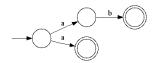


Tutorial on Non-Deterministic Semantics Part III: More Advanced Topics

Arnon Avron and Anna Zamansky

UNILOG 2013, Rio de Janeiro



FO C-systems

Canonical Systems with Quantifiers

What this tutorial is about

FO C-systems

Canonical Systems with Quantifiers

What this tutorial is about

Non-deterministic Semantics (Matrices):

Incorporating the notion of *"non-deterministic computations"* from automata and computability theory into logical truth-tables.

What this tutorial is about

Non-deterministic Semantics (Matrices):

Incorporating the notion of *"non-deterministic computations"* from automata and computability theory into logical truth-tables.

We would like to show:

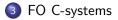
Non-deterministic semantics is a natural and useful paradigm.

Already covered topics

- Basic definitions and properties of Nmatrices.
- Application: canonical Gentzen-type systems.
- Application: semantics and sequent calculi for Logics of Formal (In)consistency

Overview of Part III - More Advanced Topics

Constructive Canonical Systems



Characterization of constructive connectives

- Extending the notion of canonical systems to the framework of single-conclusioned Gentzen-type calculi.
- Semantics: a combination of non-deterministic semantics with Kripke-style frames

Characterization of constructive connectives

- Extending the notion of canonical systems to the framework of single-conclusioned Gentzen-type calculi.
- Semantics: a combination of non-deterministic semantics with Kripke-style frames
- Application: constructive connectives can be characterized proof-theoretically by *a set of canonical rules in single-conclusion canonical systems*.

Reminder: what is a multiple-conclusioned canonical rule?

Stage 1.	$\frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \land \varphi \Rightarrow \Delta}$	$\frac{\Gamma \Rightarrow \Delta, \psi \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \land \varphi}$
Stage 2.	$\frac{\psi,\varphi \Rightarrow}{\psi \land \varphi \Rightarrow}$	$\frac{\Rightarrow\psi\ \Rightarrow\varphi}{\Rightarrow\psi\wedge\varphi}$
Stage 3.		

$$\{p_1, p_2 \Rightarrow\}/p_1 \wedge p_2 \Rightarrow \quad \{\Rightarrow p_1 ; \Rightarrow p_2\}/\Rightarrow p_1 \wedge p_2$$

What is a single-conclusioned canonical rule?

Stage 1.	$\frac{\Gamma,\psi,\varphi \Rightarrow \theta}{\Gamma,\psi\wedge\varphi \Rightarrow \theta}$	$\frac{\Gamma \Rightarrow \psi \Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \psi \land \varphi}$
Stage 2.	$\frac{\psi,\varphi \Rightarrow}{\psi \wedge \varphi \Rightarrow}$	$\frac{\Rightarrow\psi\ \Rightarrow\varphi}{\Rightarrow\psi\wedge\varphi}$
Stage 3.		

$$\{p_1, p_2 \Rightarrow\}/p_1 \wedge p_2 \Rightarrow \quad \{\Rightarrow p_1 ; \Rightarrow p_2\}/\Rightarrow p_1 \wedge p_2$$

Implication rules:

$$\{p_1 \Rightarrow p_2\} / \Rightarrow p_1 \supset p_2 \quad \{\Rightarrow p_1 ; p_2 \Rightarrow\} / p_1 \supset p_2 \Rightarrow$$

Their applications:

$$\frac{\Gamma, \psi \Rightarrow \varphi}{\Gamma \Rightarrow \psi \supset \varphi} \qquad \frac{\Gamma \Rightarrow \psi \quad \Gamma, \varphi \Rightarrow \theta}{\Gamma, \psi \supset \varphi \Rightarrow \theta}$$

Semi-implication rules (Gurevich):

$$\{\Rightarrow p_1 ; p_2 \Rightarrow\} / p_1 \rightsquigarrow p_2 \Rightarrow \quad \{\Rightarrow p_2\} / \Rightarrow p_1 \rightsquigarrow p_2$$

Their applications:

$$\frac{\Gamma \Rightarrow \psi \quad \Gamma, \varphi \Rightarrow \theta}{\Gamma, \psi \rightsquigarrow \varphi \Rightarrow \theta} \qquad \frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \psi \rightsquigarrow \varphi}$$

- A canonical single-conclusioned calculus G is coherent if for every pair of rules Θ₁/ ⇒ ◊(p₁,..., p_n) and Θ₂/ ◊ (p₁,..., p_n) ⇒, the set of clauses Θ₁ ∪ Θ₂ is classically unsatisfiable (and so inconsistent, i.e., the empty sequent can be derived from it using only cuts)
- Examples of coherent calculi:

 $\{p_1 \Rightarrow p_2\} / \Rightarrow p_1 \supset p_2 \quad \{\Rightarrow p_1 ; p_2 \Rightarrow\} / p_1 \supset p_2 \Rightarrow$ $\{\Rightarrow p_1 ; p_2 \Rightarrow\} / p_1 \rightsquigarrow p_2 \Rightarrow \quad \{\Rightarrow p_2\} / \Rightarrow p_1 \rightsquigarrow p_2$

• For a canonical calculus G, \vdash_G is consistent iff G is coherent.

