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Abstract

Most of the literature in natural reasoning assumes a model-theoretic perspective and

uses translation into some formal language, e.g. first order logic, as an intermediate step

for computing inferences. The general goal of a ‘Natural Logic’ inference system is giving

a systematic account of natural reasoning using linguistic structures as the vehicle of

inference.

This thesis develops a ‘Natural Logic’ inference system based on a modification of the

(associative) Lambek calculus (L). The proposed inference system manipulates natural

language syntactic representations with no intermediate translation to logical formulae.

The main part of the system used for deriving inferences is the L-based Order Calculus (L-

OC ), which manipulates order statements between proof terms, representing L derivation

trees of natural language expressions via the Curry-Howard isomorphism.

Our work extends the system of [4], which is based on Ajdukiewicz-Bar Hillel calculus. In

our work we overcome some limitations of the system of [4] and enable it to deal with new

kinds of inferences, such as inferences involving sentences with extraction, pied piping etc.

Basing the inference system on L brings about a certain complication - the emergence of

proof terms which are not in normal form. We augment L-OC with normalization axioms

as a remedy for this complication and demonstrate that they enable the system to derive

new kinds of inferences. Finally, we present a terminating proof search procedure.

v



Introduction

Model-theoretic semantic theories of natural language assume that most linguistic ex-

pressions denote objects in partially ordered domains, so that meanings of expressions

(i.e., denotations in models) of the same semantic type are naturally comparable. Formal

semantics treats order relations between denotations of complex expressions as composi-

tionally derived from order relations between denotations of simpler expressions (subex-

pressions), based on a given grammar and certain semantic properties of denotations of

words. For instance, under standard assumptions about the meaning of certain adjectives,

like tall, the denotation of the nominal expression tall student is semantically ”smaller”

than the denotation of the noun student in every model. This simple ordering, together

with the ‘order reversing’ meaning of the determiner no, is responsible for the fact that the

denotation of the noun phrase no tall student is semantically ”greater” than the denotation

of the noun phrase no student in every model. At the top level, such order statements

result in a semantic ordering of natural language (indicative) sentences. In an adequate

semantic theory, this ordering between sentences corresponds to an intuitively valid en-

tailment relation. For instance, the mentioned order relations, together with the other

elements in the sentence, are responsible for the valid entailment John saw no student ⇒
John saw no tall student.

However, appealing to models to derive inferences is not computationally feasible. This

thesis aims to develop an inference system based on basic insights on order relations from

model-theoretic semantics, but using only proof-theoretic manipulations of natural lan-

guage syntactic representations, with no direct appeal to models. Only some abstractions

of the full denotations are used as a basis of the proposed calculus of inference. Further-

more, the close relationship between structure and meaning in model-theoretic semantics

eliminates the need of translating the syntactic representations into intermediate logical

1
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levels of representation, such as first order logic.

The initial conception of Natural Logic was introduced in [11]. The general goal of a Nat-

ural Logic system is giving a systematic account of natural reasoning using grammatical

structures of natural language. Different versions of Natural Logic were proposed by [9],

[1], [4] and others. Sánchez ([9]) proposes a mechanism that decorates categorial grammar

proofs of natural language expressions using signs that indicate the monotonicity prop-

erties of the denotations of these expressions. Bernardi ([1]) follows [9] and introduces a

system for monotonicity reasoning that is based on a more complex categorial type logic

than Sánchez’ work. In addition, she concentrates on monotonicity reasoning in order

to capture the syntactic distribution of negative polarity items, without fully accounting

for monotonicity-based inferences in natural language (by contrast to this thesis, where

we concentrate on a calculus for deriving inferences, without any attempt to treat neg-

ative polarity items). However, neither Sánchez nor Bernardi provide a formal calculus

for computing inferences. The situation was partially amended in Fyodorov et al. ([4]),

where a calculus based on similar annotations decorating syntactic derivations of the AB

calculus is proposed.

The goal of this thesis is to present and study a more extensive inference system based

on a slight modification of the (associative) Lambek calculus (L). We define an L-based

Order Calculus (L-OC ) for deriving inferences in natural language. L-OC manipulates

order statements between proof terms representing L derivation trees of natural language

expressions via the Curry-Howard isomorphism. Although L-OC order statements reflect

semantic order relations between elements of partially ordered domains, they are purely

syntactic units and are derived with no direct appeal to models, only to the abstractions

of denotations based on the above mentioned annotations.

As was mentioned above, we extend an existing system of [4] which is based on the

AB calculus. Their system allows a rather straightforward derivation of inferences with

monotone and non-monotone quantifiers and cross-categorial conjunctions and disjunc-

tions. However, despite its value for demonstrating a novel technique of inference in

natural language, it fails to derive many kinds of inferences due to the syntactic limita-

tions of the AB calculus as the syntactic calculus underlying the categorial grammar. In
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this thesis we show that the situation can be partially amended by basing the system on

L. However, in view of the well-known limitations of L itself, it is clear that in order to

define a more realistic system that can cope with a larger variety of inferences derivable

in natural language, a yet more complex grammatical formalism is needed. Hence, we

view L-OC as an intermediate step towards a general system supporting various kinds of

inferences in natural language, to be eventually based on some decidable fragment of the

multi-modal type logical grammar ([8]).

The proposed L-OC has the following characteristics:

1. Basing the system on L allows us to use a more elegant representation of derivations

as Curry-Howard proof terms. This is opposed to the formulae of the Order Calculus

of [4], which are order statements between (AB) derivation trees.

2. L-OC is a modification of the Order Calculus of [4], which we augment with:

(a) Abstraction inference rule that enables L-OC to deal with inferences involving

sentences with extraction, pied piping etc. Consider the following examples

derivable in L-OC (to be discussed in chapter 5):

i. Every student whom Mary touched smiled ⇒ Every student whom Mary kissed

smiled given the order statement kissed ≤ touched.

ii. Some boy, the brother of whom Mary loves, walked ⇒ Some boy walked.

(b) β/η-normalization axioms, based on β/η-reduction of proof terms. These ax-

ioms resolve a certain complication caused by basing the system on L – the

emergence of proof terms that are not in normal form. The normalization ax-

ioms enable the system to derive more kinds of inferences (for reasons to be

discussed in chapter 6), for example:

John does and Mary doesn’t move ⇒ Mary doesn’t walk

given the order statement walk ≤ move.

3. By basing the system on L, we also obtain the ability to use more complex non-

logical axioms, that better reflect the denotations of natural language expressions.
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For example, we can define the following order statement as a non-logical axiom of

L-OC : passionately love ≤ adore. This is made possible due to the derivability of

function composition in L (to be further explained).

Finally, we propose a terminating proof search procedure for L-OC , based on the proposal

by [4].

To sum up, the main contribution of this thesis is introducing a L-based formal Order

Calculus for computing Natural Logic inferences, for which a proof search procedure is

defined. In extending the AB-based Order Calculus of [4] to be based on L, we had to

deal with a number of challenges, such as non-normalized L derivations (treated by using

normalization axioms), decorations of types for dynamically created abstraction terms

(one possible solution – dynamic marking, to be further explained).

This thesis has 8 chapters. Chapter 1 discusses some previous work on direct inference in

natural language and its relation to the current work. Chapter 2 provides some necessary

background on basic notions from model-theoretic semantics, such as semantic types,

order relations etc. Chapter 3 describes L and the categorial grammar based on it.

Chapter 4 defines L-OC and its semantics. Chapter 5 demonstrates the applications

of L-OC for deriving natural language inferences and presents examples. Chapter 6 is

devoted to exploring the properties of L-OC . Its first section focuses on the problem

of normalization, explaining how the non-normalized proof terms are created in L-OC,

why they pose a problem and how the problem is solved using normalization. It also

presents examples of inferences using normalization and describes an alternative method

for solving the mentioned problem – using dynamic marking. Its second section describes

how multiple derivations in L can be used to account for scope ambiguity when deriving

inferences. Chapter 7 defines the proof search procedure and discusses its correctness. The

full correctness proofs are provided in appendixes A and B. Chapter 8 presents conclusions

and directions for further research.



Chapter 1

Previous work

There is a number of proposals of systems using grammatical structures to account for

natural language inferences. Some of the earlier ones are [10] and [7], the overview of

which can be found in [4]. In this chapter we give an overview of the previous work that

is most relevant to this thesis, including [9], [3], [1] and [4].

1.1 V. Sánchez: Studies on Natural Logic and Categorial Grammar (1991)

Sánchez ([9]) describes a Natural Logic system for calculating entailments between nat-

ural language sentences. The system manipulates marked undirected Lambek calculus

derivation trees of English sentences. The marking of proof nodes allows to determine

whether the derived expressions are in a positive or negative position. An expression E1

is in positive (negative) position in an expression E2 if its replacement by a semantically

greater expression results in E ′
2, which is semantically greater (smaller) than E2. An ex-

pression that is in positive/negative position is said to have polarity.

The semantic order relation is standardly defined as the numerical order relation for truth

values and an inclusion relation for complex types, quantifying over all models. For sen-

tences the order relation corresponds to the entailment relation. A sentence S’ is entailed

by a sentence S iff the denotation of S is less or equal to the denotation of S’ in any model.

The polarity of occurrences of expressions is used to calculate entailments in the following

way: if (i) sentence S’ is obtained from sentence S by replacing its subexpression R by

R’, (ii) R is semantically smaller (greater) than R’, and (iii) R has positive (negative)

polarity in S, then S entails S’.

5
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Sánchez uses an external algorithm working on derivations of the associative and commu-

tative Lambek calculus, which is able to mark the parsed strings determining the different

polarity positions. Given a derivation, the algorithm starts from marked leaves. The cate-

gories of the lexical items are assigned monotonicity markings according to their standard

semantics. If the denotation of a lexical item is an upward/downward monotone function,

then its category is marked with ‘+’/‘-’ accordingly. Then the markings are propagated

through the proof by labelling the rest of the nodes in the following way:

1. The major premise (α → β) in an instance of arrow elimination is positive:

(α → β) α

β ⇒

(α → β)

+
α

β

2. The minor premise in an arrow elimination is positive (negative) if the major’s

category is upward (downward) monotone:

(α+(−) → β) α

β ⇒

(α+(−) → β)

+(−)

α

+(−)

β

3. The withdrawal of a numerical index leaves the previous marking unchanged:

[αi]

D1

β

(α → β)
I ⇒

[αi]

D1

β

+

(α+ → β)
I

4. If each node from αi to β is either positive or negative and the number of negative

nodes is even (odd), then:
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[αi]

D1

β

(α → β)
(I) ⇒

[αi]

D1

β

+(−)

(α+(−) → β)
(I)

Finally, the polarity of nodes is computed in the following way. Let D be a derivation

with conclusion α. A node γ has polarity iff all the nodes in the path from γ to α are

marked, and γ is in a positive (negative) position in D iff (a) γ has polarity, and (b) the

number of nodes marked by ‘-’ in the path from γ to the root is even (odd).

The final result is a parsed output in which polarity positions are displayed, so that they

can be used for computing entailments. For example, below is an annotated derivation of

the sentence Heloise wanders:

(e → t)

+

Heloise

e

t

+

(E)

((e → t)+ → t)

+

(I) wanders

(e → t)

+

t
(E)

(1)

According to the rules for polarity of subderivations, presented above, (2a) occurs pos-

itively in (1). It is also given that the denotation of (2a) is semantically smaller than

the denotation of (2b) (Sánchez does not provide any formal method for calculating this

order relation).

(e → t)

+

Heloise

e

t
(E)

+

((e → t)+ → t)
(I)

(2a)

Some

(p+ → ((e → t)+ → t))

+

nun

p

+

((e → t)+ → t)
(E)

(2b)
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By replacing (2a) by (2b), we obtain (3):

Some

(p+ → ((e → t)+ → t))

+

nun

p

+

((e → t)+ → t)

+

(I) wanders

(e → t)

+

t
(E)

(3)

Thus, given that Heloise is semantically smaller than Some nun, we can prove that Heloise

wanders entails Some nun wanders.

While the annotation of derivation trees with monotonicity markings and calculation of

polarity of subderivations are rigorously defined in the work of Sánchez, he provides no

calculus that can derive the order relations using that annotation. As a result, the range

of the inferences captured by his system is rather limited.

1.2 D. Dowty: The role of Negative Polarity and Concord Marking in Nat-
ural Language Reasoning (1994)

Dowty ([3]) explores the linking between Natural Logic and several linguistic phenomena

related to monotonicity, such as the fact that negative polarity items (NPI’s) in English

and other languages are limited to downward monotone contexts. For this purpose, he

proposes a reformulation of the system of Sánchez, while his goal is to ”collapse” the

independent steps of monotonicity marking and polarity determination into the syntactic

derivation itself. He uses the markers ‘+’ and ‘-’ to indicate the final polarity.

Dowty proposes a Natural Logic system with the following characteristics:

1. Since one and the same word can appear with positive polarity in one derivation and

with negative polarity in another, most lexical items (with the important exception

of negative and positive polarity items) will have both a‘+’ and a ‘-’ marked category,

with the same interpretation.

2. Upward monotone functions are assigned categories of the forms A+/B+ and A−/B−,

meaning that they preserve the polarity markers. The pattern Ax/Bx matches both

of these cases.
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3. Downward monotone functions are assigned categories of the forms A+/B− and

A−/B+, meaning that they reverse the polarity markers. The pattern Ax/By

matches both of these cases.

Functional application respects the polarity markers in the following way. Let x ∈ {+,−},
then

Ax/By By

Ax

where x and y coincide when the major premise Ax/Bx is an upward monotone function,

and differ when it is a downward monotone function.

The defined grammar generates sentences of category S+ (the category of independent

grammatical sentences) and S− (the category of sentences embedded inside the scope of

a downward monotone function).

Below are some examples of the lexical entries. Let x ∈ {+,−} and y is the ”opposite”

of x. Let V P x = NP x\Sx and TV .

walks = V P x book = CNx

John = Sx/V P x doesn’t = V P x/V P y

no = {(S+/V P−)/CN−, (S−/V P+)/CN+}

every = {(S−/V P−)/CN+, (S+/V P+)/CN−}

any = (S−/V P−)/CN−

Consider the following examples of Dowty’s polarity marking:

John
S + /V P+

walks
V P+

S+ (1)

John
S+/V P+

doesn’t
V P+/V P−

walk
V P−

V P+

S+ (2)

Note how the polarity of V P is changed by the presence of the downward monotone

function doesn’t.

To deal with more complex sentences in which a generalized quantifier occurs in object
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position, Dowty includes in the lexicon for each determiner (Sx/V P y)/CN z an object

counterpart, of category (TV y\V P x)/CNx, where TV y = (NP y\SY )/NP y.

Now let us observe how the system of Dowty can account for correct NPI distribution.

Consider the sentences involving the NPI any:

(a) No boy reads any book

(b) *Every boy reads any book

The Dowty-style derivation of (a) is as follows:

no
(S+/V P−)/CN−)

boy

CN−

S+/V P−

reads
TV −

any

(TV −\V P−)/CN−
book
CN−

TV −\V P−

V P−

S+

However, if we replace no with every, the derivation fails. In order to match the V P−

category of reads any book, every has to be considered of category (S−/V P−)/CN+ and

the whole expression every boy reads any book would be of category S−.

By internalizing the monotonicity and polarity information into the logical types, Dowty

enables his system to correctly account for some cases of negative polarity items distri-

bution. However, the flow of the markers from the argument to the functional types

expressed by the lexical items category assignments is too strong to model some linguistic

information. Therefore, Dowty’s system fails to deal with NPIs in embedded sentences

and other more complex cases. For example, the system blocks the following correct

sentences with embedded NPIs:

1. John doubts every boy reads any book.

2. If he doesn’t know anything about logic, he will not know Modus Ponens.

1.3 R. Bernardi: Reasoning with Polarity in Categorial Type Logic (2002)

Bernardi ([1]) presents a Natural Logic system, which while marking linguistic structures

with the information required to model inferences, also accounts for NPI distribution. She

shows that a logical account of NPIs requires the use of internalized polarity markers, like
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To express that: Type
A structure Γ is an upward monotone function Γ ` B/A or Γ ` A\B
A structure Γ is an upward monotone function Γ ` B/ Ä A or Γ ` A\Ä B
A structure Γ has negative polarity 〈Γ〉−
A structure Γ has positive polarity Γ 6= 〈Γ′〉−
A structure Γ must have negative polarity Γ ` ¯↓A

Table 1.1: Encoding monotonicity and polarity

in the system of Dowty.

The Natural Logic of Bernardi is based on a multi-modal type-logical grammar with po-

larity structural rules, used simply as a tool for computing polarity.

The unary operator Ä marks downward monotone functions, while the upward monotone

functions are left unmarked. The corresponding unary structural connective 〈.〉− marks

a structure in a downward monotone argument position. The unary operator ¯↓ encodes

negative polarity information.

The dynamic flow of information from the function to the argument is directly accounted

for by the logical rules without the need of an external monotonicity marking algorithm

(like the one of Sánchez). Similarly, structural rules allow to internalize the polarity al-

gorithm producing marked structures instead of marking the corresponding nodes. An

advantage of such an approach is that the marked structures are readily available for de-

riving monotone inference, as opposed to the Natural Logic of Sánchez, where the polarity

markers were externally displayed on the structures once read off the nodes. Furthermore,

NPI distribution can be controlled, since polarity information is encoded in the logical

types. The logical and the structural languages are used to encode monotonicity and

polarity information as shown in table 1.1.

Bernardi uses Sánchez’s notion of polarity of occurrences. Also, similarly to the ap-

proaches of Sánchez and Dowty, to determine the polarity at the sentence level, she starts

by assigning polarity markers to the lexical entries. The downward monotone functions

are distinguished by prefixing their argument with ¯↓. For example, since doubt is down-

ward monotone in its first argument, it is of type (np\s)/¯↓s.

The flow of information from the logical to the structural formulas is as follows:
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• Application of a downward monotone function implies the propagation of the marker

from the function to the argument:

∆ ` B
〈∆〉− ` ÄB

ÄI
Γ ` ¯↓B\A

〈∆〉− ◦ Γ ` A
\E

• Functions are built by applying the introduction rules (\I) and (/I). Upward

and downward monotone functions abstract over positive and negative positions

respectively:

D

.

.

.

Γ ◦ C ` A

Γ ` A/C
/I

D

.

.

.

Γ ◦ÄC ` A

Γ ` A/ Ä C
/I

• The polarity is passed from the structure to the logical type and vice versa using

the rules (¯↓I) and (¯↓E):

〈∆〉− ` A

∆ ` ¯↓A
¯↓I ∆ ` ¯↓A

〈∆〉− ` A
¯↓E

For example, let us see how we can account for NPI distribution in the sentence Nobody

left yet. The lexical assignments are as follows: yet – ¯↓ Ä iv\ ¯↓ Äiv (it must occur in

a negative polarity position, which it passes to its argument), left – iv, nobody – s/ Ä iv

(downward monotone function ).

nobody ` s/ Ä iv

left ` iv

〈left〉− ` Äiv
ÄI

left ` ¯↓ Ä iv
¯↓I

yet ` ¯↓ Ä iv\¯↓ Äiv

left ◦ yet ` ¯↓ Ä iv
\E

〈left ◦ yet〉− ` Äiv
¯↓E

nobody ◦ 〈left ◦ yet〉− ` s
/E

However, if we replace nobody by everybody that is assigned the type s/iv, the derivation

fails: the type of everybody does not provide the needed negative feature to match the

type assigned to left yet.
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The system of Bernardi can also deal with more complex NPI distribution, e.g. NPIs in

embedded sentences or multiple negative polarity occurrences.

