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Abstract—This paper makes a substantial step towards au-
tomatization of paraconsistent reasoning by providing a general
method for a systematic and modular generation of cut-free
calculi for thousands of paraconsistent logics known as Logics
of Formal (In)consistency. The method relies on the use of non-
deterministic semantics for these logics.

I. INTRODUCTION

It is a fact of life that large knowledge bases are inherently
inconsistent, in the same way that large programs are inher-
ently buggy. However, classical logic (CL) fails to accommo-
date the fact that knowledge bases containing contradictory
data may still produce useful answers to queries. This is
because in CL a single inconsistency leads to trivialization of
the whole knowledge base. Accordingly, over the last decades
there has been a growing interest in computer science applica-
tions of paraconsistent logics — logics which allow non-trivial
inconsistent theories. Integration of information from multiple
sources in large knowledge bases, negotiations among agents
with conflicting goals, and complex software specifications in
which different stake-holders have incompatible requirements
are just a few cases in point. Recently, suggestions have
even been made (see, e.g., [19]) to adopt paraconsistent logic
as a foundational concept for future information systems
engineering.

One of the oldest and best known approaches to paracon-
sistency is that by da Costa ([17], [18]), which seeks to allow
the use of classical logic whenever this is safe, but behaves
completely differently when contradictions are involved. This
approach has led to the introduction of the family of Logics of
Formal (In)consistency (LFIs) (see [12], [13] for surveys and
[14] for an application of LFIs for integration of inconsistent
information in evolutionary databases). This family is based
on two key ideas. The first is that propositions should be
divided into two sorts: the “normal” (or consistent), and the
“abnormal” (or inconsistent) ones. While classical logic can be
applied freely to normal propositions, its use for the abnormal
ones is restricted. The second idea is to reflect this classifi-
cation within the language used. In the most important class
of LFIs called C-systems ([13]), this is done by employing a
special (either primitive or defined) connective o, where the
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intuitive meaning of o is “y is consistent”.

Since their introduction in terms of Hilbert-style systems
in the 1960s, the main obstacle to efficient use of C-systems
has been the lack of analytic calculi for them. Efforts towards
finding such calculi were at first concentrated on da Costa’s
historical system C;. After an aborted attempt by Raggio in
the 1960s ([24]), Beziau proposed in [10] somewhat peculiar
sequent rules for C;. Establishing cut-elimination for Beziau’s
system was a non-trivial task, which was accomplished only
much later (in [11]). At about the same time, Carnielli et al.
introduced a tableau system for Cy ([15], [12], [16]). Recently
some analytic calculi have been introduced also for a few
other C-systems ([23], [22]). However, since each of these
calculi was tailored to some specific system, their rules were
introduced in a sort of an ad-hoc manner, and so they have no
uniform structure. Therefore, even a slight modification in any
of them means starting the search for a corresponding analytic
calculus almost from scratch.

In this paper we provide a uniform and modular method
for a systematic generation of cut-free sequent calculi for
a large family of paraconsistent logics, which practically
includes every C-system ever studied in the literature. The
method is based on the semantics provided in [4] for this
family. This semantics is given in terms of non-deterministic
matrices (Nmatrices), a natural generalization of standard
multi-valued matrices obtained by importing the notion of
non-deterministic computations from computer science into
the truth-tables of logical connectives. For some of these
systems, the corresponding semantics is three-valued. In this
case (as was explained in [6] using a concrete example
of one such LFI), one can exploit the algorithm given in
[5] for constructing cut-free Gentzen-type systems for logics
which have a characteristic finite-valued Nmatrix (and whose
language is sufficiently expressive). However, this method
does not apply to any LFI which has no finite semantic
characterization in terms of Nmatrices. Unfortunately, some
of the most important LFIs, including da Costa’s original C1,
cannot have such a characterization. Nevertheless, they do
have infinitely-valued characterizations of this kind (sufficient
to guarantee their decidability). In this paper we show that
these characterizations can be used to extract cut-free sequent
calculi for these logics, while preserving the crucial property
of modularity of the method. We believe that these results can



open the door to construction and implementation of efficient
theorem provers based on this type of paraconsistent logics,
which in turn will lead to their useful new applications for
reasoning under uncertainty.

II. PRELIMINARIES

In what follows, £ is a propositional language, and Frm,
is its set of wfifs.

Definition 1. A propositional logic is a pair L = (L}),
where I is a structural' and finitary? non-trivial (Tarskian)
consequence relation for L.

The notion of paraconsistency (with respect to —) is usually
defined as follows (see, e.g., [12]):

Definition 2. Let £ be a language which includes a unary
connective —. A propositional logic L = (L,}) is paracon-
sistent (with respect to —) if there are formulas ¢, ¢ € Frm,

such that ¢, ~) I ¢.3
A. Taxonomy of C-systems

Let L4 = {A,V,D,-}, L =
{/\7\/737_‘70}'

{A,V,D}, and Lo =

Definition 3. Let HCL™ be a standard Hilbert-style system
which has MP as the only inference rule, and is sound and
strongly complete for the positive fragment (i.e., the ﬁ;-
fragment) of classical propositional logic.
1) The system B for L is obtained by adding to HCL™
the axioms (t) —=p V ¢ and (b) o p D (p A —p D Y).
2) The system BK (for L) is obtained by adding to B the
axiom (k) oV (p A —¢p).

Logics of Formal (In)consistency (LFIs) form a large family
of paraconsistent logics, in which the notion of consistency
is internalized. Namely, a paraconsistent logic L = (L£,F)
is an LFI if there is an atomic variable p and a set X (p)
of L-formulas containing only the variable p such that
b, —p, X{1/p} F ¢* for every ¢, € Frm,. A particularly
useful subclass of LFIs is that of C-systems, in which X (p)
is a singleton:

Definition 4. Let L = (£,F) be a logic with £ containing
L. We say that L is a C-system if (i) L contains the E;-
fragment of classical logic, (ii) L is paraconsistent, and (iii)
L has a (primitive or defined) unary connective o, for which
(b), (t) and (k) are valid in L.

In what follows, we take o to be a primitive connective
of the language, leaving handling of C-systems which do not
have such a connective to Section V.

Remark 5. The original definition of C-systems in [12],
[13] is slightly different from the above one: it does not

- is structural if, for every uniform substitution 6, T' F 1) implies o(T) +
6().

21~ is finitary if T+ ¢ implies that there is a finite ' C 7" such that T" - ).

