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What this tutorial is about

Non-deterministic Semantics (Matrices):

Incorporating the notion of “non-deterministic computations” from
automata and computability theory into logical truth-tables.

We would like to show:

Non-deterministic semantics is a natural and useful paradigm.
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Already covered topics

Basic definitions and properties of Nmatrices.

Application: canonical Gentzen-type systems.

Application: semantics and sequent calculi for Logics of
Formal (In)consistency
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Overview of Part III - More Advanced Topics

1 Constructive Canonical Systems

2 FOL Defs

3 FO C-systems

4 Canonical Systems with Quantifiers



Constructive Canonical Systems FOL Defs FO C-systems Canonical Systems with Quantifiers

Characterization of constructive connectives

Extending the notion of canonical systems to the framework
of single-conclusioned Gentzen-type calculi.

Semantics: a combination of non-deterministic semantics with
Kripke-style frames

Application: constructive connectives can be characterized
proof-theoretically by a set of canonical rules in
single-conclusion canonical systems.
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Reminder: what is a multiple-conclusioned canonical rule?

Stage 1.
Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

Stage 2.
ψ,ϕ⇒
ψ ∧ ϕ⇒

⇒ ψ ⇒ ϕ

⇒ ψ ∧ ϕ

Stage 3.

{p1, p2 ⇒}/p1 ∧ p2 ⇒ {⇒ p1 ; ⇒ p2}/⇒ p1 ∧ p2
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Example 1

Implication rules:

{p1 ⇒ p2} / ⇒ p1 ⊃ p2 {⇒ p1 ; p2 ⇒} / p1 ⊃ p2 ⇒

Their applications:

Γ, ψ ⇒ ϕ

Γ⇒ ψ ⊃ ϕ
Γ⇒ ψ Γ, ϕ⇒ θ

Γ, ψ ⊃ ϕ⇒ θ
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Example 2

Semi-implication rules (Gurevich):

{⇒ p1 ; p2 ⇒} / p1  p2 ⇒ {⇒ p2} / ⇒ p1  p2

Their applications:

Γ⇒ ψ Γ, ϕ⇒ θ

Γ, ψ  ϕ⇒ θ

Γ⇒ ϕ

Γ⇒ ψ  ϕ
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Coherence

A canonical single-conclusioned calculus G is coherent if for
every pair of rules Θ1/⇒ �(p1, ..., pn) and
Θ2/ � (p1, ..., pn)⇒, the set of clauses Θ1 ∪Θ2 is classically
unsatisfiable (and so inconsistent, i.e., the empty sequent can
be derived from it using only cuts)

Examples of coherent calculi:

{p1 ⇒ p2} / ⇒ p1 ⊃ p2 {⇒ p1 ; p2 ⇒} / p1 ⊃ p2 ⇒

{⇒ p1 ; p2 ⇒} / p1  p2 ⇒ {⇒ p2} / ⇒ p1  p2

For a canonical calculus G , `G is consistent iff G is coherent.
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Characterization of constructiveness

Constructive connective

A connective is called constructive iff it can be defined by a
coherent set of canonical rules.
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Semantics

A generalized Kripke-frame

A triple W = 〈W , <, v〉, where:

〈W , <〉 is a nonempty partially ordered set

v : W × F → {t, f} is a persistent function:
if v(w , ψ) = t, then for every w ′ ≥ w , v(w ′, ψ) = t.

A sequent Γ⇒ ∆ is locally true in w ∈W if either
v(w , ψ) = f for some ψ ∈ Γ, or v(w , ψ) = t for some ψ ∈ ∆.

A sequent is true in w ∈W if it is locally true in every
w ′ ≥ w .

W is a model of a sequent if it is locally true in every w ∈W .
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G-legality of frames

Let G be a canonical coherent single-conclusioned system. A
generalized frame is G-legal if it respects the introduction and
elimination rules of G .

Respecting introduction rules

The conclusion is locally true in w ∈W whenever the premises are
true in w .

