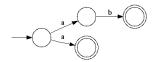
Tutorial on Non-Deterministic Semantics Part II: Logics of Formal (In)consistency

Arnon Avron and Anna Zamansky

UNILOG 2013, Rio de Janeiro



What this tutorial is about

Sequent Systems

Systems with (I), (d)

What this tutorial is about

Non-deterministic Semantics (Matrices):

Incorporating the notion of *"non-deterministic computations"* from automata and computability theory into logical truth-tables.

What this tutorial is about

Non-deterministic Semantics (Matrices):

Incorporating the notion of *"non-deterministic computations"* from automata and computability theory into logical truth-tables.

We would like to show:

Non-deterministic semantics is a natural and useful paradigm.

Already covered topics

- Basic definitions and properties of Nmatrices.
- Application of two-valued Nmatrices: canonical Gentzen-type systems.

Overview of Part II - Logics of Formal (In)consistency

Paraconsistency

- 2 A taxonomy of C-systems
- O ND Semantics
- 4 Sequent Systems
- 5 Systems with (I), (d)

What kind of logic is needed for reasoning with inconsistencies?

• Within classical logic, inconsistency leads to trivialization of knowledge bases, as everything becomes derivable:

$$A, \neg A \vdash B$$

What kind of logic is needed for reasoning with inconsistencies?

• Within classical logic, inconsistency leads to trivialization of knowledge bases, as everything becomes derivable:

$$A, \neg A \vdash B$$

• Paraconsistent logic is a logic which allows contradictory but non-trivial theories.

Definition

A propositional logic $\mathbf{L} = \langle \mathcal{L}, \vdash \rangle$ is *paraconsistent* (with respect to \neg) if there are \mathcal{L} -formulas A, B, such that $A, \neg A \not\vdash B$.

Systems with (I), (d)

The fathers of paraconsistent logic

S. Jaśkowski, 1948: ...PL should be rich enough to enable practical inferences.

N.C.A. da Costa, 1963: ...PL should contain as much as possible of classical logic.

The Brazilian school of paraconsistent logics

- Divide propositions into two sorts: consistent and inconsistent ones.
- Reflect this classification within the language.
- The class of C-systems:
 - Employ a special (primitive or defined) connective o.
 - Intuitive meaning of $\circ A$: "A is consistent".
 - Explosive character of contradictions is restricted:

$$\psi, \neg \psi \vdash \varphi \quad \Rightarrow \quad \psi, \neg \psi, \circ \psi \vdash \varphi$$

An example: da Costa's system C_1

Obtained by:

- Taking $\circ \varphi = \neg (\varphi \land \neg \varphi)$
- Adding to some Hilbert-style system for positive classical logic the following axioms concerning negation:

and either of the following two axioms:

 $\begin{array}{l} (\mathsf{N} \circ 1) \ \circ \varphi \supset (\psi \supset \varphi) \supset (\psi \supset \neg \varphi) \supset \neg \psi \\ (\mathsf{N} \circ 2) \ (\circ \varphi \land \varphi \land \neg \varphi) \supset \psi \end{array}$

Logics of Formal (In)consistency

Logics of Formal (In)consistency

A paraconsistent logic **L** is an LFI if there is an atomic variable p and a set X(p) of formulas, such that $A, \neg A, X\{A/p\} \vdash B$ for all A and B.

Studied by W.A. Carnielli, J. Marcos, M.E. Coniglio and others.

Paraconsistency	A taxonomy of C-systems	ND Semantics	Sequent Systems	Systems with (I), (d)
C-system	S			

A (bit modified) definition

L is a C-system if (i) **L** contains the positive fragment of classical logic, and (ii) **L** has a (primitive or defined) unary connective \circ , for which the following are valid:

(N1)
$$\neg \psi \lor \psi$$

$$(\mathbf{b}) \circ \psi \supset ((\psi \land \neg \psi) \supset \varphi)$$

$$(\mathbf{k}) \circ \psi \lor (\psi \land \neg \psi)$$

The basic C-system BK

The system **BK** extends the positive fragment of classical logic with **(t)**, **(b)** and **(k)**. The system **B** is **BK** without **(k)**.