3As F is structural, it is enough to require that there are atoms p, ¢ such
that p, =p I/ q.

“The substitution X {t/p} is understood in the standard way.

require the validity of (k). Indeed, in [12], [13] the system
B (called mbC there) is considered to be the most basic
C-system. Nevertheless, we find it much more appropriate
to choose BK for this role. First of all, given the intended
meaning of oy as “p is consistent”, the meaning of axiom
(b) is that no formula is both consistent and contradictory.
Axiom (K) complements this by saying that every formula is
either consistent or contradictory. This last principle seems
to be as essential for the intended meaning of oy as that
expressed by axiom (b). Another strong indication that BK
is the most natural basic C-system is that in the Gentzen-type
system for this logic the right and left introduction rules for
all the connectives other than — are dual: including one of
them guarantees the invertibility (Definition 34) of the other
in BK (see Proposition 35 below). This includes the rules for
o corresponding to axioms (b) and (k). Finally, (k) is anyway
a theorem of almost every important C-system ever studied.
This is due to the fact that it is derivable in B from each of the
three most important axioms concerning o which have been
studied in the literature: those denoted below by (i), (1), and
(d). These dependencies are easily established (see Example
33 for the case of (I)).

Next we provide a list of plausible axioms with which BK
can be extended. They are divided into two parts: one dealing
with combinations of negation with classical connectives, and
the other involving the connective o.

Definition 6. Let ACL be the following set of axioms:

(€) ¢ D>~

() ~(pAY) D (mp V) (n}) (me V1) D (e A)
(n}) (e V) D (e A=) () (~p A=th) D (e V)
(n5) =(¢ D9) D (p A=) (05) (A=) D =(p DY)

Let ADC be the following set of axioms for ff € {A,V, D}:

(c) =D

(i) 709 D (9 A )

(0f) op D o(pt) (02) o9 D o(pty)
(ag) (cp Aoy) Do(ptih) (a-) op Domp
(1) =(p A =p) Dop (d) ~(=p A ) Doy

Let A= ACLUADC and Ag = A\ {(1), (d)}.

Definition 7. For A C A, BK]A] is the system obtained from
BK by adding to it all the axioms in A.

Remark 8. The set ADC U {(c), (e)} includes the axioms
most frequently used in the literature on LFIs ([12], [13]).
Instead of our (Ol:il) and (o?), one usually finds there the
axiom (oy) equivalent in BK to the conjunction of (og), (oﬁz).
The (n)-axioms are important classical tautologies related to
negation. The family of logics obtained by adding some of
them to the /le—fragment of classical logic was studied in
[3]. By adding all the axioms from ACL to that fragment,
we get the three-valued logic PAC (first introduced in [9]).
By further addition of the axioms (b) and (i) (which implies
(k)), the famous three-valued logic J3 ([21], [20]) is obtained.
The extension of B with the axiom (c) was denoted in [22]
by bC, and with both (c) and (i) — by Ci.



Notation 9. In the sequel we shall usually omit the
various brackets, and write, e.g., BKco/l\ instead of
BK[{(c), (0})}]. Moreover, we shall write, e.g., BKa instead
of BK[{(ax), (ay), (a5)}], and use similar abbreviations in
the cases of (0) and (n).

Remark 10. da Costa’s original system C; ([17], [18]) is
known to be equivalent to the o-free fragment of BKcila. It
follows from our results (see Corollary 57 below) that it is
also equivalent to the o-free fragment of BKcla.

Remark 11. A more modular treatment of the axioms from
A becomes possible if we split some of them. Thus (i) is
equivalent to the conjunction of (i;) —op D ¢ and (iz) —op D
—¢, and (n%,) — to the conjunction of (ny') = D =(p A1)
and (n%;?) =) D =(¢ A ¢). Similar splitting can be done for
(n!)) and (nl)). However, due to the lack of space, we shall
stick to the current presentation.

Remark 12. Not all of the systems of the form BK][A] for
A C A are different from each other. Thus (a-,) is equivalent
in BK to (c), and (a,) is equivalent to (n! ). Moreover, not
all these systems are paraconsistent: as explained below, any
conflict between some axioms in A causes the collapse of
BK]|A] to classical logic. Using the semantics provided below,
one can check mechanically all the dependencies and conflicts
between the axioms of A. Their full list is provided in the
sequel.

Remark 13. It is easy to see that the “converse” of (i) (i.e,
@A—p D —o¢p) and the converse of (1) (i.e, o D —~(pA—gp))
are theorems of B. Together, the four implications intuitively
mean that op and —(pA—¢) “have the same meaning”. On the
other hand, (d), its converse, and (i) taken together mean that
o and —(—p A ) “have the same meaning”. This intuition
will be exploited in the sequel to provide Gentzen-type rules
corresponding to (1) and (d). It should be emphasized that (1)
and (d) are not equivalent in BK (this follows directly from
the semantics provided below).

Remark 14. A note is in order here on the relationship
between the Gentzen-type systems provided below and the cor-
responding Hilbert-style systems originally used to formulate
the C-systems discussed above. Namely, using cuts one can
show in a standard way that each such Gentzen-type system
G is equivalent to the corresponding Hilbert-type system H
in the sense that T g 1 iff T ¢ ¢ (where the consequence
relation ¢ is defined, as usual, by: T' g ¢ if there is a finite
I" C T such that Fg I' = ). In particular, v is a theorem of
H iff Fg= 1.

B. Non-deterministic Matrices

Our main semantic tool in what follows will be non-
deterministic multi-valued matrices (Nmatrices), introduced in
[7]. These structures are a natural generalization of the concept
of a many-valued matrix, in which the truth-value assigned to
a complex formula is chosen non-deterministically out of a
given non-empty set of options.

Definition 15. 1) A non-deterministic matrix (Nmatrix) for
a language L is a tuple M = (V, D, O), where: V is a
non-empty set of truth values, D (designated truth values)
is a non-empty proper subset of V, and O includes an
interpretation function S : V" — PT(V) for every n-
ary connective ¢. We say that M is finite if so is V.

2) Let M = (V,D,0) be an Nmatrix, and let F' be a
set of L-formulas closed under subformulas. An M-
valuation on F' is a function v : F — V which, for
every n-ary connective ¢ of £ and every ¢1,...,%, € F
such that o(¢1,...,1,) € F, satisfies the condition:
(oW1, ¥n)) € Spa(v(¥r),. .., 0(hn)). A full M-
valuation is an M-valuation on Frm,.

