · 2(n

2)−(t
2) so if the above inequality

holds then this number is smaller than the total number of colorings which is 2(n
2), hence there must be

one coloring with no monochromatic Kt.
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We now just need to work out the largest n for which the above inequality holds. Note that
(
n
t

)
≤ nt

t! ,
so taking n = 2t/2 gives (

n

t

)
· 21−(t

2) ≤ nt · 2 · 2t/2

t! · 2t2/2
= 2t2/221+t/2

t!2t2/2
= 2t/2+1

t! < 1

for every t ≥ 3.

2 Second Lecture
In the last lecture, we proved Turán’s Theorem, which says that ex(n,Kr+1) ∼ (1− 1

r )n
2

2 . Today we will
generalize it to arbitrary graphs.

2.1 The Erdős-Stone-Simonovits Theorem
Theorem 2.1 (Erdős-Stone-Simonovits).

ex(n,H) =
(

1− 1
χ(H)− 1 ± o(1)

)
n2

2 .

In other words for every H, r and ε, such that χ(H) = r + 1, there exists n0 = n0(r,H, ε) such that
for every n > n0 (

1− 1
χ(H)− 1 − ε

)
n2

2 ≤ ex(n,H) ≤
(

1− 1
χ(H)− 1 + ε

)
n2

2

The lower bound is very easy; the Turán graph Tr(n) is r-colorable, hence it is H-free (recall that we
assume χ(H) = r + 1). It is now easy to check (do this) that

e(Tr(n)) = tr(n) ≥
(

1− 1
r
− o(1)

)
n2

2 ,

so we are just left with proving the upper bound. We note that it is clearly enough to prove the upper
bound only for Kv

r+1(which is the v-blowup1 of Kr+1) as if χ(H) = r+ 1, then H is a subgraph of Kv
r+1

for |v| = |V (H)|. So our goal is now to prove the following

Theorem 2.2 (Erdős-Stone-Simonovits (upper bound)). For every r, v and ε > 0, there exists n0 =
n0(r, ε, v) such that every graph on n ≥ n0 vertices with m ≥ (1− 1

r + ε)n
2

2 edges contains Kv
r+1.

It will be easier to prove Theorem 2.2 by assuming that the graph is not only dense “globally” but
also “locally”. This is achieved by the following claim.

Claim 2.3. For every ε > 0 there is n2 = n2(ε) so that for every n ≥ n2 if G has n vertices and at least
(1− 1

r + ε)n
2

2 edges, then it has a subgraph G′ on n′ ≥
√
εn/4 vertices satisfying δ(G′) ≥ (1− 1

r + ε
2 )n′.

Given the claim above, it will be sufficient to prove the following variant of Theorem 2.2.

Theorem 2.4. For every r, v and ε > 0, there exists n1 = n1(r, ε, v) such that every graph G on n ≥ n1
vertices satisfying δ(G) ≥ (1− 1

r + ε)n contains Kv
r+1.

1The v-blowup of a graph K is obtained by replacing every vertex x of K by an independent set Ix of size v, and
replacing every edge (x, y) by a complete bipartite graph connecting Ix to Iy .
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Let us first show how to derive Theorem 2.2 from Claim 2.3 and Theorem 2.4.

Proof (Theorem 2.2): By Claim 2.3 if we start with G on n ≥ n2(ε) vertices we can pass to a subgraph
G′ on n′ ≥

√
εn/4 vertices for which δ(G′) ≥ (1− 1

r + ε
2 )n′. In order to be able to use Theorem 2.4 on G′

we pick n0 such that n′ ≥
√
εn0/4 ≥ n1(r, ε2 , v), so we set n0(r, ε, v) = max {4n1(r, ε/2, v)/ε, n2(ε)}.

To complete the proof of Theorem 2.2 we now turn to prove Claim 2.3 and Theorem 2.2.

Proof (Claim 2.3): We prune the vertices of G until we get the appropriate subgraph. As long as G
has a vertex with a degree ≤ (1− 1

r + ε/2)n′ we remove it from G (n′ is the number of vertices currently
left). Assume the process stopped with n′ vertices. Thus

m ≤ n
(

1− 1
r

+ ε

2

)
+ (n− 1)

(
1− 1

r
+ ε

2

)
+ · · ·+ (n′ + 1)

(
1− 1

r
+ ε

2

)
+
(
n′

2

)
=
(

1− 1
r

+ ε

2

)(
n+ n′ + 1

2

)
(n− n′) +

(
n′

2

)
≤
(

1− 1
r

+ ε

2

)(
n2 − (n′)2

2

)
+ n+ (n′)2

2

≤
(

1− 1
r

+ ε

2

)
n2

2 + (n′)2 + n .

Since the claim’s assumption is that m ≥
(
1− 1

r + ε
)
n2

2 , we can combine these lower/upper bounds on m
to deduce that (n′)2 ≥ εn2

4 −n. If we add the assumption that n ≥ 8
ε then the right hand side in this last

inequality is at least εn2

8 implying that n′ ≥
√
εn/4, and the proof is complete (and we set n1(ε) = 8/ε

as the function in the claim’s statement).

Proof (Theorem 2.4): Assume the statement is true for r − 1, namely that n1(r − 1, ε, v) was defined
for every v and ε > 0 . Given v and ε > 0 we now wish to define n1(r, ε, v). We first ask that
n1(r, ε, v) ≥ n1(r − 1, ε, v̄), for a v̄ that we will determine later. This means that if G has at least
n1(r, ε, v) vertices and δ(G) ≥ (1 − 1

r + ε)n (≥ (1 − 1
r−1 + ε)n) then G contains a copy of K v̄

r . Let
B1, . . . , Br denote the r partition classes of this copy of K v̄

r . Our plan is to show that we can find in
U = V \(B1 ∪ · · · ∪Br) a set B̄0 of v vertices so that for every 1 ≤ i ≤ r, there is a set B̄i ⊆ Bi of size v,
so that B̄0, B̄1 . . . , B̄r form a copy of Kv

r . Note that no matter how we pick B̄1 ⊆ B1, ..., B̄r ⊆ Br these
sets will form a complete r-partite graph, so we just need to make sure that the v vertices of B̄0 will be
connected to all the vertices of B̄1 . . . , B̄r.

Let W ⊆ U contain all the vertices w such that w is connected to at least v vertices in each of the
sets Bi. We claim that |W | ≥ εn

2 . To prove this we bound e(U, V \U) from above and from below (recall
that V \U = B1 ∪ · · · ∪Br). Since |B1 ∪ · · · ∪Br| = v̄r we have as a lower bound

e(U, V \ U) ≥ r̄vδ(G)− (rv̄)2

↑
# edges in U

≥ r̄vn
(

1− 1
r

+ ε

)
− (rv̄)2 = (r − 1)v̄n+ εrv̄n− (rv̄)2 .

Since each vertex u ∈ U\W has some Bi where it has less than v neighbors, we have as an upper bound

e(U, V \ U) ≤ |W |rv̄ + (|U | − |W |)((v − 1) + (r − 1)v̄)
≤ |W |rv̄ + (n− |W |)(v + (r − 1)v̄)
= |W |(v̄ − v) + vn+ (r − 1)v̄n
≤ |W |v̄ + vn+ (r − 1)v̄n .
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Combining the above estimates for e(U, V \ U) we infer that

|W |v̄ ≥ εrv̄n− (rv̄)2 − vn .

If we now add the requirement that n ≥ 4rv̄/ε then we are guaranteed that (rv̄)2 ≤ εrnv̄/4, and if we
assume that v̄ ≥ 4v/ε then we are guaranteed that nv ≤ εrnv̄/4. So if both conditions hold then we get

|W |v̄ ≥ εrnv̄

2 ,

implying that |W | ≥ εn
2 , as needed. So to make the above work we set v̄ = 4v/ε and add the further

assumption that n ≥ 4rv̄/ε = 16rv/ε2. Up to now we assume that n ≥ max
{
n1(r − 1, ε, 4v/ε), 16rv/ε2}.

Now, each of the vertices inW is connected to r vertices in each of the sets B1, . . . , Br. There are
(
v̄
v

)r
ways to choose r subsets B′1 ⊆ B1, ..., B

′
r ⊆ Br of size v each. Therefore, there is a W ′ ⊆ W of size at

least |W |/
(
v̄
v

)rso that all the vertices in W ′ are connected to the same collection of subsets in B1, . . . , Br.
We can finally set this collection of subsets to be B̄1 . . . , B̄r and take B̄0 to be v of the vertices of W ′. Of
course we need to make sure that |W ′| ≥|W |/

(
v̄
v

)r ≥ εn2 (v̄v)r ≥ v so we just need to further require that
n ≥ v̄rv/ε. We can finally set n1(r, ε, v) = max

{
n1(r − 1, ε, 4v/ε), 16rv/ε2, (4v/ε)rv/ε

}
.

2.2 The Zarankiewicz Problem for K2,2

For χ(H) ≥ 3, the Erdős-Stone-Simonovits Theorem gives us a pretty good estimate for

ex(n,H) =
(

1− 1
χ(H)− 1 + o(1)

)
n2

2 = Θ(n2) .

But when χ(H) = 2 we get that ex(n,H) = o(n2), and wish to know exactly how “small” is this o(n2).
We start by exploring complete bipartite graphs Ks,t and specifically K2,2.

Theorem 2.5.
ex(n,K2,2) ≤ n

4
(
1 +
√

4n− 3
)
∼ n3/2

2

Proof: Let us count the number of triples of vertices (x, y, z) so that x, y, z form a copy of K1,2 with y
as the middle vertex. Denote by #K1,2 the number of such triples. Then

#K1,2 =
∑
v

(
d(v)

2

)
≥
↑

Jensen

n

( 1
n

∑
d(v)

2

)
= n

(
2m/n

2

)
= 2m2

n
−m .

If G is K2,2-free then #K1,2 ≤
(
n
2
)
, otherwise two of the K1,2 share the same x, z coordinates forming a

K2,2. Combining the above two estimates on #K1,2 we infer that 2m2

n −m ≤
(
n
2
)
or equivalently that

4m2 − 2mn− n3 − n2 ≤ 0, implying the desired upper bound on m.

A lower bound (nearly) matching the one given in Theorem 2.5 is given in the next theorem.

Theorem 2.6.
ex(n,K2,2) ≥

(
1
2 − o(1)

)
n3/2

9



Proof: We first show that for every prime p, we can construct a K2,2-free graph on n = p2 − 1 vertices
with m ≥ (p2 − 1)(p − 1)/2 =

( 1
2 − o(1)

)
n3/2 edges. We will then explain why this implies the lower

bound for all n. So given a prime p we define a graph on p2 − 1 vertices where each vertex is a pair
(a, b) ∈ Fp × Fp, (a, b) 6= (0, 0). We “connect” vertex (a, b) to vertex (x, y) iff ax+ by = 1 (over Fp).

Assume v = (a, b) 6= (0, 0). Then, it is easy to check that in all cases (i.e. if v is either (a, 0), (0, b) or
(a, b) with a, b 6= 0), that there are exactly p solutions to ax + by = 1. This means that we always have
d(v) ≥ p− 1 (we omit the possible solution satisfying x = a, y = b since we do not allow loops), implying
that m ≥ (p2 − 1)(p− 1)/2 as needed.

To show that the graph is indeed K2,2-free, take any v = (a′, b′), u = (a, b), u 6= v. Then the equations

ax+ by = 1
a′x+ b′y = 1

have at most one solution implying that v and u have at most one common neighbor, so the graph is
indeed K2,2-free.

The above construction works when n is a prime. But since it is known that for every integer n there
exists a prime p satisfying n ≤ p ≤ (1 + o(1))n the above lower bound applies to all values of n.

2.3 The Zarankiewicz Problem for General Ks,t

Theorem 2.7. One can extend the argument we used in order to prove the upper bound for ex(n,K2,2)
to obtain the following general bound: For every s ≤ t we have

ex(n,Ks,t) ≤
(

1
2 + o(1)

)
(t− 1)1/sn2− 1

s

where o(1)→ 0 when n→∞.

Remark. Prove the above theorem. A slightly weaker bound (with 1
2 + o(1) replaced by e/2 follows by

using the inequalities
(
n
k

)k ≤ (nk) ≤ ( enk )k.
We now give a general lower bound for ex(n,Ks,t).

Theorem 2.8. For every s ≤ t we have

ex(n,Ks,t) ≥
1
16n

2− s+t−2
st−1

Proof: Consider the random graph G(n, p). The expected number of edges and copies of Ks,t are given
by

E[m] = p

(
n

2

)
> pn2/4

E[#Ks,t] =
(
n

s

)(
n

t

)
pst ≤ ns+tpst

We now want to pick p so that we will have the relation

E[#Ks,t] ≤ ns+tpst ≤
1
8pn

2 ≤ 1
2 E[m] ,

so we set p = 1/2n
s+t−2
st−1 . We then get that

10



E [m−#Ks,t] = E[m]− E[#Ks,t] ≥
1
2 E[m] ≥ 1

8pn
2 = 1

16n
2− s+t−2

st−1 .

So there exists a graph G in which m−#Ks,t ≥ 1
16n

2− s+t−2
st−1 , and by removing one edge from each Ks,t

we get a Ks,t-free graph with at least 1
16n

2− s+t−2
st−1 edges.

3 Third Lecture
3.1 Applications of the Zarankiewicz Problem
Recall that last lecture we posed as an exercise to show that ex(n,Ks,t) ≤ 2(t − 1)1/sn2−1/s for every
s ≤ t. We now give two applications of this bound.

Let S be a set of n points in the plane. How many pairs can be at distance 1? It is conjectured
that the maximum number of such pairs is n1+o(1). Currently, the best known bound is O(n4/3). Let us
quickly observe a weaker upper bound of O(n3/2). Given n points, we define a graph over these n points,
where (u, v) is an edge iff d(u, v) = 1. It follows from elementary Geometry that this graph is K2,3-free2,
hence by the above bound for ex(n,K2,3) we get that the graph has O(n3/2) edges, implying the desired
bound on the number of pairs at distance 1.

We now move to a more complicated application.

Definition 3.1. Given a set of integers A, we denote by A+A = {a+ a′ | a, a′ ∈ A} its sumset.

We now ask how small can be a set A ⊂ N if
{

1, 22, 32, . . . ,m2} ⊆ A+A? It is obvious that |A| ≥
√
m

(make sure you see this), but this bound can be improved as follows:

Theorem 3.2 (Erdős-Newman). If
{

1, 22, 32, . . . ,m2} ⊆ A+A then A ≥ m2/3−o(1).

Remark. The best known upper bound is a construction of a set of size |A| ≤ m
logω(1)(m) , so there is still

a huge gap between the best upper/lower bounds.

Proof: Suppose
{

1, 22, 32, . . . ,m2} ⊆ A + A, and set n = |A|. Define a graph G whose vertices are the
n members of A and where (a1, a2) is an edge iff a1 + a2 = x2 for some 1 ≤ x ≤ m. Note that the
assumption on A implies that G has at least m edges. We will now show that G has no copy of K2,t
where t = no(1). The above bound on ex(n,Ks,t) then gives m ≤ |E(G)| ≤ 2(no(1))1/2n2−1/2 = no(1)+3/2

implying that n ≥ m2/3−o(1). Observe that showing that G has no copy of K2,t is equivalent to showing
that every pair of vertices have at most t common neighbors. So our goal now is to show that every pair
of vertices have no(1) common neighbors.

Fix a pair of vertices a1, a2 and let b be one of their common neighbors. Then there are x, y satisfying
a1 + b = x2 and a2 + b = y2, implying that a1−a2 = x2−y2. For each such common neighbor b we define
a label Lb = (x+ y, x− y). Note that if b, b′ are two distinct common neighbors of a1, a2 then Lb 6= Lb′

since given a label (p, q) we can recover x and y (by solving x+ y = p and x− y = q), and therefore also
b itself. Now note that for any label (p, q) both p and q divide a1− a2, hence the the number of common
neighbors of a1 and a2 is at most (D(|a1 − a2|))2 where D(x) denotes the number of integers that divide
x. Hence all that is left is to prove that D(n) = no(1) (note that we can assume that A ⊆ [m2], so the
difference between any pair of integers is at m2, and m2 ≤ n by a previous observation).

Suppose n =
∏r
i=1 p

αi
i is the prime factorization of n. Then D(n) =

∏r
i=1(1 +αi) and hence we need

to prove that for every ε > 0 and large enough n, we have
∑r
i=1 log(1 + ai) ≤ ε logn or equivalently that

2There is at most one circle of radius r passing through any 3 points, and a point connecting to those three points must
be the center of that circle
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∑r
i=1 log(1 + αi)∑r
i=1 αi log pi

≤ ε .

Observe that log(1+αi)
αi log pi

≤ ε/2 if either αi ≥ n0(ε) or if pi ≥ n1(ε). So suppose there is i0 = i0(ε) so that
log(1 + αi) ≤ ε

2αi log pi for all i > i0. Examining the numerator, we have that for some m(ε) we have

r∑
i=1

log(1 + αi) =
∑
i≤i0

log(1 + αi) +
∑
i>i0

log(1 + αi)

≤ m(ε) + ε

2
∑
i

αi log pi

≤ m(ε) + ε

2 logn .

We now conclude that ∑r
i=1 log(1 + αi)∑r
i=1 αi log pi

≤
m(ε) + ε

2 logn
logn ≤ m(ε)

logn + ε

2 ≤ ε ,

for all large enough n, thus completing the proof.

3.2 The Turán Problem for Trees
We will now try to estimate ex(n, T ) where T is a tree on t + 1 vertices (we will always assume that
t ≥ 1). A simple lower bound can be achieved by taking a disjoint union of cliques of size t, implying
that ex(n, T ) ≥ n(t−1)

2 . The following was a well known conjecture.

Conjecture 3.3 (Erdős-Sos). The above lower bound, ex(n, T ) ≥ n(t−1)
2 , is tight.

Theorem 3.4 (Ajtai-Komlos-Simonovits-Szemeredi). The Erdős-Sos Conjecture is correct.

We will not prove the above theorem (whose proof actually has not appeared yet), but rather focus
on some special cases and some weaker bounds. We start with the following simple but very useful fact.

Claim 3.5. If G has m edges, then G has a subgraph H with min-degree δ(H) > m
n .

Proof: If δ(G) > m
n we are done. Else, pick v ∈ V where d(v) ≤ m

n , and remove it from the graph. The
new average degree is at least ∑n

i=1 d(i)− 2m
n

n− 1 =
2m
(
1− 1

n

)
n
(
1− 1

n

) = 2m
n

hence the average degree never decreases. Continuing in this way we eventually end up with the required
subgraph.

We now prove a weak version of the Erdős-Sos Conjecture.

Claim 3.6. For every tree T on t+ 1 vertices, we have ex(n, T ) < (t− 1)n.