O C-systems

Canonical Systems with Quantifiers

Characterization of constructiveness

Constructive connective

A connective is called constructive iff it can be defined by a coherent set of canonical rules.

Semantics

A generalized Kripke-frame

A triple W = $\langle W, <, v \rangle$, where:

- $\langle W, <
 angle$ is a nonempty partially ordered set
- $v: W \times F \rightarrow \{\mathbf{t}, \mathbf{f}\}$ is a persistent function: if $v(w, \psi) = \mathbf{t}$, then for every $w' \ge w$, $v(w', \psi) = \mathbf{t}$.
- A sequent Γ ⇒ Δ is locally true in w ∈ W if either
 v(w, ψ) = f for some ψ ∈ Γ, or v(w, ψ) = t for some ψ ∈ Δ.
- A sequent is true in $w \in W$ if it is locally true in every $w' \ge w$.
- W is a model of a sequent if it is locally true in every $w \in W$.

Let G be a canonical coherent single-conclusioned system. A generalized frame is G-legal if it respects the introduction and elimination rules of G.

Respecting introduction rules

The conclusion is locally true in $w \in W$ whenever the premises are true in w.

Respecting elimination rules

The conclusion is locally true in $w \in W$ whenever the definite premises are true in w and the negative premises are locally true in w. Implication rules:

 $\{p_1 \Rightarrow p_2\} / \Rightarrow p_1 \supset p_2$ $v(w, \psi \supset \varphi) = \mathbf{t} \text{ if } v(w', \psi) = \mathbf{f} \text{ or } v(w', \varphi) = \mathbf{t} \text{ for every } w' \ge w$ $\{\Rightarrow p_1 ; p_2 \Rightarrow\} / p_1 \supset p_2 \Rightarrow$ $v(w, \psi \supset \varphi) = \mathbf{f} \text{ if } v(w, \psi) = \mathbf{t} \text{ and } v(w, \varphi) = \mathbf{f}$

The known semantics for intuitionistic implication!

Example 2

Semi-implication rules (Gurevich):

$$\{\Rightarrow p_2\} / \Rightarrow p_1 \rightsquigarrow p_2$$

$$v(w, \psi \rightsquigarrow \varphi) = \mathbf{t} \text{ if } v(w, \varphi) = \mathbf{t}$$

$$\{\Rightarrow p_1 ; p_2 \Rightarrow\} / p_1 \rightsquigarrow p_2 \Rightarrow$$

$$v(w,\psi \rightsquigarrow \varphi) = \mathbf{f} \text{ if } v(w,\psi) = \mathbf{t} \text{ and } v(w,\varphi) = \mathbf{f}$$

Non-deterministic (e.g., for the case when $v(w', \psi) = v(w', \varphi) = \mathbf{f}$ for every $w' \ge w$)

Soundness and completeness:

A sequent s is provable from a set of sequents S in G iff every G-legal frame which is a model of S is also a model of s.

Decidability:

Every coherent canonical system is decidable.

Cut-elimination:

Every coherent canonical system admits strong cut-elimination.

Modularity:

The characterization of a constructive connective is independent of the system in which it is included.

- Extension: basic systems
 - Unlike in canonical systems, in *basic* sequent systems it is possible to control the *context* formulas.
 - This allows one to have a larger variety of rules, and thus to handle more logics. For example,
 - Bi-intuitionistic logic:

$$\begin{array}{c} \hline \Gamma, \psi \Rightarrow \varphi \\ \hline \Gamma \Rightarrow \psi \supset \varphi \end{array} & \hline \Gamma \Rightarrow \psi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta \\ \hline \psi \Rightarrow \varphi, \Delta & \hline \psi \rightarrow \varphi \Rightarrow \Delta \end{array} \\ \hline \hline \psi \rightarrow \varphi \Rightarrow \Delta & \hline \Gamma \Rightarrow \psi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta \\ \hline \hline \psi \rightarrow \varphi \Rightarrow \Delta & \hline \Gamma \Rightarrow \psi \neg \langle \varphi, \Delta \end{array}$$

• The modal logic K:

$$\frac{\Gamma \Rightarrow \psi}{\Box \Gamma \Rightarrow \Box \psi}$$

Basic systems - main results

- Every basic system has a (non-determinstic) Kripke-style semantics.
- In fact, there is a general method to obtain a (non-determinstic) Kripke-style semantics for a given basic systems.
- In addition, there are complete semantic characterizations of analyticity and (strong) cut-admissibility in basic systems.