Respecting elimination rules

The conclusion is locally true in w ∈W whenever the definite
premises are true in w and the negative premises are locally true in
w .
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Example 1

Implication rules:

{p1 ⇒ p2} / ⇒ p1 ⊃ p2

v(w , ψ ⊃ ϕ) = t if v(w ′, ψ) = f or v(w ′, ϕ) = t for every w ′ ≥ w

{⇒ p1 ; p2 ⇒} / p1 ⊃ p2 ⇒

v(w , ψ ⊃ ϕ) = f if v(w , ψ) = t and v(w , ϕ) = f

The known semantics for intuitionistic implication!
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Example 2

Semi-implication rules (Gurevich):

{⇒ p2} / ⇒ p1  p2

v(w , ψ  ϕ) = t if v(w , ϕ) = t

{⇒ p1 ; p2 ⇒} / p1  p2 ⇒

v(w , ψ  ϕ) = f if v(w , ψ) = t and v(w , ϕ) = f

Non-deterministic (e.g., for the case when
v(w ′, ψ) = v(w ′, ϕ) = f for every w ′ ≥ w)
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Main results

Soundness and completeness:

A sequent s is provable from a set of sequents S in G iff every
G -legal frame which is a model of S is also a model of s.

Decidability:

Every coherent canonical system is decidable.

Cut-elimination:

Every coherent canonical system admits strong cut-elimination.

Modularity:

The characterization of a constructive connective is independent of
the system in which it is included.
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Extension: basic systems

Unlike in canonical systems, in basic sequent systems it is
possible to control the context formulas.

This allows one to have a larger variety of rules, and thus to
handle more logics. For example,

Bi-intuitionistic logic:

Γ, ψ ⇒ ϕ
Γ⇒ ψ ⊃ ϕ

Γ⇒ ψ,∆ Γ, ϕ⇒ ∆
Γ, ψ ⊃ ϕ⇒ ∆

ψ ⇒ ϕ,∆
ψ−< ϕ⇒ ∆

Γ⇒ ψ,∆ Γ, ϕ⇒ ∆
Γ⇒ ψ−< ϕ,∆

The modal logic K :
Γ⇒ ψ

2Γ⇒ 2ψ
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Basic systems - main results

Every basic system has a (non-determinstic) Kripke-style
semantics.

In fact, there is a general method to obtain a
(non-determinstic) Kripke-style semantics for a given basic
systems.

In addition, there are complete semantic characterizations of
analyticity and (strong) cut-admissibility in basic systems.
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Extension: canonical Gödel systems

For some important logics, sequent systems do not suffice ⇒
hypersequent systems.

A single-conclusion hypersequent is a set of single-conclusion
sequents denoted by:

Γ1 ⇒ E1 | Γ2 ⇒ E2 | . . . | Γn ⇒ En

The only known “ideal” system for Gödel logic is the
single-conclusion hypersequent system HG based on the rule:

H | Γ,∆⇒ E1 H | Γ,∆⇒ E2

H | Γ⇒ E1 | ∆⇒ E2
(com)

Canonical Gödel systems: single-conclusion hypersequent
systems with standard structural rules, (com), and any finite
set of canonical single-conclusion logical rules.
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Canonical Gödel systems - main results

A general method to obtain (strongly) sound and complete
Kripke semantics for canonical Gödel systems, based on
linearly ordered frames.

A general method to obtain (strongly) sound and complete
many-valued semantics for canonical Gödel systems, based on
the truth-values [0, 1].

The coherence criterion (from canonical single-conclusion
sequent system) characterizes (strong) cut-admissibility in
Canonical Gödel systems as well.
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Summary

Non-deterministic semantics combined with Kripke-style frames are
a powerful semantic formalism:

Providing semantics for many natural classes of calculi
(canonical single-conclusioned, basic, canonical Gödel,. . . )

Semantic characterization of proof-theoretical properties of
calculi.
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Reminder: First-order languages

A first-order language L includes:

A set of variables x1, x2, ...,

Parentheses, logical connectives (e.g. ∧,∨,⊃,¬) and
quantifiers (e.g., ∀ and ∃)

The signature of L:

a (non-empty) set of predicate symbols
a set of constants
a set of function symbols
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Matrices with unary quantifiers

M = 〈V,D,O〉 is a (deterministic) matrix for a language L with
unary quantifiers if:

1 V is a nonempty set of truth-values,

2 ∅ 6= D ⊂ V is a set of designated truth-values,

3 for every n-ary connective � of L, O includes an operation
�̃ : Vn → V,

4 for every unary quantifier Q of L, O includes an operation
Q̃ : P+(V)→ V.