Proof: If G has (t − 1)n edges, then by the above claim it has a subgraph H with min-degree at least
t. So all that is left is to prove that if δ(H) ≥ t then H has a copy of every tree of size t + 1. Recall
that every tree has a leaf, hence we can order the vertices v1, v2, . . . , vt+1 such that every vi is connected
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to exactly one of the vertices v1, . . . , vi−1. So assuming we have already found in H a copy of the tree
spanned by v1, . . . , vi−1 we now wish to find a vertex to represent vi and thus obtain a copy of the tree
spanned by v1, . . . , vi. Assume vi is connected to vj , 1 ≤ j ≤ i− 1, thus we need to find a neighbor of vj
that does not belong to v1, . . . , vi−1. As d(vj) ≥ t and vj has at most t− 1 neighbors among the vertices
v1, . . . , vi−1 we can find such a vertex which we will take to be vi.

Claim 3.7. Every graph has a cycle/path of length at least at least δ(G) + 1.

Proof: Take the longest path in the graph, x1, . . . , xm. All the neighbors of xm must be on that path.
One of them, together with xm, closes a cycle of length at least d(xm) + 1 ≥ δ(G) + 1.

Theorem 3.8 (Dirac). If δ(G) ≥ n
2 then G has a Hamiltonian cycle.

Proof: Consider a path, x1, . . . , xm, of maximum length. All the neighbors of x1 and xm are on that
path as well. We claim that there exists 1 ≤ i ≤ m − 1 such that (x1, xi+1) ∈ E and (xi, xm) ∈ E. At
least n/2 of the vertices x1, . . . , xm−1 (which are at most n − 1 vertices) are connected to xm, and at
least n/2 xi vertices such that xi+1 is connected to x1. By the pigeon-hole-principle, there is a xi which
fulfills both conditions.

Now, x1, . . . , xi, xm, . . . , xi+1, x1 is a cycle of length m. If n = m we are done. Otherwise, it is enough
to show a vertex outside the cycle which is connected to it (which forms a path of length m + 1). This
holds if G is connected, and this follows directly from δ(G) ≥ n

2 (as every two vertices are either connected
or share a common neighbor).

It is easy to see that the lower bound on the min-degree in Dirac’s Theorem is tight. For example,
we can take two copies of Kn sharing a single vertex.

The next claim shows that we can improve the previous bound of δ(G)+1 on the length of the longest
path in a graph if we further assume the graph to be connected (note that without this assumption the
bound δ(G) + 1 is tight).

Claim 3.9. If G is connected, then G has a path of length min{n, 2δ(G) + 1}.

Proof: The proof is very similar to the proof of Dirac’s Theorem and is thus left as an exercise. It is also
easy to see that the bound is tight.

Theorem 3.10 (Erdős-Gallai). If G is Pt+1-free then m ≤ (t−1)n
2 . Furthermore, equality holds only

when G is a disjoint union of Kt’s.

Proof: By induction on n. For n ≤ t, this is trivial. If G is not connected, we can apply induction on
each of the connected component of G.

Assume that G is connected. Our goal is then to show that m < (t−1)n
2 . Since G is connected and

n > t we infer that G must be Kt-free. Also, if δ(G) ≥ t
2 , then by Claim 3.9 G has a path of length

min{n, t + 1} ≥ t + 1 a contradiction. So assume G has a vertex with degree ≤ t−1
2 . Removing this

vertex, we get from induction (using the assumptions that G is Kt-free and Pt+1-free) that the number
of edges in the new graph is strictly smaller than (t−1)(n−1)

2 . As we removed a vertex with degree ≤ t−1
2 ,

we get that m < t−1
2 + (t−1)(n−1)

2 = (t−1)n
2 .
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3.3 The Girth Problem and Moore’s Bound
Definition 3.11. The girth of a graph G, denoted g(G), is the length of the shortest cycle in G.

We are interested in how many edges are needed to guarantee that g(G) is small. We start with a
lower bound.

Theorem 3.12. There exists a graph on n vertices and c′n1+ 1
2k−1 edges satisfying g(G) > 2k.

Proof: Let p = cn1/(2k−1)

n , for a constant c that will be chosen later, and consider G(n, p). Then the
expected number of edges and copies of Ct are given by

E[m] ≈ n2

2 p = c

2n
1+ 1

2k−1

E[#Ct] ≤ ntpt ≤ ctnt/(2k−1)

E[#C3 + #C2 + · · ·+ #C2k] =
2k∑
t=3

ctnt/(2k−1) = c2kn1+ 1
2k−1 +O(n)

Therefore
E[m−#C≤2k] = n1+ 1

2k−1

( c
2 − c

2k − o(1)
)
∼ c′n1+ 1

2k−1

for c ≤ 1
2 . By taking a graph for which m−#C≤2k is at least the expected value, and removing an edge

from each short cycle, we get the desired graph.
We now turn to prove an upper bound, which is usually referred to as the Moore Bound.

Theorem 3.13 (Moore’s Bound). Every graph with at least 2n1+ 1
k edges satisfies g(G) ≤ 2k.

Proof: We claim that every graph G onm ≥ 2n edges satisfies g(G) ≤ 2 log(n)/ log(m/n−1). To see this,
we first use Claim 3.5 in order to find a subgraph G′ of G on n′ vertices with minimal degree d > m

n ≥ 2.
Set g = g(G). Pick a vertex x in G′ and grow a BFS tree of depth g/2 (assume g is even) with x as its
root. Since g(G′) ≥ g(G) = g, we see that all vertices of this tree must be distinct, so

n′ ≥ 1 + d+ d(d− 1) + · · ·+ d(d− 1)g/2−1 ≥ (d− 1)g/2 ,
implying that

g ≤ 2 logn′

log(d− 1) ≤
2 logn

log(m/n− 1) ,

as needed. Finally, if m ≥ 2n1+ 1
k then the above bound implies that g ≤ 2 logn

log(n1/k) = 2k.

It is conjectured that the Moore bound gives the correct answer for the girth problem, namely, that
there are graphs with Ω(n1+ 1

k ) edges and no cycle of length at most 2k.

3.4 Application of Moore’s Bound to Graph Spanners
Given a graph G, we wish to find a sparse subgraph H which will satisfy the condition

δG(u, v) ≤ δH(u, v) ≤ (2k − 1)δG(u, v)

for every pair of vertices u, v. That is, we want to remove edges but to keep the distance between
any pair of vertices close to the original distance. A graph satisfying the above condition is called a
(2k − 1)-spanner.
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Theorem. Every graph has a subgraph which is a (2k − 1)-spanner with at most n1+ 1
k edges.

Proof: Add the edges of G one by one where an edge is put into H only if the edge does not close a
cycle of length ≤ 2k. Then H has no cycle of length at most 2k, hence by Moore’s bound it has at most
n1+1/k edges. It is easy to see that H is indeed a (2k − 1)-spanner.

Exercise. Show that if Moore’s Bound gives the correct bound for the girth problem then there exist
graphs, whose every (2k − 1)-spanner has Ω(n1+ 1

k ) edges.

4 Fourth Lecture
4.1 The Turán Problem for Long Cycles
Definition 4.1. The circumference of a graph G, denoted c(G), is the length of the longest cycle in G.

We now ask how many edges are needed to guarantee that c(G) > t. The following theorem gives an
exact answer.

Theorem 4.2 (Erdős-Gallai). If G has more than t(n−1)
2 edges then c(G) ≥ t + 1. Furthermore, this

bound is tight when n = k(t− 1) + 1 (consider k copies of Kt all sharing a single vertex).

To prove the above theorem, we will need the following lemma.

Lemma 4.3. If G is 2-connected, then G has a cycle of length at least min{n, 2δ(G)} (tight when G
consists of several Kt sharing two vertices).

Proof (Theorem 4.2): By induction on n. Since there is nothing to prove when n ≤ t assume n > t. If
the graph has a vertex x where deg(x) ≤ t/2, then

e(G− {x}) ≥ e(G)− deg(x) > t(n− 1)
2 − t

2 ≥
t(n− 2)

2

and by the induction hypothesis, the statement holds.
Otherwise, δ(G) ≥ t+1

2 . If G is 2-connected, then by the lemma G has a cycle of length at least
min{n, t + 1} ≥ t + 1. If G is not 2-connected, then it has a cut-vertex x which separates it into two
otherwise disjoint components G1 and G2 which have n1 and n2 vertices. As G is assumed to contain
more than t(n−1)

2 = t(n1−1)
2 + t(n2−1)

2 edges, we can apply the induction to either G1 or G2 (verify this!),
completing the proof.

We now turn to prove the lemma we used.

Proof (Lemma 4.3): Let P = x0, . . . , xm be the longest path in G. There are several possible case:

1. If there is a vertex xi, where 0 < i < m such as x0 is connected to xi and xm to xi−1, then we can
turn this path into a cycle (as in the proof of Dirac’s Theorem). Furthermore, since G is assumed
to be connected, this cycle must be a Hamilton cycle, as otherwise some vertex of the cycle has to
be connected to a vertex not belonging to it, which gives a longer path.

2. If there is no vertex xi as above, then assume there is j < i− 1 such that x0 is connected to xi and
xm to xj and take i, j such as |i− j| is minimal (see Figure 4.1). Consider the cycle C that starts
with x0 goes to xj then jumps to xm, then goes to xi and then jumps back to x0. We claim that
this cycle is of length at least 2δ(G). By definition, C has xm and all its neighbors (as P has all of
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Figure 4.1: Cycle C = x0 . . . xjxm . . . xix0

Figure 4.2: Third case in the proof of the lemma. The illustration assumes that there is no common
neighbor, but this is not necessary for the proof.

xm’s neighbors, and none of them is between i and j), which are at least δ(G) vertices. Hence C
has at least δ(G)+1 vertices. Furthermore, if x` with ` 6= i is a neighbor of x0 then C contains x`−1
(as either ` > i or i < j). As we assume that the first case does not hold, x`−1 is not a neighbor of
xm, hence C contains an additional set of δ(G)− 1 vertices. Altogether |C| ≥ 2δ(G) as needed.

3. None of the neighbors of x0 appears on P after a neighbors of xm (see Figure 4.2). That is, if xi
is the furthest neighbor of x0 and xj is the furthest neighbour of xm, then either xi = xj or we
have the situation in Figure 4.2. Let p′ be the portion of P connecting xi to xj . Let A be the set
consisting of x0 and all its neighbors and B the set consisting of xm and all its neighbors. As G is
2-connected there are two vertex disjoint paths Q1, Q2 which connect A and B. It is easy to see
that p′ allows us to assume wlog that one of the paths Q1 or Q2 starts at xi. Indeed, we can start
walking on p′ from xi till we either hit xj (in which case we found a new path from A to B starting
at xi) or one of the paths Q1 or Q2 (in which case we can replace a portion of one of the paths with
a portion of p′). By a similar argument we can now further assume that one of the paths starts at
xj (it might be the same one that starts at xi). It is now easy to see that these two assumptions
imply that we can construct a cycle covering A ∪B, (see Figure 4.3) which has length at least

deg(x0) + 1 + deg(xm) + 1−1
↑

if xi=xj

≥ 2δ(G)

These are all the possible cases, thus proving the lemma.

4.2 Pancyclic Graphs and Bondy’s Theorem
Definition 4.4. A graph is pancyclic if it contains a cycle of every length 3 ≤ l ≤ n.

Theorem 4.5 (Bondy). If G is a Hamiltonian graph and m ≥ n2

4 then it is pancyclic unless m = n2

4
and G = Kn

2 ,
n
2
. [Bondy, 1971]

(a) Q1 has both xi and xj (b) Q2 has xi and Q1 has xj

Figure 4.3: Third case in the proof of the lemma. Dotted and dashed lines denote disjoint paths.
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Corollary. If m > n2

4 and G is Hamiltoninan then G is pancyclic.

Corollary. If δ(G) > n
2 then G is pancyclic.

Proof (Bondy): Assume G has a cycle of length n − 1, and let x /∈ Cn−1. If d(x) ≤ n−1
2 then in the

induced subgraph on the cycle there are at least n2

4 −
n−1

2 > (n−1)2

4 edges. By induction, we get that
the graph induced by this Cn−1 has a cycle of every length ≤ n− 1 and we are done. Assume then that
d(x) > n

2 . By the pigeonhole principle we get that for every 3 ≤ l ≤ n − 2 there are two neighbors of x
that together with it form a cycle of length l (make sure you see this point) and we are done again.

So assume that G has no cycle of length n−1. We need to prove that G = Kn
2 ,

n
2
. Note that for every

pair of adjacent vertices xi and xi−1 on the Hamilton cycle, and for every other vertex xj , the graph can
contain at most one of the edges (xi−1, xj) and (xi, xj+2), as otherwise we would get a cycle of length
n− 1. Therefore, for every i we have d(xi) + d(xi−1) ≤ n implying that

4m =
n∑
i=1

d(xi) + d(xi−1) ≤ n2 ,

implying that m ≤ n2

4 . But we assume that m ≥ n2

4 so m = n2

4 , hence m must be even and:
(∗) for every i, j the graph G contains exactly one of the edges (xi−1, xj) or (xi, xj+2).
We are left with showing that G is bipartite (and then from m = n2

4 it follows that G = Kn
2 ,

n
2
). We

claim that the alternating coloring along the Hamilton cycle is a legal coloring. Indeed, we cannot have
chords of length 2 (i.e. xi connected to xi+2) as that would create a cycle of length n− 1 (this actually
follows by invoking (∗) with xi−1, xi and xj = xi). This, together with (∗) implies that we have all chords
of length 3. This, together with (∗) implies that we have none of the chords of length 4. Continuing in
this fashion we deduce that there are no even chords (and that there are all odd chords) so the coloring
is legal.

4.3 The Moon-Moser Inequalities
Theorem 4.6. For every graph G we have

N3 ≥
4N2

3

(
N2

N1
− N1

4

)
where Ni is the number of copies of Ki in G (so N1 = n and N2 = m).

Proof: For an edge e denote by d(e) the number of triangles that contain e. Then we have

3N3 =
∑
e

d(e) ≥
∑

(x,y)=e

(d(x) + d(y)− n)

=
∑
x

d2(x)−mn ≥ n
(∑

d(x)
n

)2
−mn

= 4m2

n
−mn ,

and rearranging terms gives the required lower bound on N3.

Note that the above theorem implies that if a graph has n2

4 + 1 edges then it contains at least n
3 ,

triangles. So in particular this implies Mantel’s Theorem. Note that the n
3 bound on the number of
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triangles in graphs with n2

4 + 1 edges is weaker than the (tight) bn/2c bound you were asked to prove in
the home assignments. However, the theorem here is more general since it gives a lower bound for N3 for
any m > n2. One can generalize the above theorem to the case of Ks.

Theorem 4.7 (Moon-Moser). (Generalization of the previous theorem) If Ns−1 6= 0:

Ns+1 ≥
s2Ns
s2 − 1

(
Ns
Ns−1

− n

s2

)
Instead of proving the above theorem, we will prove the following more general theorem that deals

with copies of Ks in r-uniform hypergraphs.

Theorem 4.8 (de-Caen). Moon-Moser Theorem for r-uniform hypergraphs. If Ns−1 6= 0:

Ns+1 ≥
s2Ns

(s− r + 1)(s+ 1)

(
Ns
Ns−1

− (r − 1)(n− s) + s

s2

)
Proof: We try to imitate the proof of Theorem 4.6. In what follows e denotes some copy of Ks. We start
with the equation

(s+ 1)Ns+1 =
∑
e

d(e) ,

where d(e) is the number of copies of Ks+1 contain the vertex set of e. For each copy e of Ks, denote
e1, . . . , es the s copies of Ks−1 contained in it, where ei is the result of removing vertex i from e. We will
shortly prove that

d(e) ≥
∑
i d(ei)− (n− s)(r − 1)− s

s− r + 1 ,

but let us first show how to finish the proof using the above inequality. Using e′ to denote copies of Ks−1
we get

(s− r + 1)(s+ 1)Ns+1 = (s− r + 1)
∑
e

d(e)

≥
∑
e

(∑
i

d(ei)− (n− s)(r − 1)− s
)

=
∑
e′

d2(e′)−Ns ((n− s)(r − 1) + s)

≥ Ns−1

(∑
e′ d(e′)
Ns−1

)2
−Ns ((n− s)(r − 1) + s)

= s2N2
s

Ns−1
−Ns ((n− s)(r − 1) + s)

and rearranging the terms gives the theorem.
And now to the proof of the claim. We count how many copies of Ks there are with s− 1 vertices in

e (recall that e contains s vertices) and 1 in V \e. Denote that number by p. We first observe that

p =
s∑
i=1

(d(ei)− 1) =
s∑
i=1

d(ei)− s .

Next, we note that in an r-uniform hypergraph, if a vertex u does not form a copy of Ks+1 with a set
of s vertices e, then it does not form an edge together with some (r − 1)-subset of e. Hence, u can only
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create a copy of Ks together with subsets of e of size s− 1 which result from omitting one of these r− 1
vertices. In other words, u forms a copy of Ks with at most r − 1 of the subsets of e of size s− 1. Now,
there are d(e) vertices that form a copy of Ks+1with e, so each such vertex forms a copy of Ks with the
s subsets of e of size s− 1. By the above observation, the n− s− d(e) vertices that do not form a copy
of Ks+1, form a copy of Kswith at most r − 1 of the subsets of e of size s− 1. So we have

p ≤ s · d(e) + (n− s− d(e))(r − 1) ,

and combining the above two estimates for p proves the claim.

We now want to prove that if a graph has m >
(
1− 1

t

)
n2

2 edges, then it does not contain only one
copy of Kt, but actually many of them. To this end

Claim 4.9. Suppose G has m edges, and x is such that m =
(
1− 1

x

)
n2

2 . If x > s then

Ns+1

Ns
≥ n(x− s)
x(s+ 1)

Proof: Induction on s. For s = 1 by the definition of m we have

N2

N1
≥ n(x− 1)

2x .

Assuming the claim holds for s we will prove it for s+ 1.

Ns+2

Ns+1
≥
↑

Theorem 4.7

(s+ 1)2

(s+ 1)2 − 1

(
Ns+1

Ns
− n

(s+ 1)2

)

≥
↑

Induction

(s+ 1)2

(s+ 1)2 − 1

(
n(x− s)
x(s+ 1) −

n

(s+ 1)2

)

= n(x− s− 1)
x(s+ 2)

Corollary 4.10. If m > (1 − 1
s )n

2

2 then m =
(
1− 1

x

)
n2

2 with x > s, hence N3 > 0 implying N4 >
0,...,implying Ns+1 > 0. This is the weak version of Turán’s Theorem.

We now prove a more refined version of Turán’s Theorem.

Corollary. If G has m =
(
1− 1

x

)
n2

2 edges and x > s then G contains at least
(
n
x

)s+1 ( x
s+1
)
copies of

Ks+1. In particular, if m ≥ (1− 1
s + c)n

2

2 then G has at least c( n
s+1 )s+1 copies of Ks+1

3.

Proof: For the first assertion, we infer from Claim 4.9 that

Ns+1

N1
= Ns+1

Ns
· Ns
Ns−1

· . . . · N2

N1
≥

s∏
i=1

n(x− i)
x(i+ 1) =

(n
x

)s (x− 1)(x− 2) · · · (x− s)
1 · 2 · . . . · (s+ 1) (4.1)

Hence, Ns+1 ≥
(
n
x

)s+1 ( x
s+1
)
as we needed to show. As to the second assertion, note that if m =

(1− 1
s + c)n

2

2 then x > s+ c so for small enough c we get Ns+1 ≥ c ·
(

n
s+1

)s+1
.