3) Let F be as above, and let v € F. An M-valuation v
on F satisfies v, in symbols v =g ¢, if v(¢p) € D. A
valuation v satisfies a set I' C I of formulas, in symbols
v Ea T, if it satisfies every formula in T'.

4) Let F be as above, and let v be an M-valuation on F'.
A sequent I' = A such that TUA C F is true under
v if either there is some ¢ € A such that v = ¢, or
vl for every ¢ € T'. A sequent is valid in M if it
is true under every full M-valuation.

5) k., the consequence relation induced by M, is defined
by: T b ¢ if v Epq @ for every full M-valuation v
such that v =pq T

Nmatrices enjoy the most attractive properties of usual (deter-
ministic) finite-valued matrices. This includes the following:

Proposition 16. (Compactness) (/7]) If M is a finite Nmatrix,
then T = 1 iff there is a finite I C T such that T Fpq .

Proposition 17. (Semantic Analyticity) /4] Let F' be a set
of L-formulas closed under subformulas, and let M be an
Nmatrix for L. Then any M-valuation on F can be extended
to a full M-valuation.

Corollary 18. (Decidability) For every finite Nmatrix M, the
question whether T' - 1 is decidable for every finite set of
formulas T and every formula .

Definition 19. We say that an Nmatrix M is characteristic for
a Gentzen-type system G if, for every I' and A, Fa ' = A
holds iff I' = A is valid in M.

Remark 20. If M is characteristic for G, then Fg I" = ¥
iff I' a4 ¥. By the compactness theorem (Proposition 16), if
M is finite, then the latter implies that - =Fg.

The following notion of a simple refinement will be useful
in the sequel:

Definition 21. Let M; = (V1,D;,0;) and My =
(Va,Da, O3). My is a simple refinement of My if Vi = Vs,
D1 = D, and for every n-ary connective ¢ and every
a1y an € V1, Sp,(ar, ..o a,) COpg, (ar, ..., an).

Proposition 22. ([4]) If My is a simple refinement of M,
then =pq, Ch g,



III. CALCULI WITH QUASI-CANONICAL RULES

A method for a systematic construction of cut-free Gentzen-
type calculi for C-systems which have a finite characterization
in terms of Nmatrices was proposed in [6], using an example
of a particular system. In this section we apply this method
for all the systems of the form BK][A] for A C Ao (systems
which include the axioms (l) and (d) will be handled in
the next section). As explained at the end of this section,
the obtained calculi have rules of a certain uniform quasi-
canonical form. Now the method is based on the following
two key facts. First and foremost, all systems of the form
BK]JA] for A C Ag have a semantic characterization in
terms of finite-valued (in fact, three-valued) Nmatrices. These
characterizations can be obtained in a modular way within the
finite-valued non-deterministic semantic framework developed
in [4]. Secondly, [5] provides an algorithm for constructing
cut-free Gentzen-type systems for logics which have a char-
acteristic finite-valued Nmatrix M and whose language is
sufficiently expressive with respect to M. The latter can be
easily shown to be the case in our context (see the proof of
Proposition 14 in [6]).

Below we provide non-deterministic three-valued semantics
for every system BKJ[A] such that A C Ap, and then
introduce their corresponding Gentzen-type systems.

A. Non-deterministic Three-valued Semantics

Our non-deterministic semantics is based on the following
four truth-values, the intuition being that a formula ¢ is
assigned a truth-value of the form (z,y), where x = 1 iff
p is “true”, and y = 1 iff —¢ is “true™

t=1(1,0), f=(0,1), T =(1,1),L =(0,0)

First we note that the axiom (t) ¢ V =, included already in
B, rules out the fourth truth-value L (as it intuitively means
that ¢ and —¢ cannot be both “false”), and so we are left with
three truth-values: ¢, f and T. Semantics for systems without
the axiom (t) (which are obtained from the positive fragment
of classical logic by adding some axioms from Ag) can be
provided in a similar way using the above four truth-values
(see, e.g., [2]).

We start by defining the Nmatrix M?> for BK:

Definition 23. M3 = ({t,f,T},{t,T},O) is an Nmatrix
for Lo defined as follows:

a -a oa A t T f
A |G TS T 6T {f}
TAe T {7} THeT {6, T {/}
ST {6 TS LAy Ay Af
V]t T f S ¢ T [
t e T 6T {6 TH| e {sTE {6 T {f}
THHeTY 6T 6T T AT 6T {f}
fU{LTY {67 {f} STy {67 {67}

Proposition 24. ([1]) T Fx ¥ iff T Fek .

We now turn to providing non-deterministic semantics for

the extensions of BK with axioms from Ag. The semantics
are modular in the following sense: each axiom ax € Ay
corresponds to certain semantic conditions C(ax), which are
automatically extracted from ax. These conditions lead to
simple refinements of the basic Nmatrix M?> (which amount
to reducing its level of non-determinism). The semantics of
BK|[A] is then obtained by straightforwardly combining the
semantic effects of all the schemata from A.
Tables I and II include the various semantic conditions that
correspond to the axioms in Ag. Note that (a-) and (a,) are
not included in the tables, as they are equivalent in BK to (c)
and (nl) respectively (recall Remark 12). We also include
in these tables a reformulation GC(ax) of each semantic
condition C(ax) using the sets 7 = {¢t}, Z = {T} and
F = {f}. This reformulation will be useful later, for handling
axioms (1) and (d). Note that to ensure uniformity with
GC(az), in the formulation of C(ax) we use inclusion instead
of equality (e.g., we write of C {t} instead of of = {t}).

Example 25. To see how the semantic conditions are derived,
consider, e.g., the schema (ay ). To guarantee its validity, we
must ensure that (x) v(opAot)) € {¢, T} implies v(o(pV1))) €
{t, T}. In any simple refinement of M3, v(o(pV)) € {t, T}
iff v(e V ¥) € {f,t}. Moreover, v(op A o)) € {t, T}
iff v(op),v(oyp) € {t, T} iff v(p),v(¢) € {t,f}. Since
v(p V) € {f,t} is already guaranteed if v(v) = v(¢) = f,
this and the truth table of V in M? together entail the two
conditions for b € {t, f} which are given in Table II: (i)
tVb C {t} and (i) bVt C {t}.

Definition 26. For A C Ay, the Nmatrix M?3[A] is the
weakest simple refinement of M? in which C(ax) (from
Tables I and II) holds for every ax € A.