As opposed to both Dowty and Sánchez, Bernardi encodes monotonicity and polarity

information into syntactic type assignments by means of unary operators. As opposed to

Sánchez, internalizing this information allows the system to account for NPIs distribution.

Due to basing her system on the multi-modal type-logical grammar, Bernardi achieves

more flexibility than Dowty and is able to deal with more complex examples of NPI

distribution.

1.4 Fyodorov et al.: Order-Based Inference in Natural Language (2002)

Fyodorov, Winter and Francez (henceforth FWF, see [4]) propose a Natural Logic system

based on the AB calculus for deriving inferences in natural language. The main part of the

system is the Order Calculus, which manipulates order statements between semantically

annotated derivation trees of natural language expressions of the same (partially ordered)

semantic type. An order statement between derivation trees of natural language sentences

corresponds to an entailment relation between these sentences.

As opposed to the Natural Logic systems of Sánchez and Bernardi, in FWF’s system there

is no direct appeal to actual denotations of natural language expressions for computing

inferences. Instead, the following semantic features that abstract the actual denotations

of the expressions are used to mark the syntactic categories assigned to these expressions:

‘+’/‘-’ mark upward/downward monotonicity, ‘R’ marks restrictivity and ‘C’/‘D’ mark

conjunctive/disjunctive behavior. Thus, as opposed to Sánchez and Bernardi, FWF also

use semantic properties other than monotonicity for deriving inferences.

The formulae of the Order Calculus are of form αA ≤ βA, where αA, βB are derivation

trees of expressions of categories A and B resp. Below are some of the rules of the Order

Calculus. Assume that B, B′, B′′ be syntactic categories similar up to their semantic

decoration, and so are D, D′. Assume that the categories D and B are assigned the same

semantic type, and so are A and C. Let x ⊆ {+,−, R, C,D}. If both γ ≤ δ and δ ≤ γ

we write γ ≡ δ.



14

Monotonicity:
αB′ ≤ βB′′

γA/+B αB′

A
/E ≤

γA/+B βB′′

A
/E

MON+

Function Replacement:

αA/B ≤ βC/D γB′ ≡ δD′

αA/xB γB′

A
/E ≤

βC/xD δD′

C
/E

FR

Restrictive Modification: ∅
αB′/RB βB′′

B′ /E ≤ βB′′

In addition to a calculus for deriving inferences, we need a lexicon that assigns semanti-

cally annotated syntactic categories to lexical items, according to their standard actual

denotations. For example, the denotation of the determiner every is downward monotone

in its first argument (given that student ≤ person, every person ≤ every student) and up-

ward monotone in its second argument (given that walked ≤ moved, every person walked

≤ every person moved). In the lexicon every is assigned the category (s/+(s\np))/−n.

Let us see an example of deriving the following inference: Every student kissed every teacher

⇒ Every student kissed every tall teacher. For this purpose, we need to derive an order

statement between the AB derivation trees of the above sentences. The derivation in the

Order Calculus is as follows (we use a shortened presentation of the derivation trees):

∅
tallR [teacher] ≤ teacher

RMOD

every−[teacher] ≤ every−[tall − teacher]
MON

[kissed] every − teacher ≤ [kissed] every − tall − teacher
FR

every − student+ [kissed every teacher] ≤ every − student+ [kissed every tall teacher]
MON+

FWF’s system is able to derive also inferences involving non-monotonic expressions which

are reducible to conjunctions of monotonic ones, e.g. exactly three, which is reducible to

at most three and at least three. In addition, FWF present a proof search procedure for

the Order Calculus, which is sound and under certain restrictions on the grammar and

the derivable order statements, complete.

However, despite this system’s value for demonstrating a novel technique of inference in
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natural language, the range of the inferences the system is capable of dealing with is

rather limited. An obvious reason for its limited ability is that the inference rules of

the Order Calculus capture mainly inferences based on monotonicity, restrictivity and

conjunction/disjunction properties of denotations of natural language expressions, while

there are also other semantic properties of denotations, which cannot be expressed in the

system (for example, there is no treatment of negation). Furthermore, there are other

semantic factors affecting natural language inferences that have yet to be detected, and

appropriate OC features - to be abstracted from them. Another important reason is

related to the syntactic limitations of the AB calculus: it is not powerful enough to derive

the grammaticality of many kinds of sentences, such as sentences with relative clauses,

pied piping, non-constituent coordination etc. As a result, the system of FWF does not

account for the following valid entailments involving such sentences:

1. The tall student, whom Mary kissed, smiled. ⇒ The student, whom Mary kissed, smiled.

2. John, the brother of whom Mary loves, smiled. ⇒ John smiled.

3. John does and Mary doesn’t move. ⇒ Mary doesn’t walk., given walk ≤ move

4. Mary loves every student, No student whom Mary loves walked ⇒ No student walked.

We conclude that the AB calculus is not powerful enough to serve as a categorial engine

underlying a Natural Logic inference system. Therefore, the inference system should be

based on a more complex categorial formalism, e.g. the Lambek calculus.



Chapter 2

Semantic types and order relations

2.1 Basic semantic notions

Model-theoretic semantic theories associate natural language expressions with syntactic

categories, and their denotations with (closely related) semantic types. Furthermore, most

expressions denote objects in partially ordered domains, so that meanings of equi-typed

expressions are naturally comparable. Thus in the finite set of primitive types (denoted

below by T 0), we distinguish its finite subset, which we call the set of partially ordered

primitive types (denoted below by T 0
po), interpreted over partially ordered domains.

Definition 2.1.1 (Types) Let T 0 be some finite set of primitive types. The set of types

is the smallest set T so that T 0 ⊆ T and if τ ∈ T and σ ∈ T then also (τσ) ∈ T .

Standardly, types e (for entities) and t (for ‘truth values’) are among the primitive types.

Definition 2.1.2 (PO types) Let T 0
po ⊆ T 0 be some finite set of partially ordered

primitive types. The set of PO types is the smallest set Tpo ⊆ T s.t. T 0
po ⊆ Tpo and if

τ ∈ T and σ ∈ Tpo then also (τσ) ∈ Tpo.

Standardly, type t is among the primitive PO types.

Definition 2.1.3 (Modifer types) A type (στ) is a modifier type iff σ = τ .

Definition 2.1.4 (Coordination types) A type (σ(τρ)) is a coordination type iff σ =

τ = ρ.

16
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Definition 2.1.5 (Domains) For each primitive type τ ∈ T 0, let Dτ be a non-empty

domain. Let these primitive domains be mutually disjoint. For each non-primitive type

(τσ) ∈ T\T 0, let D(τσ) = (Dτ → Dσ) (the set of all functions from Dτ to Dσ).

The domain Dσ of any primitive PO type σ is endowed with a given partial order relation

≤σ. The partial order for complex PO types is defined as follows:

Definition 2.1.6 (Pointwise partial order) If σ is a PO type with partial order ≤σ

over the domain Dσ, then the partial order ≤(τσ) over the domain D(τσ) is defined point-

wise: d1 ≤(τσ) d2 iff for every d′ ∈ Dτ : d1(d
′) ≤σ d2(d

′).

Next, we distinguish between several classes of functions that we will find useful in this

work.

Definition 2.1.7 (Restrictive function) For τ a PO type, a function of the modifier

type ττ f ∈ Dττ is restrictive iff for every d ∈ Dτ : f(d) ≤τ d.

For example, the denotations of adjectives like tall, pretty and adverbs like slowly, happily

are analyzed as restrictive functions of type ((et)(et)), as the denotation of the expression

tall boy is less or equal to the denotation of the expression boy and the denotation of slowly

move os less or equal to the denotation of move.

A special kind of restrictive functions is known as greatest lower bound (glb) functions.

Consider the definition of the binary case, which is the most useful for our purposes.

Definition 2.1.8 (Greatest lower bound) A function of the coordination type τ(ττ)

f ∈ D(τ(ττ)), where τ is a PO type, is called glb iff for all d1, d2, d3 ∈ Dτ the following

two conditions hold:

1. (f(d1))(d2) ≤τ d1 and (f(d1))(d2) ≤τ d2;

2. if d3 ≤τ d1 and d3 ≤τ d2 then d3 ≤τ (f(d1))(d2).

The first requirement states that f is restrictive, or returns a lower bound, on both of its

arguments; the second requirement states that f returns a greatest lower bound on both

of its arguments.

A symmetric notion is the least upper bound (lub) function.
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Definition 2.1.9 (Least upper bound) A function of the coordination type τ(ττ) f ∈
Dτ(ττ), where τ is a PO type, is called lub iff for all d1, d2, d3 ∈ Dτ the following two

conditions hold:

1. d1 ≤τ (f(d1))(d2) and d2 ≤τ (f(d1))(d2);

2. if d1 ≤τ d3 and d2 ≤τ d3 then (f(d1))(d2) ≤τ d3.

The first requirement states that f returns an upper bound on both of its arguments; the

second requirement states that f returns a least upper bound on both of its arguments.

In natural language there are at least three kinds of glb functions:

1. Conjunctions: the standardly assumed meaning of conjunctions such as dance and

smile, Mary danced and John smiled, and every teacher and some student is the glb of

the meanings of the conjuncts.

2. Relative clauses: a ‘subject oriented’ relative clause such as child who sneezed is

treated as a glb of the noun (child) denotation and the verb phrase (sneezed) deno-

tation.

3. Intersective adjectives: adjectives such as blue and pregnant are often assumed to

denote ‘intersective functions’: functions of type ((et)(et)) that intersect their argu-

ment with an implicit argument of type (et). For instance, the nominal blue car is

synonymous with the nominal car that is blue, which is formed using a glb relative.

A lub function in natural language is the disjunction or: the standardly assumed meaning

of disjunctions such as dance or smile, Mary danced or John smiled, and every teacher or

some student is the lub of the meanings of the disjuncts.

In addition to general ordering properties of functions like restrictiveness, glb or lub, we

are also interested in more specific properties, which can be useful for describing order

relations between natural language expressions. One of the most useful properties of

functions in natural language is monotonicity.

Definition 2.1.10 (Monotonicity) Let σ1 and σ2 be PO types. A function f ∈ D(σ1σ2)

is:



19

• upward monotone iff for all d1, d2 ∈ Dσ1: d1 ≤σ1 d2 ⇒ f(d1) ≤σ2 f(d2);

• downward monotone iff for all d1, d2 ∈ Dσ1: d1 ≤σ1 d2 ⇒ f(d1) ≥σ2 f(d2).

For example, the denotation of the determiner every is analyzed as a function of type

((et)((et)t)) that is downward monotone w.r.t. its first argument and upward monotone

w.r.t. its second argument. In this way we capture the following entailments:

• Every student ran ⇒ Every tall student ran (assuming tall student ≤ student)

• Every student ran ⇒ Every student moved (assuming moved ≤ ran)

2.2 Decoration of types

Now we replace the set of types defined in the previous section by a set of decorated types.

Generally speaking, we pursue the goal of being able to manipulate order statements as

purely syntactic units, with no direct appeal to models and denotations (in contrast with

the Natural Logic of [9] and [1]). At the same time, we would still like to use the fact

that many natural language expressions denote restrictive, monotone or other functions

having special properties giving rise to entailments.

Thus we use the set of semantic features of [4] as an abstraction of the semantic prop-

erties of the actual denotations in question. These features describe semantic properties

like monotonicity, restrictiveness and conjunctive/disjunctive behavior of functions. We

decorate the types (and in the next chapter also the categories) of the natural language

expressions denoting monotone etc. functions with the respective semantic features. This

way we avoid dealing with models directly, but still keep track of the semantic information

that is used to derive inference.

Definition 2.2.1 (The set of semantic features) The set of semantic features is

Feat = {+,−, R, C,D}

The semantic features abstract the semantic properties of denotations of natural language

expressions as follows:

• ‘+’/‘-’ marks upward/downward monotonicity

• ‘R’ marks restrictivity
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• ‘C’/‘D’ marks conjunction/disjunction

Definition 2.2.2 (Decorated types and decorated PO types) The sets of decorated

types and PO decorated types are the smallest sets Tdec, T
PO
dec so that:

• T 0 ⊆ Tdec, T 0
PO ⊆ T PO

dec

• if τ ∈ Tdec, σ ∈ Tdec and ρ ∈ T PO
dec then (τF σ) ∈ Tdec, (τ

F ρ) ∈ T PO
dec , where F ⊆ Feat

and the following conditions hold:

1. If F 6= ∅, then τ, σ ∈ T PO
dec .

2. If R ∈ F then τ = σ.

3. If C or D ∈ F then (i) If τ = (τ1
F ′τ2) then F ′ = ∅ and (ii) σ = (τ ∅τ).

Condition 1 guarantees that only functional types (τF σ), where both τ and σ are PO

decorated types can be marked with F 6= ∅. Condition 2 guarantees that only modifier

types are marked with ‘R’. Condition 3 guarantees that an expression of a type marked

with ‘C’ or ‘D’ is treated as denoting a binary function and all its markings are specified

on the functor type.

Note that for F = ∅ we get the standard definition of types.

We use the pattern (τ ∗σ) to match any of the types (τF σ) for F ⊆ Feat. A type τ such

that all its subterms are marked with F = ∅, is denoted by τ ◦.

Definition 2.2.3 (Domains of decorated types) Let F ⊆ Feat. For each non-

primitive type (τF σ) ∈ Tdec\T 0, let D(τF σ) be the set of all functions from Dτ to Dσ

having the semantic properties marked by the semantic features in F .

For example, D(σ+τ) is the domain of upward monotone functions from Dσ to Dτ .

For F = ∅, D(σF τ) = D(στ). For σ a decorated PO type, D(τF σ) inherits its partial ordering

from D(τσ), where ≤(τF σ) is the restriction of ≤(τσ) to D(τF σ) ⊆ D(τσ).

Note that all decorated functional types are marked, some with F = ∅.



Chapter 3

Type-Logical Categorial Grammar

In this chapter we describe the categorial formalism underlying the inference system. The

type-logical categorial grammar that we use is based on L, which is a slight modification

of the (associative) Lambek calculus ([8]). There are two main differences between L and

the standard (semantically augmented) Lambek calculus, namely:

1. Syntactic categories in L are decorated with subsets of Feat = {+,−, R, C, D}.
Semantic types of proof terms (encoding L derivations of decorated syntactic cate-

gories) inherit the decoration from the categories.

2. In order to establish a one-to-one correspondence between L derivations and proof

terms representing them, we use directed lambda terms ([12]) to encode L deriva-

tions. Thus each syntactic category A s.t. type(A) = τ is assigned a directed

lambda term ϕτ that encodes the L-derivation of this category via the Curry-Howard

isomorphism.

Note also that in the elimination rules of L, an argument category B in a functor category

(A/B) (or A\B) is allowed to be decorated differently from the category B′ that combines

with the functor.

Let a mapping type assign (decorated) semantic types to (decorated) syntactic categories.

Definition 3.1 (Decorated syntactic categories) Let CAT0 be a finite set of prim-

itive categories s.t. s ∈ CAT0. Let type0 : CAT0 → type be a typing function for this

set s.t. type0(s) = t. The set of categories is the smallest set CAT that satisfies:

21
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1. CAT0 ⊆ CAT. For any A ∈ CAT0 : type(A) = type0(A).

2. If A ∈ CAT and B ∈ CAT then for any F ⊆ Feat s.t. ( type(B)F type(A)) ∈
Tdec, (A/F B) ∈ CAT and (A\F B) ∈ CAT, and type((A/B)) = type((A\B)) =

( type(B)F type(A)).

We assume that the set of primitive categories includes at least a designated category s

for sentences. Meta variables A,B range over categories.

We use the patterns (A/∗B), (A\∗B) to match the categories (A/F B), (A\F B) for any

F ⊆ Feat resp.

Now let LexVARτ , VARτ be some mutually disjoint countable sets of variables of type

τ . Let LexVAR =
⋃

τLexVARτ and VAR =
⋃

τVARτ for τ ∈ Tdec. Informally,

the members of LexVAR in a proof term originate from the lexical entries and cannot

be discharged by introduction rules. Members of VAR in a proof term correspond to

undischarged assumptions in an L derivation.

Definition 3.2 (Directed Lambda terms) Let Let ψ, ϕ be meta variables that range

over terms and x a meta variable that ranges over variables from VAR. The set Terms

is the smallest set s.t.:

• LexVAR, VAR⊆Terms

• If ϕ(στ), ψσ ∈Terms, then (ϕ(ψ))τ , ([ψ]ϕ)τ ∈Terms (right/left application)

• If xσ ∈ VAR, ϕτ ∈Terms, then (
−→
λ x.ϕ)(στ), (

←−
λ x.ϕ)(στ) ∈Terms (right/left ab-

straction)

See definition 4.2.1 for the semantics of directed lambda terms.

We now define sets of free variables and sequences of free variables in directed lambda

terms. Sequences of free variables will be used to classify an important subset of all lambda

terms - the peripherally-linear (PL) terms, which correspond exactly to L derivations and

which will become especially useful in the sequel.

For two sequences ψ and φ, we take ψ · ϕ to denote their concatenation.

Definition 3.3 (Free variables) For every ψ ∈Terms, the set Free(ψ) and the se-

quence Free(ψ) of free variables are defined as follows:
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• For x ∈ VAR ∪ LexVAR, Free(x) =< x >, Free(x) = {x}
• Free(ψ(ϕ)) = Free(ψ) ∪ Free(ϕ), Free(ψ(ϕ)) = Free(ψ) · Free(ϕ)

• Free([ϕ]ψ) = Free(ψ) ∪ Free(ϕ), Free([ϕ]ψ) = Free(ϕ) · Free(ψ)

• Free(
−→
λ x.ψ) = Free(ψ)−{x}, Free(

−→
λ x.ψ) = Free(

−→
λ x.ψ)− < x > (removing all

occurrences of x from the sequence)

• Free(
←−
λ x.ψ) = Free(ψ)−{x}, Free(

←−
λ x.ψ) = Free(

←−
λ x.ψ)− < x > (removing all

occurrences of x from the sequence)

In the last two clauses, the abstraction operators
−→
λ and

←−
λ bind all free occurrences of

x in ψ by removing (all occurrences of) x from the set (sequence) of the free variables of

ψ. Every such occurrence of x is bound. If an occurrence of x is not bound, then we say

that it is free.

