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Abstract. We provide a systematic and modular method to define non-
deterministic finite-valued semantics for a natural and very general fam-
ily of canonical labelled calculi, of which many previously studied sequent
and labelled calculi are particular instances. This semantics is effective,
in the sense that it naturally leads to a decision procedure for these cal-
culi. It is then applied to provide simple decidable semantic criteria for
crucial syntactic properties of these calculi, namely (strong) analyticity
and cut-admissibility.

1 Introduction

There are two contrary aims in logic: the first is to find calculi that characterize
a given semantics, the second is to find semantics for a logic that is only given
as a formal calculus. Roughly speaking, the former aim has been reached for
all (ordinary) finite-valued logics (including, of course, classical logic), as well
as for non-deterministic finite-valued logics ([2, 3]). As for the latter, there is
no known systematic method of constructing for a given general calculus, a
corresponding “well-behaved” semantics. By “well-behaved” here we mean that
it is effective in the sense of naturally inducing a decision procedure for its
underlying logic. Moreover, it is desirable that such semantics can be applied to
provide simple semantic characterization of important syntactic properties of the
corresponding calculi, which are hard to establish by other means. Analyticity
and cut-admissibility are just a few cases in point.

In [6] and [4] two families of labelled sequent calculi have been studied in this
context.3 [6] considers labelled calculi with generalized forms of cuts and axioms
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Y544-N23.

3 A remark is in order here on the relationship between the labelled calculi studied
here and Gabbay’s general framework of labelled deductive systems (LDS) from [9].
Both frameworks consider consequence relations between labelled formulas. Method-
ologically, however, they have different aims: [9] constructs a system for a given logic
defined in semantic terms, while we define a a semantics for a given labelled system.
Moreover, in LDS anything is allowed to serve as labels, while we assume a finite set
of labels. In this sense, our labelled calculi are a particular instance of LDS.



and a restricted form of logical rules, and provides some necessary and sufficient
conditions for such calculi to have a characteristic finite-valued matrix (see, e.g.,
[?]). In [4] labelled calculi with a less restrictive form of logical rules (but a more
restrictive form of cuts and axioms) are considered. The calculi of [4], satisfying
a certain coherence condition, have a semantic characterization using a natural
generalization of the usual finite-valued matrix called non-deterministic matrices
([2, 3]). The semantics provided in [6, 4] for these families of labelled calculi is
well-behaved in the above sense, that is the question of whether a sequent s
follows in some (non-deterministic) matrix from a finite set of sequents S, can
be reduced to considering legal partial valuations, defined on the subformulas of
S ∪ {s}. This naturally induces a decision procedure for such logics.

In this paper we show that the class of labelled calculi that have a finite-
valued well-behaved semantics is substantially larger than all the families of
calculi considered in the literature in this context. We start by defining a very
general class of canonical labelled calculi, of which the sequent calculi of [2] and
the labelled calculi of [6, 4] are particular examples. In addition to the weak-
ening rule, canonical labelled calculi have rules of two forms: primitive rules
and introduction rules. The former operate on labels and do not mention any
connectives, where the generalized cuts and axioms of [6] are specific instances
of such rules. As for the latter, each such rule introduces one logical connec-
tive of the language. To provide semantics for these calculi in a systematic and
modular way, we generalize the notion of non-deterministic matrices to partial
non-deterministic matrices (PNmatrices), in which empty sets of options are al-
lowed in the truth-tables of logical connectives. Although applicable to a much
wider range of calculi, the semantic framework of finite PNmatrices shares the
following attractive property with both usual and non-deterministic matrices:
any calculus that has a characteristic PNmatrix is decidable. Moreover, as op-
posed to the results in [6, 4], no conditions are required for a canonical labelled
calculi to have a characteristic PNmatrix: all such calculi have one, and so all of
them are decidable. We then apply PNmatrices to provide simple decidable char-
acterizations of the crucial syntactic properties of strong analyticity and strong
cut-admissibility in canonical labelled calculi.