Distribution quantifiers (coined by W.A. Carnielli)
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Example

H ∀̃(H)

{t} t
{t,f} f
{f} f

H ∃̃(H)

{t} t
{t,f} t
{f} f
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Matrices: objectual quantification

Variables range over objects from the domain and assignments
map variables to elements of the domain.

S = 〈D, I 〉 - an L-structure.
An assignment G in S maps the variables of L to D.
Extend G to terms:

G (c) = I (c), G (f (t1, ..., tn)) = I (f )(G (t1), ...,G (tn))

The valuation vS,G

vS,G (p(t1, ..., tn)) = I (p)(G (t1), ...,G (tn)).

vS,G (�(ψ1, ..., ψn)) = �̃(vS,G (ψ1), ..., vS,G (ψn)).

vS,G (Qxψ) = Q̃({vS,G{x :=a}(ψ) | a ∈ D}).
where G{x := a} coincides with G except for assigning a ∈ D to x.
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Matrices: substitutional quantification

In classical first-order substitutional semantics, a universally
quantified sentence is true iff each of its substitution instances
is true.

Assumption: every element of the domain has a name.
Given an L-structure S = 〈D, I 〉, extend the language with the
set of individual constants {a | a ∈ D} interpreted as the
corresponding domain elements.

The valuation vS

vS(p(t1, ..., tn)) = I (p)(I (t1), ..., I (tn))

vS(�(ψ1, ..., ψn)) = �̃(vS(ψ1), ..., vS(ψn))

vS(Qxψ) = Q̃({vS(ψ{a/x}) | a ∈ D})
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Nmatrices with unary quantifiers

M = 〈V,D,O〉 is a non-deterministic matrix (Nmatrix) for a
language L with unary quantifiers if:

1 V is a nonempty set of truth-values,

2 ∅ 6= D ⊂ V is a set of designated truth-values,

3 for every n-ary connective � of L, O includes an operation
�̃ : Vn → P+(V),

4 for every unary quantifier Q of L, O includes an operation
Q̃ : P+(V)→ P+(V).
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Example

Consider the two-valued Nmatrix M1 = 〈{t, f }, {t},O〉 for a
language L over {Q,∀,¬}, where O contains the following
operations:

H Q̃(H)

{t} {t}
{t,f} {t,f}
{f} {f}

H ∀̃(H)

{t} {t}
{t,f} {f}
{f} {f}

a ¬a

t {t,f}
f {t}
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Nmatrices: objectual quantification

vS ,G (p(t1, ..., tn)) = I (p)(G (t1), ...,G (tn)).

vS ,G (�(ψ1, ..., ψn)) ∈ �̃(vS,G )(ψ1), ..., vS ,G (ψn)).

vS ,G (Qxψ) ∈ Q̃[{vS ,G [x :=a](ψ)︸ ︷︷ ︸
???

| a ∈ D}).
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Substitutional quantification

Reminder: For S = 〈D, I 〉, the language extended by individual
constants is denoted by L(D)

Let S = 〈D, I 〉 be an L-structure. A valuation in an Nmatrix M
for L is a function v from sentences of L(D) to V, satisfying:

v((p(t1, ..., tn)) = I (p)(I (t1), ..., I (tn))

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))

v(Qxψ) ∈ Q̃({v(ψ{a/x}) | a ∈ D})
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The problem of α-equivalence

ψ ≡α ψ′ if ψ can be obtained from ψ′ by renaming bound
variables.

Problem: two α-equivalent sentences are not necessarily
assigned the same truth-value.

Example:
H ∀̃[H]

{t} {t}
{t,f} {f}
{f} {f}

a ¬a

t {t,f}
f {t}

Consider: ¬∀xp(x) and ¬∀yp(y)
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Definition of a non-deterministic valuation - corrected

Let S = 〈D, I 〉 be an L-structure. A valuation in an NmatrixM for
L is a function v from closed sentences of L(D) to V satisfying:

v(p(t1, ..., tn)) = I (p)(I (t1), ..., I (tn)).

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn)).

v(Qxψ) ∈ Q̃({v(ψ{a/x}) | a ∈ D}).

If ψ1 ≡α ψ2, then v(ψ1) = v(ψ2).
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Other problems to handle

Terms denoting the same objects cannot be used
interchangeably.