Now we define PL terms, a subset of all directed lambda terms that represent Lambek

derivations via the Curry-Howard correspondence. This set of terms plays the same role

as the set of linear terms plays with respect to the non-directional implicational fragment.

Definition 3.4 (PL terms) Let PLTerms be the smallest subset of Terms s.t.:

• Each subterm of ψ ∈PLTerms contains a free occurrence of a variable from

VAR∪LexVAR.

• No subterm of ψ ∈PLTerms contains more than one free occurrence of a variable

from VAR.

• Each occurrence of the
−→
λ (

←−
λ )-abstractor in ψ ∈PLTerms binds a variable within

its scope, and this variable is right (left)-peripheral in Free(ψ).

Definition 3.5 (The set of subterms) Let ψ ∈ PLTerms. The set of subterms of ψ

(ST (ψ)) is defined recursively: for ψ ∈ VAR ∪ LexVAR ST (ψ) = {ψ}, for ψ = ϕ〈φ〉
ST (ψ) = {ψ} ∪ ST (ϕ) ∪ ST (φ), for ψ = λx.φ ST (ψ) = {ψ} ∪ {φ} ∪ ST (φ).

Definition 3.6 (Substitution) Let α ∈ PLTerms s.t. xτ ∈ VAR is in Free(α). Let

γτ be a term s.t. no free variables of γτ occur bound in α. Then the term α[x/γ] is

obtained from α by substituting all occurrences of x by γ.

Henceforth we use the following notation:
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• A variable wτ ∈ LexVAR is assigned to a lexical item w of (decorated) type τ .

• A variable xτ ∈ VAR is assigned to a dischargeable assumption x of type τ .

• We use the pattern ψ〈φ〉 for ψ(φ) or [φ]ψ and the pattern λx.ψ for
−→
λ x.ψ or

←−
λ x.ψ.

• A term ϕτ s.t. xσ ∈ VAR is the rightmost (leftmost) variable in Free(ϕ) is denoted

by ϕ
−→x σ
τ (ϕ

←−x σ
τ ), both abbreviated to ϕxσ

τ .

Definition 3.7 (Formally equivalent categories and types):

• For any two decorated categories A,B, A is formally equivalent to B, denoted by

A ≡f B, iff (i) A and B are primitive and A = B or (ii) A = (C/∗D) (or A =

(C\∗D)), B = (C ′/∗D′) (or B = (C ′\∗D′)), C ≡f C ′, D ≡f D′.

• For any two decorated types τ, σ, τ is formally equivalent to σ, denoted by τ ≡f σ,

iff (i) τ and σ are primitive and τ = σ or (ii) τ = (τ1
∗τ2), σ = (σ1

∗σ2), τ1 ≡f

σ1, τ2 ≡f σ2.

In words, formally equivalent categories (types) are equal up to their decoration. Note

that the types of formally equivalent categories are also formally equivalent.

Definition 3.8 (L) Let Γ, Γ1, Γ2 range over finite non-empty sequences of pairs A : ψτ ,

where A is a (decorated) syntactic category and ψi a directed lambda term of a (decorated)

type τ . Let τ, τ1, τ2, ... range over decorated types. The notation `L−OC Γ . A : ψτ means

that the sequence Γ is L-reducible to A : ψτ . The rules of L are as follows :

(axiom1)A : xτ . A : xτ for xτ ∈ VAR

(axiom2)B : wτ . B : wτ for wτ ∈ LexVAR

Elimination rules:

for B ≡f B′, τ1 ≡f τ ′1 :

(/E)
Γ1 . (A/∗B) : ψ(τ1∗τ2) Γ2 . B′ : ϕτ ′1

Γ1Γ2 . A : (ψ(τ1∗τ2)(ϕτ ′1))τ2

, (\E)
Γ2 . B′ : ϕτ ′1 Γ1 . (A\∗B) : ψ(τ1∗τ2)

Γ2Γ1 . A : ([ϕτ ′1 ]ψ(τ1∗τ2))τ2
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Introduction rules:

for Γ1 not empty, xτ1 ∈ VAR

(/I)
Γ1, B : xτ1 . A : ψ

−→xτ1
τ2

Γ1 . (A/B) : (
−→
λ xτ1 .ψ

−→xτ1
τ2 )(τ1τ2)

(\I)
B : xτ1 , Γ1 . A : ψ

←−xτ1
τ2

Γ1 . (A\B) : (
←−
λ xτ1 .ψ

←−xτ1
τ2 )(τ1τ2)

It can be shown by induction on L derivations, that the class of PL terms corresponds

exactly to proof terms representing L derivations (see [2] for the case of undirected PL

terms).

Definition 3.9 (Type-Logical Categorial Grammar) A type-logical categorial gram-

mar is a tuple 〈Σ,CAT0, A0, α〉, where Σ is the alphabet, CAT0 is the set of primitive

categories, A0 is the target category and α : Σ → 2CAT is an assignment of sets of

categories to lexical items.

Standardly, A0 is taken to be s, a category designated for NL sentences. We will refer to

an assignment α as a lexicon.

Definition 3.10 (Language generated by G) Let G = 〈Σ,CAT0, B,A0, α〉 be a type-

logical categorial grammar s.t. type(A0)=τ . Then the language generated by G is defined

as follows:

L[G] = {w = w1...wn ∈ Σ∗ | ∃A1...An : Ai ∈ α(wi) for i = 1...n, and `L A1...An.A0 : ψτ}

where ψτ is the lambda term encoding the derivation.



Chapter 4

The L-based Order Calculus

In this chapter we introduce the main part of the system – the L-based Order Calculus

(L-OC ). L-OC manipulates order statements between proof terms (of formally equivalent

types) representing L derivations of natural language expressions. Thus the formulae of

L-OC are order statements of form ϕτ ≤τ◦ ψτ ′ for τ ≡f τ ′. It should be stressed that the

L-OC order statements are purely syntactic units and although lexical semantic markings

are abstracted from standard denotations, there is no direct appeal to models (in contrast

to the works of [9] and [1]). Also, ‘≤τ ’ is treated as a syntactic relation between proof

terms, and not as a partial order relation between their denotations.

4.1 L-OC

If an order statement ϕτ ≤τ◦ ψτ ′ is provable in L-OC we denote this by `L−OC ϕτ ≤τ◦ ψτ ′ .

When both `L−OC ϕτ ≤τ◦ ψτ ′ and `L−OC ψτ ≤τ◦ ϕτ for τ ≡f τ ′, we denote this by

`L−OC ϕτ ≡τ◦ ψτ ′ .

Definition 4.1.1 (L-OC :)

For τ ≡f τ ′ ≡f τ̂ ≡f τ̃ , ρ ≡f ρ′ ≡f ρ̂ 1:

(REFL)
∅

ατ ≤τ◦ ατ ′
(TRANS)

ατ ≤τ◦ δτ ′ δτ ′ ≤τ◦ γτ̂

ατ ≤τ◦ γτ̂

1Note that τ◦ is equal to τ without any semantic decorations, thus τ◦ ≡f τ ≡f τ ′ ≡f τ̂ ≡f τ̃ and ≤τ◦

is compatible with ≤τ , ≤τ ′ , ≤τ̂ and ≤τ̃ . The case for ρ◦ is similar.
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(MON+)
ατ ≤τ◦ δτ ′

γ(τ̂+ρ)〈ατ〉 ≤ρ◦ γ(τ̂+ρ) 〈δτ ′〉 (MON-)
δτ ′ ≤τ◦ ατ

γ(τ̂−ρ)〈ατ〉 ≤ρ◦ γ(τ̂−ρ) 〈δτ ′〉

(FR)
α(τ∗ρ) ≤(τρ)◦ ψ(τ ′∗ρ′) γτ̂ ≡τ◦ δτ̃

α(τ∗ρ) 〈γτ̂〉 ≤ρ◦ ψ(τ ′∗ρ′) 〈δτ̃〉 (RMOD)
∅

α(τRτ ′) 〈γτ̂〉 ≤τ◦ γτ̂

(Ab)
αxτ

ρ ≤ρ◦ γ
xτ ′
ρ′

λxτ .αρ
xτ ≤(τρ)◦ λxτ ′.γρ

xτ ′

λx.αx, λx.γx contain at least one free variable from VAR ∪ LexVAR

(C1)
∅

([γτ ′]δ(τC(ττ))) (ψτ̂) ≤τ◦ Ω
(C2)

ατ̃ ≤τ◦ ψτ ′ ατ̃ ≤τ◦ γτ̂

ατ̃ ≤τ◦ ([γτ̂ ]δ(τC(ττ))) (ψτ ′)

Ω = ψτ̂ or Ω = γτ ′, α, ψ, γ do not contain free variables from VAR

(D1)
∅

Ω ≤τ◦ ([γτ ′]δ(τD(ττ))) (ψτ̂)
(D2)

ψτ ′ ≤τ◦ ατ̂ γτ̃ ≤τ◦ ατ̂

([γτ̃ ]δ(τD(ττ))) (ψτ) ≤τ◦ ατ̂

Ω = ψτ ′ or Ω = γτ̃ , α, ψ, γ do not contain free variables from VAR

Normalization axioms:

(β)
∅

(φ
yρ
τ [yρ/γρ′])τ ≡τ◦ (λyρ.φ

yρ
τ )(ρτ)〈γρ′〉

(η)
∅

ψ(τ∗ρ) ≡(τρ)◦ (λxτ .ψ(τ∗ρ)〈xτ〉)(τρ)

xτ ∈ VAR, xτ 6∈ Free(ψ)

Henceforth, when types are clear from context or are implicitly universally quantified

over, ≤τ◦ is abbreviated to ≤.

The Reflexivity and Transitivity rules are general properties of the partial order relation.

The RMOD rule (restrictive modification) is for deriving order statements involving terms

with types marked for restrictivity. For example:

tall((et)R(et))(student(et)) ≤ student(et)

The Upward Monotonicity rule (MON+) derives an order statement between proof terms

γ(τ+σ)〈ατ 〉 and γ(τ+σ)〈δ〉, given an order statement α ≤ δ between proof terms to which

γ(τ+σ), the type of which is marked for upward monotonicity, is applied. The Downward

Monotonicity rule (MON-) is symmetric.
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The FR rule handles a situation where we have an order statement between functional

terms α(τσ) and δ(τσ), and both γ ≤ γ′ and γ′ ≤ γ are provable. It captures the definition

of the pointwise partial order.

C1 and C2 specify Conjunctive items (e.g. and) as greatest lower bounds with respect to

the partial order relation. Similarly, D1 and D2 specify Disjunctive items (e.g. or) as

least upper bounds. Note that these rules and axioms are not allowed to have terms with

free variables from VAR in their conclusion. This limitation prevents the creation of

non-PL terms in L-OC proofs 2. Without it, the following would be a valid L-OC proof

(ϕ, ψ, γ ∈ LexVAR and x ∈ VAR):

γ(x) ≤ ϕ(x) γ(x) ≤ ψ(x)

γ(x) ≤ ([ϕ(x)]α(τC(ττ)))(ψ(x))
C2

The underlined term is not PL, as it contains more than one occurrence of the free vari-

able x ∈ VAR.

To handle abstraction proof terms in L, we define the rule Ab, which captures discharg-

ing an assumption in a L-derivation. Given a premise ϕx
1 ≤ ϕx

2 , where both ϕ1 and ϕ1

represent derivation trees with a rightmost (leftmost) free variable x, the order statement

λx.ϕ1 ≤ λx.ϕ2 is derived. Note that if x is the only free variable in ϕx
1 or ϕx

2 , the appli-

cation of Ab is not allowed. It prevents the creation of non-PL terms like λx.x.

The normalization axioms (β) and (η) capture β/η reduction of proof terms. The appli-

cation of these axioms is discussed in detail in chapter 6.

Definition 4.1.2 (Size of L-OC proof) The size n of a L-OC proof P of α0 ≤ α is

calculated as follows:

If P is of the form
∅

δ ≤ δ′ R, where R is an axiom, then n = 1.

If P is of the form

Ψ1

A
A

¢
¢

ψ1 ≤ ψ′1

Ψ2

A
A

¢
¢

ψ2 ≤ ψ′2

. . .

Ψm

A
A

¢
¢

ψm ≤ ψ′m

α0 ≤ α R

where m > 0 and the sizes of Ψ1, . . . , Ψm are n1, . . . , nm respectively, then n = 1 +
∑m

i=1 ni.

2We chose to apply this limitation in order to prevent the system from dealing with order statements
between lambda terms that do not correspond to L derivations. The assumption that L-OC manipulates
PL terms only makes it easier to define a proof search procedure for L-OC as will be shown in chapter 7.
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4.2 The semantics of L-OC

The semantics of L-OC is naturally defined using standard models for the extensional

fragment of Montague’s IL [5] and a pointwise definition for a semantic order relation ≤τ .

A model M is some (non-empty) domain De. Any proof term ϕτ is associated with a

denotation [[ϕτ ]]M,g relative to a model M and an assignment function g, which assigns to

a variable (of decorated type τ) ατ ∈ VAR ∪ LexVAR some element of Dτ .

Definition 4.2.1 (Denotations of proof terms) Let M be a model and g an assign-

ment function. For a given proof term ψτ , the denotation [[ψτ ]]M,g is defined as fol-

lows:

• If ψτ ∈ VAR ∪ LexVAR, then [[ψτ ]]M,g = g(ψτ ).

• If ψτ = ϕ(σ∗τ)〈φσ〉, then [[ψτ ]]M,g = [[ϕ(σ∗τ)]]M,g
([[φσ]]M,g).

• If ψτ = λxσ.ϕρ, then [[ψτ ]]M,g is that function h ∈ Dτ s.t. for all d ∈ Dσ: h(d) =

[[ψτ ]]M,g[x:=d], where g[x := d] is an assignment function similar to g, except that it

assigns dσ to xσ.

Definition 4.2.2 (Semantics of order statements) Let ϕ1, ϕ2 be terms of (decorated)

type τ and g an assignment function. Then: (i)M, g |= ϕ1 ≤τ ϕ2 iff [[ϕ1]]M,g ≤τ [[ϕ2]]M,g

(ii) M |= ϕ1 ≤τ ϕ2 iff ∀g : M, g |= ϕ1 ≤τ ϕ2.

Lemma 4.2.1 (Strong soundness of L-OC ) Let ατ , γτ be terms.

`L−OC ατ ≤τ γτ ⇒ ∀M, g : [[ατ ]]M,g ≤τ [[γτ ]]M,g

Proof: by showing that L-OC rules and axioms are strongly sound, that is if the premise

order statements of L-OC rules are satisfied for every model, then so is the conclusion

order statement. Let us show the proof for the rules MON+ and Ab and for the axiom

β:

• MON+: Assume that for every model M

(∗) M |= ατ ≤τ γτ
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We have to show that every model M satisfies the order statement ψ(τ+σ)(ατ ) ≤σ

ψ(τ+σ)(γτ ).

ψ(τ+σ) denotes an upward monotone function, so that

∀d1, d2 s.t. d1 ≤τ d2 ∈ Dτ , ∀g : [[ψ]]M,g(d1) ≤σ [[ψ]]M,g(d2)

From (*) follows

∀g : [[α]]M,g ≤ [[γ]]M,g

Then

∀g : [[ψ(α)]]M,g = [[ψ]]M,g([[α]]M,g) ≤σ [[ψ]]M,g([[γ]]M,g) = [[ψ(γ)]]M,g

It follows that every model M satisfies the order statement ψ(τ+σ)(ατ ) ≤σ ψ(τ+σ)(γτ ).

• Ab: Assume that for every model M : M |= αxσ
τ ≤ δxσ

τ ′ .

Then, by definition 4.2.2: (∗∗)∀g : [[αxσ ]]M,g ≤τ [[δxσ ]]M,g. The denotation of

λxσ.α
xσ
τ is defined as follows:

∀g, ∀d ∈ Dσ : [[λx.α]]M,g(d) = [[α]]M,g[x:=d]

By (∗∗), we have:

∀d ∈ Dσ, ∀g : [[α]]M,g[x:=d] ≤τ [[δ]]M,g[x:=d] ⇒ [[λx.α]]M,g(d) ≤τ [[λx.δ]]M,g(d)

Then by definition 2.1.6:

∀g : [[λx.α]]M,g ≤(στ) [[λx.δ]]M,g

It follows that every model M satisfies the order statement λxσ.ατ ≤(στ) λxσ.δτ .

• β: If a term ατ β-reduces to α′τ , then

∀M, g : [[ατ ]]M,g = [[α′τ ]]M,g

• Similarly for η.

For the other rules, the soundness proof of [4] can be easily adapted to their soundness in

our formulation.



Chapter 5

L-OC as an inference system for

natural language

We now illustrate how L-OC can be used for deriving inferences in natural language.

First of all, we introduce a toy lexicon which is used for defining a small fragment of

English. Then we define a way to represent natural language assertions as L-OC order

statements. In addition, we extend the every postulate introduced by [4] in order to

expand the range of inferences derived by the system. We also introduce some complex

non-logical axioms. Finally, we present examples of deriving inferences with sentences

involving relative clauses and pied piping, as well as inferences using the extended every

postulate.

5.1 The lexicon

An important part of a type-logical categorial grammar used to define the language gen-

erated by it is the lexicon, or an assignment α : Σ → 2CAT. In table 5.1 we introduce

a toy lexicon for a fragment of English, including the decorated types assigned to the

syntactic categories.

We use W T – a fictitious word, which is assigned a proof term wT
t ∈ LexVAR, to rep-

resent a natural language assertion S (indicative sentence) as the L-OC order statement

wT
t ≤t ψS

t , where ψS
t is a proof term representing L-derivation of S and wT

t is the proof

term, the denotation of which is defined to be the truth value true.

31
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Word Category Type

W T s t
every ((s/+(s\np))/−n), ((s\+(s/np))/−n) ((et)−((et)+t))
no ((s/−(s\np))/−n), ((s\−(s/np))/−n) ((et)−((et)−t))
some ((s/+(s\np))/+n), ((s\+(s/np))/+n) ((et)+((et)+t))
student,boy n (et)
walk,walked,smile, smiled, move, moved (s\np) (et)
touched, loved ((s\np)/np) (e(et))
tall, nice, smart, intelligent,creative (n/Rn) (et)R(et)
Mary,John (s/+(s\np)), (s\+(s/np)) ((et)+t)
does ((s\np)/+(s\np)) (et)+(et)
doesn’t ((s\np)/−(s\np)) (et)−(et)
whom ((n\n)/C(s/np)) (et)C((et)(et))
and ((s\s)/s), (((s\np)\C(s\np))/(s\np)) (tC(tt)), ((et)C((et)(et))),

((et)t)C(((et)t)((et)t))

Table 5.1: The lexicon

5.2 Natural Logic inferences

In general, we represent Natural Logic inferences in L-OC as follows.

Definition 5.2.1 (`NatLog) Let G be some categorial grammar and S, S1, ..., Sn ∈ L[G].

Let αS
t , αS1

t , ..., αSn
t be proof terms representing L-derivation trees of S, S1, ..., Sn resp.