Proposition 27. For A C Ao, T 314 ¥ iff T FBk[a] ¥
Proof: A slight modification of Theorem 3 in [4]. [

All the inconsistencies among the axioms in Ag can be
found using a mechanical check based on the semantic con-
ditions from Tables I and II. Detection of a conflict implies
that BK[A] is not paraconsistent. Consider, for instance, a set
A C Ap such that (o}), (n%) € A. The semantic condition
corresponding to (n}) implies that, for any a € {f, T} and
x € {t,T,f}, xt Aa C {f, T} On the other hand, the
semantic condition corresponding to (o}) is: for b € {t, T},
t Ab C {t}. There is an obvious conflict in the case of ¢ A T.
This conflict is resolved only by deleting T from the set of
available truth-values. It can be shown that this implies that
the system under discussion is equivalent to classical logic,
and so is not paraconsistent.

Definition 28. Let A C Ag. We say that A is coherent if it
does not contain any of the following pairs of axioms: (i) (o})
and (n%); (i) (02) and (n%); (iii) (o}) and (n%); (iv) (0?)
and (n}); (v) (o)) and (nY).

Proposition 29. For A C Ao, BK[A] is paraconsistent iff A



TABLE I
ACL AXIOMS AND THEIR CORRESPONDING SEMANTIC CONDITIONS AND GENTZEN-TYPE RULES (WHERE z € {¢, T, f},y € TUZUF)

ax C(ax) GC(ax) R(ax)
Fe=A
() g Do -f C{t} fora e F: ma C T -—p=A
I'=Ae
(e) © D =T C{T} fora€eZ: -aCZT I'= A -

(= V=) D =(pAY)

forae{f,Thanz,zAa C{f T}

= A -, -

fora € FUZ:aANy,yNa C FUZL I'= A, —(pAY)

(@m}) | ~(pAY) D (—p V) tAt C{t}

I''=p=A T, -¢p=A
Iim(eny) = A

fora,be T:aNbC T

(mp A=tp) D =(p V) fora,be{f, T} aVvbC{T, [}

F=A,~p I'= A,
= A, ~(pV)

fora,be FUZ:aVbC FUT

(@) | ~(eVY) D (~pA—p) tva,oVvitC{t}

=, = A

fora€ T:aVy,yVaCT T,=(pVvy)=A

(e A=) D (e D) forae€ {t, T}andbe {f, T}

aDbC{f T}

I'=A¢ I'=>A W
I'= A =(p DY)

fora e D,be FUZL:
aD>be FUZI

@L) | (e 2¥) D (pA—) fomaotC{t}

F,@,ﬁﬂfﬁA

forac F,beT:aDy,yDdDbC T I,=(pDvY)=A

is coherent.

Remark 30. The dependencies among the axioms in Ag
can also be mechanically computed using the conditions from
Tables I and II. The following is their exhaustive list in BK
for o € {D,V}: (i) (a,) follows from the conjunction of (o})
and (02); (i) (nl) follows from the disjunction of (o}) and
(02); (iii) (n}) follows from (ol) for i € {1,2}. It should be
also noted that (k) follows from (i) in B (we do not add this
dependency to the list since (k)ZAo).

B. The Corresponding Gentzen-type Systems

The method of [5] for constructing a cut-free, sound and
complete Gentzen-type system for a given finite Nmatrix M
involves two stages. At the first stage, every entry of every
truth-table of M is translated into a rule. At the second
stage, certain streamlining principles are used to combine and
simplify the rules obtained at the first stage in order to get an
optimal set of rules.

Using the above method, we obtain the following system
for Fys:

Definition 31. The system Gk consists of the identity axiom
1 = 1), the structural rules of cut and weakening, and the
logical rules given in Table III. Gq is the system obtained
from Gk by deleting the rule (= o).

Now from the results of [5] we directly obtain the following:

Theorem 32. 1) BK is equivalent to Gk.
2) Gk enjoys cut-admissibility.

Example 33. Below we show a proof of (1) = (k) in Gy.

PNTP= 0P, p Ny (= )
= =(p A ), 00, 0 A - op = op, p A 1p

o=
(A=) Do = o, A (5=)
(=V)

(A=) Do = 0p V (p A —p)




TABLE II
ADC AXIOMS AND THEIR CORRESPONDING SEMANTIC CONDITIONS AND GENTZEN-TYPE RULES (FORz € {¢, T, f},y € TUZUF)

ar C(ax) GC(ax) R(ax)
Lo, —p = A
(i) —0p D (@A) of C{t} and ot C {¢t} foraec FUT:0a C T T—op=A

forbe {t, f},tvbC {t}

foraceT,beTUF: avVbCT

T'i~p=A TI'-9,v=A

L,o(pVy)=A

(av) | (o Aoyp) Do(p V)
NLy=A T,~pe=A
forbe{t,f},bvtC{t} | foracT,beTUF: bVaCT I=(pVy)= A
Fp=A T,7,9=A
forae{t,f}, fDaC{t} | forbe F,Lac TUF:bDaCT I,=(eDy)=A
(as) | (ep Aopp) Do(p D)
F:"§0730:>A F7“¢:>A
forae{t,f},adtC{t} | forbeT,a€e TUF:aDbC T I,=(pDy) = A
I'N'-=A I'=y,A
(o}) op D o(p A1) forbe {t, T} t AbC {t} fora€TandbeD:aAbC T I Ay) = A
I~ =A [=pA
(02) o) D o(p A1) forbe {t, T}:bAtC{t} | foracT andbeD:bAaC T L,=(pAy) = A
I-p=A
tvae C{t} foraeT:aVyCT ,=(pVey)=A
(o) op Do(p V)
ey=A T'=Ay
forbe {t, T}, fvbC{t} force FandbeD:cVbC T I,=(pVey)=A
== A
zVtC{t} foraeT,yvaCT ,=(pVvey)=A
(03) oy D o(p V)
yv=A T'=Ap
forbe {t, T} bV fC{t} force FandbeD:bVvVecCT ,=(pVey)=A
-p=A T'=AY
forbe{t,T}:tDbC {t} | foraceTandbeD: aDbC T T,=(pD9Y) = A
(o}) op D o(p D 1)
Ie=A
foxC{t} forcc F: ¢cDyCT I=(pDy)=A
I~¢v=A
z Dt C{t} foraeT: yDaCT I=(pDy)=A
(02) oy D o(p D 1)
Tey=A Thy=A
fDfC{t} forbce F: bD>cCT L=(pDy)=A




TABLE III
THE LOGICAL RULES OF G

Iy, 9= A
=) TYyneg=A
v=A T,0=A
V=) yve=A
'y, A T,¢o=A
=) T056=A
(0 =) 'y, A T'=s -9y A

Loy = A

The rules of Gk, except for the rule for negation, are
particularly well-behaved in the following sense:

Definition 34. An introduction rule is invertible in a Gentzen-
type system G if each of its premises has a derivation from
its conclusion in G.