3Follows from problem 3 in home assignment 1.
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5 Fifth Lecture
5.1 The Hypergraph Turán Problem
It is natural to consider the Turán Problem in the setting of r-uniform hypergraphs (r-graphs for short).
Surprisingly, while we have rather exact results for the graph Turán problem, already for 3-graphs the
problem becomes much harder. In fact, it becomes much harder even in the “first” non-trivial case,
when we forbid K3

4 , which is the complete 3-graph on 4 vertices. Let ex(n,K3
4 ) denote the maximum

number of edges a 3-graph can contain if it does not contain a copy of K3
4 . It is not hard to show that

ex(n,K3
4 ) ≥ ( 5

9 − o(1))
(
n
3
)
; to this end we do something very similar to what we did in the graph case.

We take n vertices and partition them into 3 sets V1, V2, V3 of almost equal size. We then take as edges all
triples of vertices (x, y, z) if they are of the form x ∈ V1, y ∈ V2, z ∈ V3, or of the form x, y ∈ Vi, z ∈ Vi+1,
where i ∈ [3] (and addition is modulo 3). Let’s call this graph T 3,4. A well known conjecture is that
ex(n,K3

4 ) ≤ ( 5
9 + o(1))

(
n
3
)
. To date, the best known upper bound is ex(n,K3

4 ) ≤ 0.561
(
n
3
)
.

A possible explanation for the hardness of proving tight bounds for hypergraph Turán Problem is
the following. Recall that most proofs we gave in the graph case actually proved not only a tight upper
bound but that there is a unique graph (the Turán graph) which attains the maximum. As it turns
out, the 3-graph T 3,4 we described above is not the unique K3

4 -free 3-graph with this many edges. In
fact, for every n there are exponentially many non-isomorphic 3-graphs that are K3

4 -free and have the
same number of edges as T 3,4. So if indeed ex(n,K3

4 ) = |E(T 3,4)| then any proof would have to “avoid”
proving that T 3,4 is the unique maximum.

Looking back at our previous proofs of the graph Turán Problem, we can see that the one using
the Moon-Moser inequality (see Corollary 4.10) did not prove uniqueness of the graph maximizing the
number of edges. As it turns out one can also use the Moon-Moser inequality for r-graphs (see Theorem
4.8), to prove the following general upper bound.

Theorem 5.1. Let Kr
s denote the complete r-graph on s vertices. Then

ex(n,Kr
s ) ≤

(
1− 1(

s−1
r−1
) + o(1)

)(
n

r

)
Observe that given the discussion above, this upper bound is not tight already for ex(n,K3

4 ). The
proof of this theorem proceeds along the lines of the proof of Claim 4.9, but is much more tedious so we
will skip it. Instead we will prove the following general lower bound

Theorem 5.2. Let Kr
s denote the complete r-graph on s vertices. Then

ex(n,Kr
s ) ≥

(
1−

(
r − 1
s− 1

)r−1
− o(1)

)(
n

r

)
Proof: It will be easier to consider the complementary problem of constructing an r-graph with at most((

r−1
s−1

)r−1
+ o(1)

)(
n
r

)
edges so that every set of s vertices contains an edge (taking the complement of

such an r-graph then proves the theorem). So consider the following r-graph; partition the n vertices to
s− 1 almost equal sized sets V1, . . . , Vs−1. Let e be a set of r vertices. Then e is an edge iff there exists
an index j so that

k−1∑
i=0
|e ∩ Vj+i| ≥ k + 1, ∀ 1 ≤ k ≤ r − 1 , (5.1)

where the subscripts of Vj+i are taken modulo s−1. Note that showing that every set of s vertices contains
an edge follows from the fact that if we place s balls into s− 1 buckets V1, V2, . . . , Vs−1 that are arranged
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on a cycle, then there is an index j so that for every 1 ≤ k ≤ s− 1 the buckets Vj , Vj+1, . . . , Vj+k−1 have
together at least k + 1 balls. We leave the solution of this “riddle” as an exercise.

So we are left with proving an upper bound on the number of edges. It will turn out to be easier to
count the number of ordered r-tuples (x1, . . . , xr) such that {x1, . . . , xr} is an edge. Let K denote the
number of such r-tuples. Since K = r!|E| (we are counting each edge exactly r! times), what we need to
show is that

K ≤ r!
((

r − 1
s− 1

)r−1
+ o(1)

)(
n

r

)
≤ (1 + o(1))nr

(
r − 1
s− 1

)r−1
.

Let us assign to each r-tuple of vertices (x1, . . . , xr), a “signature” (j, c), where j ∈ {1, . . . , s− 1} and
c = (c1, . . . , cr) is an r-tuple of non-negative integers satisfying ci = t iff xi ∈ Vj+t. Observe that for every
pair (j, c) there are (1 + o(1))

(
n
s−1

)r
ways to pick an r-tuple (x1, . . . , xr) whose signature is (j, c). Note

that the signature of an r-tuple (x1, . . . , xr) determines whether it forms an edge, since it determines if it
satisfies condition (5.1). Let us say that (c1, . . . , cr) is legal if any r-tuple (x1, . . . , xr) whose signature is
(j, c) forms an edge 4. Therefore, we are down to proving that there are at most (r − 1)r−1 ways to pick
a legal (c1, . . . , cr). Indeed, this will give that there are at most (s− 1)(r − 1)r−1 signatures that define
an edge5, and since each signature defines (1 + o(1))

(
n
s−1

)r
ordered r-tuples (x1, . . . , xr), this will give

the required upper bound on K.
To prove the upper bound on the number of legal (c1, . . . , cr), first note that condition (5.1) forces

all ci ∈ {0, 1, . . . , r − 2}, as otherwise (5.1) will fail for k = r − 1. This means that all legal c belong
to {0, . . . , r − 2}r. So we need to prove that only 1/(r − 1) of the strings in c ∈ {0, . . . , r − 2}r define
a legal c. To this end we will group these strings into groups of size r − 1 and show that each group
contains at most one legal c. Define shift(c, `) to be the string c′ satisfying c′i = ci− ` (mod r− 1). So an
r-tuple with signature (j, shift(c, `)) is obtained from an r-tuple with signature (j, c) by “rotating” the
vertices “backwards” ` places along the r − 1 clusters Vj , . . . , Vj+r−2. So shift(c, r − 1) = c. Then each
group contains r − 1 strings of the form shift(c, 0), shift(c, 1), ..., shift(c, r − 2). We claim that for any c
at most one of the strings shift(c, 0), ..., shift(c, r − 2) is legal. Indeed, if shift(c, 0) is legal then c sends
at least ` + 1 vertices to the clusters Vj , . . . , Vj+`−1, and if shift(c, `) is also legal then c must also send
at least r − ` vertices to the clusters Vj+`, . . . , Vj+r−2. The total is at least r + 1 vertices, which is a
contradiction.

We note that the upper bound in the above argument is tight in the sense that the hypergraph indeed
contains the stated number of edges. To see this we consider the two points where we obtained an upper
bound. The first is when we claimed that each r-tuple (x1, . . . , xr) that defines an edge has at least one
index j for which condition (5.1) holds. It is not hard to see that there can never be two such indices,
meaning that given the number of legal strings c, we were not “over counting” the number r-tuples
(x1, . . . , xr) that form an edge. To see this, suppose there are two such indices 1 ≤ j < j′ ≤ s − 1; if
j′ − j ≥ r − 1 then there must be r vertices in the clusters Bj , ..., Bj+r−2 and at least 2 more vertices in
Bj′ for a total of at least r + 2. A similar conclusion holds if the distance from j′ to j is at least r − 1,
i.e. if s − 1 − (j′ − j) ≥ r − 1. If none of the above conditions holds, then by a similar reasoning we
must have at least s+ 1 ≥ r + 2 vertices. In any case we get a contradiction. A second point where the
analysis is tight is where we claim that for any collection of r− 1 strings shift(c, 0), ..., shift(c, r− 2), at
most 1 of them is legal. Again, it is not hard to see that one of them is always legal. The proof is very
similar to the solution of the “riddle” we posed at the beginning of the proof.

4Here we are using the simple observation that for every c either all signatures (j, c) define an edge or none of them do.
5Note that we might actually be over counting the number of edges since an edge might (in theory) have two different

signatures, that is, it might satisfy condition (5.1) for different j, j′. See the last paragraph for more details.
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(a) K4-minor (b) Topological K4-minor

Figure 5.1

5.2 Extremal Problems Related to Graph Minors
We now turn to study a problem similar to the graph Turán problem, but instead of asking how many
edged are needed to force the appearance of some graph H as a subgraph, we consider two relaxed notions
of subgraphs, known as H-minor and topological H-minor. We start with the latter notion.

Definition 5.3. A graph G has a topological H-minor, where H = (VH , EH) with VH = {1, . . . , h}, if G
has h distinct vertices u1, ..., uh, and a collection of internally 6 vertex disjoint paths {Pi,j : (i, j) ∈ EH},
so that Pi,j connects ui to uj .

Definition 5.4. A graph G has an H-minor, where H = (VH , EH) with VH = {1, . . . , h}, if G has h
vertex disjoint connected subgraphs U1, ..., Uh and a collection of internally vertex disjoint paths {Pi,j :
(i, j) ∈ EH}, so that Pi,j connects a vertex from Ui to a vertex of Uj .

Note that we could have defined the notion of a graph minor using single edges (i.e. paths of length 1)
instead of the arbitrarily long paths we allowed in the definition. We just wanted to draw the similarity
to the notion of topological minors. A more interesting equivalent notion of graph minor is the following.

Definition 5.5. A graph G has an H-minor if H can be obtained from G by a sequence of:

1. Vertex deletions

2. Edge deletions

3. Edge contractions (take an edge (x, y), and replace x, y with a single vertex connected to every
neighbor of the vertices it replaced (removing loops and parallel edges ).

One of the most interesting aspects of the notion of graph minor is its relation to the conjecture of
Hadwiger which states the following.

Conjecture 5.6 (Hadwiger). If χ(G) ≥ t then G has a Kt-minor.

For some time the following conjecture was open.

Conjecture 5.7 (Hajos). If χ(G) ≥ t then G has a topological Kt-minor.

The following exercise guides you into disproving this conjecture Hajos’s conjecture.

Exercise. Show that with high probability G(n, 1/2) satisfies the following two properties:
6By this we mean that each path can meet other paths only at its first/last vertices. All the other vertices on the path

are disjoint from v1, ..., vhand from the other paths.
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1. It does not contain a topological Kt-minor with t = 10
√
n.

2. It is not n
2 logn -colorable.

Conclude that Hajos’s conjecture is false. While you are at it, prove that with high probability, G(n, 1/2)
does contain a topological Kt-minor with t =

√
n/10.

Hadwiger conjecture, on the other hand, is still open. For t = 2, 3 it is trivial, for t = 4, it is an
exercise. For t = 5 it turns out to be equivalent to the four color theorem. It is known to hold for t = 6
via a reduction to the four color theorem. For t > 6, the conjecture is open.

Let us get back to the extremal problems we are interested in. We first ask, how many edges are
needed to guarantee that a graph has a Kt-minor. We will prove that surprisingly, a linear number of
edges is sufficient.

Theorem 5.8. Every graph with at least 2t−3n edges has a Kt-minor.

We also ask, how many edges are needed to guarantee that a graph has a topological Kt-minor. Again,
we show that a linear number of edges is sufficient.

Theorem 5.9. Every graph with at least 2(t
2)n edges has a topological Kt-minor.

The key fact that will enable us to prove these two theorems is Claim 5.11 stated below. For its proof
we will need the following definition.

Definition 5.10. Given a graph G and a connected subgraph spanned by a vertex set S, denote by G/S
the graph obtained from G by contracting S into a single vertex.

Claim 5.11. Every graph G has a connected subgraph H, so that δ(G[N(H)]) > m
n − 1, where N(H) are

the vertices that are adjacent to some vertex of H, and G[N(H)] is the graph induced by these vertices.

Proof: We describe a process for constructing H. Assume G is connected7 and set H1 = {v0} where v0
is an arbitrary vertex of G. We now do the following; If δ (G[N(H1)]) > m

n − 1 we done. Otherwise, take
a vertex v1 ∈ N(H1), whose degree in G[N(H1)] is at most m

n − 1 and define H2 = H1 + v1. We continue
in this manner, where at iteration i we add to Hi a vertex vi ∈ N(Hi), whose degree in G[N(Hi)] is at
most m

n − 1 (if one exists, otherwise we are done) and define Hi+1 = Hi + vi. For what follows, observe
that we always maintain that Hi spans a connected subgraph in G. Clearly when this process ends we
get a set H satisfying the condition of the claim; the only thing that can go wrong is if N(H) = ∅. Since
G is connected, this can only happen if Hi = G. To show that this cannot happen, we will show that if
d(G/Hi) ≥ m/n then d(G/Hi+1) ≥ m/n, where for a graph G we set d(G) = m/n. Since G/H1 = G we
have d(G/H1) = d(G) = m/n implying that d(G/Hi) ≥ m/n so Hi 6= G.

Set ni/mi to be the number of vertices/edges in G/Hi, and ni+1/mi+1 to be the number of ver-
tices/edges in G/Hi+1. Then ni+1 = ni− 1. As to mi+1 note that when adding vi to Hi we lose the edge
that connected vi to the vertex resulting from contracting Hi as well as the at most m

n − 1 edges that
connected vi to its neighbors in G[N(Hi)] (all these edges will be lost since Hi is already connected to
them). Altogether we get mi+1 ≥ mi −m/n. Thus

mi+1

ni+1
≥ mi −m/n

ni − 1 ≥ m

n
,

where in the second inequality we use the assumption that mi/ni ≥ m/n.
7Why is it fine to assume so? If G was not connected, at least one of its connected components must be at least as dense

as G and we could operate on it instead of G.
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The proof of Theorems 5.8 and 5.9 are now easy corollaries of the claim above.

Proof (Theorem 5.8): Induction on t ≥ 3. For t = 3 it is trivial8. Assume now that G has m = 2t−3n
edges where t ≥ 4. Then from Claim 5.11 we get a subset H such that δ(G[N(H)]) > 2t−3 − 1 that is
δ(G[N(H)]) ≥ 2t−3. Since δ(G[N(H)]) ≥ 2t−3 we get that if G[N(H)] has n′ vertices then it has at least
2t−4n′ edges. By induction, G[N(H)] has Kt−1-minor and together with H we get a Kt-minor.

Proof (Theorem 5.9): We prove by induction on k that 2t+kn edges give a topological K-minor where
K is a cycle of length t with k chords. If k = 0, then we have a graph with 2tn edges. Claim 3.5 then
gives a subgraph with minimal degree at least 2t + 1 and Claim 3.7 then a cycle of length 2t + 2 which
is clearly a Ct-minor (any cycle of length at least t is a Ct minor). Given a graph with 2t+kn edges we
get (like in the previous proof) a connected subgraph H, so that N(H) has average degree 2t+k. By
induction we can find in N(H) a topological K ′-minor where K ′ is a Ct plus k − 1 chords. We can now
pick two vertices in the topological K ′-minor that are not yet connected by a path, and connect them by
a path that goes through H and avoids all other vertices/paths that belong to N(H).

It is of course natural to ask whether the constant 2t−3 in Theorem 5.8 can be improved? As it turns
out O(t

√
log tn) edges are sufficient and necessary for forcing a Kt-minor. Proving that this many edges

suffice is somewhat harder than the proof of Theorem 5.8, but the proof of the necessity of this many
edges follows from the following exercise

Exercise 5.12. Show that with high probability, G(n, 1/2) does not contain a Kt-minor with t =
4n/
√

logn.

Taking an appropriate n = n(t) one gets from the above exercise an n-vertex graph with average
degree Ω(t

√
log t) and no Kt-minor. Taking disjoint copies of such a graph, gives arbitrarily large graphs

with Ω(t
√

log tn) edges and no Kt-minor. Let us note that with high probability G(n, 1/2) is n/2 logn-
colorable and contains a Kt-minor with t = n/2

√
logn, so as opposed to Hajos’s Conjecture, G(n, 1/2)

satisfies Hadwiger’s Conjecture.
As to Theorem 5.9 , it turns out that O(t2n) are sufficient and necessary for forcing a Kt-minor.

Again, the upper bound is hard while the lower bound follows from one of the items in Exercise 5.2
regarding G(n, 1/2). Actually, as the following exercise suggests, one does not even need to consider
random graphs.

Exercise 5.13. Show that Kt2/10,t2/10 does not contain a topological Kt-minor.

As in the case of Kt-minors, taking several disjoint copies of Kt2/9,t2/9 we get arbitrarily large graphs
with Ω(t2n) edges and no topological Kt-minor.

5.3 Application of Topological Kt-Minors to Graph Linkage
Definition. A graph G is called k-linked if for every collection of k pairs of vertices (s1, t1), . . . , (sk, tk),
with all 2k vertices being distinct, one can find in G a collection of k vertex-disjoint paths P1, . . . , Pk
such that Pi connects si to ti.

Note that being k-linked is a stronger property than being k-connected, that is, every k-linked graph
is also k-connected. It is not clear a-priori that any measure of connectivity guarantees that a graph is
k-linked. The following theorem shows that this is actually the case.

Theorem 5.14 (Bollobas-Thomasson). If G is 22k-connected then G is k-linked [Bollobas and Thoma-
son, 1996].

8The graph has at least n edges =⇒ it must contain a cycle.
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Exercise 5.15. Use the above theorem to show that for large enough C, every graph with Ct2n edges
contains a topological Kt-minor. You might find it useful to use Mader’s Theorem that states that a
graph with average degree 4k contains a k-connected subgraph.

We now prove a weaker version of Theorem 5.14.

Theorem 5.16. If G is 2 · 2(3k
2 )-connected then G is k-linked.

Proof: We prove a stronger statement, that if h(t) is such that every graph with average degree h(t)
contains a topological Kt-minor, then every graph which is (h(3k)+2k)-connected is k-linked. Recall that
we proved in Theorem 5.9 that h(t) ≤ 2(t

2) thus giving the result in the statement. Note further, that if
instead we plug in the fact that h(t) = O(t2) (which we did not prove) we get that every O(k2)-connected
graph is k-linked, which comes close to the linear bound of Theorem 5.14. Combining this with the
exercise above we get that bounding the function h(t) is essentially equivalent to proving Theorem 5.14.

Let us turn to proving the statement mentioned above. If G is (h(3k) + 2k)-connected then δ(G) ≥
h(3k) hence by definition of h(t) we get that G contains a topological K3k-minor, which we denote by K.
Let U denote the 3k “hubs” of K. By Menger’s theorem, G has 2k vertex disjoint paths P1, . . . , P2k from
s1, t1, . . . , sk, tk to U . Pick a collection of P1, . . . , P2k as above so that it would minimize the number of
edges not belonging to K. We now show how to construct the k paths connecting each of the pairs si, ti.