Then S1, ..., Sn `NatLog S iff `L−OC wT
t ≤ αS1

t , ...,`L−OC wT
t ≤ αSn

t implies `L−OC wT
t ≤

αS
t .

Note that in order to prove S1 `NatLog S2, it is enough to show `L−OC α1 ≤ α2, where

α1, α2 are proof terms representing derivations of S1, S2 resp., and the rest follows from

transitivity. We do so in all the following examples to shorten the presentation.

It is also important to note that one of the sentences S1, S2 may have more than one

semantic reading. As a result there may be more then one normal L derivation of the

ambiguous sentence. Furthermore, suppose that αS1 and α′S1 are proof terms representing

different normal derivations of S1 and αS2 and α′S2
- proof terms representing different

normal derivations of S2. It is possible that αS1 `L−OC αS2 , but α′S1 6 `L−OCα′S2 . In this

case S1 `NatLog S2 means that there exist such proof terms α′′S1 and α′′S2 representing

derivations of S1 and S2 resp., that α′′S1 `L−OC α′′S2 . We resort to this existentially

quantified interpretation of ′ `′NatLog in order not to complicate further the notation by

introducing notations for readings of natural language sentences. The latter, though more

complicated, would yield a more accurate interpretation. This subject is further discussed

in section 6.2.
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Input: Sentences S, S1, ..., Sn ⇒ Find L proof terms ψS , ψS1
t , ..., ψSn

t for S, S1, ..., Sn ⇒

Prove `L−OC wT ≤ ψS from `L−OC wT ≤ ψS1 , ...,`L−OC wT ≤ ψSn

Figure 5.1: Deriving S1, ..., Sn `NatLog S in the system

As a summary, we present the process of deriving S1, ..., Sn `NatLog S in fig. 5.1 (assuming

for simplicity of presentation that S1, ..., Sn are not ambiguous).

5.3 Non-logical axioms and the ‘every’ postulate

Non-logical axioms are order statements that reflect our assumptions on the denotations

of natural language expressions. For example, in models that we consider, a student is

also a person, and a walking object is a moving object. We can go further and claim that

in the relevant models a creative intelligent X is a smart X.

Here we postulate some non-logical axioms of L-OC useful in examples of L-OC proofs

introduced below.

∅
walked(et) ≤ moved(et)

a1
∅

walk(et) ≤ move(et)

a2
∅

kissed(et) ≤ touched(et)

a3

∅
student(et) ≤ person(et)

a4

∅−→
λ x(et).creative((et)R(et))(intelligent((et)R(et))(x(et))) ≤ smart((et)R(et))

a5

∅−→
λ xe.passionately((et)R(et))(loves(e(et))(xe)) ≤ adores(e(et))

a6

Note that one of the important advantages of our L-based system (as opposed to [4]’s

AB-based system) is the ability to define such complex non-logical axioms as a5 and a6.

For example, one of the terms involved in a5 is a composition of two functional terms

creative((et)R(et)) and intelligent((et)R(et)), which could not be derived in the less powerful

AB calculus. Hence, moving to L enriches the variety of non-logical axioms of the inference

system.

In addition, it allows us to extend the ad hoc postulate that [4] defines for the determiner

‘every’. According to it, the determiner ‘every’ induces an order statement between its
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two arguments. For example, from the order statement

wT ≤ (every(et)−((et)+t) (student)) (smiled)

the order statement student(et) ≤ smiled(et) is induced. However, [4] cannot handle a

similar case when ‘every’ is in an object position. For example, the fact that the order

statement

(∗) student(et) ≤ −→
λ xe.(Mary((et)+t)(kissed(e(et))(xe)))

should be induced from the proof term

[
−→
λ xe.Mary((et)+t)(kissed(e(et))(xe))](every(et)−((et)+t)(student(et)))

cannot be accounted for by [4]. We define the generalized postulate for ‘every’ as follows:

wT
t ≤ (every(et)−((et)+t) (α(et))) (γ(et))

α(et) ≤ γ(et)
(ev)

An example of using the ev postulate for deriving inferences is shown in the following

section.

5.4 Examples of L-OC derivations

In this section we show examples of L-OC derivations of inferences involving sentences

with relative clauses and pied piping, as well as inferences using the extended ‘every’

postulate. Before each L-OC proof, full L derivations of some of the sentences are shown.

In fig. 5.2 we show a full L derivation of the sentence Every student whom Mary kissed

smiled. In fig. 5.3 we see a L-OC derivation of Every student whom Mary touched smiled

`NatLogEvery student whom Mary kissed smiled. In this derivation an instance of Ab (note

that the Order Calculus of [4] does not have this inference rule) is used to discharge the

assumption xe.

In fig. 5.4 a full L derivation of the sentence Some boy the brother of whom Mary loves

walked (involving pied piping) is given. In fig. 5.5 we show a L-OC derivation of the

inference Some boy, the brother of whom Mary loves, walked `NatLogSome boy walked. Note

that since there does not exist an AB derivation for Mary loves, the system of [4] cannot

derive inferences of this kind.



35

In fig. 5.6. we give a full L derivation of the sentence Mary kissed every student. In fig.

5.7 the extended ‘every’ postulate is used to derive the inference Mary kissed every student,

No student whom Mary kissed walked `NatLog No student walked. Recall that the original

‘every’ postulate defined by [4] could not deal with sentences where ‘every’ is in object

position.
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Chapter 6

Exploring properties of L-OC

6.1 Normalization in L-OC

In this section we focus on normalization1 in L-OC . In the first subsection we present

examples of L-OC derivations of inferences using normalization. In the second subsection

we investigate the problematic aspects of non-normalized proof terms and show how

normalization deals with them. In the third subsection we propose an alternative for

normalization – the method of dynamic marking and discuss the relation between these

methods.

6.1.1 Examples of using the normalization axioms

In fig. 6.1 and 6.2 we show examples of inferences that could not be proven in L-OC

without the normalization axioms. Instances of the Reflexivity rule are omitted.

In fig. 6.1 η-normalization is used to prove the order statement

[adores]and(
−→
λ x.passionately(loves(x)) ≤ loves.

In fig. 6.2 β-normalization is used to normalize the non-NF proof term

−→
λ x.creative(intelligent(x))(boy) (for the goal order statement).

1Normalization in L-OC was initially proposed in [13].

41



42

∅
([
a
d
or

es
]a

n
d
(−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

))

≤
−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

C
1

∅
pa

ss
io

n
a
te

ly
(e

t)
R

(e
t)
(l

ov
es

(x
))
≤

lo
v
es

(x
)

R
M

O
D

−→ λ
x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))
≤
−→ λ

x
.l
ov

es
(x

)
A

b

∅
−→ λ

x
.l
ov

es
(x

)
≡

lo
v
es

η

([
a
d
or

es
]a

n
d
(−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

))
≤

lo
v
es

T
R

A
N

S

([
a
d
or

es
]a

n
d
(−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))
≤

lo
v
es

(y
)

F
R

M
a
ry

([
a
d
or

es
]a

n
d
(−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))
≤

M
a
ry

(l
ov

es
(y

))
M

O
N
+

−→ λ
y
.(
M

a
ry

([
a
d
or

es
]a

n
d
(−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))

)
≤
−→ λ

y
.M

a
ry

(l
ov

es
(y

))
A

b

[−→ λ
y
.(

[M
a
ry

([
a
d
or

es
]a

n
d
(−→ λ

x
.p

a
ss

io
n
a
te

ly
(l

ov
es

(x
))

)(
y
))

])
]J

oh
n

≤
[−→ λ

y
.M

a
ry

(l
ov

es
(y

))
]J

oh
n

(e
t+

t)

M
O

N
+

F
ig

u
re

6.
1:

M
ar

y
ad

or
es

an
d

pa
ss

io
na

te
ly

lo
ve

s
Jo

hn
` N

a
tL

o
g

M
ar

y
lo

ve
s

Jo
hn



43

∅
cr

ea
ti

v
e(

in
te

ll
ig

en
t(

bo
y
))
≡

−→ λ
x
.c

re
a
ti

v
e(

in
te

ll
ig

en
t(

x
))

(b
oy

)
β

∅
−→ λ

x
(e

t)
.c

re
a
ti

v
e (

(e
t)

R
(e

t)
)(

in
te

ll
ig

en
t (

(e
t)

R
(e

t)
)(

x
(e

t)
))
≤

sm
a
rt

(e
t)

a
5

−→ λ
x
.c

re
a
ti

v
e(

in
te

ll
ig

en
t(

x
))

(b
oy

(e
t)
)
≤

sm
a
rt

(b
oy

(e
t)
)

F
R

cr
ea

ti
v
e(

in
te

ll
ig

en
t(

bo
y
))
≤

sm
a
rt

(b
oy

)
T

R
A

N
S

S
om

e (
(e

t)
+

((
et

)+
t)

)(
cr

ea
ti

v
e(

in
te

ll
ig

en
t(

bo
y
))

)
≤

S
om

e (
(e

t)
+

((
et

)+
t)

)(
sm

a
rt

(b
oy

))
M

O
N

S
om

e(
cr

ea
ti

v
e(

in
te

ll
ig

en
t(

bo
y
))

)(
sm

il
ed

)
≤

S
om

e(
sm

a
rt

(b
oy

))
(s

m
il
ed

)
F
R

F
ig

u
re

6.
2:

S
om

e
cr

ea
ti
ve

in
te

lli
ge

nt
b
oy

sm
ile

d
` N

a
tL

o
g

S
om

e
sm

ar
t

b
oy

sm
ile

d,
u
si

n
g

th
e

n
on

-l
og

ic
al

ax
io

m
(a

5)
.



44

6.1.2 Why is normalization needed?

In this subsection we would like to show why the emergence of proof terms which are

not in normal form (NF) in L-OC poses a problem. First of all, let us demonstrate how

non-NF proof terms emerge in L-OC . Consider the following examples.

∅
[
−→
λ x(et).John((et)+t)(does((et)+(et))(x(et)))]and((et)t)C(((et)t)((et)t))(

−→
λ y(et).Mary(doesn′t((et)−(et))(y)))

≤ −→
λ y.Mary(doesn′t(y(et)))

C1

[
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(walk(et))

≤ −→
λ y.Mary(doesn′t(y))(walk(et))

FR

The term
−→
λ y.Mary(doesn′t(y))(walk) is not in NF and it β-reduces to

Mary(doesn′t(walk)).

∅
−→
λ x(et).creative((et)R(et))(intelligent((et)R(et))(x(et))) ≤ smart((et)(et))

a5

−→
λ x.creative(intelligent(x))(boy(et)) ≤ smart(boy(et))

FR

The term
−→
λ x.creative(intelligent(x))(boy) is not in NF and it β-reduces to

creative(intelligent(boy)).

∅
happy(et)R(et)(tall(et)R(et)(x(et))) ≤ tall(et)R(et)(x(et))

RMOD

−→
λ x.happy(et)R(et)(tall(et)R(et)(x(et))) ≤

−→
λ x.tall(et)R(et)(x(et))

Ab

The term
−→
λ x.tall(x) is not in NF and it η-reduces to tall.

We see two main problematic aspects in the emergence of non-normalized proof terms

in L-OC . The first problem is abstraction terms with unmarked semantic types. Basing

the system on L allows us to derive order statements that involve complex functional

terms that do not originate from the lexicon, e.g. composition of terms. In AB, in

contrast to L, the creation of functional terms (that do not originate from the lexicon)

is impossible due to the lack of introduction rules. In L-OC new functional terms, that

are created via abstraction during parsing, can be applied as functions to other terms,

creating non-NF terms. Some of the abstraction terms may denote monotone (restrictive,

etc.) functions, but their types are not respectively marked. However, it is desirable to

derive inferences based on the semantic properties of the denotations of the abstraction

terms. For instance, consider the abstraction term µ =
−→
λ xτ .ψ(σ+ρ)(φ(τ+σ)(xτ )), which is a



45

composition of the terms φ and ψ. Since their types are marked for upward monotonicity,

the denotation of their composition also is an upward monotone function. Thus, given

`L−OC γτ ≤τ δτ , we expect L-OC to derive (
−→
λ x.ψ(φ(x)))(γ) ≤ρ (

−→
λ x.ψ(φ(x)))(δ). But

the type of
−→
λ x.ψ(φ(x)) is not marked for monotonicity, thus we cannot use the MON+

rule (or any other L-OC rules) directly.

A more concrete example is the following valid inference: John does and Mary doesn’t move

`NatLog Mary doesn’t walk, using the non-logical axiom (a2) walk ≤ move. Note that the

type of doesn′t((et)−(et)) is marked for downward monotonicity. Also, by using C1 and FR:

`L−OC [
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(move) ≤

−→
λ y.Mary(doesn′t(y))(move)

However, since the type of
−→
λ y.Mary(doesn′t(y)) is not marked for downward monotonic-

ity, without normalizing we cannot use the non-logical axiom a2 in any way. On the other

hand, by using MON and FR: `L−OC Mary(doesn′t(move)) ≤ Mary(doesn′t(walk)). Thus

we conclude that establishing a connection between two βη-equivalent terms is needed in

L-OC 2.

Effectiveness considerations are another problematic aspect of non-NF terms in L-OC .

Recall the general structure of our system (summarized in fig. 5.1). One of its integral

parts is finding L-derivations for the goal sentences. However, finding a non-normalized

derivation of some NL expression is problematic due to the lack of the sub-formula prop-

erty in non-normalized derivations, which in its turn creates an infinite proof search space.

Therefore, any realistic L parser searches for normal form derivations only. Thus for the

purpose of implementation, we are led to the need to express the relation between non-NF

terms representing L derivations of the goal sentences and their normal form equivalents.

Before demonstrating the effect of normalization, we would like to propose L-OCF̂R,Âb –

a simplified reformulation of L-OC , in which normalization is applied to the conclusions

of FR and Ab rules only. The advantage of such a reformulation is simpler proofs: we

will show that a L-OC proof using normalization axioms (and thus necessarily containing

non-NF proof terms) can be rewritten in L-OCF̂R,Âb using NF proof terms only. We will

2In subsection 6.1.3 an alternative solution of the mentioned problem, using Dynamic marking of
abstraction terms is presented.
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also discuss the equivalence between L-OCF̂R,Âb and L-OC .

L-OCF̂R,Âb is similar to L-OC , except that (β) and (η) are not explicitly among its

axioms. Instead additional inference rules – F̂R and Âb implicitly encapsulate β− and

η−normalization:

A
A

¢
¢

ψ ≤ φ
R A

A
¢
¢

δ ≡ δ′

norm(ψ(δ)) ≤ norm(φ(δ′)) F̂R

A
A

¢
¢

γx ≤ δx

ab(γx) ≤ ab(δx)
Âb

ψ or φ is an abstraction term, γ or δ is of form γ〈x〉.

norm(ϕ) = { δx[x/γ] for ϕ = λx.δx〈γ〉
ϕ Otherwise

ab(ϕx) = { δ for ϕx = δ〈x〉, x ∈ VAR

λx.ϕx Otherwise

In order to recover the terms ψ, δ from norm(ψ(δ)), we define rightmost (leftmost) terms

and anti-substitution.

Definition 6.1.1 (RM (rightmost) subterms) Let ψ be a term and α ∈ LexVAR ∪
VAR s.t. α is right-peripheral in Free(ψ). The set RM(ψ) = {ϕ | ϕ ∈ ST (ψ), α ∈
ST (ϕ)}.

The leftmost subterms are defined symmetrically.

Definition 6.1.2 (Anti-substitution) For terms ψτ , ϕρ s.t (i) ϕρ ∈ ST (ψτ ) and (ii)

no variable z ∈ Free(ϕρ) ∩VAR is bound in ψτ , (ψτ ¿ xρ/ϕρ À) is the term obtained

from ψτ by replacing (an occurrence of) its subterm ϕρ by some variable xρ ∈ VAR s.t.

xρ 6∈ Free(ψτ ).

Note that for any3 δ ∈ RM(ψ), norm((
−→
λ x.ψ ¿ x/δ À)(δ)) = ψ.

The following statements proven below show in what sense L-OC and L-OCF̂R,Âb are

equivalent: (i) `L−OC α′ ≤ γ′ ⇒ `L−OC ˆFR,Âb α ≤ γ for α, γ the NF of α′, γ′ resp., (ii)

`L−OC ˆFR,Âb α ≤ γ ⇒ `L−OC α ≤ γ.

3There can be more than one such δ.
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Lemma 6.1.1 Let the order statement ψ′ ≤ φ′ have a L-OC proof Ω. Then there exists

a L-OCF̂R,Âb proof Ω′ of ψ ≤ φ s.t. ψ, φ are the NF of ψ′, φ′ resp. and Ω′ contains NF

terms only.

Proof: By induction on the structure of Ω. Let coorC/D = δ(τC/D(ττ)) for some term δ.

If Ω is one of the axioms:

• Ω=
∅

ψ′ = α′ ≤ α′ = φ′
REFL

. Then Ω′ =
∅

α ≤ α
REFL for α NF of α′.

• Ω=
∅

α(τRτ)〈µ′〉 ≤ µ′
RMOD

. Since the type of α is marked for restrictivity, α ∈ LexVAR.

Thus Ω′ =
∅

α(τRτ)〈µ〉 ≤ µ
RMOD for µ NF of µ′.

•
∅

[α′] coorC/D (γ′) ≤ α′/γ′
C1

.

Then Ω′ =
∅

[α] coorC/D (γ) ≤ α/γ
C1

for α, γ NF of α′, γ′ resp.

• Similarly for D1.

•
∅

λx.ψ′x〈γ′〉 ≡ ψ′x[x/γ′]
β

Then Ω′ =
∅

ψx[x/γ] ≡ ψx[x/γ]
REFL for ψx, γ NF of ψ′x, γ′ resp.

• Similarly for η.

If Ω is of form:

Ψ′1

A
A

¢
¢

ψ1 ≤ ψ′1
R1

Ψ′2

A
A

¢
¢

ψ2 ≤ ψ′2
R2

. . .

Ψ′n

A
A

¢
¢

ψn ≤ ψ′n
Rn

ψ1 ≤ ψ′n
R

then R is one of the following rules:

• R =TRANS. By the induction hypothesis, there exist L-OCF̂R,Âb proofs Ψi of

φi ≤ φ′i for 1 ≤ i ≤ n, (where φi, φ
′
i are NF of ψi, ψ

′
i resp.), which contain NF terms

only. Thus Ω′ =
Ψ1 . . . Ψn

φ1 ≤ φn
TRANS .

• R = C2. Then Ω is of form

Ψ′1

A
A

¢
¢

ψ′ ≤ γ′

Ψ′2

A
A

¢
¢

ψ′ ≤ δ′

ψ′ ≤ ([γ′] coorC )(δ′)
C2

. By the induction

hypothesis, there exist L-OCF̂R,Âb proofs Ψ1, Ψ2 of the order statements ψ ≤ γ and

ψ ≤ δ resp., s.t. ψ, γ, δ are NF of ψ′, γ′, δ′ resp. and Ψ1, Ψ2 contain NF terms only.