Extension: canonical Gödel systems

- For some important logics, sequent systems do not suffice ⇒ hypersequent systems.
- A single-conclusion hypersequent is a set of single-conclusion sequents denoted by:

$$\Gamma_1 \Rightarrow E_1 \mid \Gamma_2 \Rightarrow E_2 \mid \ldots \mid \Gamma_n \Rightarrow E_n$$

• The only known "ideal" system for Gödel logic is the single-conclusion hypersequent system **HG** based on the rule:

$$\frac{H \mid \Gamma, \Delta \Rightarrow E_1 \quad H \mid \Gamma, \Delta \Rightarrow E_2}{H \mid \Gamma \Rightarrow E_1 \mid \Delta \Rightarrow E_2} (com)$$

• Canonical Gödel systems: single-conclusion hypersequent systems with standard structural rules, (*com*), and any finite set of canonical single-conclusion logical rules.

Canonical Gödel systems - main results

- A general method to obtain (strongly) sound and complete Kripke semantics for canonical Gödel systems, based on linearly ordered frames.
- A general method to obtain (strongly) sound and complete many-valued semantics for canonical Gödel systems, based on the truth-values [0, 1].
- The coherence criterion (from canonical single-conclusion sequent system) characterizes (strong) cut-admissibility in Canonical Gödel systems as well.

Constructive Canonical Systems	FOL Defs	FO C-systems	Canonical Systems with Quantifiers
Summary			

Non-deterministic semantics combined with Kripke-style frames are a powerful semantic formalism:

- Providing semantics for many natural classes of calculi (canonical single-conclusioned, basic, canonical Gödel,...)
- Semantic characterization of proof-theoretical properties of calculi.

Reminder: First-order languages

A first-order language L includes:

- A set of variables $x_1, x_2, ...,$
- Parentheses, logical connectives (e.g. ∧, ∨, ⊃, ¬) and quantifiers (e.g., ∀ and ∃)
- The signature of L:
 - a (non-empty) set of predicate symbols
 - a set of constants
 - a set of function symbols

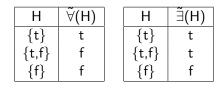
Matrices with unary quantifiers

 $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ is a (deterministic) matrix for a language *L* with unary quantifiers if:

- $\textcircled{O} \ \mathcal{V} \text{ is a nonempty set of truth-values,}$
- 2 $\emptyset \neq \mathcal{D} \subset \mathcal{V}$ is a set of designated truth-values,
- Solution for every n-ary connective ◊ of L, O includes an operation õ : Vⁿ → V,
- for every unary quantifier Q of L, \mathcal{O} includes an operation $\widetilde{Q}: P^+(\mathcal{V}) \to \mathcal{V}.$

Distribution quantifiers (coined by W.A. Carnielli)

Constructive Canonical Systems	FOL Defs	FO C-systems	Canonical Systems with Quantifiers
Example			



Matrices: objectual quantification

• Variables range over objects from the domain and assignments map variables to elements of the domain.

Matrices: objectual quantification

- Variables range over objects from the domain and assignments map variables to elements of the domain.
- S = (D, I) an L-structure.
 An assignment G in S maps the variables of L to D.
 Extend G to terms:

$$G(c) = I(c), \ G(f(\mathbf{t}_1, ..., \mathbf{t}_n)) = I(f)(G(\mathbf{t}_1), ..., G(\mathbf{t}_n))$$

Matrices: objectual quantification

- Variables range over objects from the domain and assignments map variables to elements of the domain.
- S = ⟨D, I⟩ an L-structure.
 An assignment G in S maps the variables of L to D.
 Extend G to terms:

$$G(c) = I(c), \ G(f(\mathbf{t}_1, ..., \mathbf{t}_n)) = I(f)(G(\mathbf{t}_1), ..., G(\mathbf{t}_n))$$

The valuation *vs,G*

- $v_{S,G}(p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(G(\mathbf{t}_1),...,G(\mathbf{t}_n)).$
- $v_{S,G}(\diamond(\psi_1,...,\psi_n)) = \tilde{\diamond}(v_{S,G}(\psi_1),...,v_{S,G}(\psi_n)).$
- v_{S,G}(Qxψ) = Q̃({v_{S,G{x:=a}}(ψ) | a ∈ D}). where G{x := a} coincides with G except for assigning a ∈ D to x.

Matrices: substitutional quantification

- In classical first-order substitutional semantics, a universally quantified sentence is true iff each of its substitution instances is true.
- Assumption: every element of the domain has a name. Given an L-structure S = ⟨D, I⟩, extend the language with the set of individual constants {ā | a ∈ D} interpreted as the corresponding domain elements.

Matrices: substitutional quantification

- In classical first-order substitutional semantics, a universally quantified sentence is true iff each of its substitution instances is true.
- Assumption: every element of the domain has a name. Given an L-structure S = ⟨D, I⟩, extend the language with the set of individual constants {ā | a ∈ D} interpreted as the corresponding domain elements.