Proposition 35. The rules for the positive connectives (A\,V, D
and o) are invertible in BK.

Proof: We show the proof for the rules for o. The following
is a derivation of I";¢,~¢ = A from I' = oy, A (i.e. the
converse of (= o)) in Gk:

Lp=Ay T,p= A~

T, O’(/}7 ’(/}7 ﬁl/) = A
T, "/}7 _'fll) = A

The derivation of I' = ¢, A from I" = v, 01, A (i.e., one
converse of (o =)) in Gk is as follows:

I = oy, A (=)

cut

Lo, =9, A
T o A =0
Dop=A T =00 A ;
T =, A “
The derivation of I' = —,A from ' = o, o0, A is
symmetric to the last derivation. O

The method used for M? can be applied to each of its
simple refinements separately. In this way, we can obtain a cut-
free Gentzen-type formulation for each of the C-systems we
have considered above. However, the rule construction process
can be significantly simplified by translating the semantic
effect C(az) of each extra axiom in a modular way into
the corresponding Gentzen-type rules, using the following six
facts:

Proposition 36. Let v be a full M-valuation, where M is
any simple refinement of M?3. Then:

e v(¢) =t iff " = is true under v.

e () = f iff Y = is true under v.

e v(¥) =T iff = ¢ and = —) are both true under v.

o () € {f, T} iff = Y is true under v.

i~

(=) =AYy T'=A¢

T=AdAd
A =~
=2 FR:T ¢:>3¢<;>,AA
=0 A
@0 IR

o v(Y) € {t, T} iff = W is true under v.
o v(v) € {t, f} iff Y, = is true under v.

The corresponding rules for each ax € Ag, denoted by
R(ax), are again given in Tables I and II.

Example 37. To see how the Gentzen-type rules from Tables
I and II are derived, consider once more the schema (ay ).
As explained in Example 25, the validity of this schema is
guaranteed by the conditions: for b € {¢t, f}, () t Vb C {t}
and (ii) bvt C {t}. Now the first condition can be reformulated
as follows: if v(¢) =t and v(v0) € {t, f}, then v(p V) =t.
Using Proposition 36, we can rewrite this as follows: if ¢ =
and —), ¢ = are true, then —(¢ V ¥) = is true. By adding
context, we obtain the first corresponding rule from Table II.
The second one can similarly be derived from condition (ii).

Definition 38. For each ax € Ay, the set R(ax) of Gentzen-
type rules corresponding to ax is defined as in Tables I and
II. For A C Ag, G[A] is the Gentzen-type system obtained
by adding to Gk the set of rules R(ax) for every ax € A.

Theorem 39. If A C Ag is coherent, then:
1) BK|[A] is equivalent to Gk [A].
2) Gk|[A] enjoys cut-admissibiliry.

Proof: Tt is easy to see that Gk [A] is the calculus obtained
for M3[A] using the algorithm from [5]. Thus the theorem
follows from Proposition 27 and the results of [5]. This
theorem is also a special case of Theorem 54 in the sequel,
for which a direct proof is provided in the appendix. O

It is important to note that all the Gentzen-type rules
provided in this section have a uniform form in the following
sense:

1) Each of them introduces exactly one formula in its
conclusion, on exactly one of its two sides;

2) The formula which is introduced is either of the form
o1, ..., y) or =0 (31, ..., 1y, ), where ¢ is a primitive
n-ary connective of the language;

3) Let o(¢1,...,%,) be the formula mentioned in the
previous item. Then the principal formulas in the



premises of the rule are all taken from the set
{/(/)17 cee 7/¢n7_"(/]17 cee _'wn}a

4) There are no restrictions on the side formulas of the rule
(i.e., every context is legitimate).

We call rules of this form quasi-canonical, because they
provide a natural generalization of the class of canonical rules
([71) — the type of rules that are used in standard Gentzen-
type systems for classical logic. It should be noted that quasi-
canonical Gentzen-type systems like those presented here (i.e.
Gentzen-type systems, in which all rules are either structural
or quasi-canonical) have already been used extensively in the
proof theory of non-classical logics. As far as we know, this
cannot be said about any Gentzen-type formulation of a C-
system that has been suggested before.

IV. CUT-FREE CALCULI FOR LOGICS WITH (1) AND (d)

The method for construction of cut-free calculi described
in Section III does not apply to the C-systems which include
one of the axioms (1), (d). The reason is that it was shown in
[4] that such systems cannot have finite-valued characteristic
Nmatrices. However, it was also shown there that they do
have infinitely-valued characterizations of this type (which still
suffice for guaranteeing their decidability). Below we show
that these characterizations can be exploited for a modular
construction of cut-free sequent calculi too.

A. Non-deterministic Infinite-valued Semantics

The treatment of axioms (1) and (d) is more complicated
than that of the axioms from A, since the semantic effect of
their addition to BK cannot be formulated as a condition on
the three-valued truth-table of some connective, leading to a
certain simple refinement of M?3. This is due to the fact that
both (1) and (d) involve a conjunction of a formula with its
negation. Informally, we need to be able to isolate the case of
a conjunction of an “inconsistent” formula v with its negation
from the cases of conjunction of v with other formulas. This
requires an infinite number of truth-values, corresponding to
the infinitely many formulas of the language. In view of the
above, the finite Nmatrix M3 for BK must be replaced by the
infinite Nmatrix M, defined below. Instead of ¢, T and f, it
uses three sets of truth-values: 7 = {t/ |i > 0,j >0}, Z =
{T?1i>0,7>0}and F = {f}, respectively. Intuitively, the
set 7 contains infinitely many “copies” of the classical value
t, the set F contains (one “copy” of) f, and the set Z contains
infinitely many “copies” of the the inconsistent truth-value T.