Then Ω′=

Ψ1

A
A

¢
¢

ψ ≤ γ

Ψ2

A
A

¢
¢

ψ ≤ δ

α ≤ ([γ] coorC )(δ)
C2
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• R = D2/MON. The proof is similar to the previous case.

• R =Ab. Then Ω is of form

Ψ′

A
A

¢
¢

µ′x ≤ ϕ′x

λx.µ′x ≤ λx.ϕ′x
Ab

. By the induction hypothesis, there

exists a L-OCF̂R,Âb proof Ψ of µx ≤ ϕx s.t. µx, ϕx are NF of µ′x, ϕ′x resp. which

contains NF terms only. If none of the terms µx, ϕx is of form ζ〈x〉, then Ω′ =
Ψ

A
A

¢
¢

µx ≤ ϕx

λx.µx ≤ λx.ϕx
Ab

. Otherwise Ω′ =

Ψ

A
A

¢
¢

µx ≤ ϕx

ab(µx) ≤ ab(ϕx)
Âb .

• R = FR. Then Ω is of form

Ψ′1

A
A

¢
¢

µ′ ≤ ϕ′

Ψ′2

A
A

¢
¢

δ′ ≡ γ′

µ′〈δ′〉 ≤ ϕ′〈γ′〉 FR
. By the induction

hypothesis, there exist L-OCF̂R,Âb proofs Ψ1, Ψ2 of µ ≤ ϕ and δ ≡ γ s.t. µ, ϕ, δ, γ

are NF of µ′, ϕ′, δ′, γ′ resp. which contains NF terms only. If none of the terms µ, ϕ

is an abstraction term, then Ω′ =

Ψ1

A
A

¢
¢

µ ≤ ϕ

Ψ2

A
A

¢
¢

δ ≡ γ

µ〈δ〉 ≤ ϕ〈γ〉 FR . Otherwise Ω′

=

Ψ1

A
A

¢
¢

µ ≤ ϕ

Ψ2

A
A

¢
¢

δ ≡ γ

norm(µ〈δ〉) ≤ norm(ϕ(γ))
F̂R .

Lemma 6.1.2 Let the order statement α ≤ γ have a L-OCF̂R,Âb proof Ω. Then there

exists a L-OC proof Ω′ of α ≤ γ.

Proof sketch: We show the construction of a L-OC proof Ω′ of α ≤ γ from Ω by

elimination of F̂R and Âb . If Ω does not contain any instances of F̂R and Âb then it

is already a L-OC proof of α ≤ γ. Otherwise suppose Ω contains an instance of F̂R

A
A

¢
¢

ψ ≤ ϕ

A
A

¢
¢

δ ≡ δ′

norm(ψ(δ)) ≤ norm(ϕ(δ′)) F̂R where w.l.o.g. ψ =
−→
λ x.ζ

−→x , norm(ψ(δ)) = ζ
−→x [x/δ] and
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norm(ϕ(δ′)) = ϕ(δ′). Then we can replace it by the following L-OC proof:

∅
ζ
−→x [x/δ] ≡ −→

λ x.ζ
−→x (δ)

β

A
A

¢
¢

−→
λ x.ζ

−→x ≤ ϕ

A
A

¢
¢

δ ≡ δ′

−→
λ x.ζ

−→x (δ) ≤ ϕ(δ′)
FR

norm(ψ(δ)) = ζ
−→x [x/δ] ≤ ϕ(δ′) = norm(ϕ(δ′))

TRANS)

Now suppose Ω contains an instance of Âb :

A
A

¢
¢

ψ
−→x ≤ ϕ

−→x

ab(ψ
−→x ) ≤ ab(ϕ

−→x )
Âb

where w.l.o.g. ψ
−→x =

γ(x). Then we can replace it by the following L-OC proof:

∅
γ ≡ −→

λ x.γ(x)
η)

A
A

¢
¢

γ(x) ≤ ϕ
−→x

−→
λ x.γ(x) ≤ −→

λ x.ϕ
−→x

Ab

ab(ψ
−→x ) = γ ≤ −→

λ x.γ
−→x = ab(ϕ

−→x )
TRANS

In this way we can eliminate all instances of F̂R and Âb in Ω to obtain a valid L-OC

proof Ω′.

To sum up, the relation between L-OC and L-OCF̂R,Âb is the following:

• L-OC and L-OCF̂R,Âb are equivalent w.r.t. order statements with NF proof terms.

That is, for all NF proof terms ψ and ϕ, `L−OC ψ ≤ ϕ iff `L−OC ˆFR,Âb ψ ≤ ϕ.

• Proof-theoretically, L-OCF̂R,Âb is weaker than L-OC . For example, for any proof

term ψ(τσ):

`L−OC ψ ≡ λxτ .ψ(τσ)〈xτ 〉

(∗) 6 `L−OC ˆFR,Âbψ ≡ λxτ .ψ(τσ)〈xτ 〉

In practice, however, we do not lose any semantic information by weakening L-OC , since

for any order statement α′ ≤ γ′ provable in L-OC , we can prove a semantically equivalent

order statement α ≤ γ in L-OCF̂R,Âb (where α, γ are NF of α′, γ′ resp.)

Thus we will use the simpler L-OCF̂R,Âb instead of L-OC both for demonstrating the

effect of normalization and for defining a proof search procedure in the following chapter.

Now let us demonstrate how normalization in L-OCF̂R,Âb (encapsulated in F̂R and Âb )
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solves the above mentioned problems of non-NF terms. Consider again the problematic

inference we mentioned above – we show in fig. 6.3 that it is derivable in L-OCF̂R,Âb

. As for the effectiveness consideration, the goal we specified above is also achieved

by normalization. Recall that we aimed at being able to use NF terms to represent L
derivations of the goal sentences. We have shown that (i) for any order statement s.t.

`L−OC α′ ≤ γ′, a L-OCF̂R,Âb proof of the (semantically equivalent) order statement α ≤ γ

s.t. α, γ are NF of α′, γ′ resp. can be constructed, and (ii) for each such L-OCF̂R,Âb proof,

an equivalent L-OC proof exists. Thus for any α′, γ′ so that `L−OC α′ ≤ γ′ there exists a

L-OC proof of α ≤ γ, s.t. α, γ are NF of α′, γ′ resp.

6.1.3 Dynamic marking: an alternative?

An alternative remedy to the problem of unmarked abstraction terms mentioned in the

previous section would naturally be marking their types. We propose a method of marking

the types of abstraction terms for monotonicity (it can also be extended to other semantic

features as well), henceforth referred to as dynamic marking 4. To implement dynamic

marking we use the notion of polarity introduced by [11] and used by [9] and [1].

Definition 6.1.3 (Polarity of occurrences) Given a term ψ and a subterm φ of ψ,

a specified occurrence of φ in ψ is called positive (negative) according to the following

clauses:

1. φ is positive in φ.

2. If ψ = α〈γ〉 then:

• φ is positive (negative) in ψ if φ is positive (negative) in α.

• φ is positive (negative) in ψ if φ is positive (negative) in γ and α denotes an

upward monotone function.

• φ is negative (positive) in ψ if φ is positive (negative) in γ and α denotes a

downward monotone function.

3. If ψ = λx.µ then φ is positive (negative) in ψ if φ is positive (negative) in µ.

4The method of dynamic marking was initially proposed in [6]



51

∅
[−→ λ

x
.J

oh
n
(d

oe
s(

x
))

]a
n
d
(−→ λ

y
.M

a
ry

(d
oe

sn
′ t
(y

))
)

≤
−→ λ

y
.M

a
ry

(d
oe

sn
′ t
(y

))

C
1

∅
m

ov
e
≡

m
ov

e
R

E
F
L

[−→ λ
x
.J

oh
n
(d

oe
s(

x
))

]a
n
d
(−→ λ

y
.M

a
ry

(d
oe

sn
′ t
(y

))
)(

m
ov

e)
≤

M
a
ry

(d
oe

sn
′ t
(m

ov
e)

)
F̂
R

∅
w

a
lk

(e
t)
≤

m
ov

e (
et

)
(a

2
)

d
oe

sn
′ t

(e
t)
−

(e
t)
(m

ov
e)

≤
d
oe

sn
′ t
(w

a
lk

)
M

O
N

-

M
a
ry

((
et

)+
t)
(d

oe
sn

′ t
(m

ov
e)

)
≤

M
a
ry

((
et

)+
t)
(d

oe
sn

′ t
(w

a
lk

))
M

O
N

+

[−→ λ
x
.J

oh
n
(d

oe
s(

x
))

]a
n
d
(−→ λ

y
.M

a
ry

(d
oe

sn
′ t
(y

))
)(

m
ov

e)
≤

M
a
ry

(d
oe

sn
′ t
(w

a
lk

))
T

R
A

N
S

F
ig

u
re

6.
3:

T
h
e

p
ro

b
le

m
at

ic
in

fe
re

n
ce

is
d
er

iv
ab

le
in
L-

O
C

F̂
R

,Â
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Fact 6.1.1 ([11]) If x is positive (negative) in φ then λx.φ denotes an upward (downward)

monotone function.

The dynamic marking is performed by DDL – an extended version of L. Instead of PL

lambda terms, DDL uses extended PL (EPL) terms, where each free variable occurrence

is assigned a polarity marking Π ∈ Pol = {⊕,ª, null}, which is an abstraction of its

actual polarity: ⊕,ª, null mark positive, negative and undefined polarity resp.

Definition 6.1.4 (Extended PL terms) Let Π be a meta variable that ranges over the

values from Pol = {⊕,ª, null}. Let VARΠ = {Π ∈ Pol} and LexVARΠ = {wΠ
τ | wτ ∈

LexVAR, Π ∈ Pol}. Let Ψ, Φ be meta variables that range over members of the set

EPLTerms and x a meta variable that ranges over members of the set VARΠ. The set

EPLTerms is the smallest set s.t.:

• LexVARΠ, VARΠ⊆ EPLTerms

• If Φ(σ∗τ), Ψσ ∈ EPLTerms, then (Φ(Ψ))τ , ([Ψ]Φ)τ ∈ EPLTerms

• If xρ ∈VAR, Φτ ∈ EPLTerms, then (
−→
λ x.Φ)(ρτ), (

←−
λ x.Φ)(ρτ) ∈ EPLTerms

The set of free variables (with an assigned polarity marking) Free(Ψ) for Ψ ∈ EPLTerms

is defined standardly.

Definition 6.1.5 (Π-strip) For Ψ ∈ EPLTerms, its Π-strip PL term Πstrip(Ψ) is

defined as follows:

Πstrip(αΠ) = α, for α ∈ LexVAR ∪VAR

Πstrip(Φ〈∆〉) = Πstrip(Φ)〈Πstrip(∆)〉

Πstrip(λx.Φ) = λx.Πstrip(Φ)

In words, Πstrip(Ψ) is the term obtained from Ψ by deleting the polarity marking of all

of its free variables.

Next, we define the functions Flip : EPLTerms → EPLTerms and Anull : EPLTerms →
EPLTerms. Flip(Ψ) is the (EPL) term obtained from Ψ by swapping the polarity mark-

ing of the free variables in Ψ as follows: ‘ª’ to ‘⊕’, ‘⊕’ to ‘ª’, ‘null’ to ‘null’. Anull(Ψ) is
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the (EPL) term obtained from Ψ by setting the polarity marking of all the free variables

in Ψ to ‘null’.

We also define the function Pol2Feat : Pol → 2Feat that decorates the type of abstraction

terms according to the polarity marking of the discharged assumption:

Pol2Feat(⊕) = {+}, Pol2Feat(ª) = {−}, Pol2Feat(null) = ∅

Definition 6.1.6 (DDL) Let Γ, Γ1, Γ2 range over finite non-empty sequences of pairs

A : Ψτ , where Ai is a syntactic category and Ψ ∈ EPLTerms. Let τ, τ1, τ2 range over

decorated types. The notation Γ . A : Ψτ means that the sequence Γ is DDL-reducible to

A : Ψτ . The rules of DDL are as follows :

(axiom1)A : x⊕τ . A : x⊕τ for x ∈ VARΠ

(axiom2)B : wnull
τ . B : wnull

τ for w ∈ LexVARΠ

Elimination rules:

for τ1 ≡f τ ′1 :

(/Eª)
Γ1 . (A/B) : Ψ(τ1−τ2) Γ2 . B : Φτ ′1

Γ1Γ2 . A : (Ψ(τ1−τ2)(Flip(Φτ ′1)))τ2

, (\Eª)
Γ2 . B : ϕτ ′1 Γ1 . (A\B) : Ψ(τ1−τ2)

Γ2Γ1 . A : ([Flip(Φτ ′1)]Ψ(τ1−τ2))τ2

(/E⊕)
Γ1 . (A/B) : Ψ(τ1+τ2) Γ2 . B : Φτ ′1

Γ1Γ2 . A : (Ψ(τ1+τ2)(Φτ ′1))τ2

, (\E⊕)
Γ2 . B : Φτ ′1 Γ1 . (A\B) : Ψ(τ1+τ2)

Γ2Γ1 . A : ([Φτ ′1 ]Ψ(τ1+τ2))τ2

(/E)
Γ1 . (A/B) : Ψ(τ1F τ2) Γ2 . B : Φτ ′1

Γ1Γ2 . A : (Ψ(τ1F τ2)(Anull(Φτ ′1)))τ2

, (\E)
Γ2 . B : Φτ ′1 Γ1 . (A\B) : Ψ(τ1F τ2)

Γ2Γ1 . A : ([Anull(Φτ ′1)]Ψ(τ1−τ2))τ2

ForF 6= {+} and F 6= {−} :

Introduction rules:

(/I)
Γ1, B : xΠ

τ1
. A : Ψτ2

Γ1 . (A/B) : (
−→
λ xτ1 .Ψτ2)(τ

Pol2Feat(Π)
1 τ2)

(\I)
B : xΠ

τ1
, Γ1 . A : Ψτ2

Γ1 . (A\B) : (
←−
λ xτ1 .Ψτ2)(τ

Pol2Feat(Π)
1 τ2)

for Γ1 not empty, xτ ∈ V ARΠ
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Since variables from LexVAR are never abstracted, their polarity marking is not needed

and is explicitly set to null. The Elimination rules update the polarity marking of the free

variables of the argument term. The Introduction rules mark the type of the dynamically

created functional term according to the polarity marking of the abstracted variable cor-

responding to the discharged assumption.

It is important to note the difference between the actual polarity of an occurrence of

x ∈ VAR and its abstraction that is marked by DDL. The actual polarity depends on

the denotations of the applied functional terms, while the (abstracted) polarity marked

by DDL depends on the marking of the types of the terms, which is an abstraction of

these denotations.

The rules of the Order Calculus that is based on DDL (DDL-OC ) are similar to the

rules of L-OC except for the fact that L-OC manipulates order statements between PL

terms, while the order statements manipulated by DDL-OC are between EPL terms.

For example, consider the derivation of the following inference in DDL-OC :

Mary does move and John doesn’t move `NatLog John doesn’t walk

First, let us show how the type of the term
−→
λ y.John(doesn′t(y)) is dynamically marked

for downward monotonicity during the parsing of John doesn’t in DDL (to shorten the

presentation, we use only the proof terms and specify only the polarity of the assumption

y):

y⊕(et) . y⊕(et) ⇒ doesn′t(et)−(et)(y
ª
(et)) ⇒ John((et)+t)(doesn′t(et)−(et)(y

ª
(et)))

⇒ (
−→
λ y.John((et)+t)(doesn′t(et)−(et)(y

ª
(et))))((et)−t)

Next, using the non-logical axiom walk ≤ move, the following order statement can be

proven in DDL-OC:

`DDL−OC [
−→
λ x.Mary(does(x))]and(

−→
λ y.John(doesn′t(y)))(et)−(et)(move) ≤

−→
λ y.John(doesn′t(y))(et)−(et)(walk)

Now we investigate the relation between L-OC and DDL-OC and show that DDL-OC is

weaker than L-OC , that is:
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1. `DDL−OC Ψ ≤ Φ ⇒ `L−OC Πstrip(Ψ) ≤ Πstrip(Φ)

2. `L−OC Πstrip(Ψ) ≤ Πstrip(Φ) 6 ⇒ `DDL−OC Ψ ≤ Φ

Lemma 6.1.3 Let Ψ ∈ EPLTerms s.t. xσ ∈ Free(Πstrip(Ψ)) and x is marked for

positive (negative) polarity in Ψ. Then `L−OC γ ≤σ δ (`L−OC δ ≤σ γ) implies `L−OC

Πstrip(Ψ)[x/γ] ≤τ Πstrip(Ψ)[x/δ].

Proof: by induction on the complexity of Ψ. We prove only for the positive polarity

case; the proof for negative polarity is symmetric.

• Ψ = x⊕. Then Πstrip(Ψ) = x and `L−OC γ ≤σ δ implies `L−OC x[x/γ] ≤τ x[x/δ].

• Ψ = Θ(ζF ρ)(Λζ). Then xσ ∈ Free(Πstrip(Θ)) or x ∈ Free(Πstrip(Λ)).

• x ∈ ST (Πstrip(Θ)). If x is assigned positive polarity in Ψ, then x is marked

for positive polarity also in Θ. By the induction hypothesis, `L−OC γ ≤σ δ

implies `L−OC Πstrip(Θ)[x/γ] ≤(ζρ) Πstrip(Θ)[x/δ]. By applying the FR

rule, we can prove

`L−OC (Πstrip(Θ)[x/γ])(Πstrip(Λ))︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/γ]

≤ρ (Πstrip(Θ)[x/δ])(Πstrip(Λ))︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/δ]

• x ∈ Free(Πstrip(Λ)). If x is marked for positive polarity in Ψ, then (i)

either ‘+’∈ F (the type of Θ is marked for upward monotonicity) and x is

marked for positive polarity in Λ or (ii) ‘-’∈ F (the type of Θ is marked for

downward monotonicity) and x is marked for negative polarity in Λ. Suppose

w.l.o.g. that (i) holds. By the induction hypothesis, `L−OC γ ≤σ δ implies

`L−OC Πstrip(Λ)[x/γ] ≤ζ Πstrip(Λ)[x/δ]. By applying MON+ rule, we can

prove

`L−OC (Πstrip(Θ)(ζ+ρ))(Πstrip(Λ)ζ [x/γ])︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/γ]

≤ρ (Πstrip(Θ))(ζ+ρ)(Πstrip(Λ)[x/δ])︸ ︷︷ ︸
Πstrip(Θ(Λ))[x/δ]

• Ψ = λyζ .Φ, y 6= x. Since x is marked for positive polarity in Ψ, then it is marked

for positive polarity in Φ. By the induction hypothesis, `L−OC γ ≤σ δ implies

`L−OC Πstrip(Φ)[x/γ] ≤ρ Πstrip(Φ)[x/δ]. By applying the Ab rule, we can prove

`L−OC Πstrip(λy.Φ)[x/γ] ≤(ζρ) Πstrip(λy.Φ)[x/δ]
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Lemma 6.1.4 Let Ψ, Φ ∈ EPLTerms. Then

`DDL−OC Ψ ≤τ Φ ⇒ `L−OC Πstrip(Ψ) ≤τ Πstrip(Φ)

Proof: By showing the construction of a L-OC proof Ω2 of Πstrip(Ψ) ≤τ Πstrip(Φ) from

a DDL-OC proof P1 of Ψ ≤τ Φ.