For
$$\sharp \in \{\land, \lor, \supset\}$$
:
(c) $\neg \neg \varphi \supset \varphi$
(e) $\varphi \supset \neg \neg \varphi$
(i_1) $\neg \circ \varphi \supset \varphi$
(i_2) $\neg \circ \varphi \supset \neg \varphi$
(a_{\sharp}) $(\circ \varphi \land \circ \psi) \supset \circ(\varphi \sharp \psi)$
(o_{\sharp}^{1}) $\circ \varphi \supset \circ(\varphi \sharp \psi)$
(l) $\neg(\varphi \land \neg \varphi) \supset \circ \varphi$
(d) $\neg(\neg \varphi \land \varphi) \supset \circ \varphi$

Example: C_1 *is equivalent to* **BKcila**(= **Bcila**)

Paraconsistency	A taxonomy of C-systems	ND Semantics	Sequent Systems	Systems with (I), (d)
Semantic	S			

- C-systems were mostly introduced in proof-theoretic terms.
- After some years several semantic approaches were proposed (da Costa, Carnielli and Marcos, Béziau,...):
 - Bivaluation semantics
 - Possible translations semantics

Paraconsistency	A taxonomy of C-systems	ND Semantics	Sequent Systems	Systems with (I), (d)
Semantic	S			

- C-systems were mostly introduced in proof-theoretic terms.
- After some years several semantic approaches were proposed (da Costa, Carnielli and Marcos, Béziau,...):
 - Bivaluation semantics
 - Possible translations semantics
- These semantic frameworks are very general and as such lack some useful properties, such as a general **analyticity** theorem.

Non-deterministic semantics - the idea

- Truth-value: $v(\varphi) = \langle x, y \rangle$, where x expresses truth/falsity of φ and y expresses truth/falsity of $\neg \varphi$.
- Possible values:
 - v(φ) = ⟨1,0⟩ = t φ is true and ¬φ is false
 v(φ) = ⟨0,1⟩ = f φ is false and ¬φ is true
 v(φ) = ⟨1,1⟩ = ⊤ φ is true and ¬φ is true
 v(φ) = ⟨0,0⟩ = ⊥ φ is false and ¬φ is false

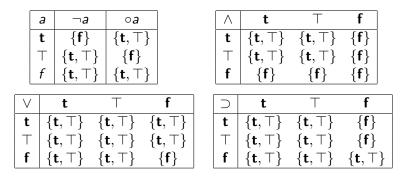
Non-deterministic semantics - the idea

- Truth-value: $v(\varphi) = \langle x, y \rangle$
 - x expresses the truth/falsity of φ
 - y expresses the truth/falsity of $\neg \varphi$.
- Possible values:
 - $v(\varphi) = \langle 1, 0 \rangle = \mathbf{t} \varphi$ is true and $\neg \varphi$ is false
 - $v(\varphi) = \langle 0,1 \rangle = \mathbf{f} \varphi$ is false and $\neg \varphi$ is true
 - $v(\varphi) = \langle 1,1 \rangle = \top$ φ is true and $\neg \varphi$ is true

(N1) ($\neg \varphi \lor \varphi$) leads to the deletion of \bot

Semantics for BK - the Nmatrix M^3

- Truth-values: $\mathbf{t} = \langle 1, 0 \rangle$, $\top = \langle 1, 1 \rangle$, $\mathbf{f} = \langle 0, 1 \rangle$
- Designated truth-values: $\mathbf{t}=\langle 1,0\rangle,\ \top=\langle 1,1\rangle$



Soundness and completeness theorem

 $T \vdash_{HBK} \psi$ iff $T \vdash_{\mathbf{M}^3} \psi$.

Semantic effects of the axioms

An addition of an axiom leads to a refinement of the basic Nmatrix.

Reminder: $\mathcal{M}_1 = \langle \mathcal{V}_1, \mathcal{D}_1, \mathcal{O}_1 \rangle$ is a refinement of $\mathcal{M}_2 = \langle \mathcal{V}_2, \mathcal{D}_2, \mathcal{O}_2 \rangle$ if: **1** $\mathcal{V}_1 \subseteq \mathcal{V}_2$ **2** $\mathcal{D}_1 = \mathcal{D}_2 \cap \mathcal{V}_1$ **3** $\widetilde{\diamond}_{\mathcal{M}_1}(x_1 \dots x_n) \subseteq \widetilde{\diamond}_{\mathcal{M}_2}(x_1 \dots x_n)$ for every *n*-ary connective \diamond and every $x_1 \dots x_n, y \in \mathcal{V}_1$.

• Possible refutations:

$$v(arphi)=f$$
, $v(
eg arphi)= op$ and $v(
eg
eg arphi)\in\{t, op\}$

• Imposed semantic condition:

$$\neg f = \{t\}$$

$$\begin{array}{|c|c|c|c|}\hline a & \neg a \\ \hline t & \{f\} \\ \top & \{t, \top\} \\ \hline f & \{t, \top\} \end{array} \Rightarrow \begin{array}{|c|c|c|}\hline a & \neg a \\ \hline t & \{f\} \\ \top & \{t, T\} \\ \hline f & \{t, T\} \end{array}$$

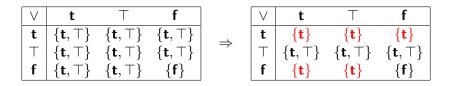
Adding $(\mathbf{o}^{\mathbf{1}}_{\vee}) \circ \varphi \supset \circ(\varphi \lor \psi)$