Due to lack of space, the proofs of all the main propositions appear in appendices
A and B.

2 Preliminaries

In what follows L is a propositional language, and £ is a finite non-empty set
of labels. We assume that p1, p2, . . . are the atomic formulas of L. We denote by
FrmL the set of all wffs of L. We usually use ϕ,ψ as metavariables for formulas,
Γ,∆ for finite sets of formulas, l for labels, and L for sets of labels.

Definition 1. A labelled formula is an expression of the form l : ψ, where l ∈ £
and ψ ∈ FrmL. A labelled formula l : ψ is atomic if ψ is an atomic formula. A
sequent is a finite set of labelled formulas. An n-clause is a sequent consisting
of atomic formulas from {p1, . . . , pn}.



Notation: Given a labelled formula γ, we denote by frm[γ] the (ordinary)
formula appearing in γ, and by sub[γ] the set of subformulas of the formula
frm[γ]. frm and sub are extended to sets of labelled formulas and to sets of sets
of labelled formulas in the obvious way.

Remark 1. The usual (two-sided) sequent notation ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm can
be interpreted as {f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}, i.e. a sequent in the sense
of Definition 1 for £ = {t, f}.

Notation: Given a set L ⊆ £, we write (L : ψ) instead of (the sequent)
{l : ψ | l ∈ L}.

Definition 2. An L-substitution is a function σ : FrmL → FrmL, which satis-
fies σ(�(ψ1, . . . , ψn)) = �(σ(ψ1), . . . , σ(ψn)) for every n-ary connective � of L. A
substitution is extended to labelled formulas, sequents, etc. in the obvious way.

3 Canonical Labelled Systems

In this section we define the family of canonical labelled systems. This is a general
family of labelled systems, which includes many natural subclasses of previously
studied calculi. These include the system LK for classical logic, the canonical
sequent calculi of [2], the signed calculi of [4] and the labelled calculi of [6].4

All canonical labelled systems have in common the weakening rule. In addi-
tion, they include rules of two types: primitive rules and introduction rules. Each
rule of the latter type introduces exactly one logical connective, while rules of
the former type operate on labels and do no mention any logical connectives.
Next we provide precise definitions.

Definition 3 (Weakening). The weakening rule allows to infer s ∪ s′ from s
for every two sequents s and s′.

Definition 4 (Primitive Rules). A primitive rule for £ is an expression of
the form {L1, . . . , Ln}/L where n ≥ 0 and L1, . . . , Ln, L ⊆ £. An application of
a primitive rule {L1, . . . , Ln}/L is is any inference step of the following form:

(L1 : ψ) ∪ s1 . . . (Ln : ψ) ∪ sn
(L : ψ) ∪ s1 ∪ . . . ∪ sn

where ψ is a formula, and si is a sequent for every 1 ≤ i ≤ n.

4 The family of canonical labelled systems also includes the systems dealt with in [10].
[10] extends the results of [2] by considering also “semi-canonical systems”, which are
obtained from (two-sided) canonical systems by discarding either the cut rule, the
identity axioms or both of them. Clearly, these these systems are particular instances
of canonical labelled systems, as defined in this paper.



Example 1. Suppose £ = {a, b, c}. consider the primitive rule {{a}, {b}}/{b, c}.
This rule allows to infer ({b, c} : ψ) ∪ s1 ∪ s2 from {a : ψ} ∪ s1 and {b : ψ} ∪ s2
for every two sequents s1, s2 and a formula ψ.

Definition 5. A primitive rule for £ of the form ∅/L is called a canonical
axiom. Its applications provide all axioms of the form (L : ψ).

Example 2. Axioms schemas of two-sided sequent calculi usually have the form
ψ ⇒ ψ. Using the notation from Remark 1, it can be formulated as the canonical
axiom ∅/{t, f}.