If the proof contains no MON rule applications based on dynamic marking of types of

abstraction terms, then Ω2 is the proof obtained by replacing all EPL terms in Ω1 by their

mirrors.

Otherwise we delete all monotonicity marking from the types of abstraction terms in Ω1.

Now we have invalid instances of the MON rule, which are w.l.o.g. of form

Ω

A
A

¢
¢

Πstrip(Θ) ≤τ Πstrip(∆)

(λxτ .Πstrip(Ψ))(τρ)〈Πstrip(Θτ )〉 ≤ρ (λxτ .Πstrip(Ψ))(τρ)〈Πstrip(∆τ )〉
MON

(1)

where the type of λxτ .Ψ is not marked for monotonicity. We choose the innermost invalid

MON instance, that is such that does not have invalid MON instances in Ω. Let us note

the following facts. First, due to its being the innermost non-valid instance of MON, Ω

is a valid L-OC proof of the order statement Πstrip(Θ) ≤ Πstrip(∆). Second, since the

type of λx.Ψ is marked for upward monotonicity, x is marked for positive polarity in Ψ.

By lemma 6.1.3, `L−OC Πstrip(Ψ)[x/Πstrip(Θ)] ≤(τρ) Πstrip(Ψ)[x/Πstrip(Θ)]. Thus we

can replace (1) by the following valid L-OC proof:
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∅
λx.Πstrip(Ψ)〈Πstrip(Θ)〉
≡(τρ) Πstrip(Ψ)[x/Θ]

β
A

A
¢
¢

Πstrip(Ψ)[x/Πstrip(Θ)]

≤(τρ) Πstrip(Ψ)[x/Πstrip(∆)]

∅
Πstrip(Ψ)[x/∆]

≡(τρ) λx.Πstrip(Ψ)(τρ)〈Πstrip(∆)〉

β

(λx.Πstrip(Ψ))〈Πstrip(Θ)〉 ≤ (λx.Πstrip(Ψ))〈Πstrip(∆)〉
TRANS

In this way we can systematically remove all invalid instances of MON, creating a valid

L-OC proof.

Note that the other direction of the above lemma does not hold, that is `L−OC Πstrip(Ψ) ≤
Πstrip(Φ) 6⇒ `DDL−OC Ψ ≤ Φ. Consider, for example the inference Mary adores and pas-

sionately loves John `NatLog Mary loves John, the L-OC derivation of which is shown in fig.

6.1. It is not derivable in the proposed version of DDL-OC.

We have shown that the DDL-based Order Calculus is weaker than the L-based one5.

6.2 Multiple derivations

Basing the system on L brought about the emergence of non-normalized proof terms in

L-OC , which we discussed in the previous section. Note that β/η-equivalent proof terms

represent semantically equivalent L derivations. Now we turn to another case - multiple

derivations of the same sequent which are not necessarily semantically equivalent.

Assigning several derivation trees to a natural language sentence reflects several semantic

readings that the sentence may have, due to reasons like scope ambiguity. For example,

the sentence No man loves some woman has two possible semantic readings:

1. There exists such woman that no man loves. Under this reading, the sentence No

man loves some tall woman entails the sentence No man loves some woman.

2. There is no such man that loves some woman. Under this reading, the sentence No

man loves some woman entails the sentence No man loves some tall woman.

Basing the system on L allows to capture this kind of scope ambiguity. There are two

possible proof terms representing the derivation of the sentence No man loves some woman:

5Note that integrating restrictivity marking into DDL would not help deriving the above inference in
the DDL-based Order Calculus, since deriving this inference involves η-reduction.
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1. [
−→
λ x.(no(man))(loves(x))]some(woman) – corresponds to the first reading. The full

L derivation is shown in fig. 6.4.

2. no(man)(
←−
λ x.([

−→
λ y.[x]loves(y)]some(woman))) – corresponds to the second read-

ing. The full L derivation is shown in fig. 6.5.

And indeed, both of the following order statements are derivable in L-OC :

1. [
−→
λ y.(no(man))(loves(y))]some(tall(woman)) ≤ [

−→
λ y.(no(man))(loves(y))]some(woman)

(shown in fig. 6.6)

2. no(man)(
←−
λ x.([

−→
λ y.[x]loves(y)]some(woman)))

≤ no(man)(
←−
λ x.([

−→
λ y.[x]loves(y)]some(tall(woman)))) (shown in fig. 6.7)

Hence we can derive both of the following Natural Logic inferences:

1. No man loves some tall woman`NatLogNo man loves some woman

2. No man loves some woman`NatLogNo man loves some tall woman

However, this does not mean that the two sentences are equivalent. We should keep in

mind that each case refers to a different semantic reading of the sentence.
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Chapter 7

The Proof Search Procedure

7.1 Description of the algorithm

Below we present a proof search procedure for L-OCF̂R,Âb , which we have proven to be

equivalent to L-OC w.r.t. order statements with NF terms. The procedure is a variation

on a proposal by [4]. It is a recursive function derive(α0, α, Goals) which, given a (pos-

sibly empty) finite set A = {[ αi, α
′
i ] | 1 ≤ i ≤ n} of non-logical axioms, searches for a

L-OCF̂R,Âb proof of a given goal order statement in a top-down manner, attempting to

generate simpler subgoals and prove them recursively. In order to prevent the algorithm

from diverging, we use the Goals parameter, which keeps track of all the pairs of terms

that appear as arguments of derive.

The proposed algorithm can be used for proving an inference S1, ..., Sm `NatLog S (S1, ..., Sm, S

are natural language indicative sentences) as follows1:

1. the terms ψ1
t , ..., ψ

m
t , ψt representing (NF) L derivations of S1, ..., Sm, S resp., are

obtained by the L parser.

2. the order statements wT
t ≤ ψi

t for 1 ≤ i ≤ m are added to the set of the non-logical

axioms.

3. derive(wT
t , ψt, ∅) is called.

1If at least one of the sentences S1, ..., Sm is ambiguous, these stages should be repeated for every
combination of the corresponding proof terms.
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Let us observe the following fact about the axioms C1 and RMOD. Given the left hand

term ψl in the conclusion ψl ≤ ψr of these axioms, the term ψr can be defined as a function

of ψl, denoted by fC1,r, f ′C1,r, and fRMOD,r. Similarly we define the functions fD1,l, f ′D1,l.

In C2, the premises can be expressed as a function of the conclusion: ψl ≤ fC2,1(ψr)

and ψl ≤ fC2,2(ψr). Based on this observation, we define the following (not necessarily

disjoint) classes of L-OCF̂R,Âb rules and axioms: (i) R-PROD – where the righthand term

ψr in the derived order statement ψl ≤ ψr is a function of the lefthand term ψl: REFL,

RMOD, C1 and D2, (ii) L-PROD – (the symmetric case): REFL, C2 and D1, (iii) STR –

rules in which ψr is a replacement of a subterm of ψl: FR, MON, (iv) NL – the non-logical

axioms.

The derive and subderive functions are given below2. Recall that the algorithm has an

implicit parameter A = {[ αi, α
′
i ] |1 ≤ i ≤ n} – the set of the non-logical axioms. We

denote by α ∈ MON ↑ (α ∈ MON ↓) a case of a term α(τ+ρ) (α(τ−ρ)), and abbreviate

α ∈ MON ↑ ∨α ∈ MON ↓ by α ∈ MON. We refer to a term ψ(τC(ττ)) as coorC and

to ψ(τD(ττ)) – as coorD .

derive(α0, α, Goals) =

1. If [ α0, α ] ∈ Goals then return false.

2. Goals′ ← Goals ∪ {[ α0, α ]}

3. If subderive(α0, α,Goals′) then return true.

4. for each non-logical axiom [ αi, α
′
i ]: if subderive(α0, αi, Goals′) and derive(α′i, α, Goals′)

then return true.

5. return false.

subderive(α0, α, Goals) =

1. If α0 = α then return true

2. for each ax ∈ {C1, D1, RMOD}

2.1 If fax,r(α0) is defined and derive(fax,r(α0), α,Goals) then return true.

2.2 If fax,l(α) is defined and derive(α0, fax,l(α), Goals) then return true.

3. 3.1 If fD2,1(α0) and fD2,2(α0) are defined and derive(fD2,1(α0), α, Goals)

and derive(fD2,2(α0), α, Goals) then return true.

2For abbreviation only the use of the RM set is presented. The LM set is used symmetrically.



64

3.2 If fC2,1(α) and fC2,2(α) are defined and derive(α0, fC2,1(α), Goals)

and derive(α0, fC2,2(α), Goals) then return true.

4. If α0 = φ〈ψ〉 and α = γ〈δ〉 and derive(φ, γ,Goals)

4.1 If φ ∈ MON ↑ or γ ∈ MON ↑ and derive(ψ, δ,Goals) return true.

4.2 If φ ∈ MON ↓ or γ ∈ MON ↓ and derive(δ, ψ,Goals) return true.

4.3 If (φ ∈ MON ↓ and γ ∈ MON ↑) or (φ ∈ MON ↑ and γ ∈ MON ↓) return

true.

4.4 If derive(ψ, δ,Goals) and derive(δ, ψ, Goals) return true.

5. If ∃δτ ∈ RM(α0) and ∃δ′τ ∈ RM(α) s.t. derive(δ, δ′, Goals) and derive(δ′, δ, Goals), then

for each such (δ, δ′):

5.1 for each ax ∈ {C1, D1, RMOD}:

5.1.1 If α0 = ψ(δ) and fax,r(ψ) is defined and derive(norm(fax,r(ψ)(δ)), α,Goals)

then return true.

5.1.2 If α = ψ(δ′) and fax,l(ψ) is defined and derive(α0, norm(fax,l(ψ)(δ′)), Goals)

then return true.

5.2 If α0 = ψ(δ) and fD2,1(ψ) and fD2,2(ψ) are defined and derive(norm(fD2,1(ψ)(δ)), α, Goals)

and derive(norm(fD2,2(ψ)(δ)), α, Goals) then return true.

5.3 If α = ψ(δ′) and fC2,1(ψ) and fC2,2(ψ) are defined and derive(α0, norm(fC2,1(ψ)(δ′)), Goals)

and derive(α0, norm(fC2,2(ψ)(δ′)), Goals) then return true.

5.4 For each two non-logical axioms [ αi, α
′
i ] and [ αj , α

′
j ]:

5.4.1 If norm(αi(δ)) = α0 and norm(α′j(δ
′)) = α and derive(α′i, αj , Goals) then

return true.

5.4.2 If norm(αi(δ)) = α0 and α = ψ(δ′) and derive(α′i, ψ, Goals) then return

true.

5.4.3 If norm(α′j(δ
′)) = α and α0 = ψ(δ) and derive(ψ, αj , Goals) then return

true.

6. If α0 = λx.ψx and α = λx.ϕx and derive(ψx, ϕx, Goals) then return true.
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7. 7.1 If α0 = λxτ .ψ
xτ and x 6∈ ST (α) and derive(ψxτ , α〈xτ 〉, Goals) then return true.

7.2 If α = λxτ .ψ
xτ and x 6∈ ST (α0) and derive(α0〈xτ 〉, ψxτ , Goals) then return true.

8. return false.

The algorithm searches for L-OCF̂R,Âb proofs of a specific form, which we call the L-

OCF̂R,Âb canonic proofs. Let R be the regular language NL∗ R-PROD∗ ( (STR | F̂R)∗ | Âb

| Ab) L-PROD∗ (NL+ R-PROD∗ ( (STR | F̂R)∗ | Âb | Ab) L-PROD∗)∗ NL∗.

Definition 7.1.1 (L-OCF̂R,Âb canonic proof) Let `L−OC ˆFR,Âb ψ ≤ ψ′. Then a canonic

proof of ψ ≤ ψ′ is one of the following structures:

1. A Type 1 canonic proof is

Ψ1

A
A

¢
¢

φ1 ≤ φ′1
R1

Ψ2

A
A

¢
¢

φ2 ≤ φ′2
R2

. . .

Ψn

A
A

¢
¢

φn ≤ φ′n
Rn

ψ ≤ ψ′
R

where (i) R 6=TRANS , (ii) n ∈ {1, 2}, (iii) Ψ1, . . . , Ψn are canonic proofs.

2. A Type 2 canonic proof is

Ψ1

A
A

¢
¢

φ1 ≤ φ′1
R1

Ψ2

A
A

¢
¢

φ2 ≤ φ′2
R2

. . .

Ψn

A
A

¢
¢

φn ≤ φ′n
Rn

ψ ≤ ψ′
TRANS

where (i) n ≥ 2, (ii) Ψ1, . . . , Ψn are Type 1 canonic proofs, (iii) ψ = φ1, φ
′
1 =

φ2, φ
′
2 = φ3, . . . , φ

′
n−1 = φn, φ

′
n = ψ′, (iv) the string formed by the rules R1...Rn

belongs to the regular language R.

The algorithm attempts to find a canonic proof by first separating it into a number of

canonic subproofs of Type 2 (step 4 in derive), and then by restoring these subproofs

from their terminal terms α0, α (in subderive). The functions we defined for the rules

C1, C2, D1, D2, and RMOD are used to search for shorter subproofs (steps 2 and 3

in subderive). MON, FR, Ab and Âb are also treated straightforwardly (steps 4,6,7 in

subderive). F̂R rules are treated in two different ways: (a) in steps 5.1–5.3 of subderive

the algorithm tries to construct the righthand/lefthand side of the result of F̂R from its

lefthand/righthand side, (b) in step 5.4 of subderive the algorithm tries to recover the

premises of F̂R from its conclusion.
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7.2 Correctness

Below we briefly discuss the correctness of the proposed algorithm. The full proof of

termination and completeness results appear in appendixes A and B resp.

The soundness of the algorithm, that is the fact that any order statement for which the

algorithm returns true has a L-OCF̂R,Âb proof, follows quite straightforwardly from its

definition.

Termination is guaranteed by the following facts. First, it can be shown that only a

finite set of terms can appear as arguments in the call tree of the derive function. This

set depends on the subterms of terms that appear in the goal order statement and the

non-logical axioms. Secondly, due to the Goals parameter, any pair of terms can appear

as arguments in the call tree of derive at most once.

As for completeness results, it can be shown that for any order statement that has a

F̂R-free L-OCF̂R,Âb proof, that it is provable by the algorithm. The proof has two stages:

1. Under some limitations on the lexicon and L-OCF̂R,Âb -derivable order-statements

(defined in appendix B), any order statement that has a F̂R -free L-OCF̂R,Âb proof

has a (F̂R -free) canonic proof.

2. Any order statement that has a F̂R-free canonic proof is provable by the algorithm.

The algorithm also finds L-OCF̂R,Âb proofs with instances of F̂R of several forms. In fig.

7.1 we show the call tree of the procedure for the L-OCF̂R,Âb proof of the order statement

[
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(move) ≤ Mary(doesn′t(walk)) appearing

in fig. 6.3.

To demonstrate why the F̂R is problematic, consider the following L-OCF̂R,Âb proof:

A
A

¢
¢

ψ ≤ λx.α(γ(δ(x)))
A

A
¢
¢

ζ ≡ θ

ψ(ζ) ≤ α(γ(δ(θ)))
F̂R

A
A

¢
¢

λy.α(γ(y)) ≤ φ

A
A

¢
¢

δ(θ) ≡ µ

α(γ(δ(θ))) ≤ φ(µ)
F̂R

ψ(ζ) ≤ φ(µ)
TRANS

The problem is that there is no direct relation between the terms µ and ζ (they are non-

directly related through the term δ(θ)), and while attempting to prove the order statement

ψ(ζ) ≤ φ(µ), the current algorithm has no way of constructing the term α(γ(δ(θ))).
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derive([
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(move), Mary(doesn′t(walk)), ∅)

In step 3 of derive:

subderive([
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(move), Mary(doesn′t(walk)), Goals′)

(Goals′ = {< [
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(move), Mary(doesn′t(walk)) >})

In step 5.1.1. of subderive:
fax,r([

−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))) = (

−→
λ y.Mary(doesn′t(y)))

norm(
−→
λ y.Mary(doesn′t(y))(move)) = Mary(doesn′t(move))

derive(Mary(doesn′t(move)), Mary(doesn′t(walk)), Goals′)

In step 3 of derive:

subderive(Mary(doesn′t(move)), Mary(doesn′t(walk)), Goals′′)

(Goals′′ = {< [
−→
λ x.John(does(x))]and(

−→
λ y.Mary(doesn′t(y)))(move), Mary(doesn′t(walk)) >,

< Mary(doesn′t(move)), Mary(doesn′t(walk)) >})
In step 4 of subderive:

derive(Mary, Mary, Goals′′)

In step 3 of derive:

subderive(Mary, Mary, Goals′′′)

In step 1 of subderive: return true.

derive(doesn′t(walk), doesn′t(move), Goals′′)

In step 3 of derive:

subderive(doesn′t(walk), doesn′t(move), Goals′′′)

In step 4 of subderive:
derive (doesn′t, doesn′t, Goals′′′′): return true.

derive(move, walk, Goals′′′′′): return true.

return true.

return true.

return true.

return true.

return true.

return true.

Figure 7.1: The call tree of the algorithm for the L-OCF̂R,Âb proof from fig. 6.3



Chapter 8

Conclusions

In this thesis we have proposed a Natural Logic inference system that is based on L,

transcending a previous system of [4] based on the AB calculus. We have shown that

extending the system to be based on L is rewarding, as it allows deriving new kinds of

inferences, such as inferences involving sentences with extraction, pied piping etc.

It is clear, however, that L is not the optimal categorial formalism to underly a Natural

Logic inference system, due to its own syntactic limitations, such as overgeneration, in-

capability to deal with non-peripheral extraction, etc. For example, the grammaticality

of the following sentence cannot be derived in L:

The boy whom Mary loves dearly smiled.

Hence, an L-based Natural Logic inference system cannot account for the following valid

entailment:

The boy whom Mary loves dearly smiled ⇒ The boy whom Mary loves smiled

Thus we view the proposed inference system as an intermediate step towards a more

complex one, to be finally based on some decidable fragment of the multi-modal type-

logical grammar. Much work still has to be done in the direction of extending the inference

system to be based on more complex categorial formalisms. Another possible research

direction is looking for more semantic properties, which in addition to monotonicity,

restrictivity etc. can be used to account for natural language inferences.
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We believe, however, that the present work has shown some advances in extending the

Natural Logic paradigm to a more substantial system of reasoning in natural language.



Appendix A

Termination of the proof search

procedure

We will now prove that the proof search algorithm terminates, by showing that only a

finite set of terms can appear as arguments in the call tree of derive. Since no pair of

terms can appear more than once in a call tree, termination follows.