Possible refutations:

$$v(\circ\varphi) = t/\top$$
$$v(\varphi) = t/f, v(\psi) = \dots$$
$$v(\varphi \lor \psi) = \top$$
$$v(\circ(\varphi \lor \psi)) = \mathbf{f}$$

• Imposed semantic conditions:

$$t \lor t = t \lor f = t \lor \top = \{t\}$$
$$f \lor t = f \lor \top = \{t\}$$



More semantic conditions

	ax	C(ax)		ax	C(ax)
(c)	$\neg \neg \varphi \supseteq \varphi$	$\neg f = \{t\}$			$t \lor t = t \lor f = \{t\}$
(e)	$\varphi \supset \neg \neg \varphi$	$\neg\top = \{\top\}$	(a _∨)	$(\circ arphi \wedge \circ \psi) \supset \circ (arphi \lor \psi)$	$t \lor t = f \lor t = \{t\}$
(i1)	$\neg \circ \varphi \supset \varphi$	$\circ f = \{t\}$			$f \supset t = f \supset f = \{t\}$
(i ₂)	$\neg \circ \varphi \supset \neg \varphi$	$\circ t = \{t\}$	(a _⊃)	$(\circ arphi \land \circ \psi) \supset \circ (arphi \supset \psi)$	$f \supset t = t \supset t = \{t\}$
(a_{\wedge})	$(\circ arphi \wedge \circ \psi) \supset \circ (arphi \wedge \psi)$	$t \wedge t = \{t\}$	(\mathbf{o}^1_{\wedge})	$\circ \varphi \supset \circ (\varphi \wedge \psi)$	$t \wedge t = t \wedge \top = \{t\}$
			(\mathbf{o}^2_{\wedge})	$\circ\psi\supset\circ(\varphi\wedge\psi)$	$t \wedge t = \top \wedge t = \{t\}$

Soundness and completeness for $A \subseteq Ax' = Ax \setminus \{(I), (d)\}$

$\mathbf{M}_{\mathbf{BK}}^{3}[A]$ - the simplest refinement of $\mathbf{M}_{\mathbf{BK}}^{3}$, for which all the semantic conditions induced by the axioms of A hold.

Theorem

$$\mathcal{T} \vdash_{\mathsf{M}^{3}_{\mathsf{BK}}[A]} \psi \text{ iff } \mathcal{T} \vdash_{\mathsf{BK}[A]} \psi.$$

The axioms (I) and (d) are a bit problematic, we will handle them later.

- (\mathbf{a}_{\sharp}) follows in **BK** from $(\mathbf{o}_{\sharp}^{1})$ and $(\mathbf{o}_{\sharp}^{2})$.
- 1 $\vdash_{\mathsf{RKia}} \neg (\varphi \land \psi) \supset (\neg \varphi \lor \neg \psi)$ 2 $\forall_{\mathsf{BKcie}} \neg (\varphi \land \psi) \supset (\neg \varphi \lor \neg \psi)$
- **BK**[X] is decidable for every $X \subseteq Ax'$.
- Let L be a logic in a language which includes $\{\neg, \land, \lor, \supset\}$. If **BKcioe** is an extension of L then two formulas in $\{\neg, \land, \lor, \supset\}$ are logically indistinguishable in L iff they are identical.

Logical indistinguishability

A and B are logically indistinguishable in L if $\varphi(A) \vdash_{\mathsf{L}} \varphi(B)$ and $\varphi(B) \vdash_{\mathsf{L}} \varphi(A)$ for every formula $\varphi(p)$ in the language of L .

No improvements possible

No characteristic finite matrices

 $\mathcal L$ - either $\{\neg,\wedge,\vee,\supset\}$ or $\mathcal L_{\mathcal C}.$

L - a logic in \mathcal{L} , such that its set of theorems includes that of positive classical logic, and is included in that of **BKcioe**. Then there is no finite (deterministic) matrix P, such that $T \vdash_{\mathsf{L}} \psi$ iff $T \vdash_{P} \psi$.

No improvements possible

No characteristic finite matrices

 $\mathcal L$ - either $\{\neg,\wedge,\vee,\supset\}$ or $\mathcal L_{\mathcal C}.$

L - a logic in \mathcal{L} , such that its set of theorems includes that of positive classical logic, and is included in that of **BKcioe**. Then there is no finite (deterministic) matrix P, such that $T \vdash_{\mathsf{L}} \psi$ iff $T \vdash_{P} \psi$.

No weakly characteristic finite matrices

L - as above.

Then there is no finite (deterministic) matrix P, such that $\vdash_{\mathsf{L}} \psi$ iff $\vdash_{P} \psi$.