The valuation v_S

- $v_S(p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(I(\mathbf{t}_1),...,I(\mathbf{t}_n))$
- $v_{\mathcal{S}}(\diamond(\psi_1,...,\psi_n)) = \tilde{\diamond}(v_{\mathcal{S}}(\psi_1),...,v_{\mathcal{S}}(\psi_n))$
- $v_{\mathcal{S}}(Qx\psi) = \tilde{Q}(\{v_{\mathcal{S}}(\psi\{\overline{a}/x\}) \mid a \in D\})$

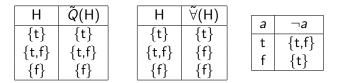
Nmatrices with unary quantifiers

 $\mathcal{M} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ is a non-deterministic matrix (Nmatrix) for a language *L* with unary quantifiers if:

- **(**) \mathcal{V} is a nonempty set of truth-values,
- 2 $\emptyset \neq \mathcal{D} \subset \mathcal{V}$ is a set of designated truth-values,
- So for every *n*-ary connective ◊ of *L*, *O* includes an operation $\widetilde{\diamond} : \mathcal{V}^n \to P^+(\mathcal{V}),$
- for every unary quantifier Q of L, \mathcal{O} includes an operation $\widetilde{Q}: P^+(\mathcal{V}) \to P^+(\mathcal{V}).$

Constructive Canonical Systems	FOL Defs	FO C-systems	Canonical Systems with Quantifiers
Example			

Consider the two-valued Nmatrix $\mathcal{M}_1 = \langle \{t, f\}, \{t\}, \mathcal{O} \rangle$ for a language L over $\{Q, \forall, \neg\}$, where \mathcal{O} contains the following operations:



Nmatrices: objectual quantification

•
$$v_{S,G}(p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(G(\mathbf{t}_1),...,G(\mathbf{t}_n)).$$

Nmatrices: objectual quantification

•
$$v_{S,G}(p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(G(\mathbf{t}_1),...,G(\mathbf{t}_n)).$$

•
$$v_{S,G}(\diamond(\psi_1,...,\psi_n)) \in \tilde{\diamond}(v_{S,G})(\psi_1),...,v_{S,G}(\psi_n)).$$

Nmatrices: objectual quantification

- $v_{S,G}(p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(G(\mathbf{t}_1),...,G(\mathbf{t}_n)).$
- $v_{S,G}(\diamond(\psi_1,...,\psi_n)) \in \tilde{\diamond}(v_{S,G})(\psi_1),...,v_{S,G}(\psi_n)).$
- $v_{S,G}(Qx\psi) \in \tilde{Q}[\underbrace{\{v_{S,G[x:=a]}(\psi)}_{\gamma\gamma\gamma} \mid a \in D\}).$

Substitutional quantification

Reminder: For $S = \langle D, I \rangle$, the language extended by individual constants is denoted by L(D)

Let $S = \langle D, I \rangle$ be an *L*-structure. A valuation in an Nmatrix \mathcal{M} for *L* is a function *v* from sentences of L(D) to \mathcal{V} , satisfying:

•
$$v((p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(I(\mathbf{t}_1),...,I(\mathbf{t}_n))$$

- $\mathbf{v}(\diamond(\psi_1,\ldots,\psi_n))\in\widetilde{\diamond}(\mathbf{v}(\psi_1),\ldots,\mathbf{v}(\psi_n))$
- $v(Qx\psi) \in \widetilde{Q}(\{v(\psi\{\overline{a}/x\}) \mid a \in D\})$

The problem of $\alpha\text{-equivalence}$

- $\psi \equiv_{\alpha} \psi'$ if ψ can be obtained from ψ' by renaming bound variables.
- Problem: two α -equivalent sentences are not necessarily assigned the same truth-value.
- Example:

Consider: $\neg \forall x p(x)$ and $\neg \forall y p(y)$

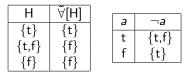
Definition of a non-deterministic valuation - corrected

Let $S = \langle D, I \rangle$ be an *L*-structure. A valuation in an Nmatrix \mathcal{M} for *L* is a function *v* from closed sentences of L(D) to \mathcal{V} satisfying:

- $v(p(\mathbf{t}_1,...,\mathbf{t}_n)) = I(p)(I(\mathbf{t}_1),...,I(\mathbf{t}_n)).$
- $\mathbf{v}(\diamond(\psi_1,\ldots,\psi_n)) \in \widetilde{\diamond}(\mathbf{v}(\psi_1),\ldots,\mathbf{v}(\psi_n)).$
- $v(Qx\psi) \in \widetilde{Q}(\{v(\psi\{\overline{a}/x\}) \mid a \in D\}).$
- If $\psi_1 \equiv_{\alpha} \psi_2$, then $v(\psi_1) = v(\psi_2)$.

Other problems to handle

- Terms denoting the same objects cannot be used interchangeably.
- Void quantification for first-order quantifiers \forall and $\exists.$
- Example:



Let $S = \langle \{1,2\}, I \rangle$, I(p)(1) = I(p)(2) = t and I(c) = I(d) = 1. Consider: (i) $\neg p(c)$ and $\neg p(d)$, (ii) $\neg \forall xp(c)$ and $\neg p(c)$.