We will need the following definitions for describing the finite set of the possible arguments

of the algorithm.

Definition A.1 (Wrapping) Given a term ϕ(σ1(...(σn−1σn)...)) and an ordered finite se-

quence of variables from VAR: S = xσ1 ...xσn−1, the wrapping of ψ w.r.t. S is dϕeS =

〈...〈ϕ〈xσ1〉〉...〈xσn−1〉〉σn.

Definition A.2 (Wrapping closure) Let ψ(σ1(...(σn−1σn)...)) be a term and A = {x1
σ1

, ..., xm
σm
}

a set of variables from VAR. Then the wrapping closure of ψ w.r.t. A is defined as fol-

lows:

WCA(ψ) = {dψeS | S = xi1
σi1

...xik
σik

, for {xi1
σi1

, ..., xik
σik
} ⊆ A, 1 ≤ k ≤ m, dψeS is defined}

Definition A.3 (SubS1,S2(ψ)) Let ψ be a term and S1 = x1
τ1

...xn
τn

, S2 = y1
τ1

...yn
τn

two finite

ordered sequences of variables (of equal size) from VAR s.t. all members of S1 are free
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in ψ. Then

SubS1,S2(ψ) = ψ[y1
τ1

/x1
τ1

, ..., yn
τn

/xn
τn

]

In words, SubS1,S2(ψ) is the term obtained from ψ by substituting its free variables from

S1 by the respective variables from S2.

Definition A.4 (SUBV (ψ)) Let ψ be a term and V a finite set of variables from VAR:

V = {y1
τ1

, ..., yn
τn
}. The set SUBV (ψ) is defined as follows:

SUBV (ψ) = {SubS1,S2(ψ) | S1 = xi1
τi1

, ..., xim
τim

, S2 = yi1
τi1

, ..., xim
τim

, { xi1
τi1

, ..., xim
τim
} ⊆ Free(ψ),

1 ≤ m ≤ n, {yi1
τi1

, ..., yim
τim
} ⊆ V, SubS1,S2(ψ) is defined}

In words, the set SUBV (ψ) is the set of terms obtained from ψ by substituting some of

its free variables from VAR by variables from a given set V .

Next, we define coordination and RMOD transformations for some term ψ. Let ψ be a

term s.t. (γ coorC/D δ)(ϕ) ∈ ST (ψ). Then applying coordination transformation to ψ

is replacing (γ coorC/D δ)(ϕ) by (norm(γ(ϕ)) or by norm(δ(ϕ))) in ψ. Now let µ be

another term s.t. (φ(τRτ)(α))(ϕ) ∈ ST (µ). Then applying RMOD transformation to ψ is

replacing (φ(τRτ)(ατ ))(ϕ) by norm(α(ϕ)) in µ.

Definition A.5 (Set of all available subterms) Let α0, α ( α0, α are NF terms) be

the terms supplied as arguments to derive. Let (axi) αi ≤ α′i for 1 ≤ i ≤ n be the

finite set of non-logical axioms (we assume that αi, α
′
i are NF terms). Let B be the set

{α0, α} ∪ {αi, α
′
i | 1 ≤ i ≤ n}. Let V be the set {x | x ∈ VAR and x ∈ ⋃

ϕ∈B ST (ϕ)}.

Let V ′ be the set {x(τρ)〈yτ 〉 | x(τρ), yτ ∈ V }.

Let B′ be the set of all terms obtained from terms in B by applying some number of

coordination and RMOD transformations.

Let the set A =
⋃

γ∈B∪B′ ST (γ).

Let CV be the set
⋃

γ∈A SUBV (γ).

Let Ext be the set
⋃

ψ∈A∪CV ∪V ′WCV (ψ). Then the set AS = A∪CV ∪Ext∪V ′ is the set

of all available subterms.
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Observation A.1 For any α, α0 and any finite set A of non-logical axioms, AS is a

finite set.

Lemma A.1 Let ψ ∈ AS. Then for each ϕ ∈ ST (ψ), ϕ ∈ AS.

Proof: Let ψ ∈ AS = A ∪ CV ∪ Ext ∪ V ′ and ϕ ∈ ST (ψ). Let us show that ϕ ∈ AS.

One of the following holds:

1. ψ ∈ A =
⋃

γ∈B∪B′ ST (γ). Then ϕ ∈ ST (γ) for γ ∈ B ∪ B′. Since ST (γ) ⊆ A,

ϕ ∈ A ⊆ AS.

2. ψ ∈ CV . Then there exists some ψ′ ∈ A s.t. ψ is obtained from ψ′ by substituting

some of its free variables from VAR by variables from V . ψ′ has a subterm ϕ′ s.t. ϕ

is obtained from ϕ′ by substituting some of its free variables from VAR by variables

from V . Thus ϕ ∈ CV ⊆ AS.

3. ψ ∈ Ext. Then ψ = 〈...〈µ〈x1〉...〉〈xn〉 for µ ∈ A ∪ CV ∪ V ′ and x1, ..., xn ∈ V ⊆ A.

Then all proper subterms of ψ (that is, all subterms that are not ψ itself) are in

A ∪ Ext.

4. ψ ∈ V ′. Then the proper subterms of ψ are in V ⊆ A.

Lemma A.2 (Available pairs) Given the (NF) goal terms α, α0, only terms from AS

appear as arguments in the call tree of derive.

Proof: by induction on d — the depth of the call in the call tree.

Base: d = 0. The first call is derive(α0, α, ∅). α0, α ∈ B ⊆ AS.

Assumption: For depth less or equal to d the lemma holds.

Step: The depth of the call is d + 1. One of the following holds:

• derive was called in derive(ψ, φ, Goals) at step 4, that is the call is derive(α′i, φ,Goals′).

φ ∈ AS by the induction hypothesis and α′i ∈ B ⊆ AS.

• derive was called in subderive(ψ, φ, Goals) at Step 2.1, that is α0 = fax,r(ψ),

α = φ. ψ, φ ∈ AS by the induction hypothesis. Thus α ∈ AS. Let us prove that

α0 ∈ AS. The function fax,r is one of:
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1. fRMOD,r. Then ψ = µ(τRτ)(γ) for some terms µ, γ and α0 = γ. Since by the

induction hypothesis ψ ∈ AS, by lemma A.1 its subterm α0 is also in AS.

2. fC1,r. Then α0 is a subterm of ψ ∈ AS and by lemma A.1, α0 ∈ AS.

• derive was called in subderive(ψ, φ, Goals) at Step 2.2. The proof is symmetric.

• derive was called in subderive(ψ, φ, Goals) at Step 3.2, that is α0 = fC2,1(ψ) or

α0 = fC2,1(T0) and α = φ. The proof is similar to the previous case.

• derive was called in subderive(ψ, φ,Goals) at Step 3.1, that is α = fD2,1(φ) or

α = fD2,1(φ) and α0 = ψ. The proof is similar to the previous case.

• derive was called in subderive(ψ, φ, Goals) at Step 4, that is ψ = C1(D1). Then

α0, α are subterms of terms in AS, and by lemma A.1 they are in AS.

• derive was called in subderive(ψ, φ,Goals) at Step 6, that is ψ = λx.µx and

φ = λx.γx for some terms µ, γ. Then α0 = µx and α = γx. By the induction

hypothesis, ψ, φ ∈ AS, thus by lemma A.1 α0, α are also in AS.

• derive was called in subderive(ψ, φ,Goals) at Step 5.1.1. That is, α = φ, ψ = µ(δ)

and α0 = norm(fax,r(µ)(δ)). By the induction hypothesis, ψ, φ ∈ AS and so is α.

ax can be either C1 or RMOD.

If ax =C1, then w.l.o.g. ψ = (µ coorC γ)(δ) for some terms µ, γ and fax,r(ψ) = µ.

ψ ∈ AS = A ∪ CV ∪ Ext ∪ V ′. Then one of the following cases holds:

1. If ψ ∈ A then there exists some term Ψ ∈ B ∪B′ s.t. ψ ∈ ST (Ψ). Let the

term Ψ′ be obtained from Ψ by replacing its subterm ψ by norm(µ(δ)). By

definition of B′, Ψ′ ∈ B′ and α0 = norm(µ(δ)) ∈ ST (Ψ′) ⊆ AS.

2. If ψ ∈ CV then there exists some ψ′ ∈ A s.t. ψ is obtained from ψ′ by

substituting some of its free variables from VAR by variables from V . That

is, ψ′ = (µ′ coorC γ′)(δ′) s.t. µ, γ, δ are obtained from µ′, γ′, δ′ resp. by

substituting some of their free variables from VAR by variables from V . Since

ψ′ ∈ A, there exists some Ψ′ ∈ B ∪ B′ s.t. ψ′ ∈ ST (Ψ′). Let the term Ψ′′ be

obtained from Ψ′ by replacing its subterm (µ′ coorC γ′)(δ′) by norm(µ′(δ′)).

By definition of B′, Ψ′′ ∈ B′. Then norm(µ′(δ′)) ∈ A and by definition of CV ,

α0 = norm(µ(δ)) ∈ CV .
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3. If ψ ∈ Ext, then δ ∈ V . If µ ∈ V , then norm(µ(δ)) = µ(δ) ∈ V ′.

Otherwise (µ coorC γ) ∈ A ∪ CV and µ ∈ A ∪ CV . If µ is not an abstrac-

tion term, then α0 = norm(µ(δ)) = µ(δ) ∈ Ext. Otherwise µ = λx.ζx

and norm(µ(δ)) = ζx[x/δ]. Since µ ∈ A ∪ CV , also ζx ∈ A ∪ CV and

α0 = ζx[x/δ] ∈ CV .

4. ψ ∈ V ′ – impossible, since coorC ∈ ST (ψ).

Otherwise ax =RMOD. Then w.l.o.g. ψ = (µ(τRτ)(γ))(δ), α0 = norm(γ(δ)) and

α = φ ∈ AS. ψ ∈ AS = A∪CV ∪Ext∪ V ′. One of the following possibilities holds

for ψ:

1. ψ ∈ A. Then there exists some term Ψ ∈ B ∪ B′ s.t. ψ ∈ ST (Ψ). Let Ψ′

be the term obtained from Ψ by replacing its subterm ψ by norm(γ(δ)). By

definition of B′, Ψ′ ∈ B′, thus α0 = norm(γ(δ)) ∈ A ⊆ AS.

2. ψ ∈ CV . Then there exists some term ψ′ ∈ A s.t. ψ is obtained from ψ′ by

substituting some of its free variables from VAR by variables from V . That

is, ψ′ = (ϕ′(γ′))(δ′) s.t. ϕ, γ, δ are obtained from ϕ′, γ′, δ′ resp. by substituting

some of their free variables from VAR by other variables from V . Since ψ′ ∈ A

there exists some term Ψ′ ∈ B ∪ B′ s.t. ψ′ ∈ ST (Ψ′). Let Ψ′′ be the term

obtained from Ψ′ by replacing its subterm ψ′ by norm(γ′(δ′)). By definition of

B′, Ψ′′ ∈ B′ and thus norm(γ′(δ′)) ∈ A. Therefore, α0 = norm(γ(δ)), which

is obtained from norm(γ′(δ′)) by substituting some of its free variables from

VAR by some variables from V is in CV .

3. ψ ∈ Ext. Then δ ∈ V . If also γ ∈ V , then norm(γ(δ)) = γ(δ) ∈ V ′.

Otherwise µ(γ) ∈ A∪CV ∪V ′. If µ(γ) ∈ V ′, then µ, γ ∈ V and norm(γ(δ)) =

γ(δ) ∈ V ′.

If µ(γ) ∈ A ∪ CV , then γ ∈ A ∪ CV . If γ is an abstraction term λx.ζx, then

ζx ∈ A∪CV and norm(γ(δ)) = ζx[x/δ] ∈ CV . Otherwise norm(γ(δ)) = γ(δ) ∈
Ext.

4. ψ ∈ V ′ – impossible due to the structure of ψ.
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• derive was called in subderive(ψ, φ, Goals) at Step 5.5.2. Then α0 = αi ∈ B ⊆
AS. φ = µ(δ) and α = µ. By the induction hypothesis, φ ∈ AS and so is its

subterm α.

• derive was called in subderive(ψ, φ, Goals) at Step 5.5.1/5.5.3 – the proof is

similar to the previous case.

• derive was called in subderive(ψ, φ, Goals) at Step 7.1. Then ψ = λx.µx and

α0 = µx. By the induction hypothesis, ψ is in AS and so is its subterm α0. Also,

w.l.o.g. α = φ(x). Note that since µ ∈ AS, x ∈ V . By the induction hypothesis,

φ ∈ AS = A ∪ CV ∪ Ext ∪ V ′. By definition of Ext, φ(x) ∈ Ext.

• derive was called in subderive(ψ, φ, Goals) at Step 7.2. The proof is similar to

the previous case.

Termination immediately follows from the above lemma, since (i) there is a finite set of

terms that can appear as arguments in the call tree of derive, and (ii) no pair of terms

appears more than once. Thus the call tree of derive is always finite, and the algorithm

terminates when it is traversed.



Appendix B

Completeness of the proof search

procedure

We prove that the proof search procedure defined above is complete with respect to L-

OCF̂R,Âb proofs with no instances of F̂R rule (henceforth F̂R-free proofs). The proof has

the following stages:

1. Any order statement that has a F̂R-free L-OCF̂R,Âb proof has a (F̂R-free) canonic

proof.

2. Any order statement that has a F̂R-free canonic proof is provable by the algorithm.

First we prove that any order statement α ≤ γ that has a F̂R-free L-OCF̂R,Âb proof P has

a canonic proof by constructing a canonic proof of α ≤ γ from P. We rely on the following

assumptions1:

1. (*) No coordinator is marked for conjunctive and disjunctive behaviour simultane-

ously.

2. (*) No non-logical axiom is an order statement α ≤ β or β ≤ α, for a term α(ττ) for

a “half-coordinated” expression coor X.

3. (*) A term α of type (ττ) for a “half-coordinated” expression coor X combines only

with terms of type τ (and not of type (ρ(ττ)).

1The assumptions defined in [4] are marked with (*).
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4. (*) There does not exist a disjunctive or conjunctive coordinator in the lexicon (or

derivable from the lexicon), s.t. the resulting category in coordination is marked for

restrictivity.

5. (*) No terms of form α(γ) are marked for restrictivity.

6. No order statements of the following forms are derivable in L-OCF̂R,Âb :

(a) (*) An order statement containing a proof term the denotation of which is a

constant zero function, that is a function that sends every argument to the

bottom element of the appropriate domain.

(b) An order statement of form ψ ≤ (φ〈x〉)〈y〉 s.t. x, y ∈ VAR and ψ 6= (φ′〈x〉)〈y〉
for some term φ′.

7. There are no free variables from VAR in the terms of the non-logical axioms.

Observation B.1 Given the above assumptions, let P be the following L-OCF̂R,Âb proof

of size s:

A
A

¢
¢

α ≤ γ R

ψ ≤ φ〈x〉 Âb

Then a proof P’ of ψ ≤ φ〈x〉 of size at most s of the following form can be constructed:

A
A

¢
¢

α ≤ γ

ψ ≤ φ〈x〉 R

s.t. R 6= Âb.

Proof: By assumption 6b, ψ = φ′〈x〉. Then P is of form:

A
A

¢
¢

α = φ′〈x〉〈y〉 ≤ φ〈x〉〈y〉 = γ

ψ = φ′〈x〉 ≤ φ〈x〉 Âb
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for some y ∈ VAR. Then it can be shown (using assumption 7 and the side conditions

of the coordination rules) that P has a subproof Ω of φ′ ≤ φ of size at most s− 1. Thus

P’ can be constructed as follows:

Ω
ψ = φ′〈x〉 ≤ φ〈x〉 FR

Lemma B.1 Let P be an F̂R-free L-OCF̂R,Âb proof of size s s.t. its main rule is R and

x ∈ VAR:

A
A

¢
¢

φx ≤ ψ〈x〉 R

Then P can be rewritten s.t. its size is at most s and R is one of the following rules: (i)

REFL, (ii) RMOD, (iii) FR, or (v) TRANS.

Proof:

• R is not C1/D1/C2/D2, since variables from VAR can not appear in the conclusion

of these rules.

• R is not Ab, since the right handside of its conclusion is not an abstraction term.

• IF R is Âb then by observation B.1 the proof can be rewritten.

• R is not NL, since by assumption 7 free variables from VAR do not appear in

non-logical axioms.

• If R is MON, then the proof is of the following form:

A
A

¢
¢

xτ ≤ xτ

ψ(τ+ρ)(xτ ) ≤ ψ(τ+ρ)(xτ )
MON

and can be replaced by an instance of REFL.

Next, following [4], we define a pre-canonic L-OCF̂R,Âb proof as a canonic proof without

the requirement (*) that the string R1...Rn belongs to R. That is, we only require that

the TRANS rule occurrences are ‘flattened’. It is straightforward to show that any order

statement that has a L-OCF̂R,Âb proof, has a pre-canonic L-OCF̂R,Âb proof. Types 1

and 2 of pre-canonic proofs are defined similarly to the ones of canonic proofs (without

requirement (*)).
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Lemma B.2 (Canonic proof existence) Let the order statement α0 ≤ α have a pre-

canonic F̂R-free L-OCF̂R,Âb proof P of size s. Then there exists a (F̂R-free) canonic proof

of α0 ≤ α of size at most s.

Proof: We construct a canonic proof from the pre-canonic proof P. If the requirement

(*) is satisfied, then the proof is already canonic. Otherwise there is a violation of (*),

that is a violation of the relative ordering between R-PROD, L-PROD, NL, STR, Ab and

Âb. We divide the violations into 3 mutually disjoint classes:

1. impossible – violations that can not occur in L-OCF̂R,Âb proofs:

• D1, C1

• C2, D2

• MON, C1

• MON, D2

• C2, MON

• D1, MON

• Ab, C1

• Ab, D2

• Ab, RMOD

• Ab, STR

2. removable – violations that can be removed from L-OCF̂R,Âb proofs:

• C2, C1

• D1, D2

• FR, C1

• D1, FR

3. rewritable – violations that can be rewritten, producing a L-OCF̂R,Âb proof of at

most the same size, with less violations:

• STR, D2

• Âb, C1



80

• Âb, D2

• C2, STR

• STR, RMOD

• Âb, RMOD

• Âb, STR

• Ab/Âb, Ab/Âb

Below we treat the violations involving the rules Âb and Ab. The proof of [4] can be

easily adapted to our formulation for the rest of the violations.

Impossible violations.

The following violations are impossible in L-OCF̂R,Âb given the assumptions 1 – 7.

• (Ab, C1) – then the part of the proof violating the ordering is of form:

A
A

¢
¢

λx.ψx ≤ λx.φx
Ab

A
A

¢
¢

α coorC γ ≤ γ
C1

λx.ψx ≤ γ
TRANS

However, λx.φx can not be equal to α coorC γ, since α coorC γ is not an abstraction

term.