Analytic calculi for C-systems

- Sequent and tableaux systems were proposed:
 - da Costa's C1: Raggio, Béziau, Carnielli and Marcos.
 - Other particular C-systems: *Carnielli and Marcos, Gentillini, Finger et al.*
- Methods tailored for specific systems, rules are not uniform.
- Is systematic approach possible?

Can Nmatrices help?

There is an algorithm for constructing cut-free sequent calculi for logics, which:

have a finite-valued characteristic Nmatrix M

a have a language expressive enough with respect to M Intuition: \mathcal{L} is expressive enough for **M** if we can "characterize" each truth-value of **M** using a finite set of \mathcal{L} -sequents.

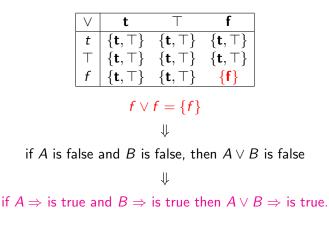
• $v(A) = \mathbf{t}$ iff $\neg A \Rightarrow$ is true in v.

•
$$v(A) = \mathbf{f}$$
 iff $A \Rightarrow$ is true in v .

- $v(A) = \top$ iff $\Rightarrow A$ and $\Rightarrow \neg A$ are both true in v.
- $v(A) \in \{\mathbf{f}, \top\}$ iff $\Rightarrow \neg A$ is true in v.
- $v(A) \in \{\mathbf{t}, \top\}$ iff $\Rightarrow A$ is true in v.
- $v(A) \in \{\mathbf{t}, \mathbf{f}\}$ iff $A, \neg A \Rightarrow$ is true in v.

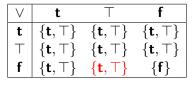
Reminder: A sequent $\Gamma \Rightarrow \Delta$ is true in v if $v(\psi) \notin D$ for some $\psi \in \Gamma$ or $v(\psi) \in \mathcal{D}$ for some $\psi \in \Delta$.

Example: the truth-table for \lor in $\mathbf{M}_{\mathbf{BK}}^3$



$$\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta}$$

Example: the truth-table for \lor in $\mathbf{M}_{\mathbf{BK}}^3$



 $\mathbf{f} \lor \top = \{\mathbf{t}, \top\}$

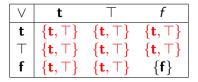
₩

if $A \Rightarrow$ is true and $\Rightarrow B$ is true and $\Rightarrow \neg B$ is true, then $\Rightarrow A \lor B$ is true.

$$\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow \Delta, B \quad \Gamma \Rightarrow \Delta, \neg B}{\Gamma \Rightarrow \Delta, A \lor B}$$

Systems with (I), (d)

Example: the truth-table for \lor in $\mathbf{M}_{\mathbf{BK}}^3$



$$\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma, B \Rightarrow \Delta}{\Gamma, A \lor B \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A \lor B}$$

The system G_{K}

$$\begin{array}{ll} (\wedge \Rightarrow) & \frac{\Gamma, \psi, \phi \Rightarrow \Delta}{\Gamma, \psi \land \phi \Rightarrow \Delta} & (\Rightarrow \land) & \frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \phi}{\Gamma \Rightarrow \Delta, \psi \land \phi} \\ (\vee \Rightarrow) & \frac{\Gamma, \psi \Rightarrow \Delta \quad \Gamma, \phi \Rightarrow \Delta}{\Gamma, \psi \lor \phi \Rightarrow \Delta} & (\Rightarrow \lor) & \frac{\Gamma \Rightarrow \Delta, \psi, \phi}{\Gamma \Rightarrow \Delta, \psi \lor \phi} \\ (\supset \Rightarrow) & \frac{\Gamma \Rightarrow \psi, \Delta \quad \Gamma, \phi \Rightarrow \Delta}{\Gamma, \psi \supset \phi \Rightarrow \Delta} & (\Rightarrow \supset) & \frac{\Gamma, \psi \Rightarrow \phi, \Delta}{\Gamma \Rightarrow \psi \supset \phi, \Delta} \\ & (\Rightarrow \neg) & \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \psi} \\ (\circ \Rightarrow) & \frac{\Gamma \Rightarrow \psi, \Delta \quad \Gamma \Rightarrow \neg \psi, \Delta}{\Gamma, \circ \psi \Rightarrow \Delta} & (\Rightarrow \circ) & \frac{\Gamma, \psi, \neg \psi \Rightarrow \Delta}{\Gamma \Rightarrow \circ \psi, \Delta} \end{array}$$

G_K is equivalent to BK and enjoys cut-admissibility.
The rules of G_K for ∧, ∨, ⊃, ∘ are invertible.

Example 1: (c) $\neg \neg A \supset A$

• Semantic condition:

$$\neg f = \{t\}$$

• Translation: if $A \Rightarrow$ is true, then $\neg \neg A \Rightarrow$ is true.