Void quantification for first-order quantifiers ∀ and ∃.

Example:
H ∀̃[H]
{t} {t}
{t,f} {f}
{f} {f}

a ¬a
t {t,f}
f {t}

Let S = 〈{1, 2}, I 〉, I (p)(1) = I (p)(2) = t and
I (c) = I (d) = 1.
Consider: (i) ¬p(c) and ¬p(d), (ii) ¬∀xp(c) and ¬p(c).

Solution: add appropriate congruence relations. For instance,
A ∼void QxA if x 6∈Fv(A).
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Analyticity

Analyticity of an Nmatrix M

for every L-structure S and every partial M-legal S-valuation vp
defined on a set of L-sentences closed under subformulas: vp can
be extended to a full M-legal valuation.

Analyticity is not guaranteed anymore when congruence
relations are involved.

Some good cases:

Analyticity for ≡α is always guaranteed.
Denote ϕ1 ∼dc ϕ2 if ϕ2 can be obtained from ϕ1 by renaming
bound variables and deleting/adding void quantifiers.
Analyticity for ∼dc is guaranteed iff a ∈ Q̃M({a}) for every
quantifier Q of L and every a ∈ V.
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Using congruences in the propositional case

Introducing congruences can be useful also in the propositional
case (e.g. equivalence in all contexts of ψ ∧ ϕ and ϕ ∧ ψ).

Analyticity should be handled with care (question for further
research)
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Application: first-order C-systems

Language: LQC = {∧,∨,⊃,¬, ◦,∀,∃}.
Logic: QBK is obtained by adding the following axioms to some
standard Hilbert-type system for classical positive FOL:

(N1) ¬ϕ ∨ ϕ
(b) (◦ϕ ∧ ϕ ∧ ¬ϕ) ⊃ ψ
(k) ◦ψ ∨ (ψ ∧ ¬ψ)

(DC) ϕ1 ⊃ ϕ2 whenever ϕ1 ∼dc ϕ2.

ϕ1 ∼dc ϕ2 if ϕ2 can be obtained from ϕ1 by renaming bound
variables and deleting/adding void quantifiers.
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Extensions of QBK

(c) ¬¬ϕ ⊃ ϕ
(e) ϕ ⊃ ¬¬ϕ

. . .

(a∀) ∀x◦ϕ⊃ ◦(∀xϕ)

(a∃) ∀x◦ϕ⊃ ◦(∃xϕ)

(o∀) ∃x◦ϕ⊃ ◦(∀xϕ)

(o∃) ∃x◦ϕ⊃ ◦(∃xϕ)

Example: da-Costa’s original C ∗1 is equivalent to QBKcila.
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The idea of semantics

Truth-value: v(ϕ) = 〈x , y〉, where x expresses truth/falsity of
ϕ and y expresses truth/falsity of ¬ϕ.

Possible values:

v(ϕ) = 〈1, 0〉 = t - ϕ is true and ¬ϕ is false
v(ϕ) = 〈0, 1〉 = f - ϕ is false and ¬ϕ is true
v(ϕ) = 〈1, 1〉 = > - ϕ is true and ¬ϕ is true

Addition: Every M-legal valuation should also respect the
congruences for α-equivalence and void quantification (but
analyticity is preserved!).
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3-valued Semantics for QBK

The Nmatrix QM = 〈V,D,O〉 is defined by:

V = {t,>, f}, D = {t,>}, and F = {f}:

a∧̃b =

{
D if a ∈ D and b ∈ D
F if a ∈ F or b ∈ F a⊃̃b =

{
D if a ∈ F or b ∈ D
F if a ∈ D and b ∈ F

¬̃a =

{
D if a ∈ {>, f}
F if a = t

◦̃a =

{
D if a ∈ {t, f}
F if a = >

∀̃(H) =

{
D if H ⊆ D
F otherwise

∃̃(H) =

{
D if H ∩ D 6= ∅
F otherwise



Constructive Canonical Systems FOL Defs FO C-systems Canonical Systems with Quantifiers