Fix a pair si, ti. Suppose the two paths connecting them to U end at the vertices xi, yi. Pick any
one of the k vertices of U that are not an endpoint of P1, . . . , P2k and call it ui. Let L be the path of
K connecting ui to xi and let M be the path of K connecting ui to yi. Let ` be the vertex of L which
is closest to ui with the property that one of the paths P of P1, . . . , P2k intersect it. It is easy to see
that the minimality property of P1, . . . , P2k implies that P must be the path connecting si to xi. We can
define m in a similar fashion and conclude that the path intersecting it must be the path connecting ti
to yi. It is now easy to see that we can connect si to ti “via” ui.

6 Sixth Lecture
6.1 Introduction to Szemerédi’s Regularity Lemma

What is the Regularity Lemma?

Definition 6.1. A bipartite graph (A,B) is called ε-regular if for every A′ ⊆ A and B′ ⊆ B such that
|A′| ≥ ε|A| and |B′| ≥ ε|B|, we have

|d(A′, B′)− d(A,B)| ≤ ε

where d(X,Y ) = e(X,Y )/|X||Y | is the edge density between X and Y .

Note that an ε-regular bipartite graph has certain properties one expects to find9 in a random bipartite
graph of edge density d. So one can think of being ε-regularity as being ε-pseudo-random.

Exercise. Show that if |X| = |Y | and d(X,Y ) ≤ ε3 then (X,Y ) is ε-regular.

Definition 6.2. A partition P = V1, ..., Vk of V (G) is called an equipartition if the sizes all the partitions
differ by 1 at most. The order of P is the number of sets in it (k above).

9To be more precise, we would have expected such behavior in a random graph even from subsets of size log n
ε

.
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Definition 6.3. An equipartition V1, ..., Vk of V (G) is called ε-regular if all but at most εk2 of the pairs
(Vi, Vj) form ε-regular graph.

Theorem 6.4 (Regularity Lemma). For every ε > 0 there exists T = T (ε) such as every graph has an
ε-regular equipartition of order k where 1

ε ≤ k ≤ T (ε) [Szemerédi, 1975].

6.2 The Triangle-Removal Lemma and Roth’s Theorem
We say that a graph G is ε-far from being triangle free if one has to remove at least εn2 edges from G in
order to make it triangle-free. We now consider the following problem; what is the relation between how
far G is from being triangle-free and the number of triangles in G? One direction is very easy.

Exercise. Show that if G contains εn3 triangles then G is ε-far from being triangle free.

The following famous lemma sates that the reverse implication also holds.

Theorem 6.5 (Triangle Removal Lemma). For every ε > 0 there exists δ = δ(ε) > 0 such as if G is a
ε-far from being triangle-free then G has at least δn3 triangles [Ruzsa and Szemerédi, 1978].

For the proof of the triangle-removal lemma we will use the following lemma. Note that we can think
of its statement as saying that if a 3-partite graph is dense/regular enough then it contains approximately
the same number of triangles one expects to find in a “truly” random 3-partite graph of the same density.

Lemma 6.6. If A,B,C are vertex sets such as d(A,B) = b, d(A,C) = c, d(B,C) = a and a, b, c ≥ 2ε
and all three bipartite graphs are ε-regular then the graph (A,B,C) has at least

(1− 2ε)(a− ε)(b− ε)(c− ε)|A||B||C|

triangles.

Proof: Note that A has at most ε|A| vertices whose number of neighbors in B is smaller than (b− ε)|B|.
Otherwise, this set of vertices together with B would have given a pair of subsets contradicting the ε-
regularity of (A,B). The same goes for A and C. All in all, all the vertices of A, apart from ≤ 2ε|A|, have
at least (b− ε)|B| neighbors is B and (c− ε)|C| neighbors in C. Let v ∈ A be one of the “good” vertices.
As b, c ≥ 2ε we have |NB(v)| ≥ ε|B| and |NC(v)| ≥ ε|C|, so we can apply the regularity condition to
deduce that the number of edge between NB(v) and NC(v) is at least

(a− ε)|NB(v)||Nc(v)| ≥ (a− ε)(b− ε)(c− ε)|B||C|

thus every “good” vertex takes part in at least that number of triangles. As at least (1 − 2ε)|A| are
“good” vertices we get that there are at least

(1− 2ε)(a− ε)(b− ε)(c− ε)|A||B||C|

triangles.

Proof (Triangle Removal Lemma): Given a graph G we apply the Regularity Lemma with ε/4. We get
an ε/4-regular partition V1, . . . , Vk with 4

ε ≤ k ≤ T
(
ε
4
)
. We remove from the graph the following edges:

1. Edges that belong to one of the clusters Vi. There are at most k (n/k)2

2 ≤ n2

2k ≤
εn2

8 such edges.

2. Edges between non ε-regular (Vi, Vj) pairs. There are most ε
4k

2(n/k)2 = ε
4n

2 such edges.
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3. Edges between (Vi, Vj) such that d(Vi, Vj) ≤ ε
2 . There are at most

(
k
2
)
ε
2 (n/k)2 ≤ ε

4n
2 such edges.

As we removed at most 5
8εn

2 edges, the new graph, call it G′, still has a triangle. From the type of edges
we removed from G, this means that there exist three vertex sets V1, V2, V3 such that this triangle has
a vertex in each set and so that each of the bipartite graphs (V1, V2), (V2, V3), (V1, V3) is ε/4-regular and
has density at least ε/2. Lemma 6.6 now tells us that the number of triangles spanned by V1, V2, V3 is at
least

1
2

(ε
4

)3
(

n

T
(
ε
4
))3

.

Since each of these triangles is also a triangle of G, this proves the lemma with δ(ε) = ε3

128T 3( ε
4 ) .

We will now use the triangle-removal lemma to prove the following famous theorem.

Theorem 6.7 (Roth’s Theorem). If S ⊆ [n] does not contain 3-term arithmetic progression then |S| =
o(n). [Roth, 1953]

Proof (by Ruzsa-Szemerédi): Given S we construct the following graph: G has 6n vertices in three sets
A,B,C, where |A| = n, |B| = 2n and |C| = 3n. We treat the vertices as integers. For every s ∈ S and
every x ∈ [n] we put in G a triangle, denoted Tx,s on the vertices x ∈ A, x + s ∈ B, x + 2s ∈ C. For
ease of reference, let us label the 3 edges of each of these n|S| triangles Tx,s with the integer s used to
define them. We claim that the n|S| = εn2 triangles we put into G are edge disjoint. To see this, note
that given any edge of the graph, we can uniquely recover the integers x and s that were used when
placing it as part of the triangle Tx,s, implying that it belongs to a unique triangle. As the graph has
εn2 edge-disjoint triangles, it is clear that at least this many edges need to be removed in order to make
it triangle free. By the Triangle Removal Lemma, we get that G has at least c(ε)n3 triangles. For n
sufficiently large c(ε)n3 > εn2 hence we get a “new” triangle which is not one of those we explicitly
constructed. In other words, we get a triangle, so that the labels on its three edges are s1, s2, s3 and
these three edges are not identical (if they were this would have been one of the triangles Tx,s we placed
in G). Suppose x is the vertex of this triangle in A. Then walking along the edges of this triangle, we
see that x+ s1 + s2 − 2s3 = x, implying that s1 + s2 = 2s3, that is, s1, s3, s2 form a (non-trivial) 3-term
arithmetic progression.

Figure 6.1: The graph with the Tx,s triangle.

Let twr(x) be a tower of exponents of height x (so twr(4) = 2222

). As we will see later on, the function
T (ε) from the statement of the Regularity Lemma is given by twr(1/ε5). It follows that the function
δ(ε) from the triangle-removal lemma is also a tower-type function. This in turn, implies that the above
bound for Roth’s Theorem gives that if S ⊆ [n] does not contain a 3-term arithmetic progression then
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|S| = O (n/ log∗ n), which is just “barely” o(n). The best known upper bound for Roth’s Theorem is
O
(
n(log logn)5/ logn

)
and the best lower bound is n/2c

√
logn (we will prove the lower bound later on).

A surprising result of Gowers showed that T (ε) ≥ twr(ε−1/16) , that is, that there are graphs with
the property that every ε-regular graphs must be of size at least ≥ twr(ε−1/16). The best known lower
bound for the Triangle Removal Lemma is roughly δ(ε) > 1/twr(log 1/ε). Although this is still a tower-
type bound, it is better than the 1/twr(1/ε) bound that follows from the regularity lemma (as we have
done above). The best upper bound for the triangle removal lemma is (1/ε)log(1/ε) which is just barely
super-polynomial. We will prove this bound in a later lecture.

6.3 Proof of the Regularity Lemma
Definition 6.8. Assume P = {V1, V2, . . . , Vk} is a partition of G to sets of size a1n, . . . , akn, where
0 ≤ ai ≤ 1 and

∑
ai = 1. Define

q(Vi, Vj) = aiajd
2(Vi, Vj)

q(P ) =
∑
i,j

q(Vi, Vj)

Note that since 0 ≤ d(Vi, Vj) ≤ 1 we always have 0 ≤ q(P ) ≤ 1. The key part in proving the Regularity
Lemma is the following lemma.

Lemma 6.9 (Key Lemma). If an equipartition P = {V1, . . . , Vk} is not ε-regular and k ≥ 1
ε6 then it is

possible to form a new equipartition P ′′′, such that q(P ′′′) ≥ q(P ) + ε5

2 and P ′′′ has order at most k24k.

Let us quickly derive the regularity lemma from the above lemma.

Proof (Regularity Lemma): We start with an arbitrary equipartition of order 1
ε6 and then repeatedly

apply Lemma 6.9 until we get an ε-regular partition. As we observed above, we always have 0 ≤ q(P ) ≤ 1,
and since each application of Lemma 6.9 increases q(P ) by at least ε5/2 this process must stop after at
most 2

ε5 iterations with a partition of order at most twr(4/ε5).

We turn to prove Lemma 6.9. We start with the following simple calculation.

Claim 6.10. Assume A,B are vertex sets of sizes an, bn in some graph G, and assume A was partitioned
into l subsets A1, . . . , A` of sizes x1an, . . . , x`an and B was partitioned into ` subsets B1, . . . , B` of
sizes y1bn, . . . , y`bn (where 0 ≤ xi, yi ≤ 1 and

∑
xi =

∑
yi = 1). Suppose for every i, j we have

d(Ai, Bj) = d(A,B) + εij (εij can be either positive or negative). Then we have∑
i,j

q(Ai, Bj) = q(A,B) + ab
∑
i,j

xiyjε
2
ij

Proof: Set d = d(A,B) and just note that

∑
i,j

q(Ai, Bj) =
∑
i,j

xiayjb · d2(Ai, Bj) = ab
∑
i,j

xiyj(d+ εij)2

= ab
∑
i,j

xiyj(d2 + 2dεij + ε2
ij) = q(A,B) + 0 + ab

∑
i,j

xiyjε
2
ij
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where in the last equality we use the facts that
∑
i,j xiyj = 1, and that

∑
i,j xiyjεij = 0. This last

equality follows from the fact that

d = e(A,B)
abn2 =

∑
i,j e(Ai, Bj)
abn2 =

∑
i,j

xiyjd(Ai, Bj) =
∑
i,j

xiyj(d+ εij) = d+
∑
i,j

xiyjεij .

The claim above gives us the following immediate corollaries:

Corollary 6.11. If we take two vertex sets, A,B, participating in some partition P , and refine them
into finer sets A1, . . . , A`, and B1, . . . , B` then we have∑

i,j

q(Ai, Bj) ≥ q(A,B) (6.1)

Corollary 6.12. Assume A,B are two vertex sets, participating in some equipartition P , and (A,B) is
not ε-regular, namely there exists A1 ⊆ A and B1 ⊆ B such as |A1| ≥ ε|A| and |B1| ≥ ε|B| such that
|d(A1, B1)− d(A,B)| > ε. Set A2 = A \ A1and B2 = B \B1. Then if P has order k (so |A| = |B| = n

k )
then we have ∑

1≤i,j≤2
q(Ai, Bj) ≥ q(A,B) + ε4

k2

Now we can tackle the proof of Lemma 6.9.

Proof: Assume P = {V1, . . . , Vk} is not ε-regular and denote by I the set of pairs (i, j) such that (Vi, Vj)
is not ε-regular. So |I| ≥ εk2. We construct a partition (not equipartition) P ′ satisfying q(P ′) ≥ q(P )+ε5

as follows. Assume (Vi, Vj) is not ε-regular. Then there are V i,j1 ⊆ Vi and V j,i1 ⊆ Vj which witness this
fact, that is, they satisfy |V i,j1 | ≥ ε|Vi|, |V j,i1 | ≥ ε|Vj | and |d(Vi, Vj) − d(V i,j1 , V j,i1 )| > ε. Let us also
set V i,j2 = Vi \ V i,j1 and V j,i2 = Vj \ V j,i1 . Define P ′ to be the “atoms” of the Venn diagram of the sets
{V1, ..., Vk} and the sets {V i,j1 , V j,i1 , V i,j2 , V j,i2 : (i, j) ∈ I}. Let k′ denote the order of P ′. Since for each
set Vi we have at most k − 1 sets V i,j1 , we get that each Vi is refined into at most 2k−1 sets, and so
k′ ≤ k2k−1.

We now compare q(P ′) to q(P ). To this end, suppose each set Vi of P is refined in P ′ into sets
V 1
i , ..., V

`
i . Note that for any j, the sets V 1

i , ..., V
l
i refine the pair V i,j1 , V i,j2 . Corollary 6.11 tells us that

for any i, j we have
∑
i′,j′ q(V i

′

i , V
j′

j ) ≥ q(Vi, Vj). Furthermore, if (i, j) ∈ I then applying Corollary 6.12
and then Corollary 6.11 we get

∑
i′,j′

q(V i
′

i , V
j′

j ) ≥ q(V i,j1 , V j,i1 ) + q(V i,j1 , V j,i2 ) + q(V i,j2 , V j,i1 ) + q(V i,j2 , V j,i2 ) ≥ q(Vi, Vj) + ε4/k2 .

In other words, we recover all the contributions q(Vi, Vj) and when (i, j) is not ε-regular we in fact gain
at least ε4/k2. Since we assume that there are at least εk2 pairs that are not ε-regular we conclude that
q(P ′) ≥ q(P ) + ε5.

We are now just left with turning P ′ into an equipartition while not decreasing q by much. We start
with partitioning each cluster of P ′ into clusters of size n/(k′)2. After sequentially “pulling” from each
of the clusters of V ′i ∈ P ′ subsets of size n/(k′)2, we will eventually be left with a remainder set Ui of
size less than n/(k′)2. Let P ′′ be the new partition10. As P ′′ is a refinement of P ′ we get from Corollary
6.11 that we still have q(P ′′) ≥ q(P ′) ≥ q(P ) + ε5.

10Note that apart from the sets U1, . . . , Uk′ the partition P ′′ is an equipartition.
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Assume P ′′ = {V ′1 , . . . , V ′k′′ , U1, . . . , Uk′} where V1, . . . , Vk′′ are the subsets of size exactly n
(k′)2 and

U1, . . . , Uk′ are the remainders (of size < n
(k′)2 ). Note that we also have

∑
i |Ui| ≤ k′ · n

(k′)2 = n
k′ ≤ ε6n.

To get a true equipartition we now simply “distribute” the vertices of U1 ∪ . . . ∪ Uk′ equally among the
sets V1, ..., Vk′′ thus obtaining an equipartition P ′′′ of order at most (k′)2 ≤ k24k. It should be clear that
since

∑
i |Ui| ≤ ε6n this cannot decrease q(P ′′) by much. In fact, it follows from Exercise 6.13 below that

q(P ′′′) ≥ q(P ′′)− 8ε6. Since we can always assume that ε is small enough (make sure you see why), we
get

q(P ′′′) ≥ q(P ′′)− 8ε6 ≥ q(P ) + ε5 − 8ε6 ≥ q(P ) + ε5/2 ,

as needed.

Exercise 6.13. Suppose P = {V1, . . . , Vk, U1, . . . , Ut} is a partition of V (G) with |V1| = · · · = |Vk| and∑t
i=1 |Ui| ≤ εn. Show how to turn P into an equipartition P of order k satisfying q(P ′) ≥ q(P )− 8ε.

7 Seventh Lecture
7.1 The Counting Lemma
The following lemma, which is usually referred to as the counting lemma, states that if a collection of
vertex sets are regular/dense enough then we can find in them any small subgraphs we would expect
to find, if the graphs were genuinely random. It generalizes a similar lemma we proved last time for
triangles. A naive generalization would state the following.

Theorem 7.1. For every d and h there is are ε = ε(d, h) and c = c(d, h), so that if all pairs in V1, . . . , Vh
are of size at least c, of density at least d and are ε-regular, then V1, . . . , Vh contain a copy of any graph
H on h vertices (with one vertex in each cluster Vi).

Exercise 7.2. Prove the above assertion.

The shortcoming of the above version is that we (unnecessarily) insist on using one vertex from each
cluster. Also, note that ε depends on h. We will instead prove the following more refined version.

Theorem 7.3 (Embedding Lemma). For every d > 0 and ∆ there exists ε = ε(d,∆) and c = c(d,∆)
so that the following holds: Assume V1, . . . , Vr are vertex-sets of size at least ch such that for every i, j
the pair (Vi, Vj) is ε-regular and satisfies d(Vi, Vj) ≥ d. Then, if H is a graph on at most h vertices with
χ(H) ≤ r and ∆(H) ≤ ∆ then V1, . . . , Vr span a copy of H.

We will prove that there are in fact c(ε, h)|V |h copies of H (assuming all sets are of the same size
|V |). We will first need the following simple observation regarding ε-regular pairs.

Claim 7.4. Assume (A,B) is an ε-regular pair with density d. Then, if B′ ⊆ B is of size at least ε|B|,
then there are at most ε|A| vertices in A that have less than (d− ε)|B′| neighbors in B′.

Proof: Otherwise, taking A′ to be the subset of vertices with less than (d − ε)|B′| neighbors in B′ we
see that A′, B′ contradict the ε-regularity of (A,B).