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, \neg \neg A \Rightarrow \Delta}$$

Example 2: $(\mathbf{o}^1_{\vee}) \circ A \supset \circ(A \lor B)$

- The semantic conditions: (i) $t \lor t = t \lor f = t \lor \top = \{t\}$ (ii) $f \lor t = f \lor \top = \{t\}$
- Translate (i): if $\neg A \Rightarrow$ is true, then $\neg (A \lor B) \Rightarrow$ is true

$$\frac{\Gamma, \neg A \Rightarrow \Delta}{\neg, \neg (A \lor B) \Rightarrow \Delta}$$

• Translate (ii): if $A \Rightarrow$ is true and $\Rightarrow B$ is true, then $\neg(A \lor B) \Rightarrow$ is true

$$\frac{\Gamma, A \Rightarrow \Delta \quad \Gamma \Rightarrow B, \Delta}{\Gamma, \neg (A \lor B) \Rightarrow \Delta}$$

Rules for axioms from Ax'

	ax	C(ax)	R(ax)
(c)	$\neg \varphi \supset \varphi$	$ eg f = \{t\}$	$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \neg \varphi \Rightarrow \Delta}$
(e)	$\varphi \supset \neg \neg \varphi$	$\neg\top=\{\top\}$	$\frac{\Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \neg \neg \varphi}$
(i1)	$\neg \circ \varphi \supset \varphi$	$\circ f = \{t\}$	$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \circ \varphi \Rightarrow \Delta}$
(i ₂)	$\neg \circ \varphi \supset \neg \varphi$	$\circ t = \{t\}$	$\frac{\Gamma, \neg \varphi \Rightarrow \Delta}{\Gamma, \neg \circ \varphi \Rightarrow \Delta}$
(a∧)	$(\circ arphi \wedge \circ \psi) \supset \circ (arphi \wedge \psi)$	$t \wedge t = \{t\}$	$\frac{\Gamma, \neg \varphi \Rightarrow, \Delta \Gamma, \neg \psi \Rightarrow \Delta}{\Gamma, \neg (\varphi \land \psi) \Rightarrow \Delta}$

Soundness, completeness and cut-elimination

Theorem

For all $A \subseteq Ax'$:

- **0** $\mathbf{G}_{\mathbf{K}}[A]$ is equivalent to $\mathbf{B}\mathbf{K}[A]$.
- **2 G**_K[*A*] enjoys cut-admissibility.

Soundness, completeness and cut-elimination

Theorem

For all $A \subseteq Ax'$:

- **0** $\mathbf{G}_{\mathbf{K}}[A]$ is equivalent to $\mathbf{B}\mathbf{K}[A]$.
- **2 G**_K[*A*] enjoys cut-admissibility.

A systematic way to construct cut-free systems:

- Modularity: each axiom corresponds to a set of Gentzen-type rules, which are easily computed from the semantic conditions induced by the axiom.
- Uniformity: The rules of the obtained calculi have a simple, intuitive and uniform form ⇒ Quasi-Canonical Systems!

Reminder: canonical systems

In canonical Gentzen-type systems, each logical rule satisfies:

- Introduces exactly one formula in its conclusion.
- 2 The introduced formula: $\diamond(\psi_1, \ldots, \psi_n)$.
- 3 All active formulas in its premises are in $\{\psi_1, \ldots, \psi_n\}$.
- On the side formulas.

Direct correspondence: A canonical system is coherent iff it admits cut-elimination iff it has a characteristic 2Nmatrix.

Quasi-canonical systems

- A --- quasi-canonical logical rule:
 - Introduces exactly one formula in its conclusion.
 - 2 The introduced formula: $\diamond(\psi_1, \ldots, \psi_n)$ or $\neg \diamond(\psi_1, \ldots, \psi_n)$.
 - 3 All active formulas in its premises are in $\{\psi_1, \dots, \psi_n, \neg \psi_1, \dots, \neg \psi_n\}.$
 - On the side formulas.

Direct correspondence: the coherence criterion can be generalized.

Adding more axioms

Beware of conflicts!

In their presence the system is not paraconsistent, and may not even have a characteristic Nmatrix!

Paraconsistency	A taxonomy of C-systems	ND Semantics	Sequent Systems	Systems with (I), (d)
Example				

- Cond (\mathbf{o}^1_{\wedge}) : for $b \in \{t, \top\}$, $t \wedge b = \{t\}$.
- Cond($\mathbf{n}^{\mathsf{r}}_{\wedge}$): for $b \in \{t, \top\}$, $b \wedge \top = \top \wedge b = \{\top\}$.
- Conflict in the case of $t \land \top$!
- Exhaustive list:
 - $(\mathbf{o}^{1}_{\wedge})$ and $(\mathbf{n}^{r}_{\wedge})$ • $(\mathbf{o}^{2}_{\wedge})$ and $(\mathbf{n}^{r}_{\wedge})$ • (\mathbf{o}^{1}_{\vee}) and (\mathbf{n}^{r}_{\vee}) • (\mathbf{o}^{2}_{\vee}) and (\mathbf{n}^{r}_{\vee}) • $(\mathbf{o}^{1}_{\supset})$ and $(\mathbf{n}^{r}_{\supset})$.