Definition 6. A primitive rule for £ of the form {L1, . . . , Ln}/∅ is called a
canonical cut. Its applications allow to infer s1 ∪ . . . ∪ sn from the sequents
(Li : ψ) ∪ si for every 1 ≤ i ≤ n (the formula ψ is called the cut-formula).

Example 3. Applications of the cut rule for two-sided sequent calculi are usually
presented by the following schema:

Γ1 ⇒ ψ,∆ Γ2, ψ ⇒ ∆

Γ1, Γ2 ⇒ ∆1,∆2

Using the notation from Remark 1, the corresponding canonical cut has the
form {{t}, {f}}/∅.

Definition 7 (Introduction Rules). A canonical introduction rule for an n-
ary connective � of L and £ is an expression of the form S/L : �(p1, . . . , pn),
where S is a finite set of n-clauses (Definition 1) (called premises), and L
is a non-empty subset of £. An application of a canonical introduction rule
{c1, . . . , cm}/L : �(p1, . . . , pn) is any inference step of the following form:

σ(c1) ∪ s1 . . . σ(cm) ∪ sm
(L : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm

where σ is an L-substitution, and si is a sequent for every 1 ≤ i ≤ m.

Example 4. The introduction rules for the classical conjunction in LK are usu-
ally presented as follows:

Γ, ψ, ϕ⇒ ∆

Γ,ψ ∧ ϕ⇒ ∆

Γ1 ⇒ ∆1, ψ Γ2 ⇒ ∆2, ϕ

Γ1, Γ2 ⇒ ∆1,∆2, ψ ∧ ϕ

Using the notation from Remark 1, the canonical representation of the schemas
above is:

r1 = {{f : p1, f : p2}}/{f} : p1 ∧ p2 r2 = {{t : p1}, {t : p2}}/{t} : p1 ∧ p2

Their applications have the forms:

{f : ψ, f : ϕ} ∪ s
{f : ψ ∧ ϕ} ∪ s

{t : ψ} ∪ s1 {t : ϕ} ∪ s2
{t : ψ ∧ ϕ} ∪ s1 ∪ s2



Definition 8 (Canonical Labelled Systems). A canonical labelled system
G for L and £ includes the weakening rule, a finite set of primitive rules for £,
and a finite set of introduction rules for connectives of L and £. We say that a
sequent s follows in a canonical labelled system G from a set of sequents S (and
denote it by S `G s) if there exists a derivation in G of s from S.

Notation: Given a canonical labelled system G for L and £, we denote by
PG the set of primitive rules of G. In addition, for every connective � of L, we
denote by R�G the canonical introduction rules for � of G.

Example 5. The standard sequent system LK can be represented as a canonical
labelled system for the language of classical logic and {t, f} (see Examples 2
to 4).

Notation: To improve readability, we usually omit the parentheses from the
sets of premises of primitive rules and canonical introduction rules.

Example 6. For £ = {a, b, c}, the canonical labelled system Gabc includes the
primitive rules ∅/{a, b}, ∅/{b, c}, ∅/{a, c}, and {a, b, c}/∅. It also has the following
canonical introduction rules for a ternary connective ◦:

{a : p1, c : p2}, {a : p3, b : p2}/{a, c} : ◦(p1, p2, p3)

{c : p2}, {a : p3, b : p3}, {c : p1}/{b, c} : ◦(p1, p2, p3)

Their applications are of the forms:

{a : ψ1, c : ψ2} ∪ s1 {a : ψ3, b : ψ2} ∪ s2
({a, c} : ◦(ψ1, ψ2, ψ3)) ∪ s1 ∪ s2

{c : ψ2} ∪ s1 {a : ψ3, b : ψ3} ∪ s2 {c : ψ1} ∪ s3
({b, c} : ◦(ψ1, ψ2, ψ3)) ∪ s1 ∪ s2 ∪ s3

Note that the canonical labelled calculi studied here are substantially more
general than the signed calculi of [4] and the labelled calculi of [6], as the primitive
rules of both of these calculi include only canonical cuts and axioms. Moreover,
in the latter only introduction rules which introduce a singleton are allowed,
which is not the case for the calculus in Example 6. In the former, all systems
have ∅/£ as their only axiom, and the set of cuts is always assumed to be
{{l1}, {l2}/∅ | l1 6= l2} (again leaving the calculus in Example 6 out of scope).