Proof (Embedding Lemma): Assume an r-coloring of H’s vertices induces the partition into r vertex-
disjoint sets U1, . . . , Ur. We shall find an embedding of H in V1, ..., Vh, where the vertices of Ui are chosen
out of Vi. Namely, every vertex vi ∈ H has a set Vσ(i) in which it shall be embedded. The idea of the
proof is to simply embed the vertices v1, . . . , vh in a “greedy” way. We will just have to show that we
never get “stuck”.
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Suppose that for some 0 ≤ j ≤ h − 1 we have already found vertices x1, ..., xj in Vσ(1), ..., Vσ(j) so
that xi, xj are connected if vi, vj are connected in H. For every i > j we define a subset Y ji ⊆ Vσ(i) of
all the possible vertices which can be chosen for vi given the choice of x1, ..., xj , namely all the vertices x
that satisfy the following condition: if j′ ≤ j and vi is connected to vj′ in H then x is connected to xj′ .
Observe that for j = 0 we can set Y 0

i = Vσ(i) for every 1 ≤ i ≤ h.
For every 0 ≤ j < i ≤ h let bj,i denote the number of vertices among v1, ..., vj that are adjacent to

vi in H. We claim that if we choose ε appropriately then we can pick the vertices x1, ..., xh so that for
every 0 ≤ j < i ≤ h we have |Y ji | ≥ (d − ε)bj,i |Vσ(i)|. This clearly holds for j = 0 (since b0,i = 0) so
assuming it holds for j − 1 we prove it for j. In this case we need to pick a vertex xj ∈ Y j−1

j ⊆ Vσ(j)

that will play the role of vj . The definition of Y j−1
j guarantees that any vertex in this set is adjacent to

the appropriate vertices among x1, ...xj−1. Once we pick a vertex xj we will need to set Y ji (with i > j)
to be the subset of vertices of Y j−1

i that are adjacent to xj . Recall that we know from induction that
|Y j−1
i | ≥ (d − ε)bj−1,i |Vσ(i)| for every i ≥ j. This means that if i > j and vi is not adjacent to vj then

after picking xj we can take Y ji = Y j−1
i so the condition still holds for such vertices. As to i for which

vi is adjacent to vj , note that in this case we just need to make sure that |Y ji | ≥ (d− ε)|Y j−1
i |. Observe

that if ε ≤ (d/2)∆ then since bi,j ≤ ∆ we get from induction that

|Y j−1
i | ≥ (d− ε)bj−1,i |Vσ(i)| ≥ (d− ε)∆|Vσ(i)| ≥ ε|Vσ(i)| .

We thus get from Claim 7.4, with A,B being the sets Vσ(j),Vσ(i) and B′ = Y j−1
i , that Vσ(j) contains at

most ε|Vσ(j)| vertices that have less than (d− ε)|Y j−1
i | neighbors in Y j−1

i . Since H has maximum degree
∆ we get that all but ∆ε|Vσ(j)| of the vertices in Vσ(j) have at least (d − ε)|Y j−1

i | neighbors in each of
the sets Y j−1

i for which vi is a neighbor of vj in H. Note that choosing any of these vertices will make
sure that |Y ji | ≥ (d− ε)|Y j−1

i | as we wanted. We thus get that we have at least

|Y j−1
j | −∆ε

∣∣Vσ(j)
∣∣ ≥ (d− ε)bj−1,j |Vσ(j)| −∆ε

∣∣Vσ(j)
∣∣ ≥ (d− ε)∆ ∣∣Vσ(j)

∣∣−∆ε
∣∣Vσ(j)

∣∣ ≥ ε|Vσ(j)| ,

choices for a vertex xj ∈ Y j−1
j satisfying the required condition. The only thing we need to make sure is

that ε is small enough to that the last inequality holds. It is easy to check that taking ε = (d/2)∆
/2∆

satisfies this inequality as well as the previous one we wanted ε to satisfy. Finally, note that up to h− 1
of the vertices of Y jj−1 might have already been chosen as vertices xj′ for some j′ < j so we need to make
sure that ε|Vσ(j)| − h ≥ 1. Taking c = 1/ε makes sure this condition holds. This completes the proof of
the induction.

We finally note that if each set is of size at least (2/ε)h then ε|Vσ(j)| − h ≥ (ε/2)|Vσ(j)| so at each
iteration we actually have at least (ε/2)|Vσ(j)| choices for the vertex xj .

7.2 Another Proof of the Erdős-Stone-Simonovits Theorem
The embedding lemma gives us a pretty simple proof of the Erdős-Stone-Simonovits:

Theorem. For every b, r and δ > 0 there exists n0(δ, r, b) so that if G is a graph on at least n0 vertices
with

(
1− 1

r + δ
)
n2

2 edges then G contains a copy of Kb
r+1 (a b-blowup of Kr+1).

Proof: Define ε = ε( δ8 , rb) and c = c( δ8 , rb) and apply the Regularity Lemma with min(ε, δ8 ). We a get
an ε-regular partition into k sets V1, . . . , Vk where 1

ε ≤ k ≤ T (ε) and therefore |Vi| ≥ n
T (ε) . Remove the

following edges from the graph:
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1. Edges within Vi. There are at most δn2

8 such edges.

2. Edges connecting Vi to Vj where d(Vi, Vj) < δ
8 . There are at most δn2

4 such edges.

3. Edges connecting Vi to Vj where (Vi, Vj) is not ε-regular. There are at most δn2

8 such edges.

All in all, we removed less than δn2

2 edges. Therefore G still has at least
(
1− 1

r

)
n2

2 edges, so by Turán’s
Theorem (weak version) G contains a copy of Kr+1. This Kr+1 must have a single vertex in each one of
r+1 sets V1, . . . , Vr+1 so that all pairs (Vi, Vj) are ε-regular and satisfy d(Vi, Vj) ≥ δ

8 . We have r+1 sets of
size at least n

T (ε) such as the density between them is at least δ
8 and every one of them is ε( δ8 , rb)-regular.

The graph Kb
r+1 is an (r + 1)-colorable graph with maximal degree rb. Hence, the Embedding Lemma

would imply that V1, . . . , Vr+1 have a copy of Kb
r+1 if

|Vi| ≥
n

T (ε) ≥ c (δ/8, rb) · (r + 1)b

So to conclude the proof, we just set

n0 = c (δ/8, rb) · b(r + 1) · T (min {δ/8, ε (δ/8, rb)}) .

Since n0 depends only on δ, r and b the proof is complete.

Recall that the Triangle Removal Lemma, states that for every ε > 0 there exists δ = δ(ε) > 0 such
as if one needs to remove from G at least εn2 edges in order to make it triangle free, then G has at least
δn3 triangles. This can be extended to any fixed H as follows.

Theorem (Graph Removal Lemma). For every ε > 0 and graph H, there exists δ = δH(ε) such that if
one needs to remove from G at least εn2 edges in order to make it H-free, then G has at least δnh copies
of H (where h = |V (H)|).

Exercise 7.5. Prove the above assertion.

7.3 Ramsey Numbers of Bounded Degree Graphs
We can state Ramsey’s Theorem as follows.

Theorem (Ramsey). Every 2-coloring of K4n has a monochromatic copy of Kn.

One can thus consider the more general function R(K,H) which is the smallest integer N so that
every 2-coloring of KN contains either a red K or a black H. Of course, if both K and H are of size
n then we have the trivial bound R(K,H) ≤ R(Kn,Kn) ≤ 4n but it is reasonable to suspect that for
“simple” graphs one should be able to come up with better bounds. As it turns out, if the graphs have
bounded degree, then it is enough to consider a 2-coloring of the complete graph on O(n) vertices (as
opposed to the 4n bound for Kn).

Theorem 7.6 (Chvátal, Rödl, Szemerédi, Trotter ’83). For every ∆ there is c′ = c′(∆) so that if K,H
are graphs on n vertices with maximal degree at most ∆ then R(H,K) ≤ c′n.

Proof: Set ε = ε( 1
2 ,∆), c = c( 1

2 ,∆), and m = 4∆+1. Given a 2-coloring of Kc′n we apply the regularity
lemma with ε′ = min

{
ε, 1

4m
}
on the black edges. Observe that since we are considering a coloring of

the complete graph, then if the black edges form an ε′-regular bipartite graph between (Vi, Vj) then so
do the red edges. We get a regular partition of size at least T (ε′) ≥ 2m. There are k ≥ 2m sets and at
most k2

4m of the pairs are not regular. Therefore at least k2

2 (1 − 1
2m ) pairs are regular. Define a graph
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on k vertices and connect vertex i to j iff (Vi, Vj) is an ε′-regular pair. This graph has at least
(
k
2
)
− k2

4m
edges. Since k ≥ 2m we have

(
k
2
)
− k2

4m ≥
k2

2
(
1− 1

m

)
, so by Turán’s Theorem this graph contains Km,

meaning that there exists m subsets V1, . . . , Vm for which every pair is ε′-regular.
Consider the following 2-coloring of a graph onm = 4∆+1 vertices; (i, j) is colored green if d(Vi, Vj) ≥ 1

2
and (i, j) is blue if d(Vi, Vj) < 1

2 . By Ramsey’s Theorem, this coloring contains a monochromatic K∆+1.
This gives us ∆ + 1 sets V1, . . . , V∆+1 so that every pair is ε′-regular and one of the following holds:

1. All the densities of black edges are at least 1
2 .

2. All the densities of red edges are at least 1
2 .

Assuming case 1 above holds (case 2 is identical), we now apply the Embedding Lemma on V1, . . . , V∆+1
and find a black copy of H (case 2 is identical, in which case we find a red copy of K). Since H has
maximal degree ∆ it is ∆ + 1 colorable. The choice of ε also guarantees that the pairs are regular and
dense enough for an application of the Embedding Lemma. We only need to make sure the sets Vi are
large enough, that is that

|Vi| ≥
|G|
T (ε′) ≥ c · n .

Hence, we can set c′(∆) = c · T (ε′).

8 Eighth Lecture
We continue with more applications of the Regularity Lemma.

8.1 The Induced Ramsey Theorem
Recall the Regularity Lemma and the Embedding Lemma:

Theorem. For every ε > 0 exists T = T (ε) such as every graph has an ε-regular equipartition of size k
where 1

ε ≤ k ≤ T (ε).

Theorem. For every d > 0 and ∆ exists ε = ε(d,∆) and c = c(d,∆) such that if V1, . . . , Vr are vertex-
sets of size ≥ ch such as d(Vi, Vj) ≥ d for every i, j and also every pair (Vi, Vj) is ε-regular, then for
every graph H, where |H| ≤ h vertices with χ(H) ≤ r and ∆(H) ≤ ∆, we can find an embedding of H in
V1, . . . , Vr.

We now state an induced version of the Embedding Lemma:

Theorem 8.1 (Induced Embedding Lemma). For every h there exists constants ε′ = ε′(h) and c′ = c′(h)
such that if V1, . . . , Vh are vertex sets of size ≥ c′ and every pair (Vi, Vj) is ε′-regular with density ∈

[ 1
8 ,

7
8
]

then it is possible to embed in V1, . . . , Vh an induced copy of H for every graph |H| ≤ h.

Exercise 8.2. Prove the above Induced Embedding Lemma. The case of H = Kh follows as a special
case of the Embedding Lemma we have previously proved. The case of general H can be reduced to the
case of Kh.

We recall the statement of Ramsey’s Theorem.

Theorem (Ramsey). For every t, there exists N = N(t) so that every 2-coloring of KN has a monochro-
matic copy of Kt.

33



It is natural to look for an induced version of Ramsey’s Theorem. That is, given a fixed graph H we
want to find a graph R = R(H) so that in any 2-coloring of E(H) one can find a monochromatic induced
copy of H. Note that Ramsey’s Theorem states that we can take K4n as R(Kn). Observe that for any
other H, the graph R(H) cannot be a complete graph. It was an open problem for some time whether
R(H) indeed exists for every H. The following theorem states that they indeed exist.

Theorem 8.3 (Induced Ramsey Theorem). For every graph H there exists a graph R = R(H) such that
in every 2-coloring of E(R) it is possible to find a monochromatic induced copy of H.

Proof: The idea is very simple; we will show that a large enough random graph can be taken as the
graph R. Of course, we need to define some deterministic property. So set ε = ε′(h), c = c′(h), m = 4h,
and T = T

(
min

{
ε
2 ,

1
4m
})

. We will show that if G is a graph on n vertices such that:

1. n/T ≥ c

2. For every pair (A,B) of disjoint sets of size ≥ εn
T it holds that

∣∣d(A,B)− 1
2
∣∣ ≤ ε/2

then G can be taken as the graph R(H). Note that we claim that a single graph can be used for all H
on h vertices. Observe that what the second condition guarantees is that every pair of sets A,B of size
at least n/T would be an ε-regular pair of density 1/2.

Let us first explain why there are graphs satisfying the above two conditions. The first condition just
asks the graph to be large enough. For the second condition we note that by a simple averaging argument,
if the condition

∣∣d(A,B)− 1
2
∣∣ ≤ ε/2 holds for subsets A,B of size k then it also holds for bigger subsets

as well. Now, a simple applications of Chernoff’s inequality gives that in G(n, 1/2), with high probability
every pair of sets A,B of size 100 logn/ε2 satisfy

∣∣d(A,B)− 1
2
∣∣ ≤ ε/2. So we just need to take n to be

large enough so that the first condition will hold, and also large enough so that εn/T ≥ 100 logn/ε2,
thus making sure that the second condition also holds. So we see that indeed almost all (large enough)
graphs satisfy the above two conditions.

We now turn to show that if R is a graph satisfying the above two conditions then it satisfies the
assertions of the theorem. So consider a red/black coloring of E(R) , and apply the Regularity Lemma on
the black edges with error parameter min

{
ε
2 ,

1
4m
}
. The lemma will return an equipartition of the vertices

to k sets where 2m ≤ k ≤ T so that at most k2

4m of the pairs are not ε
2 -regular. A simple, yet important

observation is that if (Vi, Vj) is ε/2-regular with respect to the black edges, then our assumption on G
guarantees that (Vi, Vj) is also ε-regular with respect to the red edges (verify this!).

By Turán’s Theorem (weak version) we get m sets V1, . . . , Vm such that every pair (Vi, Vj) is ε-
regular (in both colors). Now observe that our second assumption about G implies that all pairs satisfy
d(Vi, Vj) ∈ [0.49, 0.51] (assuming ε ≤ 1/50 which we can clearly impose). Ramsey’s Theorem then implies
that those 4h = m sets contain h sets V1, . . . , Vh where every pair (Vi, Vj) is ε-regular as above but also
one of the following holds:

(a) In all the pairs, the density of the black edges is ∈ [1/4, 0.51].

(b) In all the pairs, the density of the black edges is ∈ [0, 1/4].

Assume case (a) holds, and consider the vertex sets V1, . . . , Vh. We now pick some of the edges
between these clusters as follows. For every (i, j):

1. If (i, j) ∈ H then take the black edges between Vj and Vi.

2. If (i, j) /∈ H then take the black and red edges between Vj and Vi.
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We claim that the Induced Embedding Lemma can now be used in order to find an induced black
copy of H. This is obvious for (i, j) ∈ H since we assume that in these cases the black edges in (Vi, Vj)
have density ∈ [0.25, 0.51] and that they form and ε-regular bipartite graph. For (i, j) /∈ H it follows
from condition 2 on the graph G that when taking all (i.e. black and red) edges between (Vi, Vj) that the
resulting graph is ε-regular, since all the sets in the partition are of size at least n/T . As to the density,
we know from condition 2 that d(Vi, Vj) ∈ [0.49, 0.51]. Finally, note that the first condition on G gives
that |Vi| ≥ n

T ≥ c, so we see that we can indeed apply the Induced Embedding Lemma to get an induced
black copy of H in G.

Assume now that case (b) holds. As before consider the vertex sets V1, . . . , Vh, and recall that in this
case all pairs (Vi, Vj) are ε-regular with respect to the red edges. Pick some of the edges between these
clusters as follows. For every (i, j):

1. If (i, j) ∈ H then take the red edges between Vj and Vi.

2. If (i, j) /∈ H then take the black and red edges between Vj and Vi.

We claim that the Induced Embedding Lemma can now be used in order to find an induced red copy
of H. This is obvious for (i, j) ∈ H since we assume that in these cases the red edges in (Vi, Vj) have
density ∈ [0.24, 0.51] and that they form and ε-regular bipartite graph. For (i, j) /∈ H it follows from
condition 2 on the graph G that when taking all (i.e. black and red) edges between (Vi, Vj) that the
resulting graph is ε-regular, since all the sets in the partition are of size at least n/T . As to the density,
we know from condition 2 that d(Vi, Vj) ∈ [0.49, 0.51]. Finally, note that the first condition on G gives
that |Vi| ≥ n

T ≥ c, so we see that we can indeed apply Induced Embedding Lemma to get an induced red
copy of H in G.

8.2 The (6, 3)-Problem and the Induced Matchings Problem
Definition 8.4 ((6, 3) Problem). Let f(n) denote the largest number of edges a 3-uniform hypergraph
on n vertices can have, if it does not contain 6 vertices that span at least 3 edges.

Definition 8.5 (Induced Matching Problem). Let g(n) be the maximal number of edges in a graph on
n vertices whose edges can be partitions into n induced matchings.

Definition 8.6 (One Edge One Triangle Problem). Denote by h(n) the maximal number of edges in a
graph on n vertices where each edge belongs to exactly one triangle.

Theorem 8.7. We have the following equivalence between the above three problem h = Θ(g) = Θ(f).

We will apply the following simple but very useful claim.

Claim 8.8. Every graph has a bipartite subgraph with m
2 edges.

Proof: Partition V (G) randomly to two sets A,B. For every edge (xy), the probability x, y are in
different partitions is 1

2 . Hence E[m] = m
2 , therefore a partition with at least this many edges exists.

Exercise. Find an explicit way (i.e. an efficient deterministic algorithm) to produce a partition of V (G)
so that at least half the edges cross the cut.

We will prove the equivalence between h, g, f in the following three claims.

Claim. g(n) ≤ 2f(2n).
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Proof: Assume G is a graph on n vertices and M1, . . . ,Mn is a partition of its vertices into induced
matchings. We take a bipartite subgraph of G with at least half of the edges. We now construct a
hypergraph H on 2n vertices whose number of edges will be the same as the number of edges in G and
will fulfill the (6, 3)-Problem. Such a construction will prove that g(n)

2 ≤ f(2n). Let A = {v1, . . . , vn} be
a set of n new vertices. For every i, and for every edge (x, y) ∈Mi we put in H the edge (vi, x, y).

We now claim that H does not contain 6 vertices spanning 3 edges. To see this, take any 6-tuple of
vertices and consider the following possibilities:

1. Since a vertex in A forms a 3-edge with a matching of edges in G, it cannot be the case that only
one of the vertices is from A.

2. If 2 vertices are in A then we have 2 vertices on each side of G. If 2 of the edges belong to the same
matching, then we cannot have a third on the 4 vertices of G by the induced matching property.
To have 3 edges from 3 different matching would require 3 distinct vertices from A which is a
contradiction.

3. It is easy to see that we cannot have at most 3 vertices in V (G).

Thus, no set of 6 vertices in H spans 3 edges, giving g(n)
2 ≤ f(2n).

Claim. h(n) ≤ g(n)

Proof: Assume G fulfills the condition that every edge belongs to one triangle. Define n matchings
M1, . . . ,Mn in the following way: For every i Mi would contain the edges spanned by N(vi). Note that∣∣∣⋃Mi

∣∣∣ = |E(G)|

as every edge belongs to one triangle, and thus is part of the neighborhood of the opposed vertex. It is
easy to verify that every Mi is indeed an induced matching. Therefore, h(n) ≤ g(n).