Extension: paracomplete systems

The basic paracomplete system BP

The system $\ensuremath{\textbf{BP}}$ extends the positive fragment of classical logic with

(N2) $(\psi \land \neg \psi) \supset \varphi$ (instead of (N1) $(\psi \lor \neg \psi)$)

$$(\mathbf{b}) \circ \psi \supset ((\psi \land \neg \psi) \supset \varphi)$$

(**k**)
$$\circ \psi \lor (\psi \land \neg \psi)$$

BP[A] is obtained by adding to **BP** the axioms from $A \subseteq Ax'$.

Non-deterministic three-valued semantics and cut-free systems for paracomplete systems are obtained similarly to the paraconsistent case.

Further extension: paraconsistent systems without (k)

- Use more complex truth-values, which include the following data concerning a formula $\psi:$
 - The truth/falsity of ψ
 The truth/falsity of ¬ψ
 The truth/falsity of οψ
- This leads to the use of elements from $\{0,1\}^3$ as truth-values, where the intended meaning of $v(\psi) = \langle x, y, z \rangle$ is as follows:

$$\begin{aligned} & x = 1 \text{ iff } v(\psi) \in \mathcal{D} \\ & y = 1 \text{ iff } v(\neg \psi) \in \mathcal{D} \\ & z = 1 \text{ iff } v(\circ \psi) \in \mathcal{D} \end{aligned}$$

- (N1) $(\psi \lor \neg \psi)$ leads to the deletion of (0,0,0) and (0,0,1).
- (b) $\circ \psi \supset ((\psi \land \neg \psi) \supset \varphi)$ leads to the deletion of $\langle 1, 1, 1 \rangle$.

 $t = \langle 1, 0, 1 \rangle, \ t_I = \langle 1, 0, 0 \rangle, \ I = \langle 1, 1, 0 \rangle, \ f = \langle 0, 1, 1 \rangle, \ f_I = \langle 0, 1, 0 \rangle$

Problematic axioms: (I) and (d)

(I)
$$\neg(\psi \land \neg \psi) \supset \circ \psi$$
 (d) $\neg(\neg \psi \land \psi) \supset \circ \psi$

Problematic axioms: (I) and (d)

$$(\mathbf{I}) \neg (\psi \land \neg \psi) \supset \circ \psi \quad (\mathbf{d}) \neg (\neg \psi \land \psi) \supset \circ \psi$$

Theorem

If $(I) \in A$ or $(d) \in A$ then BK[A] has no finite-valued characteristic Nmatrix.

Problematic axioms: (I) and (d)

(I)
$$\neg(\psi \land \neg \psi) \supset \circ \psi$$
 (d) $\neg(\neg \psi \land \psi) \supset \circ \psi$

Theorem

If $(I) \in A$ or $(d) \in A$ then BK[A] has no finite-valued characteristic Nmatrix.

Luckily, they have infinitely-valued characteristic Nmatrices, which still:

- guarantee their decidability, and
- induce a method for a modular construction of cut-free sequent calculi for them.

Intuition for infinite-valuedness

- (I) and (d) involve a conjunction of a formula with its negation.
- We need to be able to isolate the case of a conjunction of an "inconsistent" formula ψ with its negation from the cases of conjunction of ψ with other formulas.
- This requires an infinite number of truth-values, corresponding to the infinitely many formulas of the language.
- The finite Nmatrix M_{BK}^3 is replaced by an infinite Nmatrix which uses three sets of truth-values:

 $\mathcal{T} = \{t_i^j \mid i \ge 0, j \ge 0\}, \ \mathcal{I} = \{\top_i^j \mid i \ge 0, j \ge 0\}, \ \mathcal{F} = \{f\}$