Definition 40. The Nmatrix My = (V, D, O) for L, where
V=TUZUF and D =T UZ, is defined as follows:

Jp — D if either a € D or b € D,
WO=Y F o oifabeF

Sp— D if either a € F or b € D
4=V F ifacDandbe F

aRb — F  ifeithera€e Forbe F
| D otherwise

F ifaeT
~a={ D ifacF
(T 8Ty ifa=TI
Su— D ifae FUT
1 F ifael

Proposition 41. T' -, ¢ iff T Fek V.
Proof: A modification of the proof of Thm. 7 in [4]. [J

We now turn to providing non-deterministic semantics for
the extensions of BK with axioms from A, including the
problematic axioms (1) and (d). The modularity of our se-
mantics is preserved — each axiom corresponds to a certain
semantic condition on the basic Nmatrix M. Moreover, the
semantic conditions induced by the axioms from A turn out
to be identical to the general formulation GC(ax), presented in
Tables I and II. However, there is a difference in the meaning
of what is written there: now we take 7 = {tJ|i>0,7 >0},
I={TJ|i>0,j>0},and F = {f}.

Example 42. Let us take again the axiom (a\ ), considered
in Example 37 in the context of the three-valued simple
refinements of M3. To guarantee its validity in the context
of the infinite-valued refinements of M, we must ensure that
(¥) v((opAorh)) € D implies v(o(¢V))) € D. In any simple
refinement of My, v(o(p V) € D iff v(p V) € TUF.
Moreover, v((op A otp)) € D iff v(op),v(oy)) € D iff
v(p),v() € FUT. Since v(p V) € T U F is already
guaranteed when v(p),v(¢)) € F, the truth table of V in M,
implies that it remains to require the two conditions for (a )
which are given in Table II: if a € 7 and b € 7 U F then:
(1) aVvbCT and (ii) bV a C T. Note the similarity of this
derivation of semantic conditions to that in Example 25.

It remains now to define the semantic conditions induced by
(1) and (d):

Definition 43. 4 4 4

GC(1): For a =T, and be {T/T It} aAbC T.
GC(d): Forb=T! and a € {Tg"’l,tg'i'l}, aNbCT.

Definition 44. For A C A, the Nmatrix Mg[A4] is the weakest
simple refinement of Mg in which GC(az) (from Tables III
and Definition 43) holds for every ax € A.

Proposition 45. For A C Ao, T a4 ¥ iff T Fex[a) ¥
Proof: A modification of proofs from [4] and [2]. O

The notion of a coherent set of axioms from Definition 28
is now modified as follows:

Definition 46. For A C A, we say that A is coherent if in
addition to satisfying all the conditions of Definition 28, it
does not contain any of the following pairs of axioms: (i) (1)
and (n%); (ii) (d) and (n%).



We can now extend Proposition 29 to the context including
axioms (1) and (d):

Proposition 47. For A C A, BK|[A] is paraconsistent iff A
is coherent.

Remark 48. The list of dependencies among the axioms in
A is similar to that given in Remark 30. It should be also
noted that (k) follows both from (1) and from (d) in BK
(see Example 33 for the former case).

B. The Corresponding Gentzen-type Systems

To construct cut-free Gentzen-type systems for logics with
(1) and (d), we can no longer rely on the method for construc-
tion of analytic calculi given in [5], which was employed in
the previous section, as it does not apply to logics which have
no finite-valued characteristic Nmatrices. However, following
the intuitive meaning of ot given in Remark 13, we can start
with the obvious translation of (1) and (d) into Gentzen-type
rules which is obtained by substituting in (o =) the formulas
=(1) A=) and —(—p A 1)) (respectively) for o) (note that by
applying the same procedure to (= o), we get a rule which
is derivable in BK).

Definition 49. The Gentzen-type rules R(l) and R(d) are
defined as follows:

I'=p,A T=-p A
Lo=(p A ) = A

I'=p,A T=-p A
Lo=(mpAg) = A

R(D) R(d)

As for the corresponding Gentzen-type rules for every
axiom ax € Ay, luckily we need not start our search from
scratch. Although we cannot construct a rule for each line of
each truth-table like in the method of [5] (because of both the
infinite number of truth-values, and the insufficient expressive
power of our language, which does not allow for characterizing
each of them), we can still perform the easier task of encoding
the semantic effect of each axiom by a Gentzen-type rule. This
can be done using the following analogue of Proposition 36:

Proposition 50. Letr v be a full M-valuation, where M is a
simple refinement of M. Then:

e () €T iff b = is true under v.

o (V) € F iff v = is true under v.

e v(¥) €T iff = ¢ and = —) are both true under v.
o v(¢p) € FUZ iff = —) is true under v.

e v(¥) € TUZ iff = v is true under v.

e () € FUT iff ¥, = is true under v.

Example 51. Revisiting Example 42, the semantic conditions
GC(ay) from Table IT are: fora € T,b € TUF: 1)) aVbC T
and (ii)) b V a C 7T. The first of then can be reformulated
as follows: if v(p) € T and v(y)) € T U F, then v(p V
¥) € T. Using Proposition 50, we rewrite this as: if —¢ =
and —), 1 = are true, then —(p V ¥) = is true. By adding
context we obtain the first corresponding rule from Table II.

The second rule is obtained similarly from condition (ii). Note
the similarity of this construction to that given in Example 37.

We therefore retain our ability to provide cut-free Gentzen-
type systems for BK[A] for A C A in a modular way.
Moreover, as the semantic effects of the axioms in A remain
the same, it is not surprising that the Gentzen-type rules
corresponding to them are exactly those given in Tables LII:

Definition 52. For each axz € A, the set R(ax) of Gentzen-
type rules corresponding to ax is defined as in Tables I,II and
Definition 49. For A C A, Gk|[A] is the Gentzen-type system
obtained by adding to Gk the set of rules R(ax) for every
ar € A.

Example 53. Below is a cut-free proof of (1) in Gk[{(1)}]
(note that the rule R(1) defined above does not even mention
the connective o):
Y= TP Y=
= —9,0p = gop k=0 °)
(R(D)
~(pA—p) = op

(=>)

= (e Ap) Doy

(= o)

Now we come to the main theorem of this paper, which
applies to all extensions of BK studied here (including those
covered by Theorem 32). Its full proof is provided in the
appendix. Unlike the proof of Theorem 32, it includes direct
proofs of completeness and cut-admissibility, without relying
on the results from previous papers.

Theorem 54. For A C A, My[A4] is a characteristic Nmatrix
for Gk |[A], and Gk[A] enjoys cut-admissibility.

V. o-FREE C-SYSTEMS

All the C-systems treated above include o as a primitive
connective. However, many important C-systems, including da
Costa’s historical C'y, are obtained by defining o using other
connectives available in the language. The usual definitions
include —(p A —p) (like in C1), =(-¢ A ¢), and their
disjunction. It is thus important to extend our method also
to the o-free fragments of the C-systems considered in this
paper.