• Solution: add appropriate congruence relations. For instance, $A \sim_{void} Q \times A$ if $x \notin Fv(A)$.

Analyticity

Analyticity of an Nmatrix **M**

for every *L*-structure *S* and every partial **M**-legal *S*-valuation v_p defined on a set of *L*-sentences closed under subformulas: v_p can be extended to a full **M**-legal valuation.

Analyticity

Analyticity of an Nmatrix **M**

for every *L*-structure *S* and every partial **M**-legal *S*-valuation v_p defined on a set of *L*-sentences closed under subformulas: v_p can be extended to a full **M**-legal valuation.

- Analyticity is not guaranteed anymore when congruence relations are involved.
- Some good cases:
 - Analyticity for \equiv_{α} is always guaranteed.
 - Denote φ₁ ~^{dc} φ₂ if φ₂ can be obtained from φ₁ by renaming bound variables and deleting/adding void quantifiers. Analyticity for ~^{dc} is guaranteed iff a ∈ Q̃_M({a}) for every quantifier Q of L and every a ∈ V.

Using congruences in the propositional case

- Introducing congruences can be useful also in the propositional case (e.g. equivalence in all contexts of ψ ∧ φ and φ ∧ ψ).
- Analyticity should be handled with care (question for further research)

Application: first-order C-systems

Language: $\mathcal{L}_{QC} = \{ \land, \lor, \supset, \neg, \circ, \forall, \exists \}.$

Logic: QBK is obtained by adding the following axioms to some standard Hilbert-type system for classical positive FOL:

(N1) $\neg \varphi \lor \varphi$ (b) $(\circ \varphi \land \varphi \land \neg \varphi) \supset \psi$ (k) $\circ \psi \lor (\psi \land \neg \psi)$ (DC) $\varphi_1 \supset \varphi_2$ whenever $\varphi_1 \sim^{dc} \varphi_2$.

 $\varphi_1 \sim^{dc} \varphi_2$ if φ_2 can be obtained from φ_1 by renaming bound variables and deleting/adding void quantifiers.

Extensions of QBK

(c)
$$\neg \neg \varphi \supset \varphi$$

(e) $\varphi \supset \neg \neg \varphi$

. . .

 $(\mathbf{a}_{\forall}) \quad \forall x \circ \varphi \supset \circ (\forall x \varphi)$ $(\mathbf{a}_{\exists}) \quad \forall x \circ \varphi \supset \circ (\exists x \varphi)$ $(\mathbf{o}_{\forall}) \quad \exists x \circ \varphi \supset \circ (\forall x \varphi)$ $(\mathbf{o}_{\exists}) \quad \exists x \circ \varphi \supset \circ (\exists x \varphi)$

Example: da-Costa's original C_1^* is equivalent to **QBKcila**.

• Truth-value: $v(\varphi) = \langle x, y \rangle$, where x expresses truth/falsity of φ and y expresses truth/falsity of $\neg \varphi$.

The idea of semantics

- Truth-value: $v(\varphi) = \langle x, y \rangle$, where x expresses truth/falsity of φ and y expresses truth/falsity of $\neg \varphi$.
- Possible values:
 - $v(\varphi) = \langle 1, 0 \rangle = \mathbf{t} \varphi$ is true and $\neg \varphi$ is false
 - $v(\varphi) = \langle 0,1
 angle = {f f}$ φ is false and $\neg \varphi$ is true
 - $\mathit{v}(arphi) = \langle 1,1
 angle = op$ arphi is true and $\neg arphi$ is true
- Addition: Every M-legal valuation should also respect the congruences for α-equivalence and void quantification (but analyticity is preserved!).

3-valued Semantics for QBK

The Nmatrix $\mathcal{QM} = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ is defined by:

 $\mathcal{V} = \{\mathbf{t}, \top, \mathbf{f}\}, \ \mathcal{D} = \{\mathbf{t}, \top\}, \ \text{and} \ \mathcal{F} = \{\mathbf{f}\}:$ $a\tilde{\wedge}b = \begin{cases} \mathcal{D} & \text{if } a \in \mathcal{D} \text{ and } b \in \mathcal{D} \\ \mathcal{F} & \text{if } a \in \mathcal{F} \text{ or } b \in \mathcal{F} \end{cases} a\tilde{\supset}b = \begin{cases} \mathcal{D} & \text{if } a \in \mathcal{F} \text{ or } b \in \mathcal{D} \\ \mathcal{F} & \text{if } a \in \mathcal{D} \text{ and } b \in \mathcal{F} \end{cases}$ $\tilde{\neg}a = \begin{cases} \mathcal{D} & \text{if } a \in \{\top, \mathbf{f}\} \\ \mathcal{F} & \text{if } a = \mathbf{t} \end{cases} \tilde{\circ}a = \begin{cases} \mathcal{D} & \text{if } a \in \{\mathbf{t}, \mathbf{f}\} \\ \mathcal{F} & \text{if } a = \top \end{cases}$ $\tilde{\forall}(\mathcal{H}) = \begin{cases} \mathcal{D} & \text{if } \mathcal{H} \subseteq \mathcal{D} \\ \mathcal{F} & \text{otherwise} \end{cases} \tilde{\exists}(\mathcal{H}) = \begin{cases} \mathcal{D} & \text{if } \mathcal{H} \cap \mathcal{D} \neq \emptyset \\ \mathcal{F} & \text{otherwise} \end{cases}$