Effects of (aQ) and (oQ) for Q ∈ {∀,∃}

(a∀) ∀x◦ϕ⊃ ◦(∀xϕ) Cond(a∀) : ∀̃({t}) = {t}
(a∃) ∀x◦ϕ⊃ ◦(∃xϕ) Cond(a∀) : ∃̃({t}) = ∃̃({t, f}) = {t}
(o∀) ∃x◦ϕ⊃ ◦(∀xϕ) Cond(o∀) : ∀̃({t}) = ∃̃({t,>}) = {t}
(o∃) ∃x◦ϕ⊃ ◦(∃xϕ) Cond(o∃) : ∃̃({t}) = ∃̃({t,>}) =

∃̃({t, f}) = ∃̃({t,>, f}) = {t}

QBK : QBK + (a) : QBK + (o) :

H ∀̃[H] ∃̃[H]
{t} {t,>} {t,>}
{f} {f} {f}
{>} {t,>} {t,>}
{t, f} {f} {t,>}
{t,>} {t,>} {t,>}
{f,>} {f} {t,>}
{t, f,>} {f} {t,>}

H ∀̃[H] ∃̃[H]
{t} {t} {t}
{f} {f} {f}
{>} {t,>} {t,>}
{t, f} {f} {t}
{t,>} {t,>} {t,>}
{f,>} {f} {t,>}
{t, f,>} {f} {t,>}

H ∀̃[H] ∃̃[H]
{t} {t} {t}
{f} {f} {f}
{>} {t,>} {t,>}
{t, f} {f} {t}
{t,>} {t} {t}
{f,>} {f} {t}
{t, f,>} {f} {t}
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The Nmatrix MC∗1

V = T ∪ I ∪ F , T = {t ji | i ≥ 0, j ≥ 0} , I = {>j
i | i ≥ 0, j ≥ 0} , F = {f },

D = T ∪ I.

a⊃̃b =


F if a ∈ D and b ∈ F
T if a ∈ F and b 6∈ I, or

if b ∈ T and a 6∈ I
D otherwise

a∧̃b =


F if a ∈ F or b ∈ F
T if a ∈ T and b ∈ T , or

if a = >j
i and b ∈ {>j+1

i , t j+1
i }

D otherwise

¬̃a =


F if a ∈ T
T if a ∈ F
{>j+1

i , t j+1
i } if a = >j

i

∀̃(H) =


T if H ⊆ T
D if H ⊆ D and H ∩ I 6= ∅
F f ∈ H

∃̃(H) =


T if H ⊆ T ∪ F and H ∩ T 6= ∅
D if H ∩ I 6= ∅
F H = {f }
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Application: ¬∃x¬p(x) 6`C∗1 ∀xp(x)

A rather complex syntactic proof of da Costa (1974).

A much easier semantic proof: refutation using MC∗1
.

S = 〈{a, b}, I 〉

I (p)(a) = >0
0 I (p)(b) = f

Next define a partial valuation v on the set of subformulas of
{¬∃x¬p(x), ∀xp(x)} as follows:

v(p(a)) = >0
0 v(p(b)) = f v(¬p(a)) = >1

0 v(¬p(b)) = t0
0

v(∃x¬p(x)) = >1
0 v(¬∃x¬p(x)) = t2

0 v(∀xp(x)) = f

v is MC∗1
-legal, and (by the analyticity of MC∗1

) it can be
extended to a full MC∗1

-legal valuation.
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Reminder: propositional canonical systems

Each logical rule satisfies:

1 Introduces exactly one formula in its conclusion.

2 The introduced formula: �(ψ1, . . . , ψn).

3 All active formulas in its premises are in {ψ1, . . . , ψn}.
4 No restrictions on the side formulas.

Direct correspondence: A canonical system is coherent iff it admits
cut-elimination iff it has a characteristic 2Nmatrix.
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Canonical quantifier rules

Γ,A{t/w} ⇒ ∆

Γ, ∀w A⇒ ∆

Γ⇒ A{z/w},∆
Γ⇒ ∀w A,∆

where z is a variable free for w in A, z is not free in
Γ ∪∆ ∪ {∀wA}, and t is any term free for w in A.