The o-free fragments of all the paraconsistent extensions
of BK by axioms from A are easily obtained from their
corresponding Gentzen-type systems Gg[A].

Proposition 55. Let A C A. If A is coherent, then the system
obtained from Gk [A] by discarding the rules for o (i.e. (o =),
(= o), and R(i) if (i) € A) is equivalent to the o-free fragment
of BK[A].

Proof: Denote by G’ the system obtained from Gk[A] by
discarding the rules for o. Let T'U {¢'} be a set of formulas
over L. Clearly, T' g/ t implies T' Fpk[a] 9. For the
converse, suppose that 7' Fgk(a) ¢ for some T'U {9} in L.
Then I—GK[A] I' = ¢ for some finite I' C T'. By Theorem 54,
I’ = ¢ has a cut-free derivation P in Gk[A]. Since I" = 1



does not contain o, P does not contain applications of any
rule introducing o (since that o can only be eliminated using
cuts). Hence P is also a derivation in G/, and T Fqgr v. [

Corollary 56. Let A C A\ {(i)} and A’ = AU{(i)}. Then
the o-free fragments of BK[A] and BK[A'] are identical, that
is: for any T U {3} in L, T Fpxa) ¥ iff T Fexar) ¥-

It follows that the inclusion of axiom (i) in any of the
systems studied in this paper does not affect the o-fragment
of that system.

Corollary 57. The o-free fragments of BKcla and BKcila
are identical (and both are equivalent to Ch).

Corollary 58. The system obtained by discarding (o =) and
(= o) from Gkl{(c), (1), (ay), (ar),(a5)}] is equivalent to
Ch.

Remark 59. The above results provide a straightforward way
to obtain Hilbert-style axiomatizations for the o-free fragments
of BK[A] for all A C A. For this purpose, one can employ
some standard method of translating Gentzen-type rules into
corresponding axioms. For instance, we can obtain the follow-
ing axioms, corresponding to the two Gentzen-type rules for
(ol) in Table II: (¢ V ) D = and =(¢o V) D (¥ D ).
Note that in this way we obtain a o-free equivalent for each
axiom from ADC \ {(i)}.

In some cases, there is also an alternative way to obtain
Hilbert-style axiomatizations of the o-free fragments of LFIs
considered here (we omit the proof):

Proposition 60. Let A C A. For a formula o, denote by
BKP°[A] the Hilbert-style system obtained from BK[A] by
replacing op by o in (b) as well as in all the (a)- and
(0)-axioms of A. Then BK[A] is equivalent to the o-free
fragment of BK[A] whenever:

o A contains (1), but not (d), and o = —(¢ A —p).
o A contains (d), but not (1), and o = —(—p A ).
o A contains (1) and (d), and o = —(p A=)V -=(—pAp).

VI. SUMMARY AND FURTHER RESEARCH

Although analytic calculi for some particular C-systems
have been proposed before, to the best of our knowledge,
until now there has been no general method available for
constructing cut-free sequent calculi for C-systems. This paper
fills this gap by providing such a method for constructing cut-
free calculi in a modular way. Our method applies to a large
family of C-systems, covering practically all C-systems ever
studied in the literature. We believe that these results will help
develop efficient tools for automated reasoning with incon-
sistency, eventually making Logics of Formal (In)consistency
a more appealing formalism for reasoning under uncertainty.
However, it is clear that for the purposes of building LFI-
based theorem provers for real-life applications, the results of
this paper need to be extended to the first-order case. To the
best of our knowledge, currently there are no known analytic
systems for LFIs available on the first-order level. However,

[8] provided non-deterministic modular semantics for first-
order LFIs, which can possibly be exploited along the lines of
the approach presented in this paper.
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APPENDIX

Proof of Theorem 54:

We leave the easy proof of soundness to the reader. Below
we prove completeness together with cut-admissibility.

For A C A, we call a sequent I' = A saturated with respect
to A if it satisfies the properties (S1)-(S11) below:

S1) If oAy €T, then p,p € T. If p Ay € A, then
p € Aory € A. Similarly for V and D.

If —p € A, then p € I.

If op € T, then either ¢ € A or = € A. If op € A,
then ¢ € " and —p € T.

If (1) € A and =(p A —¢p) € T, then either p € A
or —p € A.

If (d) € A and
or ~p € A.
(S6) If (c) € Aand -~ €T, then p €T

(S7) (e) € A and ——p € A, then ¢ € A.

(S8) If (i) € A, then o € T implies p,—p € T.

(S9) (o}) € A and =(p A ) €T, then either = € T
or ) € A. If (02) € A and —(¢ A ) € T, then
either =) € T or ¢ € A. Similarly for (of,) and
(o}), where i € {1,2}.

If (n}) € A and ~(p Ay) € A, then —~p, ) € A.
If (n}) € A and —(p A1) € T, then either ~p € T’
or =y € I'.

(S11) Similarly for the rest of the axioms from A.

(82)
(83)

(54)

(S5) —(—p A @) € T, then either ¢ € A

(S10)

Now let A C A, and suppose that I'g = Ag has no cut-free
proof in BK[A]. It is a standard matter to show that I'g = Ag
can be extended to a saturated (with respect to A) sequent
I'= Asuchthat ) g CT'and Ag C A, and (i) ' = A
has no cut-free proof in Gk [A]. Note that this means that (x)
I'NA = () (otherwise I' = A contains the identity axiom,
and so has a cut-free proof in Gk[A]).

Let Mi.; be an enumeration of all the formulas in Lo that
do not begin with —. Then, for every formula 1 of L¢, there
are unique n(v) and k(¢)) such that 1) = = () (y), Where
-k is ¢ preceded by k negation symbols.

Now we define the refuting valuation v. Below we write &
instead of S, (4)-
If p is atomic, then

! peEA
v(p) = tg(p) -p €A
T?l(p) otherwise
For a formula ¢ = o(¢1,...,%;) (where j € {1,2}),
define:
f S(v(yr), ..., v(¥;)) ={f}
o) = 00ty € B0, v(1)). and
S(v(¥),...,v(;) ST or p € A
TZ((ZZ)) otherwise

It is easy to verify that the valuation v above is well-defined
and that it is a M[A]-valuation, that is, for every j-ary
connective o, v(o(¥1,...,1;)) € 3(v(Y1),...,v(Y;)).