Effects of $(\mathbf{a}_{\mathbf{Q}})$ and $(\mathbf{o}_{\mathbf{Q}})$ for $Q \in \{\forall, \exists\}$

$$Cond(\mathbf{a}_{\forall}): \tilde{\forall}(\{\mathbf{t}\}) = \{\mathbf{t}\}$$

$$Cond(\mathbf{a}_{\forall}): \tilde{\exists}(\{\mathbf{t}\}) = \tilde{\exists}(\{\mathbf{t}, \mathbf{f}\}) = \{\mathbf{t}\}$$

$$Cond(\mathbf{o}_{\forall}): \tilde{\forall}(\{\mathbf{t}\}) = \tilde{\exists}(\{\mathbf{t}, \top\}) = \{\mathbf{t}\}$$

$$Cond(\mathbf{o}_{\exists}): \tilde{\exists}(\{\mathbf{t}\}) = \tilde{\exists}(\{\mathbf{t}, \top\}) =$$

$$\tilde{\exists}(\{\mathbf{t}, \mathbf{f}\}) = \tilde{\exists}(\{\mathbf{t}, \top, \mathbf{f}\}) = \{\mathbf{t}\}$$

QBK :			QBK + (a):				QBK + (o):		
H	₹[<i>H</i>]	∃̃[<i>H</i>]	Н	<i>¥</i> [<i>H</i>]	Ĩ[<i>H</i>]		Н	$\widetilde{\forall}[H]$	Ĩ[<i>H</i>]
{ t }	$\{\mathbf{t}, \top\}$	$\{\mathbf{t}, \top\}$	{ t }	{t}	{ t }		{ t }	{ t }	{ t }
{ f }	{ f }	{ f }	{ f }	{ f }	{ f }		{f}	{ f }	{ f }
{⊤}	{ t , ⊤}	{ t , ⊤}	{⊤}	{ t , ⊤}	{ t , ⊤}		{⊤}	{ t , ⊤}	{ t , ⊤}
{t, f}	{ f }	{ t , ⊤}	{t, f}	{ f }	{ t }		{t,f}	{ f }	{ t }
{ t , ⊤}	{ t , ⊤}	{ t , ⊤}	{ t , ⊤}	{ t , ⊤}	{ t , ⊤}		{ t , ⊤}	{ t }	{ t }
$ \{\mathbf{f}, \top\}$	{f}	{ t , ⊤}	{ f , ⊤}	{ f }	{ t , ⊤}		{ f , ⊤}	{ f }	{ t }
$\{\mathbf{t}, \mathbf{f}, \top\}$	{ f }	{ t , ⊤}	$\{\mathbf{t}, \mathbf{f}, \top\}$	{ f }	$\{\mathbf{t}, \top\}$		$\{\mathbf{t}, \mathbf{f}, \top\}$	{ f }	{ t }

The Nmatrix $\mathbf{M}_{C_1^*}$

$$\mathcal{V} = \mathcal{T} \cup \mathcal{I} \cup \mathcal{F}, \ \mathcal{T} = \{t_i^j \mid i \ge 0, j \ge 0\}$$
, $\mathcal{I} = \{\top_i^j \mid i \ge 0, j \ge 0\}$, $\mathcal{F} = \{f\}$, $\mathcal{D} = \mathcal{T} \cup \mathcal{I}$.

$$a\widetilde{\supset}b = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{D} \text{ and } b \in \mathcal{F} \\ \mathcal{T} & \text{if } a \in \mathcal{F} \text{ and } b \notin \mathcal{I}, \text{ or } \\ & \text{if } b \in \mathcal{T} \text{ and } a \notin \mathcal{I} \\ \mathcal{D} & \text{otherwise} \end{cases} \quad a\widetilde{\wedge}b = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{F} \text{ or } b \in \mathcal{F} \\ \mathcal{T} & \text{if } a \in \mathcal{T} \text{ and } b \in \mathcal{T}, \text{ or } \\ & \text{if } a = \top_i^j \text{ and } b \in \{\top_i^{j+1}, t_i^{j+1}\} \\ \mathcal{D} & \text{otherwise} \end{cases}$$

$$\widetilde{\neg} a = \left\{ egin{array}{ll} \mathcal{F} & ext{if } a \in \mathcal{T} \\ \mathcal{T} & ext{if } a \in \mathcal{F} \\ \{ \top_i^{j+1}, t_i^{j+1} \} & ext{if } a = \top_i^j \end{array}
ight.$$