 $\mathcal{T} = \{t_i^j \mid i \ge 0, j \ge 0\}, \ \mathcal{I} = \{\top_i^j \mid i \ge 0, j \ge 0\}, \ \mathcal{F} = \{f\}, \mathcal{D} = \mathcal{T} \cup \mathcal{I}$

$$a\widetilde{\lor} b = \begin{cases} \mathcal{D} & \text{if either } a \in \mathcal{D} \text{ or } b \in \mathcal{D}, \\ \mathcal{F} & \text{if } a, b \in \mathcal{F} \end{cases}$$
$$a\widetilde{\supset} b = \begin{cases} \mathcal{D} & \text{if either } a \in \mathcal{F} \text{ or } b \in \mathcal{D} \\ \mathcal{F} & \text{if } a \in \mathcal{D} \text{ and } b \in \mathcal{F} \end{cases}$$
$$a\widetilde{\wedge} b = \begin{cases} \mathcal{F} & \text{if either } a \in \mathcal{F} \text{ or } b \in \mathcal{F} \\ \mathcal{D} & \text{otherwise} \end{cases}$$

$$\widetilde{\neg} a = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{T} \\ \mathcal{D} & \text{if } a \in \mathcal{F} \\ \{\top_i^{j+1}, t_i^{j+1}\} & \text{if } a = \top_i^j \end{cases} \quad \widetilde{\circ} a = \begin{cases} \mathcal{D} & \text{if } a \in \mathcal{F} \cup \mathcal{T} \\ \mathcal{F} & \text{if } a \in \mathcal{I} \end{cases}$$

Semantic conditions for (I) and (d)

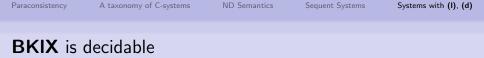
(I)
$$\neg(\psi \land \neg \psi) \supset \circ \psi$$
 (d) $\neg(\neg \psi \land \psi) \supset \circ \psi$

$$\begin{aligned} & \mathsf{GC}(I): \quad \mathsf{For} \ a = \top_i^j \ \mathsf{and} \ b \in \{\top_i^{j+1}, t_i^{j+1}\}, \ a \wedge b \subseteq \mathcal{T}. \\ & \mathsf{GC}(d): \ \mathsf{For} \ b = \top_i^j \ \mathsf{and} \ a \in \{\top_i^{j+1}, t_i^{j+1}\}, \ a \wedge b \subseteq \mathcal{T}. \end{aligned}$$

Semantic conditions for the rest of the axioms

- Derived similarly to the finite case (replacing t with $\mathcal T,$ and \top with $\mathcal I).$
- Example:

 $(\mathbf{a}_{\wedge}) \circ \psi \wedge \circ \varphi \supset \circ (\psi \wedge \varphi)$ Cond (\mathbf{a}_{\wedge}) : if $a, b \in \mathcal{T}$, then $a \tilde{\wedge} b \subseteq \mathcal{T}$



To check whether a given formula φ is provable in **BKIX** (where $\mathbf{X} \subseteq Ax$), it suffices to check all legal partial valuations v in the corresponding Nmatrix \mathcal{M}_{BKIX} which assign to subformulas of φ values in

$$\{f\} \cup \{t_i^j \mid 0 \le i \le n(\varphi), 0 \le j \le k(\varphi)\} \cup$$
$$\{\top_i^j \mid 0 \le i \le n(\varphi), 0 \le j \le k(\varphi)\}$$

where $n(\varphi)$ is the number of subformulas of φ which do not begin with \neg , and $k(\varphi)$ is the maximal number of consecutive negation symbols occurring within φ . This is a finite process.

Example: semantics for da Costa's C_1

da Costa's system C_1 is decidable, and its semantics is as follows:

$$\widetilde{\neg}_{\boldsymbol{a}} = \left\{ \begin{array}{ll} \mathcal{F} & \text{if } \boldsymbol{a} \in \mathcal{T} \\ \mathcal{T} & \text{if } \boldsymbol{a} \in \mathcal{F} \\ \{\top_{i}^{j+1}, t_{i}^{j+1}\} & \text{if } \boldsymbol{a} = \top_{i}^{j} \end{array} \right.$$

$$\mathbf{a}\widetilde{\supset} b = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{D} \text{ and } b \in \mathcal{F} \\ \mathcal{T} & \text{if } a \in \mathcal{F} \text{ and } b \notin \mathcal{I} \\ \mathcal{T} & \text{if } b \in \mathcal{T} \text{ and } a \notin \mathcal{I} \\ \mathcal{D} & \text{otherwise} \end{cases} \quad \mathbf{a}\widetilde{\wedge} b = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{F} \text{ or } b \in \mathcal{F} \\ \mathcal{T} & \text{if } a \in \mathcal{T} \text{ and } b \in \mathcal{T} \\ \mathcal{T} & \text{if } a = \top_i^j \text{ and } b \in \{\top_i^{j+1}, t_i^{j+1}\} \\ \mathcal{D} & \text{otherwise} \end{cases}$$

No Improvements Possible

Theorem

No logic between **BKI** and **BKIcieo** can have a finite characteristic Nmatrix.

Corollary

C₁ has no finite characteristic Nmatrix.