It remains to show that v is a refuting valuation for I' = A.
First, it is easy to prove (bX 1nduct10n on () that for every

F ®)

pEeLrrme, v ( )E{f’ 80)’ QP)}
Next we prove (by induction on <p) the following four prop-
erties:

1) If ¢ € A then v(y) = f.

k
2) If ¢ € T then v(p) = %) or v(p) = TH®).
3) If ¢ € A then v(p) = tﬁ((f,))
4) If ~p € T then v(p) = f or v(p) = Tiii))

If ¢ is atomic then 1-4 are immediate from the definition
of v, the fact that if ¢ € T then ¢ ¢ A (by (%) above), and
the fact that k() = 0 in this case.

« Suppose that ¢ = —).

1) Suppose ¢ = =) € A. By the induction hy othems for
1, it follows that v(t)) = tff(ﬁ) Since = ={f}
by definition of v, v(p) = f.

2) Suppose ¢ = —p € I'. By the induction hypothesis for
1, it follows that v(¢) = f or v(v) = Tk((i/;)) Either
way, S(v(y)) # {f}. By definition of v, v(¢) # f,
and so either v(p) = t’;(i) or v(p) = be(“").

3) Suppose —¢ € A. By property (S2), ¢ = - € A
implies —¢) € I'. From the induction hy othesm for v,
it follows that v(¢)) = f or v(v) Now there
are two possibilities:

- (e) € A. Then by (S7), v € A, and so by the
induction hypothesis, v(¢)) = f. It follows that
t:,((i)) € S(v(y)) in this case (because for every
A C A, =(f) can be either 7 or D).

~ (e)¢A. Then v(y) € {f, Thi")}, and =(T1()) and

=(f) can be either D, T or {"I'n(ﬁ);rl7 th((ﬁ))H}, and
$0 tz((z))ﬂ € S(v(v)). Since k(¢)) + 1 = k(p) and
n(1) = n(p), we have again ¢} € =(v(1))).

It follows that in both cases tn((“o)) € S(v(v)). Since

—p e A, v(p) = ti((i)) by definition of v.

4) Suppose = € I'. Then —p ¢ A by (*) above, and so
v(p) € T only if =(v(10)) C T. One of the following
holds:

- (c) € A. Then by (S6) ~p =—-p €T 1mphes 1/} €
I'. By the induction hypothesis, v(¢)) = ¢t kW) g

n(y) ©
v(1p) = i) Thus it is impossible that (v (¢)) C
T (since =(a) = {f} for any a € T, while always
S(a)NZ # O for any a € 7).
- (c)¢A. Then S(v(¢))ZT even if v(¢) =
in this case =(f) = D).
It follows that in both cases =(v(v))ZT, and so by
the definition of v, v(p) = f or v(p) = Tk((i))
o Suppose that ¢ = o).

1) Suppose ¢ € A. By (S3), this implies ¢, ) € I". By

n(1/1

n(l/))

f (since



the induction hypothesis, it follows that v()) = Ti((ﬁ)) for every ¢ € T', v(¢)) € D and for every ¢ € A, v(p) =

1.
As 5(v(y)) = {f}, v(p) = f by the definition of v. Since Ty C T and Ag C A, Ty = A is not valid in Mq[A].
2) Suppose ¢ € I'. By (S3), either v» € A or —¢p € O
A. Hence v(¢)¢Z by the induction hypothesis. Then
5(v(1)) # {f}, and so v(p) = 1) orv(p) = TH?).
3) Suppose —¢ € A. By(S2), ¢ = oyp € I'. By (S3),
either » € A or —¢p € A. Hence v(¢))¢Z by the
induction hypothesis. Thus o(v(¢))) is either 7 or D,
and so v(p) = t:((i)) by the definition of v.
4) Suppose - € I'. Then - & A by (x) above.
S(v(ep)) C T can occur only if (i) € A and v(y)) €
F U T. But this is impossible, as by (S8) oy € A
implies ¢, ) € T, and v(¢)) € Z by the induction
hypothesis. Hence S(v(¢))Z T, and since —p¢A, by
the definition of v we have v(p) = f or v(y) = Ti((i)).
o Suppose that ¢ = 1 A 1)s.

1) Suppose ¢ € A. By (S1), 1 € A or i, € A. By
the induction hypothesis, v(¢1) = f or v(¢e) = f.
Hence A(v(1),v(12)) = {f}, and by definition of v,
v(p) = f.

2) Suppose ¢ € I'. By (S1), 91,94 € T'. By the induction
hypothesis, v(v;) = tﬁ((qil)) or v(v;) = Tff(iq% for
i € {1,2}. Hence A(v(t1),v(tp2)) # {f}, and by the
definition of v, v(p) = tk((";)) orv(p) =T, 7.

3) Suppose ¢ € A. By (S2), ¢ € I'. By (S1), ¥1,%9 €
I'. By the induction hypothesis, v(v1),v(¢2) € D. If
tﬁ((i% € Aw(y1),v(12)), then v(p) = tﬁ((i)) by the
definition of v, and we are done. Otherwise, it must
be the case that (n}) € A and either v(¢1) € ZUF
or v(12) € ZU F. By (S10), )1, )2 € A. By the
induction hypothesis, v(¢1) = tz((zll)) and v(y) =

tZ((:f;“)) which is impossible.

4) Suppose —p €T

- () € A, v(¢1) = T} and v(h2) € {t;H, T;H}. By
definition of v it must be the case that 1o = —);.
Then by (S4), either ¢, € A or ¥ € A. By the
induction hypothesis, either v(1) = f or v(ig) =
f, which is impossible.

- (d) € A, v(yo) = T and v(¢h) € {t;H,Tj.H}.
Similarly to the previous case, this is impossible.

- (nl) € A and v(¢1),v(x2) € T. Then by (S10)
either —¢); € T or =9 € I'. By the induction
hypothesis, either v(¢1)¢T or v(i2)€T, which is
impossible.

- (o}) € A, v(1) € T and v(¢2) € D. By (S9),
either =1 € T, or ¢ € A. By the induction
hypothesis, either v(¢1)€T, or v(1)2)¢D, which is
impossible.

- (02) € A, v(¢1) € D and v(vp2) € T. The proof is
symmetric to the previous case.

Hence A(v(¢1),v(12))ZT, and since in addition
—pgA, by the definition of v, either v(p) = f or

— Tk(W)

V() = Toge)-
We leave the cases of V and D to the reader. It follows that