4 Partial Non-deterministic Matrices

Non-deterministic matrices (Nmatrices) are a natural generalization of the no-
tion of a standard many-valued matrix (see [2]). These are structures, in which
the truth-value of a complex formula is chosen non-deterministically out of a
non-empty set of options (which is determined on the truth-values of its subfor-
mulas). In this paper we introduce a further generalization of the concept of an



Nmatrix, in which this set of options is allowed to be empty. Intuitively, allowing
empty sets of options in a truth-table corresponds to forbidding some combina-
tions of truth-values. As we shall see, this will allow us to characterize a wider
class of calculi than that obtained by applying usual Nmatrices. However, as we
show in the sequel, the property of effectiveness is preserved in PNmatrices, and
like finite-valued matrices and Nmatrices, (calculi characterized by) finite-valued
PNmatrices are decidable.

4.1 Introducing PNmatrices

Definition 9. A partial non-deterministic matrix (PNmatrix for short) M for
L and £ consists of: (i) set VM of truth-values, (ii) a function DM : £→ P (VM)
assigning a set of (designated) truth-values to the labels of £, and (iii) a function
�M : VMn → P (VM) for every n-ary connective � of L. We say that M is finite
if so is VM.

Definition 10. Let M be a PNmatrix for L and £.

1. An M-legal L-valuation is a function v : FrmL → VM satisfying the con-
dition v(�(ψ1, . . . , ψn)) ∈ �M(v(ψ1), . . . , v(ψn)) for every compound formula
�(ψ1, . . . , ψn) ∈ FrmL.

2. Let v be an M-legal L-valuation. A sequent s is true in v for M (denoted
by v |=M s) if v(ψ) ∈ DM(l) for some l : ψ ∈ s. A set S of sequents is true
in v for M (denoted by v |=M S) if v |=M s for every s ∈ S.

3. Given a set S ∪ {s} of sequents, S `M s if for every M-legal L-valuation v,
v |=M s whenever v |=M S.

We now define a special subclass of PNmatrices, in which no empty sets of
truth-values are allowed in the truth-tables of logical connectives. This corre-
sponds to the case of ordinary Nmatrices [2–4].

Definition 11. We say that a PNmatrix M for L and £ is a proper if VM is
non-empty and �M(x1, . . . , xn) is non-empty for every n-ary connective � of L
and x1, . . . , xn ∈ VM.

Remark 2. Nmatrices in their original formulation can be viewed as proper PN-
matrices for L and £, where £ is a singleton. In this case DM is practically
a set of designated truth-values. This is useful to define consequence relations
between sets of formulas and formulas in the following way: T `M ψ if whenever
the formulas of T are “true in v forM” (that is v(ϕ) ∈ D for every ϕ ∈ T ), also
ψ is “true in v forM” (v(ψ) ∈ D). However, in this paper we study consequence
relations of a different type, namely relations between a set of labelled sequents
and a labelled sequent. We need, therefore, a notion of “being true for M” for
every l ∈ £. This is achieved by taking DM to be a function from £ to P (VM).
Finally, note that for simplicity of presentation, unlike in previous works, we
allow the set of designated truth-values (for every l ∈ £) to be empty or to
include all truth-values in VM.