Gentzen-type rules for (I) and (d)

(I)
$$\neg(\psi \land \neg \psi) \supset \circ \psi$$
 (d) $\neg(\neg \psi \land \psi) \supset \circ \psi$

In **BKI** $\circ \varphi$ is weakly equivalent to $\neg(\varphi \land \neg \varphi)$ In **BKd** $\circ \varphi$ is weakly equivalent to $\neg(\neg \varphi \land \varphi)$

Accordingly:

$$\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \neg \varphi, \Delta}{\Gamma, \circ \varphi \Rightarrow \Delta} \quad (\circ \Rightarrow)$$

$$\frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \neg \varphi, \Delta}{\Gamma, \neg (\varphi \land \neg \varphi) \Rightarrow \Delta} \quad \mathsf{RI} \quad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \neg \varphi, \Delta}{\Gamma, \neg (\neg \varphi \land \varphi) \Rightarrow \Delta} \quad \mathsf{Rd}$$

Deriving Gentzen-type rules for other axioms

Let v be an **M**-valuation, where **M** is a simple refinement of **M**₀.

- $v(\psi) \in \mathcal{T}$ iff $\neg \psi \Rightarrow$ is true in v.
- $v(\psi) \in \mathcal{F}$ iff $\psi \Rightarrow$ is true in v.
- $v(\psi) \in \mathcal{I}$ iff $\Rightarrow \psi$ and $\Rightarrow \neg \psi$ are both true in v.

•
$$v(\psi) \in \mathcal{F} \cup \mathcal{I}$$
 iff $\Rightarrow \neg \psi$ is true in v .

•
$$v(\psi) \in \mathcal{T} \cup \mathcal{I}$$
 iff $\Rightarrow \psi$ is true in v .

• $v(\psi) \in \mathcal{F} \cup \mathcal{T}$ iff $\psi, \neg \psi \Rightarrow$ is true in v.

Reminder: A sequent $\Gamma \Rightarrow \Delta$ is true in v if $v(\psi) \notin D$ for some $\psi \in \Gamma$ or $v(\psi) \in D$ for some $\psi \in \Delta$.

Semantic Conditions and Their Induced Rules

	ax	GC(ax)	R(ax)
(i ₁)	$\neg \circ \varphi \supset \varphi$	for $a \in \mathcal{F}$: oa $\subseteq \mathcal{T}$	$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \neg \circ \varphi \Rightarrow \Delta}$
(i ₂)	$\neg \circ \varphi \supset \neg \varphi$	for $a \in \mathcal{T}$: $\circ a \subseteq \mathcal{T}$	$\frac{\Gamma, \neg \varphi \Rightarrow \Delta}{\Gamma, \neg \circ \varphi \Rightarrow \Delta}$
(a _V)	$(\circ arphi \land \circ \psi) \supset \circ (arphi \lor \psi)$	for $a \in \mathcal{T}, b \in \mathcal{T} \cup \mathcal{F}$: $a \lor b \subseteq \mathcal{T}$	$\frac{\Gamma, \neg \varphi \Rightarrow \Delta \Gamma, \neg \psi, \psi \Rightarrow \Delta}{\Gamma, \neg (\varphi \lor \psi) \Rightarrow \Delta}$
		for $a \in \mathcal{T}, b \in \mathcal{T} \cup \mathcal{F}: \ b \lor a \subseteq \mathcal{T}$	$\frac{\Gamma, \neg \psi \Rightarrow \Delta \Gamma, \neg \varphi, \varphi \Rightarrow \Delta}{\Gamma, \neg (\varphi \lor \psi) \Rightarrow \Delta}$
(a _⊃)	$(\circ arphi \land \circ \psi) \supset \circ (arphi \supset \psi)$	for $b \in \mathcal{F}, a \in \mathcal{T} \cup \mathcal{F}: b \supset a \subseteq \mathcal{T}$	$\frac{\Gamma, \varphi \Rightarrow \Delta \Gamma, \neg \psi, \psi \Rightarrow \Delta}{\Gamma, \neg (\varphi \supset \psi) \Rightarrow \Delta}$
		for $b \in \mathcal{T}, a \in \mathcal{T} \cup \mathcal{F}$: $a \supset b \subseteq \mathcal{T}$	$\frac{\Gamma, \neg \varphi, \varphi \Rightarrow \Delta \Gamma, \neg \psi \Rightarrow \Delta}{\Gamma, \neg (\varphi \supset \psi) \Rightarrow \Delta}$

Paraconsistency	A taxonomy of C-systems	ND Semantics	Sequent Systems	Systems with (I), (d)
Summary				

- Using the framework of Nmatrices to provide non-deterministic semantics for C-systems.
- A method for a systematic construction of cut-free sequent calculi for C-systems.
 - *Generality:* the method applies to practically every C-system considered in the literature.
 - *Modularity:* each axiom corresponds to a set of Gentzen-type rules, which are easily computed from the semantic conditions induced by the axiom.
 - *Uniformity:* The rules of the obtained calculi have a simple, intuitive and uniform form.