 $\widetilde{\forall}(H) = \begin{cases} \mathcal{T} & \text{if } H \subseteq \mathcal{T} \\ \mathcal{D} & \text{if } H \subseteq \mathcal{D} \text{ and } H \cap \mathcal{I} \neq \emptyset \\ \mathcal{F} & f \in H \end{cases} \quad \widetilde{\exists}(H) = \begin{cases} \mathcal{T} & \text{if } H \subseteq \mathcal{T} \cup \mathcal{F} \text{ and } H \cap \mathcal{T} \neq \emptyset \\ \mathcal{D} & \text{if } H \cap \mathcal{I} \neq \emptyset \\ \mathcal{F} & H = \{f\} \end{cases}$

Application: $\neg \exists x \neg p(x) \not\vdash_{C_1^*} \forall x p(x)$

- A rather complex syntactic proof of da Costa (1974).
- A much easier semantic proof: refutation using $M_{C_1^*}$.

$$S = \langle \{a, b\}, I \rangle$$

$$I(p)(a) = \top_0^0 \quad I(p)(b) = f$$

Next define a partial valuation v on the set of subformulas of $\{\neg \exists x \neg p(x), \forall xp(x)\}$ as follows:

$$\begin{aligned} v(p(\overline{a})) &= \top_0^0 \quad v(p(\overline{b})) = f \quad v(\neg p(\overline{a})) = \top_0^1 \quad v(\neg p(\overline{b})) = t_0^0 \\ v(\exists x \neg p(x)) &= \top_0^1 \quad v(\neg \exists x \neg p(x)) = t_0^2 \quad v(\forall x p(x)) = f \end{aligned}$$

v is $\mathbf{M}_{C_1^*}$ -legal, and (by the analyticity of $\mathbf{M}_{C_1^*}$) it can be extended to a full $\mathbf{M}_{C_1^*}$ -legal valuation.

Reminder: propositional canonical systems

Each logical rule satisfies:

- Introduces exactly one formula in its conclusion.
- 2 The introduced formula: $\diamond(\psi_1, \ldots, \psi_n)$.
- Solution All active formulas in its premises are in $\{\psi_1, \ldots, \psi_n\}$.
- On the side formulas.

Direct correspondence: A canonical system is coherent iff it admits cut-elimination iff it has a characteristic 2Nmatrix.

Canonical quantifier rules

$$\frac{\Gamma, A\{\mathbf{t}/w\} \Rightarrow \Delta}{\Gamma, \forall w A \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow A\{z/w\}, \Delta}{\Gamma \Rightarrow \forall w A, \Delta}$$

where z is a variable free for w in A, z is not free in $\Gamma \cup \Delta \cup \{\forall wA\}$, and **t** is any term free for w in A.

$$\begin{array}{c}
\downarrow \\
\frac{A\{\mathbf{t}/w\} \Rightarrow}{\forall w A \Rightarrow} \quad \frac{\Rightarrow A\{z/w\}}{\Rightarrow \forall w A} \\
\downarrow \\
\downarrow
\end{array}$$

 $\{p(c) \Rightarrow\}/\forall w \ p(w) \Rightarrow \{\Rightarrow p(y)\}/\Rightarrow \forall w \ p(w)$

An eigenvariable is marked by a variable, and a term is marked by a constant.

Canonical systems

A canonical system includes

• Axioms: $\psi \Rightarrow \psi'$ for $\psi \equiv_{\alpha} \psi'$

Structural Weakening and Cut rules:

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} (Weakening) \qquad \frac{\Gamma, \psi \Rightarrow \Delta \quad \Gamma \Rightarrow \Delta, \psi}{\Gamma \Rightarrow \Delta} (Cut)$$

Substitution rule:

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma' \Rightarrow \Delta'} (S)$$

where Γ', Δ' are substitution instances of Γ, Δ resp. **3** Canonical introduction rules.

Constructive Canonical Systems	FOL Defs	FO C-systems	Canonical Systems with Quantifiers
Coherence			

- A canonical calculus G is coherent if for every two canonical rules of G of the form Θ₁/ ⇒ A and Θ₂/ A ⇒, the set of clauses Θ₁ ∪ Θ₂ is classically inconsistent.
- The coherence of a canonical calculus G is decidable.
- Examples:

Coherent:

$$\{p(c) \Rightarrow\} / \forall x p(x) \Rightarrow \{\Rightarrow p(y)\} / \Rightarrow \forall x p(x)$$

Non-coherent:

 $\{\Rightarrow p(c)\} / \Rightarrow Qxp(x) \qquad \{p(d) \Rightarrow\} / Qxp(x) \Rightarrow$

Correspondence Theorem

The following statements concerning a canonical system G with unary quantifiers are equivalent:

- G is coherent.
- **@** *G* has a characteristic 2Nmatrix.
- **G** admits strong cut elimination.

Strong cut-elimination

G admits strong cut-elimination if whenever $S \vdash s$, then *s* has a proof from *S* in *G*, where cuts are applied only on substitution instances of formulas from *S*.