⇓

A{t/w} ⇒
∀w A⇒

⇒ A{z/w}
⇒ ∀w A

⇓

{p(c)⇒}/∀w p(w)⇒ {⇒ p(y)}/⇒ ∀w p(w)

An eigenvariable is marked by a variable, and a term is marked by
a constant.
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Canonical systems

A canonical system includes

1 Axioms: ψ ⇒ ψ′ for ψ ≡α ψ′

2 Structural Weakening and Cut rules:

Γ⇒ ∆
Γ, Γ′ ⇒ ∆,∆′

(Weakening)
Γ, ψ ⇒ ∆ Γ⇒ ∆, ψ

Γ⇒ ∆
(Cut)

3 Substitution rule:
Γ⇒ ∆

Γ′ ⇒ ∆′
(S)

where Γ′,∆′ are substitution instances of Γ,∆ resp.

4 Canonical introduction rules.
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Coherence

A canonical calculus G is coherent if for every two canonical
rules of G of the form Θ1/⇒ A and Θ2/ A⇒, the set of
clauses Θ1 ∪Θ2 is classically inconsistent.

The coherence of a canonical calculus G is decidable.

Examples:

Coherent:

{p(c)⇒} / ∀x p(x)⇒ {⇒ p(y)} / ⇒ ∀x p(x)

Non-coherent:

{⇒ p(c)} / ⇒ Qxp(x) {p(d)⇒} / Qxp(x)⇒
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Correspondence Theorem

The following statements concerning a canonical system G with
unary quantifiers are equivalent:

1 G is coherent.

2 G has a characteristic 2Nmatrix.

3 G admits strong cut elimination.

Strong cut-elimination

G admits strong cut-elimination if whenever S ` s, then s has a
proof from S in G , where cuts are applied only on substitution
instances of formulas from S .
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More General Quantifiers

A natural step: n-ary quantifiers:

If Q is an n-ary quantifier, then Qx(ψ1, ..., ψn) is a formula.

Examples:
1 Unary quantifiers: ∀, ∃.
2 Binary quantifiers: bounded universal and existential

quantifiers ∀ and ∃, where:

∀(ψ1, ψ2) means ∀x(ψ1 → ψ2).
∃(ψ1, ψ2) means ∃x(ψ1 ∧ ψ2).
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Nmatrices with n-ary quantifiers

An n-ary quantifier Q in an Nmatrix M = 〈V,D,O〉 is
interpreted by a function Q̃ : P+(Vn)→ P+(V).

Example: for every E ∈ P+({t, f }2):

∀̃(E) =

{
{f } if 〈t, f 〉 ∈ E
{t} otherwise

∃̃(E) =

{
{t} if 〈t, t〉 ∈ E
{f } otherwise

The definition of an M-valuation v is now modified as follows:

v(Qx(ψ1, ..., ψn)) ∈ Q̃M({〈v(ψ1{a/x}), ..., v(ψn{a/x})〉 | a ∈ D})

The framework of canonical systems can be extended to the case
of n-ary quantifiers, the direct correspondence still holds.
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Example

H ∀̃(H) ∃̃[H] Q̃2[H]

{〈t, t〉} {t} {t} {t, f}
{〈t, f〉} {f} {t} {t}
{〈f, f〉} {t} {f} {t, f}
{〈f, t〉} {t} {t} {f}

{〈t, t〉, 〈t, f〉} {f} {t} {t, f}
{〈t, t〉, 〈f, t〉} {t} {t} {t, f}
{〈t, t〉, 〈f, f〉} {t} {t} {t, f}
{〈f, t〉, 〈t, f〉} {f} {t} {t}
{〈f, t〉, 〈f, f〉} {t} {t} {t}
{〈t, f〉, 〈f, f〉} {f} {t} {t}

{〈t, t〉, 〈t, f〉, 〈f, t〉} {f} {t} {f}
{〈t, t〉, 〈f, f〉, 〈f, t〉} {t} {t} {t, f}
{〈f, t〉, 〈t, f〉, 〈f, f〉} {f} {t} {t}
{〈f, f〉, 〈t, f〉, 〈f, t〉} {f} {t} {t, f}

{〈t, t〉, 〈t, f〉, 〈f, t〉, 〈f, f〉} {f} {t} {t}
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Summary

Non-deterministic semantics is a useful paradigm:

Semantic tool for proof-theoretical investigations
Characterization of various non-classical logics

Allows for a systematic and modular approach

Insights into the syntax-semantics interface

Provides important tools for Universal Logic.

Thank you for your attention!
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