• (Ab, D2), (Ab, MON), (Ab, FR) – the proof is similar to the previous case.

Rewritable violations.

Now we prove that a canonic proof of α0 ≤ α can be constructed from the pre-canonic

F̂R-free proof P of α0 ≤ α that has only rewritable violations. The proof is by induction

on the size n of P.

Base. n = 1. The proof P is an axiom. Thus the proof is already canonic.

Hypothesis. From a pre-canonic proof of size less or equal to n, a canonic proof can be

constructed.

Step. Let α0 ≤ α have a pre-canonic proof P of size n + 1.

If P is a proof of Type 1:
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R1

A
A

¢
¢

ψ1 ≤ ψ′1
Ψ′

1

R2

A
A

¢
¢

ψ2 ≤ ψ′2
Ψ′

2
. . .

Rk

A
A

¢
¢

ψk ≤ ψ′k
Ψ′

k

α0 = ψ1 ≤ ψ′k = α
R

for R 6=TRANS, then each of the subproofs Ψ1, . . . , Ψk is a pre-canonic proof of size at

most n, and by the induction hypothesis, canonic proofs Ψ1, ..., Ψk can be constructed

from them. Then the proof of α0 ≤ α obtained by replacing Ψ′
1, ..., Ψ

′
k by Ψ1, ..., Ψk resp.

is canonic.

Otherwise P is of Type 2:

R1

A
A

¢
¢

ψ1 ≤ ψ′1
Ψ′

1

R2

A
A

¢
¢

ψ2 ≤ ψ′2
Ψ′

2
. . .

Rk

A
A

¢
¢

ψk ≤ ψ′k
Ψ′

k

α0 = ψ1 ≤ ψ′k = α
TRANS∗

If one of the main rules Ri in Ψ′
i is axi, then each of the proofs of

Ψ′
1 . . . Ψ′

i−1

ψ1 ≤ ψi

TRANS

and

Ψ′
i+1 . . . Ψ′

k

ψi+1 ≤ ψk

TRANS

is pre-canonic of size at most n. By the induction hypothesis,

canonic proofs Ω1, Ω2 can be constructed from them and then the proof

Ω1

∅
ψi ≤ ψ′i

axi
Ω2

α0 = ψ1 ≤ ψ′k = α
TRANS

is canonic.

Otherwise there are no occurrences of axi. By the induction hypothesis, canonic proofs

Ψ1, ..., Ψk can be constructed from the proofs Ψ′
1, . . . , Ψ

′
k. Let P’ be the proof obtained

from P by replacing Ψ′
1, ..., Ψ

′
k by Ψ1, ..., Ψk resp. If the string formed by the rules

R1R2 . . . Rk in P’ belongs to the regular language R, then P’ is canonic. Otherwise

there is a (rewritable) violation of the order of the rules. It can be shown that each such

violation can be rewritten. We treat only the violations involving Âb and Ab rules. The

proof of [4] can be easily adapted for the rest of the rewritable violations.

• (Âb, C1) – then w.l.o.g. the part of proof violating the ordering is of the following

form:
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A
A

¢
¢

ψx ≤ (α coorC γ)〈x〉 R

ab(ψx) ≤ α coorC γ
Âb

A
A

¢
¢

α coorC γ ≤ γ
C1

ab(ψx) ≤ γ
TRANS

By lemma B.1 R can be FR, RMOD, Âb or TRANS. By observation B.1, the proof

can be rewritten s.t. R 6=Âb .

If R = TRANS, then the order statement ψx ≤ γ〈x〉 has a F̂R-free L-OCF̂R,Âb proof

Ω′ of size n:

A
A

¢
¢

ψx ≤ ψ′
. . . A

A
¢
¢

φ ≤ (α coorC γ)〈x〉

∅
α coorC γ ≤ γ

C1

(α coorC γ)〈x〉 ≤ γ〈x〉 FR

ψx ≤ γ〈x〉 TRANS

By the induction hypothesis, a canonic proof Ω can be constructed from Ω′. Thus

the following F̂R-free proof of size n + 1 is canonic :

Ω

A
A

¢
¢

ψx ≤ γ〈x〉
λx.ψx ≤ γ

Âb

If R =RMOD, the proof is similar to the TRANS case.

Otherwise R =FR. Then the proof is of the following form:

A
A

¢
¢

δ ≤ α coorC γ
x ≡ x

δ〈x〉 ≤ (α coorC γ)〈x〉 FR

δ ≤ α coorC γ
Âb

A
A

¢
¢

α coorC γ ≤ γ
C1

δ ≤ γ
TRANS

The proof can be rewritten as follows:

A
A

¢
¢

δ ≤ α coorC γ
A

A
¢
¢

α coorC γ ≤ γ
C1

δ ≤ γ
TRANS
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The size of the above proof is at most n, thus by the induction hypothesis, a canonic

proof of size at most n can be constructed from it.

• (Âb, D2) – the proof is similar to the previous case.

• (Âb, RMOD) – then the part of the proof violating the ordering is of form:

∆1

A
A

¢
¢

φx ≤ (ψ〈γ〉)〈x〉 R

ab(φx) ≤ ψ〈γ〉 Âb
∅

ψ(γ) ≤ γ
RMOD

ab(φx) ≤ γ
TRANS

The proof is similar to the previous case.

• (Âb, MON) – then the part of the proof violating the ordering is of form:

∆1

A
A

¢
¢

φx ≤ (ψ〈γ〉)〈x〉 R

ab(φx) ≤ ψ(τ+ρ)〈γ〉
Âb

∆2

A
A

¢
¢

γ ≤ δ

ψ(τ+ρ)〈γ〉 ≤ ψ(τ+ρ)〈δ〉
MON

ab(φx) ≤ ψ(τ+ρ)〈δ〉
TRANS

The proof is similar to the previous case.

• (Âb, FR) – the proof is similar to the previous case.

• (Ab,Ab)– the part of the proof that violates the ordering proof is

A
A

¢
¢

αx ≤ δx

λx.αx ≤ λx.δx
Ab

A
A

¢
¢

δx ≤ γx

λx.δx ≤ λx.γx
Ab

λx.αx ≤ λx.γx
TRANS

This part of proof can be rewritten:

A
A

¢
¢

αx ≤ δx
A

A
¢
¢

δx ≤ γx

αx ≤ γx TRANS

λx.αx ≤ λx.γx
Ab

The proof is of size at most n, thus by the induction hypothesis a canonic proof of

size at most n can be constructed from it.



84

• (Âb, Âb), (Ab, Âb), (Âb, Ab) – the proof is similar to the previous case.

In this way we can remove all the rewritable violations, constructing a canonic proof.

Next we prove that any order statement that has a L-OCF̂R,Âb F̂R-free canonic proof is

provable by the algorithm.

Definition B.1 (Mixed Monotonicity) ([4]) Let ψ1(γ1), . . . , ψn(γn) be terms. We say

that a part of a canonic form:

ψ1〈γ1〉 ≤ ψ2〈γ2〉 ≤ . . . ≤ ψn〈γn〉

has mixed monotonicity iff one the following holds:

(a) ψ1, ψn ∈ MON and there exist i, j, k: 1 ≤ i ≤ j ≤ k ≤ n, s.t. ψi, ψk ∈ MON ↑

, ψj ∈MON ↓ or ψi, ψk ∈MON ↓, ψj ∈MON ↑.

(b) ψ1 6∈ MON or ψn 6∈ MON and there exist i, j: 1 ≤ i ≤ j ≤ n s.t.ψi ∈ MON ↑

, ψj ∈MON ↓ or ψi ∈MON ↓, ψj ∈MON ↑.

(c) ψ1, ψn 6∈MON and there exists i: 1 < i < n, s.t.ψi ∈MON.

Definition B.2 (Minimal L-OCF̂R,Âb canonic proof) Let the order statement ψ ≤ ψ′

have a L-OCF̂R,Âb canonic proof P of size t. P is a minimal canonic proof iff there does

not exist a L-OCF̂R,Âb canonic proof P’ of size less than t.

Observation B.2 If an order statement has a canonic L-OCF̂R,Âb proof, then it has a

minimal canonic L-OCF̂R,Âb proof.

Lemma B.3 Let α0, α be NF terms and let α0 ≤ α be an order statement that has a

F̂R-free minimal canonic proof P of size n, free of sequences of mixed monotonicity. If

for each < ψ, ψ′ >∈ Goals there does not exist a canonic L-OCF̂R,Âb proof of the order

statement ψ ≤ ψ′ of size less than or equal to n, then derive(α0, α, Goals) returns true.

Proof: by induction on the size n of the canonic proof P.

Base: n = 1. The proof has the form ∅
α0 ≤ α R, where R is one of the axioms REFL,

NL, RMOD, C1, D1 and < α0, α > 6∈ Goals.
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• REFL. α0 = α. In step 1 of subderive the algorithm compares α0 and α and

returns true.

• NL. Then α0 = αi and α = α′i for [ αi, α
′
i ] a non-logical axiom. In step 4.1

of derive the algorithm calls subderive(α0, αi, Goals′) and derive(α′i, α, Goals′)

which return true according to the previous case.

• RMOD. The proof is
∅

α0 = ψ(τRτ)(γ) ≤ γ = α
RMOD . In step 2.1 of subderive, the

algorithm computes fRMOD,r((ψ(τRτ))(γ)) = γ(ττ) and then calls derive(γ, γ,Goals′)

which returns true according to the REFL case.

• C1. The proof is
∅

α0 = ψ coorC ϕ ≤ α
C1 and α = ψ or α = ϕ. In step 2.1

of subderive, the algorithm computes fC1,r(ψ coorC ϕ) = α and then calls

derive(α, α,Goals′) which returns true according to the REFL case.

• D1. The proof is
∅

α0 ≤ ψ coorD ϕ = α
D1 and α0 = ψ or α0 = ϕ. In step 2.2

of subderive, the algorithm computes fD1,l(ψ coorD ϕ) = α0 and then calls

derive(α, α,Goals′) which returns true according to the REFL case.

Hypothesis: Assume that for every order statement α0 ≤ α (for α0, α NF terms), that

has a minimal canonic proof P of size t ≤ n, if for each < ψ, ψ′ >∈ Goals there does not

exist a canonic L-OCF̂R,Âb proof of the order statement ψ ≤ ψ′ of size less than t, then

derive(α0, α, Goals) returns true.

Step: Let α0 ≤ α be an order statement that has a minimal canonic proof of size n + 1.

The proof can have one of the two types. We show first that an order statement that has

a canonic proof of Type 2 is provable:

Ψ1

A
A

¢
¢

φ1 ≤ φ′1
R1

Ψ2

A
A

¢
¢

φ2 ≤ φ′2
R2

. . .

Ψl

A
A

¢
¢

φl ≤ φ′l
Rl

ψ ≤ ψ′
TRANS∗

where (i) n ≥ 2, (ii) Ψ1, . . . , Ψl are Type 1 canonic proofs, (iii) ψ = φ1, φ
′
1 = φ2, φ

′
2 =

φ3, . . . , φ
′
l−1 = φl, φ

′
l = ψ′, (iv) the string formed by the rules R1...Rl belongs to the regular

language R.

We distinguish between two cases depending on whether the string R1R2 . . . Rl includes

instances of the non-logical axioms.
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If there exist i1, . . . , im s.t. 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ l and for every 1 ≤ j ≤ l, Rij = ai,

(that is ψij ≤ ψ′ij is a non-logical axiom) we will look at the leftmost non-logical axiom

instance, i.e. ψi1 ≤ ψ′i1 . In step 4.1 of derive, the algorithm attempts the non-logical

axiom [ ψi1 , ψ
′
i1

] and calls subderive(α0, ψi1 , Goals′) and derive(ψ′i1 , α, Goals′). The

order statement α0 ≤ ψi1 has a minimal canonic proof Ω1
2:

Ψ1 Ψ2 . . . Ψi1

α0 ≤ ψi1

TRANS∗,

where none of the R1 . . . Ri−1 is a non-logical axiom, therefore derive(α0, ψi1 , Goals)

returns true iff subderive(α0, ψi1 , Goals′) returns true and the two calls are equivalent.

Similarly, the order statement ψi1+1 ≤ α has a minimal canonic proof Ω2:

Ψi1+1 Ψi1+2 . . . Ψl

ψi1+1 ≤ α
TRANS∗

Both of the proofs of α0 ≤ ψi1 and ψ′i1 ≤ α are of size s ≤ n. Also note that Goals′ =

Goals ∪ {< α0, α >} and since the proof P is minimal, there does not exist a smaller

L-OCF̂R,Âb proof of α0 ≤ α. Therefore, the set Goals′ contains only tuples < ψ,ψ′ >

s.t. the order statement ψ ≤ ψ′ does not have a L-OCF̂R,Âb proof of size ≤ n. By the

induction hypothesis, derive(α0, ψi1 , Goals′) and derive(ψ′i1 , α, Goals′) return true and

so does derive(α0, α,Goals).

Otherwise, there does not exist such i that 1 ≤ i ≤ l and Ri = ai.

Then, since the proof is F̂R-free, the string formed by the rules R1R2 . . . Rl belongs to the

regular language R-PROD∗ (STR∗ | Ab | Âb) L-PROD∗.

If R1 is an R-PROD rule, the algorithm can effectively produce subgoals of a smaller size,

which are provable by the induction hypothesis. The following cases are possible:

1. R1 is an axiom, that is ψ′1 = fax,r(ψ1). In step 2.1 of subderive, the algorithm calls

derive(ψ′1, α, Goals′). The order statement ψ′1 ≤ α has a minimal canonic proof Ω:

Ψ2 . . . Ψl

ψ′1 ≤ ψl = α
TRANS∗

of size n at most. Goals′ = Goals ∪ {< α0, α >}. Since the proof P is minimal,

there does not exist a smaller L-OCF̂R,Âb proof of α0 ≤ α. Therefore, the set Goals′

2The proof Ω1 is minimal because it is a part of a minimal L-OCF̂R,Âb proof.
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contains only tuples < ψ,ψ′ > s.t. the order statement ψ ≤ ψ′ does not have a

L-OCF̂R,Âb proof of size ≤ n. By the induction hypothesis, derive(ψ′1, α, Goals′)

returns true and so does derive(α0, α,Goals).

2. If R1 = D2, the proof Ψ1 of ψ1 ≤ ψ′1 is of form:

A
A

¢
¢

ψ1,1 ≤ ψ′1
P1

A
A

¢
¢

ψ1,2 ≤ ψ′1
P2

ψ1 = ψ1,1 coorD ψ1,2 ≤ ψ′1
D2

In step 3.1 of subderive, the algorithm calls derive(ψ1,1, α, Goals′)

and derive(ψ1,2, α, Goals′). Also, `L−OC ψ1,i ≤ α:

A
A

¢
¢

ψ1,i ≤ ψ′1
Pi

Ψ2 . . . Ψl

ψ1,i ≤ α
TRANS∗

, where i ∈ {1, 2}

By lemma B.2 and observation B.2, both of the order statements ψ1,1 ≤ α and ψ1,2 ≤
α have minimal canonic proofs of size n at most. Goals′ = Goals ∪ {< α0, α >}
and since the proof P is minimal, there does not exist a canonic L-OCF̂R,Âb proof

of α0 ≤ α of size ≤ n + 1. Therefore, the set Goals′ contains tuples < ψ,ψ′ >

s.t. the order statement ψ ≤ ψ′ does not have a L-OCF̂R,Âb proof of size ≤ n. By

the induction hypothesis, derive(ψ1,1, α, Goals′) and derive(ψ1,2, α,Goals′) return

true and so does derive(α0, α, Goals).

If Rl is an L-PROD rule, the proof is symmetric.

Otherwise the string formed by the rules R1R2 . . . Rl belongs to the regular language

(STR∗ | Ab | Âb). Since l > 2, it can only belong to the regular language STR∗, then the

proof is similar to the proof of [4] for the matching case.

Next, we show that an order statement that has a canonic proof of Type 1 is provable:

Ψ1

A
A

¢
¢

φ1 ≤ φ′1
R1

. . .

Ψl

A
A

¢
¢

φl ≤ φ′l
Rl

ψ ≤ ψ′
R

where (i) R 6=TRANS, (ii) l ∈ {1, 2}, and (iii) Ψ1, . . . , Ψl are canonic form proofs.

One of the following cases holds:
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1. R = Ab. Then the proof of the order statement α0 ≤ α is of the form:

A
A

¢
¢

µx ≤ µ′x

α0 = λx.µx ≤ λx.µ′x = α
Ab

The order statement µx ≤ µ′x has a minimal canonic proof of size at most n. In

step 6 of subderive, the algorithm calls derive(µx, µ′x, Goals′). Goals′ = Goals ∪
{< α0, α >} and since the proof P is minimal, there does not exist a canonic L-

OCF̂R,Âb proof of α0 ≤ α of size ≤ n + 1. Therefore, the set Goals′ contains tuples

< ψ,ψ′ > s.t. the order statement ψ ≤ ψ′ does not have a L-OCF̂R,Âb proof of size

≤ n. By the induction hypothesis, derive(µx, µ′x, Goals′) returns true and so does

derive(α0, α,Goals).

2. R = Âb. Then w.l.o.g. the proof has one of the following forms:

•

A
A

¢
¢

µx ≤ µ′〈x〉
α0 = λx.µx ≤ µ′ = α

Âb

The order statement µx ≤ µ′〈x〉 has a minimal canonic proof of size at

most n. In step 7 of subderive the algorithm calls derive(µx, µ′〈x〉, Goals′).

Goals′ = Goals ∪ {< α0, α >} and since the proof P is minimal, there does

not exist a canonic L-OCF̂R,Âb proof of α0 ≤ α of size ≤ n + 1. Therefore,

the set Goals′ contains tuples < ψ, ψ′ > s.t. the order statement ψ ≤ ψ′

does not have a L-OCF̂R,Âb proof of size ≤ n. By the induction hypothesis,

derive(µx, µ′〈x〉, Goals′) returns true and so does derive(α0, α, Goals).

•

A
A

¢
¢

µ〈x〉 ≤ µ′x

α0 = µ ≤ λx.µ′x = α
Âb

The proof is similar to the previous case.
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•

A
A

¢
¢

µ〈x〉 ≤ µ′〈x〉 R

α0 = µ ≤ µ′ = α Âb

Let us show that this case is impossible. By observation B.1 and lemma B.1,

the proof can be rewritten s.t. R is either FR or TRANS, the premises of

which are conclusions of FR rules. From this follows that the order statement

µ ≤ µ′ has a shorter L-OCF̂R,Âb proof, in contradiction with the minimality

of the given proof.

3. The proof for the rest of the rules is similar to one of the previous cases.

Corollary B.1 (Provability of order statements having a F̂R-free canonic L-

OCF̂R,Âb proof) Let α0, α be NF terms and let α0 ≤ α be an order statement that

has a F̂R-free canonic proof P, which is free of sequences of mixed monotonicity. Then

derive(α0, α, ∅) returns true.

The corollary follows directly from the above lemma.
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