Claim. f(n) ≤ h(n) + n

Proof: Assume H is a 3-uniform hypergraph which fulfills the (6, 3)-condition. As long as there is
a vertex whose degree is 1, remove the vertex and the relevant edge. Assume we performed k such
iterations. The new 3-graph, H ′, fulfills the (6, 3) condition as a subgraph of H. Note that if m = |E(H)|
then |E(H ′)| = m−k and that the (6, 3) property ofH ′ and the fact that each vertex of H ′ has min-degree
2, implies that (∗) : H ′ does not contain 2 edges sharing 2 vertices.

Define a graph G on n vertices in the following way: For every edge in H ′ we put in G a triangle on
the same vertices. Property (∗) implies that |E(G)| = 3|E(H ′)| = 3(m − k). Property (∗) also implies
that every edge of G belongs to precisely one triangle. This means that 3(m − k) ≤ h(n − k) ≤ h(n)
implying that m ≤ h(n) + n.

Claim. The Triangle Removal Lemma implies that h(n) = o(n2).

Proof: Assume G fulfills the OEOT condition and has εn2 edges. Then G is the disjoint union of εn2

3
edge disjoint triangles, implying that G is ε

3 -far from being triangle-free. Therefore, by the Triangle
Removal Lemma G has at least δ(ε)n3 triangles. For sufficiently large n, we have δ(ε)n3 ≥ εn2

3 . Hence,
there exists an “extra” triangle. This triangle must have edges from at least two different triangles (in
fact, three), making those edges belong to two different triangles, which is a contradiction.

The result of f(n) = o(n2) was first proved by [Ruzsa and Szemerédi, 1978]. Recall that by the
equivalences we proved above, we also get that g(n) = o(n2) and f(n) = o(n2).

36



9 Ninth Lecture
9.1 Behrend’s Construction
In the last lecture we considered three extremal problems; The (6, 3) Problem, The Induced Matching
Problem and The One Edge One Triangle Problem. Denoting by f(n), g(n), h(n) their respective extremal
functions, we proved that f = Θ(g) = Θ(h) = o(n2). What the proof actually gave, is that h(n) =
O
(
n2/ (log∗ n)1/5

)
, which is just barely sub-quadratic. We will first prove a lower bound for these three

extremal-problems. We first prove a very surprising relation between them and the question of bounding
r3(n).

Theorem 9.1. Let r3(n) denote the size of the largest subset of {1, . . . , n} that contains no 3-term
arithmetic progression. Then h(n) ≥ n · r3(n).

We will then prove the following lower bound on r3(n), due to Behrend.

Theorem 9.2 ([Behrend, 1946]). r3(n) ≥ n/2c
√

logn = n1−o(1).

As an immediate corollary of the above two theorems, we will get the following lower bounds for
f, g, h.

Corollary 9.3. f(n), g(n), h(n) ≥ n2/2c
√

logn = n2−o(1).

Corollary. Combining the results we proved we get the following diagram of implications

TRL→ OEOT → r3(n) = o(n)
↓ ↘

IM ← (6, 3)− P

Proof (Theorem 9.1): We prove that h(6n) ≥ 3nr3(n), using the same idea we used in the proof of Roth’s
Theorem. Assume S ⊆ {1, . . . , n} is of size r3(n) and does not contain 3-term arithmetic progressions.
We construct a graph on 6n vertices as follows: For every 1 ≤ x ≤ n and every s ∈ S we add a triangle
on the vertices x ∈ A, x + s ∈ B, x + 2s ∈ C (see Figure 6.1) and label its edges by s. As in the proof
of Roth’s Theorem, it is easy to see that these triangles are edge-disjoint, and that if the edges of some
triangle are labeled by s1, s2, s3 then s1 +s2 = 2s3. As S does not contain 3-term arithmetic progressions,
it follows that necessarily s1 = s2 = s3 and thus any triangle is one of the original triangles we put in
the graph. These two observations imply that each edge belongs to exactly one triangle.

Corollary 9.4. (6, 3) Problem → Roth’s Theorem (r3(n) = o(n)).

Proof (Theorem 9.2): Denote n = dk. We shall think about x ∈ {1, . . . , n} in base d, hence it has k
digits. Define

S̄d,k,r =
{

(x1, . . . , xk) |
(

0 ≤ xi <
d

2

)
∧

k∑
i=1

x2
i = r2

}

Sd,k,r =
{

k∑
i=1

xid
k−1 | (x1, . . . , xk) ∈ S̄d,k,r

}
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Note that ∣∣∣∣∣∣
⋃
r≥0

S̄d,k,r

∣∣∣∣∣∣ = (d/2)k = n/2k ,

since the union of these sets has all vectors x with digits 0 ≤ xi < d
2 . Since |S̄d,k,r| = |Sd,k,r| we get that

the total size of the sets Sd,k,r is also n/2k. We will shortly show that each set Sd,k,r does not contain a
3-term arithmetic progression, but let us first show how to finish the proof given this fact. To this end
we just need to pick d, k, r. For every d, k the value of r2 =

∑k
i=1 x

2
i is an integer in [0, kd2]. Since the

total size of the sets Sd,k,r is n/2k so for some r we have |Sd,k,r| ≥ n/k2kd2. If we pick k =
√

logn and
d = 2

√
logn we get that at least one of the sets Sd,k,r has no 3-term arithmetic progression and is of the

required size.
We now prove the required claim. Assume x, y, z ∈ Sd,k,r and x+ y = 2z. By rewriting the numbers

in base d we get that x̄ + ȳ = 2z̄ that is, that xi + yi = 2zi for every i (this follows from the fact that
all the digits belong to [0, d2 ] hence there is no carry). S̄d,k,r is actually a sphere, hence no three distinct
points can be on the same line, hence x̄ = ȳ = z̄ and from here we get x = y = z. More detailed
version: xi + yi = 2zi, hence by Jensen’s inequality x2

i + y2
i ≥ 2z2

i and summing over all digits we get∑
x2
i +

∑
y2
i ≥ 2

∑
z2
i . But since these three terms should sum to r2, we must have x2

i + y2
i = 2z2

i for
every i which together with xi + yi = 2zi implies that xi = yi = zi.

Fact 9.5. The best known bounds for r3(n) are n/2c
√

logn ≤ r3(n) ≤ O
(
n(log logn)5/ logn

)
.

9.2 Lower Bound for the Triangle Removal Lemma
The lower-bound for r3(n) gives us a lower-bound for the (6, 3)-Problem. Now we shall seek a lower
bound for the Triangle Removal Lemma.

Theorem 9.6. For every ε > 0 exists δ = δ(ε) > 0 such as if G is a graph which at least εn2 edges must
be removed before it becomes triangle free, then G has at least δn3 triangles.

Unfortunately, as we mentioned in an earlier lecture, the best known lower bound are of the form
δ(ε) ≥ 1/twr(1/ε). It is thus natural to ask if a more civilized bound can be obtained. For example, is it
true that δ(ε) ≥ εC for some absolute constant C? The following theorem gives a negative answer.

Theorem 9.7. For all small enough ε > 0 we have δ(ε) ≤ εc log( 1
ε ). Namely, there exist graphs for which

εn2 edges need to be removed to make them triangle-free but they contain “only” εc log( 1
ε )n3 triangles.

Proof: We take a graph H on m vertices from the lower bound of OEOT (see theorem 9.1), so it has
m2

2c
√

log m
triangles, where each edge is part of exactly one triangle. Now we take n

m -blowup of H to the
graph G. We note:

1. G has n vertices.

2. G has
(
n
m

)3 m2

2c
√

log m
= n3

m22
√

log m
triangles.

3. In order to remove all the triangles in a blowup of an original triangle we need to remove at least
n2

m2 edges (all the edges between two sets of size n
m ), hence over all we need to remove at least

n2

m2
m2

2c
√

log m
= n2

2c
√

log m
edges (as the original triangles are edge-disjoint so we need to remove the

blowups of all the original triangles).
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So we need to remove n2

2c
√

log m
edges in order to make G triangle-free and G has ≤ n3

m triangles. Hence,
in order to make sure G is ε-far from being triangle free we pick m to be the largest integer satisfying
2c
√

logm ≥ 1
ε . It is easy to see that m ≥

( 1
ε

)c log( 1
ε ), which completes the proof.

Alon proved that for a fixed graph H, the removal lemma for H has a poly(ε) bound if and only if H
is bipartite.

9.3 Deducing Szemerédi’s Theorem from the Hypergraph Removal Lemma
We have seen that the Regularity Lemma implies the Triangle Removal Lemma, which in turn implies
Roth’s Theorem. A famous theorem of Szemerédi extends Roth’s theorem by showing that for any fixed
k, if S ⊆ [n] does not contain a k-term arithmetic progression then |S| = o(n). It is thus natural to ask
if one can come up with a graph theoretic proof of Szemerédi’s Theorem using the Regularity Lemma.
As it turns out, this seems to be impossible. Therefore we shall attempt to do so using hypergraphs. To
this end one first needs to prove a removal lemma for hypergraphs. Let us state such a removal lemma
for k-uniform hypergraphs and for the graph Kk

k+1 that is the complete k-uniform hypergraph on k + 1
vertices.

Theorem 9.8 (Hypergraph Removal Lemma). If one should removal at least εnk edges from a k-uniform
hypergraph H in order to make it Kk

k+1-free then H contains at least δ(ε, k) · nk+1 copies of Kk
k+1.

Our goal now is to prove the following:

Theorem 9.9. The Hypergraph removal lemma implies Szemerédi’s Theorem.

Before we prove the theorem, let us comment on the proof of the Hypergraph Removal Lemma. Recall
that our plan for proving the Triangle Removal Lemma consisted of the following steps:

1. We defined the concept of “graph regularity”.

2. We proved the Regularity Lemma, which states that every graph has an equipartition satisfying
the notion of “graph regularity” we came up with.

3. We proved a counting lemma, that is, that 3 vertex sets that satisfy our notion of “graph regularity”
contain many copies of K3.

When one tries to extend this plan and prove the Hypergraph Removal Lemma, one first needs to come
up with a concept of hypergraph regularity. The first choice that comes to mind is the following:

Definition 9.10 (Regularity condition for 3-uniform hypergraph). A,B,C are ε-regular if for every
A′ ⊆ A,B′ ⊆ B,C ′ ⊆ C such that |A′| ≥ ε|A|, |B′| ≥ ε|B|, |C ′| ≥ ε|C| we have

|d(A′, B′, C ′)− d(A,B,C)| ≤ ε

where d(A,B,C) = e(A,B,C)
|A||B||C| .

It is easy to adapt the proof of the graph regularity lemma and prove the following.

Theorem 9.11. Every 3-uniform hypergraph has an ε-regular partition of size at most T
( 1
ε5

)
.

The problem with this regularity lemma is that the concept of regularity it uses is not strong enough
to satisfy the third condition of our plan. That is, it is not true that if 4 vertex sets A,B,C,D are
such that each 3 of them are dense and regular then they contain many copies of K3

4 . In fact, they
might not contain any copy of K3

4 ! Here is how to construct such an example. Take 4 vertex sets of
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size n and for every pair of vertices (in two different vertex sets) pick a direction randomly, uniformly
and independently. We take x, y, z to be an edge iff they form a directed cycle. Hence x, y, z is an edge
with probability 1

4 and it is easy to verify that each of the 4 triples of vertex sets are o(1)-regular (as the
density in every triplet of vertex-sets of size Ω(n) will be 1

4 ± o(1) with high probability). But it is also
easy to see that this 3-uniform hypergraph has no copy of K3

4 .
One can also come up with very strong notions of regularity that satisfy condition 3, but do not satisfy

condition 2, that is, that it is not the case that all hypergraphs have an equipartition satisfying these
conditions. We finally note that it is possible to define a “right” notion of regularity and thus prove the
removal lemma, but it is rather complicated and hence we shall omit it.

We now return to our original task of deducing Szemerédi’s Theorem from the hypergraph removal
lemma. We will do so for 4-term arithmetic progressions. The proof for general k is identical and is thus
left as an exercise.

Proof (Theorem 9.9): Given S ⊂ {1, . . . , n} we define a 3-uniform hypergraph H over 4 vertex-sets
X1, X2, X3, X4, each of size O(n). For every x1, x2 ∈ [n] and s ∈ S we place a copy of K3

4 whose vertices
are x1 ∈ X1, x2 ∈ X2, a1x1 + a2x2 + s ∈ X3, and b1x1 + b2x2 + s ∈ X4, where a1, a2, b1, b2 are absolute
constants (i.e. independent of n and S) that will be determined later. For ease of reference, we label the
4 edges of this copy with the integer s. Note that we have placed in H exactly n2|S| copies of K3

4 (one
for every x1, x2 ∈ [n] and s ∈ S ). We will shortly prove that:

Claim 9.12. If a1 6= b1 and a2 6= b2 then these |S|n2 copies of K3
4 are edge disjoint.

Since |S| ≥ εn this implies that one should remove from H at least εn3 edges in order to make it
K3

4 -free, implying that H is ε/c-far from being K3
4 -free (the c comes from the fact that H has O(n)

vertices). Hence by the Hypergraph Removal Lemma we get that H contains δ(ε)n4 copies of K3
4 .

The key part of the proof will be the following:

Claim 9.13. It is possible to choose a1 6= b1 and a2 6= b2 so that if we take the labels s1, s2, s3, s4 written
on the 4 edges of some copy of K3

4 in H, then s1, s2, s3, s4 form a 4-term arithmetic progression.

Therefore, as soon as n is large enough so that δ(ε)n4 ≥ εn3 ≥ n2|S| we get a copy of K3
4 whose edges

are not marked by the same s, which gives us a non-trivial 4-term arithmetic progression. So given the
above claims the proof is complete.

We now finish the proof of Theorem 9.9 by proving the two claims we stated above.

Proof (Claim 9.12): It is sufficient to show that given an edge it is possible to determine x1, x2, s. If the
edge contains a vertex from X1 and X2 this is obvious. If the edge contains vertices x1 ∈ X1, x3 ∈ X3
and x4 ∈ X4 we can recover x2 and s by solving the linear equations (observe that we “know” x1, x3 and
x4) {

a1x1 + a2x2 + s = x3

b1x1 + b2x2 + s = x4

Therefore if a2 6= b2 it is possible to uniquely determine x1, x2 and s. If the edge has vertices in X2,
X3 and X4 then we need the condition a1 6= b1. So the copies of K3

4 are edge-disjoint if a1 6= b1 and
a2 6= b2.

Proof (Claim 9.13): Note that z1 ≤ z2 ≤ z3 ≤ z4 form a 4-term arithmetic progression iff they satisfy
the linear equations z1 + z3 = 2z2 and z2 + z4 = 2z3. By performing elementary row operations we get
that z1 ≤ z2 ≤ z3 ≤ z4 form a 4-term arithmetic progression iff they satisfy the linear equations

z1 − 2z2 = −z3 and 2z1 − 3z2 = −z4
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Assume x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, x4 ∈ X4 span a copy of K3
4 . Suppose the edge (x1, x2, x3) is marked

by s1 and the edge (x1, x2, x4) is marked by s2. Then we know that

a1x1 + a2x2 + s1 = x3 and b1x1 + b2x2 + s2 = x4

Suppose the edge (x1, x3, x4) is marked by s3. This edge was originally defined using x1, s3 and some
integer x′2. Hence,

a1x1 + a2x
′
2 + s3 = x3 and b1x1 + b2x

′
2 + s3 = x4

Combining these two ways of expressing x3 and x4 we deduce that

a2(x2 − x′2) = s3 − s1 and b2(x2 − x′2) = s3 − s2

Multiplying the first equation by −b2, the second by a2 and then summing them we see that s1, s2, s3
satisfy the linear equation b2s1− a2s2 = (b2− a2)s3. Recall that our goal is to show that s1, s2, s3 satisfy
the linear equation z1 − 2z2 = −z3 so setting b2 = 1 and a2 = 2 we get the required equation. Note that
this choice satisfies the requirement of the previous claim that b2 6= a2. By an identical argument, this
time using the edge (x2, x3, x4) instead of the edge (x1, x3, x4), we get that b1s1−a1s2 = (b1−a1)s4. Our
goal is to show that s1, s2, s4 satisfy the linear equation 2z1 − 3z2 = −z3 so setting b1 = 2 and a1 = 3 we
get the required equation (note that again a1 6= b1). Since s1, s2, s3, s4 satisfy the two linear equations
that define a 4-term arithmetic progression, the proof is complete.

10 Tenth Lecture
10.1 The Ramsey-Turán Problem
We know that a graph can be triangle-free and have n2/4 edges, but such a graph contains large indepen-
dent sets. We thus ask the following: can a graph G be triangle-free, have only independent sets of size
o(n) and still have cn2 edges, or does G necessarily have o(n2) edges? It is easy to see that the answer is
the latter. Indeed, if α(G) ≤ δn then ∆(G) ≤ δn (as an edge in the neighborhood of a vertex implies a
triangle hence all the neighborhood of each vertex must be independent set). So we get that 2m ≤ nδn,
namely if G is K3-free and α(G) = o(n) then m = o(n2).

But what if instead of K3-free graphs we asked about K5-free graphs? The answer is given by the
next two theorems:

Theorem 10.1. There exists a K5-free graph, that contains only independent sets of size o(n) and
contains more than n2

4 edges.

Theorem 10.2. Every graph with ≥
( 1

4 + ε
)
n2 edges contains either a K5 or independent set of size

δ(ε) · n.

Note that Turán’s Theorem guarantees a copy of K3 when m > 1
4n

2. The above theorem states that
if we forbid independent sets of size Ω(n) then m > ( 1

4 + ε)n2 edges give us a K5.

Proof (Theorem 10.1): We start with Kn/2,n/2 with bipartition into two sets A,B. This already gives
us n2

4 edges. We now wish to find a graph H on n/2 vertices that will have the following two properties

1. All independent sets in H will be of size o(n).

2. H will be triangle-free.

41



It is clear that if we put one such H in A and one in B, the final graph will satisfy all the required
properties.

It is not hard to show that such an H exists. In fact it is known that there exists a K3-free graph
where all independent sets are of size O(

√
n logn). Since we do not need such a strong result (which is

rather hard to prove), we will be content with showing that there is a K3-free graph where all independent
sets are of size n2/3. To this end we take G(n, p). Since we want the graph to be triangle-free we would
like to have

E [#K3] = p3n3 <
n

4 ,

so we set p = 1
2n2/3 . The probability to have an independent set of size nc is at most

(
n

nc

)(
1− 1

2n2/3

)n2c

≤ 2n
c logne

− n2c

n2/3 ,

so we would like that n2/3nc ≤ n2c. Hence picking any c > 2/3, gives that with high probability the
graph has no independent set of size nc and that with probability at least 1/2 will have at most n/2
copies of K3 (we use Markov’s Inequality here). So with positive probability we get a graph with no
independent set of size nc and with at most n/2 copies of K3. Removing one vertex from each of these
K3’s gives the required graph.