More General Quantifiers

• A natural step: *n*-ary quantifiers:

If Q is an n-ary quantifier, then $Qx(\psi_1,...,\psi_n)$ is a formula.

- Examples:
 - Unary quantifiers: ∀, ∃.
 - Binary quantifiers: bounded universal and existential quantifiers ∀ and ∃, where:
 - $\overline{\forall}(\psi_1,\psi_2)$ means $\forall x(\psi_1 \rightarrow \psi_2)$.
 - $\exists (\psi_1, \psi_2) \text{ means } \exists x(\psi_1 \land \psi_2).$

Nmatrices with *n*-ary quantifiers

- An *n*-ary quantifier Q in an Nmatrix M = ⟨𝒱, 𝔅, 𝔅) is interpreted by a function Q̃ : P⁺(𝒱ⁿ) → P⁺(𝒱).
- Example: for every $\mathcal{E} \in P^+(\{t, f\}^2)$:

$$\tilde{\overline{\forall}}(\mathcal{E}) = \begin{cases} \{f\} & \text{if } \langle t, f \rangle \in \mathcal{E} \\ \{t\} & \text{otherwise} \end{cases} \qquad \tilde{\overline{\exists}}(\mathcal{E}) = \begin{cases} \{t\} & \text{if } \langle t, t \rangle \in \mathcal{E} \\ \{f\} & \text{otherwise} \end{cases}$$

The definition of an **M**-valuation v is now modified as follows:

 $v(Qx(\psi_1,...,\psi_n)) \in \tilde{Q}_{\mathsf{M}}(\{\langle v(\psi_1\{\overline{a}/x\}),...,v(\psi_n\{\overline{a}/x\})\rangle \mid a \in D\})$

The framework of canonical systems can be extended to the case of *n*-ary quantifiers, the direct correspondence still holds.

Example

Н	(H)	∃̃[H]	$ ilde{Q}_2[\mathbf{H}]$
$\{\langle \mathbf{t}, \mathbf{t} \rangle\}$	{ t }	{ t }	$\{t, f\}$
$\{\langle \mathbf{t}, \mathbf{f} \rangle\}$	{ f }	{ t }	{ t }
$\{\langle \mathbf{f}, \mathbf{f} \rangle\}$	{ t }	{ f }	{ t , f }
$\{\langle \mathbf{f}, \mathbf{t} \rangle\}$	{ t }	{ t }	{ f }
$\{\langle {f t}, {f t} angle, \langle {f t}, {f f} angle\}$	{ f }	{ t }	$\{\mathbf{t}, \mathbf{f}\}$
$\{\langle {f t},{f t} angle,\langle {f f},{f t} angle\}$	{ t }	{ t }	{ t , f }
$\{\langle \mathbf{t}, \mathbf{t} \rangle, \langle \mathbf{f}, \mathbf{f} \rangle\}$	{ t }	{ t }	{ t , f }
$\{\langle {f f},{f t} angle,\langle {f t},{f f} angle\}$	{ f }	{ t }	{ t }
$\{\langle \mathbf{f}, \mathbf{t} \rangle, \langle \mathbf{f}, \mathbf{f} \rangle\}$	{ t }	{ t }	{ t }
$\{\langle \mathbf{t}, \mathbf{f} \rangle, \langle \mathbf{f}, \mathbf{f} \rangle\}$	{ f }	{ t }	{ t }
$\{\langle {f t}, {f t} angle, \langle {f t}, {f f} angle, \langle {f f}, {f t} angle\}$	{ f }	{ t }	{ f }
$\{\langle \mathbf{t}, \mathbf{t} \rangle, \langle \mathbf{f}, \mathbf{f} \rangle, \langle \mathbf{f}, \mathbf{t} \rangle\}$	{ t }	{ t }	{ t , f }
$\{\langle {f f}, {f t} angle, \langle {f t}, {f f} angle, \langle {f f}, {f f} angle\}$	{ f }	{ t }	{ t }
$\{\langle \mathbf{f},\mathbf{f} angle,\langle \mathbf{t},\mathbf{f} angle,\langle \mathbf{f},\mathbf{t} angle\}$	{ f }	{ t }	$\{t, f\}$
$\left\{ \langle \mathbf{t}, \mathbf{t} \rangle, \langle \mathbf{t}, \mathbf{f} \rangle, \langle \mathbf{f}, \mathbf{t} \rangle, \langle \mathbf{f}, \mathbf{f} \rangle \right\}$	{ f }	{ t }	{ t }

Constructive Canonical Systems	FOL Defs	FO C-systems	Canonical Systems with Quantifiers
Summary			

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
- Allows for a systematic and modular approach

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
- Allows for a systematic and modular approach
- Insights into the syntax-semantics interface

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
- Allows for a systematic and modular approach
- Insights into the syntax-semantics interface
- Provides important tools for Universal Logic.

Thank you for your attention!