Proof (Theorem 10.2): Given G with ≥
( 1

4 + ε
)
n2 edges we need to find in it either a K5 or an

independent set of size δ(ε)n. We now apply Claim 2.3, which tells us that G contains a subgraph G′ on
n′ ≥ εn vertices with δ(G′) ≥

( 1
2 + ε

2
)
n′. So it is enough to find an independent set of size δ(ε)n′ in G′

(or a K5). For the sake of simplicity we assume that G itself satisfies the condition δ(G) ≥
( 1

2 + ε
)
n. For

every edge (x, y), the vertices x, y have at least εn common neighbors. If those vertices do not contain any
edge then we get an independent set of size εn, and we are done. So suppose they contain an edge z, w,
which gives us a copy of K4 on the vertices x, y, z, w. As δ(G) ≥

( 1
2 + ε

)
n the number of edges between

x, y, z, w and the rest of the vertices is at least 4
(
n
2 + nε

)
= 2n+ 4εn. If there is a vertex connected to

all the 4 vertices x, y, z, w, it is a copy of K5 and we are done. Otherwise, denote by U those vertices
connected to 3 of the vertices x, y, z, w. The number of edges e between {x, y, z, w} to the rest of the
vertices thus satisfies

2n+ 4εn ≤ e ≤ 3|U |+ 2(n− |U |) = |U |+ 2n

implying that |U | ≥ 4εn. At least 1/4 of the vertices in U must be connected to the same triplet of
vertices from x, y, z, w. This set of vertices, call it U ′, has size at least εn. Finally, if U ′ contains an edge
we get a K5, and if it has no edge we get an independent set of size εn.

Having addressed the problem for K3 and K5 we now address the case of K4. It turns out that
answering such questions for even Kr’s is more difficult than for odd Kr’s. For K4 the answer turned out
to be around n2/8 edges.

Theorem 10.3. If G contains
( 1

8 + ε
)
n2 edges then G either contains K4 or an independent set of size

δ(ε)n (this time δ(ε) is something like 1/twr(1/ε)).

Theorem 10.4. For every ε > 0, and large enough n > n0(ε), there exists a K4-free graph with
( 1

8 − ε
)
n2

edges that contains only independent set of size o(n).

We will not prove the above lower bound, and instead address Theorem 10.3. We will need a few
preliminary claims.
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Claim 10.5. Assume H is a graph on two vertex-sets A,B of size m each, and d(A,B) ≥ 1
2 + ε. Then

H contains either K4 or an independent set of size ≥ εm.

Proof: It is easy to see that A has at least εm
2 vertices with at least

( 1
2 + ε

2
)
m neighbors in B. Indeed,

εm

2 ·m+
(

1− ε

2

)
m

(
1
2 + ε

2

)
m < m2

(
1
2 + ε

)
.

If those high degree vertices do not span an edge then we’re done (we found an independent set of size
εm
2 ). Otherwise, assume x, y are two such vertices, and they are connected. Then they have εm

2 common
neighbors in B. Then those vertices are either an independent set of size εm

2 (and we are done) or they
contain an edge, which gives a copy K4 together with x, y.

Claim 10.6. If A,B,C are vertex-sets of size m such as (A,B), (A,C) and (B,C) are ε-regular with
densities ≥ 3ε, then they contain either a K4 or an independent set of size ε2m.

Proof: Since (A,B) is ε-regular with density 3ε all the vertices of A, apart of εm of them, have a minimal
degree ≥ 2εm in B. The same goes for C. In particular, there exists a vertex a (actually almost all of
them) whose degree in B and C is at least 2εm. Denote the neighbors of a in B and C by B′ and C ′. Since
|C ′| ≥ ε|C|, all of B’s vertices, apart for possibly εm of them, have minimal degree (3ε− ε)|C ′| ≥ ε2|C|
in C ′. Since |B′| ≥ 2ε|B|, we infer that B′ has a vertex b whose degree in C ′ is at least ε2|C|. We call
those neighbors C ′′. We know that a is connected to b, and both of them are connected to every vertex
in C ′′. Hence, we either have an independent set of size ε2m on C ′′ or a copy of K4.

Claim 10.7. If G has
( 1

8 + ε
)
n2 edges then it either contains K4 or independent set of size δn where

δ = ε2

T (ε/6) .

Proof: Given G we apply the Regularity Lemma with ε/6. We remove from G the following edges:

1. Edges between non-ε/6-regular pairs (≤ εn2/6 edges).

2. Edges within the sets of the partition (≤ εn2/12 edges).

3. Edges between pairs with density ≤ ε
2 (≤ εn2/4 edges).

All in all, we removed at most εn2

2 edges. The remaining graph, G′, thus has at least
( 1

8 + ε
2
)
n2 edges.

All the pairs in the equipartition must have density ≤
( 1

2 + ε
2
)
else by Claim 10.5 we would infer that G

contains K4 or an independent set of size ≥ ε
2
n
T .

How many pairs (Vi, Vj) with density > 0 exist in G′? If the partition has k sets then no more than
k2

4 , otherwise Mantel’s Theorem guarantees 3 sets such that the density between any two of them is ≥ ε/2
and they are ε/6-regular. But given such a triple, Claim 10.6 would guarantee existence of either K4 or
an independent set of size ε2

9
n
T in G. So the number of edges in G′ is at most

k2

4

[
n2

k2

(
1
2 + ε

2

)]
= n2

8 + εn2

8 <

(
1
8 + ε

2

)
n2 ,

contradicting the fact that e(G′) >
( 1

8 + ε
2
)
n2. Hence, somewhere along the way we aught to have found

either a K4 or an independent set of size δ(ε) · n.
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10.2 Quasi-Random Graphs
Consider the following proposed definition:

Definition. We shall say a graph is (ε, p)-quasi-random if every set S contains
(|S|

2
)
(p± ε) edges (where

x± ε is a number between x− ε and x+ ε).

The above definition is flawed, as by Ramsey’s Theorem it will not hold for sets of size o(logn). So
we consider the following three alternative definitions:

Definition 10.8. We say G fulfills P1 if every set S contains p
(|S|

2
)
± εn2 = p |S|

2

2 ± εn
2 edges.

Definition 10.9. We say G fulfills P2 if every set S of size ≥ εn contains |S|
2

2 (p± ε) edges.

Definition 10.10. We say G fulfills P3 if it fulfills P2 for sets of size n
2 .

We say that P1 =⇒ P2 if for every ε > 0 there exists δ > 0 such that if G fulfills P1 with an error of
δ then it fulfills P2 with an error of ε. We now wish to prove the following equivalence.

Theorem 10.11. P1 ⇐⇒ P2 ⇐⇒ P3

We break the proof into several claims.

Claim 10.12. P1 =⇒ P2

Proof: We note that P2 is fulfilled iff it holds for sets of size εn (by averaging argument it will hold for
any bigger set). In this case we require that

e(S) = p
|S|2

2 ± ε|S|2 = p
|S|2

2 ± ε3n2

so it is enough that P1 will hold with δ = ε3.

Claim 10.13. P2 =⇒ P1

Proof: If G fulfills P2 with δ then P1 holds for every S of size ≥ δn since δ|S|2
2 ≤ δn2. So if δ ≤ ε then P1

holds for all subsets of size at least δn. For sets of size at most δn we would like that P1 will be fulfilled
trivially. Namely, that

p|S|2

2 − εn2 ≤ 0 ≤ e(S) ≤ |S|
2

2 ≤ p|S|2

2 + εn2

So to get the left hand side we need to have p|S|2
2 − εn2 ≤ 0 so we also ask than |S| ≤ δn ≤

√
2ε
p n,

that is, that δ ≤
√

2ε
p . For the other side we would need to have p|S|2

2 + εn2 ≥ |S|
2

2 so we also ask that

|S| ≤ δn ≤
√

2ε
1−pn, that is, that δ ≤

√
2ε

1−p . So overall it is enough to take δ = min
(
ε,
√

2ε
p ,
√

2ε
1−p

)
.

Claim 10.14. P2 ⇐⇒ P3

Proof: It is obvious that P2 =⇒ P3. We will prove the other direction by showing that if G does not
fulfill P2 with error ε then it does not fulfill P3 with some other small error δ(ε). Recall that if G fails to
satisfy P2 with error ε then there exists a set A of size εn whose density is not p±ε. We assume that it is
= p+ ε (the case p− ε is similar). We will show that in this case G has a subset of size n/2 with density
p+ Ω(ε4). This means that if G satisfies P3 with error δ(ε) = ε4 then it must satisfy P2 with error ε.
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Denote B = V \A. If the density of B is not (p± δ) then we are done as by averaging, it must contain
a subset of size n

2 whose density is also not in (p± δ). Since G has pn2/2 edges we get that the density
of the bipartite graph connecting A and B is given by

d(A,B) =
pn2

2 − e(A)− e(B)
εn(1− ε)n =

pn2

2 −
ε2n2

2 (p+ ε)− (1−ε)2n2

2 (p± δ)
εn(1− ε)n

We pick a random subset S ⊆ B of size (1/2 − ε)n and we examine the expected number of edges
contained in A ∪ S. This is a set of size n

2 hence it is sufficient to show that the expected value is
≥ (p + Ω(ε3))n

2

8 > (p + δ)n
2

8 which will imply that P3 is not fulfilled with error δ = ε4. The expected
number of edges in A is just the number of edges in A which is ε2n2p

2 + ε3n2

2 . The expected number of
edges in S is

E[e(S)] = (1/2− ε)2n2

2 (p± δ) ,

and the expected number of edges between A and S is

E[e(A,S)] = εn(1
2 − ε)n

[
pn2

2 −
ε2n2

2 (p+ ε)− (1−ε)2n2

2 (p± δ)
]

εn(1− ε)n .

So the total expected number of edges in A ∪ S is

ε2n2p

2 + ε3n2

2 + (1/2− ε)2n2

2 (p± δ) + εn(1
2 − ε)n

[
pn2

2 −
ε2n2

2 (p+ ε)− (1−ε)2n2

2 (p± δ)
]

εn(1− ε)n .

We want to show that this expression is at least (p + Ω(ε3))n
2

8 , so dividing both sides by n2/2 we need
to show that

ε2p+ ε3 + (1/2− ε)2(p± δ) +
( 1

2 − ε)
(1− ε)

[
p− ε2p− ε3 − (1− ε)2(p± δ)

]
≥ p

4 + Ω(ε3) .

As we assumed δ = ε4 all the terms involving δ are O(ε4) so we can disregard them as all the rest are of
order at least ε3. So we are down to proving that

ε2p+ ε3 + (1/2− ε)2p+
( 1

2 − ε)
(1− ε)

[
p− ε2p− ε3 − (1− ε)2p

]
≥ p

4 + Ω(ε3) .

The expression in the square brackets can now be further simplified to p(2ε− 2ε2)− ε3 implying that the
entire LHS is just p/4 + ε3 − ε3 ( 1

2−ε)
(1−ε) > p/4 + ε3/2, and the proof is complete.

11 Eleventh Lecture
Throughout this lecture we use d(x, y) to denote the co-degree of x, y, that is, the number of vertices
that are connected to both x and y.
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11.1 The Chung-Graham-Wilson Theorem
Definition 11.1. A graph G is said to satisfy property P4 if it has pn2/2 edges and the number of copies
of C4 (i.e. the 4-cycle) in G is at most (p4 + ε)n4. Here, the number of C4 is the number of ordered
4-tuples (x, y, z, w) so that (x, z), (x,w), (y, z), (y, w) are all edges in the graph.

The advantage of this notion of quasi-randomness, compared to the previous properties we considered
last lectures, is that it can easily verified in polynomial time, compared to properties P1, P2, P3 which
require checking exponentially many conditions.

Theorem 11.2 (Chung-Graham-Wilson Theorem). P3 ⇐⇒ P4 [Chung et al., 1989]

The implication P3 =⇒ P4 is the easy part of this theorem.

Exercise 11.3. Show that P3 =⇒ P4.

Exercise 11.4. Let P ′3 be the property of having at most (p4 + ε)n4 copies of C4. Does P ′3 =⇒ P4?

We shall thus focus on proving that P4 =⇒ P3. As a warm-up, we start with the following claims.

Claim 11.5. Every graph with pn2/2 edges contains at least p2n3 copies of K1,2, where a copy of K1,2
is an ordered 3-tuple (x, y, z) such that both (x, z) and (y, z) are edges in the graph.

Proof: #K1,2 =
∑
d2(x) ≥ n

[∑
d(x)
n

]2
= p2n3.

Claim 11.6. Every n× n bipartite graph on vertex sets A,B, that has pn2 edges contains at least p2n3

copies of K1,2, with one vertex in A and 2 in B .

Proof: Identical to the previous proof.

Claim 11.7. If G contains K copies of K1,2 then it contains at least (K/n)2 copies of C4.

Proof: #C4 =
∑
x,y d

2(x, y) ≥ n2
[∑

d(x,y)
n2

]2
= n2 ( K

n2

)2 =
(
K
n

)2.
Claim 11.8. Every graph with pn2/2 edges contains at least (pn)4 copies of C4.

Proof: Immediately from Claims 11.5 and 11.7.

As a warm up towards proving Theorem 11.2, let us prove that P4 forces the graph to be nearly
regular.

Claim 11.9. If G satisfies P4 then all but δn vertices have degree (p± δ)n.

Proof: Assume the contrary and recall that if 1
n

∑n
i=1 xi = d, then setting xi = d+ εi we have

n∑
i=1

x2
i = d2n+

n∑
i=1

ε2
i . (11.1)

Hence, if we denote d(x) = pn+ εxn then we get

#K1,2 =
∑
x

d2(x) =
∑
x

(p+ εx)2n2 = p2n3 +
∑
x

ε2n2 ≥ p2n3 + δ3n3 .
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We can now infer from Claim 11.7 that

#C4 ≥
(
p2n3 + δ3n3

n

)2

≥ (p4 + 2p2δ3)n4 ,

which is a contradiction to the P4 property of G, upon taking ε = 2p2δ3.

Our plan for proving Theorem 11.2 is similar to the one we employed in the last proof, that is, we
show that if G fails to satisfy P3 then it has more than (pn)4 copies of C4. Let us first observe that the
above claim does not prove that P4 =⇒ P3. Indeed, while one expects a quasi-random graph to be
nearly regular, it is easy to see that being regular is not equivalent to properties P1, P2, P3. For example
Kn/2,n/2 is n/2-regular but fails to satisfy these three properties. In other words, a graph can fail to
satisfy P3 but still have the correct number of K1,2. In a more technical level, this means that we will
have to rework the proof of Claim 11.7 rather than rework the proof of Claim 11.5 as we have done in
the above claim.

Proof (Chung-Graham-Wilson Theorem): We show that if G fails to satisfy P3 then it fails to satisfy P4
as well. Assume G has pn2/2 edges and contains a vertex set A of size n/2 whose density is not in p± ε.
We need to show that G contains at least (p4 + δ)n4 copies of C4 for some δ = δ(ε) > 0. Set B = V \A
and suppose e(A) = an2/8, e(B) = bn2/8 and e(A,B) = cn2/4. Then we have a+ 2c+ b = 4p. Since we
assume that a /∈ p± ε we get from (11.1) that

a2 + 2c2 + b2 ≥ 4p2 + ε2 . (11.2)

Claim 11.7 tells us that G has at least p2n3 copies of K1,2. Our goal is thus to improve the argument of
Claim 11.7 by finding ∼ n2 pairs of vertices whose co-degree deviates from its expectation (which is p2n)
by ∼ n .

To this end we will focus on the pairs of vertices x, y so that either x, y ∈ A or x, y ∈ B. We first
calculate

∑
x,y∈A d(x, y), which equals the number of copies of K1,2 (namely, triples (x, y, z) with both

(x, z) and (y, z) edges of the graph), with x, y ∈ A. By Claim 11.7, applied to the graph induced by A,
we get that the number of copies of K1,2 with all three vertices in A is at least a2n3/8. By Claim 11.6,
applied to the bipartite graph connecting A to B, we get that the number of copies of K1,2 with two
vertices in A and one in B is at least c2n3/8. So we get that

∑
x,y∈A d(x, y) ≥ (a2 +c2)n3/8. An identical

argument implies that
∑
x,y∈B d(x, y) ≥ (b2 + c2)n3/8. These two facts, together with (11.2), imply that∑

(x,y)∈A2∪B2

d(x, y) ≥ (a2 + b2 + 2c2)n3/8 ≥ p2n3/2 + ε2n3/8. (11.3)

Denote d(x, y) = p2n+ δxy. Then (11.3) is equivalent to saying that∑
(x,y)∈A2∪B2

δ(x, y) ≥ (n2/2) · ε2n/4. (11.4)

Hence, we get

#C4 =
∑
x,y

d2(x, y) =
∑
x,y

(
p2n+ δxy

)2 = p4n4 +
∑
x,y

δ2
x,y ≥ p4n4 +

∑
(x,y)∈A2∪B2

δ2
xy

≥
↑

(Jensen)
p4n4 + n2

2

(∑
δxy

n2/2

)2
≥
↑

(11.4)
p4n4 + n2

2 (ε2n/4)2 = p4n4 + ε4n4/32 .

So we can finally conclude the proof by setting δ = ε4/32.
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11.2 An Algorithmic Version of the Regularity Lemma
Inspecting the proof of the regularity lemma, one sees that the proof actually supplies an algorithm that
given ε and a graph G, constructs an ε-regular partition of G. However, there is one part which is not
“explicit” in that it is not clear how to implement it in polynomial time. The part we are referring to is
where given a bipartite graph on vertex sets A,B that is not ε-regular, we need to find two vertex sets
A′ ⊆ A and B′ ⊆ B of sizes |A′| ≥ ε|A| and |B′| ≥ ε|B| satisfying d(A′, B′) 6∈ d(A,B) ± ε. It is easy to
see that if we could produce these sets in polynomial time, then the running time of the entire process
would also be polynomial11. As it turns out solving this algorithmic problem is hard. Instead we will
show the following:

Theorem 11.10. There is an O(n3) time algorithm that given a bipartite graph G on vertex sets A,B
does the following; if G is not ε-regular, it finds two vertex sets A′ ⊆ A and B′ ⊆ B of sizes |A′| ≥ ε5|A|
and |B′| ≥ ε5|B| satisfying d(A′, B′) 6∈ d(A,B)± ε5.

Note that the algorithm does not produce a pair of sets A′, B′ satisfying the properties we used in
the proof of the regularity lemma, since the ε is replaced by ε5. But still

Exercise 11.11. Show that plugging the algorithm of Theorem 11.10 in the proof of the regularity
lemma still produces an ε-regular partition in time O(n3).

One way to solve the above exercise is by checking the details of the proof. A more “abstract” way to
see this is to observe that we are thus “proving” the regularity lemma for ε5 instead of ε (so the partition
will be of size twr(1/ε25) instead of twr(1/ε5)).

To prove of Theorem 11.10 we will apply an interesting equivalence between two quasi-random prop-
erties of bipartite graphs. We first make the following observation. Denote by P5 the graph property that
all pairs of vertices (x, y), possibly except εn2 of them, satisfy d(x, y) = (p2 +ε)n. We have the following:

Exercise 11.12. Show that P2 ⇐⇒ P5. You can prove this either directly or by showing that P5 is
equivalent to P4 and then using the equivalences we have already proved (try to do both).

The properties P1, ..., P5 of quasi-random graphs have each a natural variant that deals with quasi-
random bipartite graphs. For example, suppose a bipartite graph G, on vertex sets A,B, with |A| =
|B| = n, has pn2 edges. We say that G satisfies property P̄2 if for every pair of vertex sets A′ ⊆ A,B′ ⊆ B
where |A|, |B| ≥ εn we have d(A′, B′) = p± ε. This can be considered the “bipartite” version of property
P2 from the previous lecture (see Definition 10.9). More importantly, note that this property is simply
the property of a bipartite graph being ε-regular (in the sense of the regularity lemma).

We can also define a bipartite analogue of property P5. Suppose G is has vertex sets A,B, with
|A| = |B| = n, and pn2 edges. We say that G satisfies property P̄5 if all but at most εn2 pairs of
verticesx, y ∈ A, satisfy d(x, y) = (p2±ε)n. Then we have the following bipartite version of the equivalence
between P2 and P5.

Exercise 11.13. Show that P̄2 ⇐⇒ P̄5. In particular, if (A,B) is not ε-regular, then A contains ε4n2

pairs of vertices x, y for which d(x, y) ≥ (d2 + ε4)n, where d = d(A,B).

The implication P̄2 =⇒ P̄5 is easy (do it!). The more interesting part is the other direction (which is
the only direction we will need in the proof). To prove this direction one can check that all the arguments
one needs to prove that P5 =⇒ P2 carry almost word for word to the bipartite setting. Another shorter
way is to reduce the fact that P̄5 =⇒ P̄2 to the fact that P5 =⇒ P2.
Proof (Theorem 11.10): If G is not ε-regular, then by Exercise 11.13 the set A contains at least ε4n2

pairs of vertices x, y satisfying d(x, y) ≥ (d2 + ε4)n. It is obvious that such pairs can be found in O(n3)
11Here and later in the proof, when we say polynomial, we mean polynomial in n. The dependence on ε would still be of

tower-type since the size of the partition can be of this size. So one can think of ε as fixed and the input size being n.

48



time (of course, we might not find these pairs if A,B is ε-regular but we need not worry about this case.).
We will now show how to use these ε4n2 pairs in order to find the sets A′, B′.

Assume first that A contains 2ε5n vertices x satisfying d(x) 6= (d ± ε5)n, and assume w.l.o.g. that
ε5n of them have degree at least (d + ε5)n. Then the algorithm can return these vertices as the A′ and
as B′ it can return B itself.

Assume now that there is x ∈ A satisfying d(x) = (d ± ε5)n and that there are at least ε5n other
vertices x′ ∈ A satisfying d(x, x′) ≥ (d2 + ε4)n. We claim that in this case the algorithm can return N(x)
as the set B′ and the ε5n vertices x′ satisfying d(x, x′) ≥ (d2 + ε4)n as the set A′. Indeed, note that12

|B′| ≥ (d− ε5)n ≥ ε5n, and |A′| ≥ ε5n so both sets are of the required size. As to d(A′, B′), we have13

d(A′, B′) = e(A′, B′)
|A′||B′|

≥ |A
′|(d2 + ε4)n
|A′|(d+ ε5)n = d2 + ε4

d+ ε5 ≥ d+ ε5 .

Finally, observe that if none of the above two cases holds then A contains at most (2ε5)n vertices
satisfying d(x) 6= (d + ε5)n and for any vertex that does satisfy d(x) 6= (d + ε5)n there are at most ε5n
vertices satisfying d(x, x′) ≥ (d2 + ε4)n. But this means that there are at most (2ε5)n ·n+n · ε5n ≤ ε4n2

pairs of vertices satisfying d(x, x′) ≥ (d2 + ε4)n which is a contradiction.

11.3 Approximating MAX-CUT using the Regularity Lemma
We now give an application of the algorithmic version of the regularity lemma we obtain in the previous
subsection. Our focus will be the MAX-CUT problem. In this problem the input is a graph G and
the goal is (as the name suggests) to find a partition of V (G) into two sets A,B so as to maximize the
number of edges connecting A to B. This problem is known to be NP-hard so we try to find a good
approximation. Observe that Claim 8.8 we previously proved shows that we can always find a partition
which achieves at least half of the optimum (from now on let us use OPT = OPT (G) for the optimal
solution for G).

Using the Regularity Lemma we can obtain the following:

Theorem 11.14. There is an O(n3) algorithm that given a graph G finds a partition A,B satisfying

e(A,B) ≥ OPT − εn2 .

Note that the above result is useless when G has o(n2) edges. On the other hand, when G has cn2

edges, we know from Claim 8.8 that OPT ≥ 1
2cn

2 so applying the above theorem with 1
2εc we can find

a partition A,B satisfying e(A,B) ≥ (1− ε)OPT .

Proof (Theorem 11.14): It will be simpler to prove the result with error 4εn2. We already know (via
Theorem 11.10) how to find an ε-regular equipartition V1, ..., Vk of G in time O(n3). Therefore, we only
need to show how to find the partition A,B in time O(n3) given V1, ..., Vk. Note that we can disregard
the edges inside the clusters since this changes OPT by at most εn2.

We will now show that given the densities between all pairs of clusters Vi, Vj we can approximate
OPT in constant time! So suppose we are given the densities di,j = d(Vi, Vj). For every choice of
a1 ∈ {0, ..., 1/ε}, ..., ak ∈ {0, ..., 1/ε} let us set xi = εai and define

e(x1, ..., xk) =
∑
i<j

dij (xi(1− xj) + (1− xi)xj) |Vi||Vj | .

12Assuming that d ≥ 2ε5, otherwise the graph is sparse and will trivially be ε-regular anyway. In fact, already when
d ≤ ε3 the graph is trivially ε-regular.

13Here we are also assuming that ε < ε0. We can justify this assumption by simply replacing ε with ε0 if this is not the
case. The only affect this might have is that instead of having ε5 in the statement of the Theorem we will get cε5 for some
absolute constant c = ε5

0.
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Observe that we can interpret e(x1, ..., xk) as e(A,B) when A is obtained by picking xi|Vi| vertices from
each of the sets Vi. This is of course just an approximation of e(A,B), but it is easy to see that since
V1, ..., Vk is ε-regular, that no matter how we pick the xi|Vi| vertices from each cluster Vi, we always have

|e(A,B)− e(x1, ..., xk)| ≤ εn2 . (11.5)

We thus claim that after computing e(x1, ..., xk) for all possible (1/ε)k assignments, we can pick the
assignment x1, ..., xk that achieves the maximum, define a partition A,B using x1, ..., xk as above, and
return it as the output.

To show that we indeed have e(A,B) ≥ OPT − εn2, let X,Y be the partition of V (G) satisfying
e(X,Y ) = OPT . Now define a new partition X ′, Y ′ so that for every 1 ≤ i ≤ k the set |X ′∩Vi| = εa′i|Vi|,
where a′i is an integer. This partition can clearly be obtained from X,Y by “moving around” at most εn
vertices. Since this can change the number of edges connecting the two sets by at most εn2, we have

e(X ′, Y ′) ≥ e(X,Y )− εn2 = OPT − εn2 .

Setting x′i = εa′i we now get from (11.5) that

e(x′1, ..., x′k) ≥ e(X ′, Y ′)− εn2 ≥ OPT − 2εn2 .

Since we defined (A,B) using an assignment that maximizes e(x1, ..., xk) we have

e(x1, ..., xk) ≥ e(x′1, ..., x′k) ≥ OPT − 2εn2 .

Finally we get from another application of (11.5) that

e(A,B) ≥ e(x1, ..., xk)− εn2 ≥ OPT − 3εn2 ,

as needed. Recalling the error of εn2 that resulted from disregarding the edges inside the clusters we get
an approximation of 4εn2.

12 Twelfth lecture
12.1 Hypergraph Ramsey Numbers
Recall that N = R(s, t) is the smallest number such that every 2 coloring of KN contains either a red
Ks or black Kt. We showed that R(s, t) ≤

(
s+t−2
s−1

)
and in particular 2t/2 ≤ R(t, t) ≤ 4t. This result can

be generalized to 3-graphs.

Theorem 12.1. For every s, t there exists N = R3(s, t) such that every 2 coloring of K3
N contains a red

K3
s or a black K3

t .

Proof: We show that
R3(s, t) ≤ R2 (R3(s− 1, t), R3(s, t− 1)) + 1 . (12.1)

We begin by picking an arbitrary vertex v and let X denote the rest of the vertices. Define a 2-coloring
of the complete graph on the vertex set X as follows; we color edge (i, j) using the color given to (v, i, j).
By Ramsey’s Theorem for graphs, this 2-coloring has either a vertex set X1 that spans a red KR3(s−1,t)
or a vertex set X2 that spans a black KR3(s,t−1). Assume the former holds. By induction, the hypergraph
induced by X1 contains either black K3

t (and we are done) or a red K3
s−1. It is now easy to see that the

way we defined the coloring of X guarantees that X1 together with v gives a red K3
s , thus completing the

induction step for proving (12.1). The base cases can easily be checked, thus proving the theorem.
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Let us try to get a feeling of the type of bound we get from the above proof. Since R(t, t) ≥ 2t/2 we
see that the recurrence relation in (12.1) satisfies

R3(t, t) ≥ R2(R3(t− 1, t− 1), R3(t− 1, t− 1)) ≥ 2R3(t−1,t−1)/2

implying that this bound grows like a tower of
√

2 of height t, which is a pretty weak. We now give a
better bound based on an argument of Erdős and Rado.

Theorem 12.2. R3(t, t) ≤ 2(R2(t,t)
2 ). In particular R3(t, t) ≤ 224t .

Proof: We try to imitate the first proof of Ramsey’s Theorem for graphs we previously gave. We
iteratively construct a 3-tuple (Si, φi, Xi) where Si and Xi are two disjoint vertex sets, Si = {s1, ..., si},
and φi is a 2-coloring of the pairs of vertices of Si satisfying the following two key conditions: (1) For
every 1 ≤ a < b < c ≤ i the edge (Sa, Sb, Sc) is colored φi(Sa, Sb), and (2) For every of 1 ≤ a < b ≤ i and
x ∈ Xi the edge (Sa, Sb, x) is also colored φi(Sa, Sb).

Suppose first that we have managed to construct such a 3-tuple with i = R2(t, t). Then by Ramsey’s
Theorem, the coloring φi of Si (when viewed as a 2-coloring of the complete graph on R2(t, t) vertices)
contains a monochromatic Kt. It is now easy to see that the first key property of φi guarantees that the
vertices of this Kt also form a monochromatic K3

t in the hypergraph.
To construct the 3-tuples (Si, φi, Xi) we start with S1 = {v}, with v an arbitrary vertex, and X1 =

V \ v. Assuming we defined (Si, φi, Xi) we now define (Si+1, φi+1, Xi+1). Pick an arbitrary vertex from
Xi, remove it from Xi and add it to Si. This vertex is going to be si+1. We now need to define the new
set Xi+1 and the new coloring φi+1. The new coloring φi+1 will agree with φi on all pairs (Sa, Sb) with
1 ≤ a < b ≤ i. So we just need to color the pairs (Sa, Si+1) with 1 ≤ a ≤ i. The set Xi clearly contains
a subset X1

i of size at least |Xi|/2 so that all the triples (s1, si+1, x), with x ∈ X1
i , are colored with the

same color. If this color is red we color (s1, si+1) red, otherwise we color it black. In a similar manner,
the set X1

i clearly contains a subset X2
i of size at least |X1

i |/2 so that all the triples (s2, si+1, x), with
x ∈ X2

i , are colored with the same color. If this color is red we color (s2, si+1) red, otherwise we color
it black. We continue in this manner and set Xi+1 = Xi

i . It is easy to see that (Si+1, φi+1, Xi+1) has
the required properties. Finally, note that when constructing (Si, φi, Xi), in each of the

(
i
i

)
iterations we

were forced to reduce the size of X1 by a factor of at most 2. Therefore, if the initial hypergraph is of size
at least 2(R2(t,t)

2 ) we are guaranteed that the process will be able to go on for i = R2(t, t) iterations.

Somewhat embarrassingly, the best lower for R3(t, t) is the one one gets from the obvious random
construction as the following exercise suggests.

Exercise 12.3. Show that R3(t, t) ≥ 2t2/6.

One can easily adapt the proof of our previous upper bound R3(t, t) ≤ 2(R2(t,t)
2 ) and obtain the

following more general recursive relation.

Exercise 12.4. Show that for every k ≥ 3 we have Rk(t, t) ≤ 2(Rk−1(t,t)
k−1 ).

We see that any upper bound for Rk can be “lifted” to Rk+1 with the price of one extra exponent.
As the following theorem shows, the same holds also for lower bounds, but only for k ≥ 3.

Theorem 12.5 (Step-up Lemma). The following holds for every k ≥ 3; if there is a 2-coloring of Kk
m

with no monochromatic Kt then there is a 2-coloring of Kk+1
2m with no monochromatic K2t+k, that is,

Rk+1(2t+ k, 2t+ k) ≥ 2m.

51



Proof: We prove the result for k = 3 and leave the general case as an exercise. Assuming we have a
2-coloring of K3

m with no monochromatic K3
t−1 we define a 2-coloring of K4

2m with no monochromatic
K4

2t−1.
We think of every vertex of K4

2m as a binary string of length m. For such strings x, y we define δ(x, y)
to be the largest index where the strings differ. We also assume that the strings/vertices are ordered
lexicographically. We will rely on the following facts that are easy to verify.

1. If x < y < z then δ(x, y) 6= δ(y, z).

2. If x < y < z then δ(x, z) = max{δ(x, y), δ(y, z)}.

Note that the second fact above implies that more generally, if x1 < . . . < xl then

δ(x1, xl) = max
1≤i≤l−1

δ(xi, xi+1) (12.2)

We now show how to color K4
2m . Given x1 < x2 < x3 < x4, set δ1 = δ(x1, x2), δ2 = δ(x2, x3), δ3 =

δ(x3, x4). We use the following rules:

1. If δ1 < δ2 < δ3 we color (x1, x2, x3, x4) using the color given to (δ1, δ2, δ3).

2. If δ1 > δ2 > δ3 we color (x1, x2, x3, x4) using the color given to (δ1, δ2, δ3).

3. If δ1 > δ2 < δ3 we color (x1, x2, x3, x4) black.

4. If δ1 < δ2 > δ3 we color (x1, x2, x3, x4) red.

Assume x1 < . . . < x2t−1 is a monochromatic K4
2t−1, and suppose it is red (the black case is identical).

Consider δ1, δ2, . . . , δ2t−2. By coloring rules 3 and 4, there is at most one consecutive triplet which is not
monotone. As the sequence is of length 2t− 2, it must contain a consecutive monotone sub-sequence of
length t− 1. Assume, without loss of generality that it is of the form δ1 < δ2 < . . . < δt−1 and consider
x1, . . . , xt. We get that for every 1 ≤ i ≤ t − 3, the edge (δi, δi+1, δi+2) is colored red. Consider now
a general triple (δi, δj , δk) and take the 4-edge (xi, xi+1, xj+1, xk+1). We get from the monotonicity of
the δ’s and (12.3) that δ(xi+1, xj+1) = δj and that δ(xj+1, xk+1) = δk. Since (xi, xi+1, xj+1, xk+1) was
colored red and δi < δj < δk, this means that (δi, δj , δk) was also colored red, implying that δ1, δ2, . . . , δt−1
form a red K3

t−1, which is a contradiction.

Let us define twr1(x) = x and twrk(x) = 2twrk−1(x). So, for example, twr3(x) is the function 22x .
It follows from the fact that R2(t, t) ≤ 22t and the general reduction from Rk+1 to Rk that Rk(t, t) ≤
twrk((4 + o(1))t). Furthermore, if one could improve the upper bound for 3-graphs by showing that
R3(t, t) ≤ 2poly(t) then we would get that Rk(t, t) ≤ twrk−1(poly(t)). However, it is widely believed that
R3(t, t) is indeed double exponential. It also follows from the Step-Up Lemma that showing that R3(t, t)
is indeed double-exponential, that is, showing that R3(t, t) ≥ 22ct , will give a tight bound for general k,
that is, imply that Rk(t, t) ≥ twrk(ct). The bottom line is that determining R3(t, t) would thus determine
Rk(t, t) for all k.

Somewhat surprisingly, for 4 colors we can obtain rather tight bounds for Rk(t, t, t, t). The upper
bound follows by adapting the above proof for 2-colors and is thus left as an exercise.

Exercise 12.6. Show that R3(t, t, t, t) ≤ 22ct and that more generally Rk(t, t, t, t) ≤ twrk(O(t))

We now show that for 4 colors we can obtain a matching lower bound for k = 3. This lower bound
can then be lifted to larger k using a version of the stepup lemma we gave earlier for 2-colors.
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Theorem 12.7. Suppose there is a 2-coloring of Km with no monochromatic Kt−1. Then R3(t, t, t, t) ≥
2m. In particular, we have R3(t, t, t, t) ≥ 22t/2 .

Proof: We define a 4-coloring of K3
2m without a monochromatic K3

t . As in the last proof, we think of
the vertices as binary strings of length m, and define δ as before. We define the coloring as follows: given
x < y < z, set δ1 = δ(x, y), δ2 = δ(y, z), and color the edge (x, y, z) as follows:

1. If δ1 < δ2 and (δ1, δ2) is red (in the assumed Km) then color (x, y, z) with color A.

2. If δ1 < δ2 and (δ1, δ2) is black then color (x, y, z) with color B.

3. If δ1 > δ2 and (δ1, δ2) is red then color (x, y, z) with color C.

4. If δ1 > δ2 and (δ1, δ2) is black then color (x, y, z) with color D.

Assume that x1 < x2 < . . . < xt form a monochromatic K3
t whose color is A (the other 3 cases are

identical). Define δi = δ(xi, xi+1) for every 1 ≤ i ≤ t − 1. We will now show that {δi}1≤i≤t−1 forms a
red clique of size t− 1 in the original graph Km, which will be a contradiction. First note that since all
triples xi, xi+1, xi+2 are colored A, we get

δ1 < δ2 < δ3 < . . . < δt−1 (12.3)

so these vertices are indeed distinct. We also get from the definition of the coloring, that for every
1 ≤ i ≤ t − 2 the edge (δi, δi+1) is colored red. For every i < j consider the edge (xi, xi+1, xj+1). We
now get from (12.2) and (12.3) that δ(xi+1, xj+1) = δ(xj , xj+1) = δj . Since (xi, xi+1, xj+1) is colored A,
we get that (δi, δj) must be colored red as well. We thus get that δ1, ..., δt−1 form a red Kt−1.

13 Notations
d(x) The degree of vertex x

δ(G) minx∈V (G) d(x)

e(G) |E(G)| – the number of vertices in G

ex(n,H) The maximal number of edges for a H-free graph on n vertices

Kn The complete graph on n vertices

Kn1,...,nr The complete r-partite graph with partitions of size n1, n2, . . . , nr

Ks
r r-graph with a clique of size s. Sometimes written with super- and subscript reversed.
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