Example 7. Let £ = {a, b} and suppose that L contains one unary connective
?. The PNmatrices M1 and M2 are defined as follows: VM1

= VM2
= {t, f},

DM1(a) = DM2(a) = {t} and DM1(b) = DM2(b) = {f}. The respective truth-
tables for ? are defined as follows:

x ?M1
(x)

t {f}
f {t, f}

x ?M2
(x)

t ∅
f {t, f}

While both M1 and M2 are PNmatrices, only M1 is proper. Note that in this
case we have {a : p1} `M2 ∅, simply because there is no M2-legal L-valuation
that assigns t to p1.

Finally, we extend the notion of simple refinements of Nmatrices ([3]) to the
context of PNmatrices:

Definition 12. Let M and N be PNmatrices for L and £. We say that N is a
simple refinement ofM, denoted by N ⊆M, if VN ⊆ VM, DN (l) = DM(l)∩VN
for every l ∈ £, and �N (x1, . . . , xn) ⊆ �M(x1, . . . , xn) for every n-ary connective
� of L and x1, . . . , xn ∈ VN .

Proposition 1. Let M and N be PNmatrices for L and £, such that N ⊆M.
Then: (1) Every N -legal L-valuation is also M-legal; and (2) `M⊆`N .

4.2 Decidability

For a denotational semantics to be useful, it should be effective: the question
of whether some conclusion follows from a finite set of assumptions, should be
decidable by considering some computable set of partial valuations defined on
some finite set of “relevant” formulas. Usually, the “relevant” formulas are taken
as all subformulas occurring in the conclusion and the assumptions. Next, we
show that the semantics induced by PNmatrices is effective in this sense.

Definition 13. Let M be a PNmatrix for L and £, and let F ⊆ FrmL closed
under subformulas. AnM-legal F-valuation is a function v : F → VM satisfying
v(�(ψ1, . . . , ψn)) ∈ �M(v(ψ1), . . . , v(ψn)) for every formula �(ψ1, . . . , ψn) ∈ F .
|=M is defined for F-valuations exactly as for L-valuations. We say that an
M-legal F-valuation is extendable in M if it can be extended to an M-legal
L-valuation.

In proper PNmatrices, all partial valuations are extendable:

Proposition 2. Let M be a proper PNmatrix for L and £, and let F ⊆ FrmL
closed under subformulas. Then any M-legal F-valuation is extendable in M.

Proof. The proof goes exactly like the one of Nmatrices in [1]. Note that the
non-emptiness of VM is needed in order to extend the empty valuation. Clearly,
the different definition of DM is immaterial here. ut



However, this is not the case for arbitrary PNmatrices:

Example 8. Consider the PNmatrixM2 from Example 7. Let v be theM2-legal
{p1}-valuation defined by v(p1) = t. Obviously, there is noM2-legal L-valuation
that extends v (as there is no way to assign a truth-value to ?p1). Thus v is not
extendable in M2.

Theorem 1. Let M be a PNmatrix for L and £ and F ⊆ FrmL closed under
subformulas. An M-legal F-valuation v is extendable in M iff v is N -legal for
some proper PNmatrix N ⊆M.

Corollary 1. Given a finite PNmatrix M for L and £, a finite F ⊆ FrmL
closed under subformulas. and a function v : F → VM, it is decidable whether v
is an M-legal F-valuation which is extendable in M.

Proof. Checking whether v is M-legal is straightforward. To verify that it is
extendable inM, we go over all (finite) proper PNmatrices N , such that N ⊆M
(there is a finite number of them sinceM is finite) and check whether v isN -legal
for some such N . We return a positive answer iff we have found some N ⊆ M
such that v is N -legal. The correctness is guaranteed by Theorem 1. ut

Corollary 2. Given a finite PNmatrix M for L and £, a finite set S of se-
quents, and a sequent s, it is decidable whether S `M s or not.

In the literature of Nmatrices (see e.g. [1]) effectiveness is usually identified
with the property given in Proposition 2.5 In this case Corollary 1 trivially holds:
to check that v is an extendable M-legal F-valuation, it suffices to check that
it isM-legal, as extendability is a priori guaranteed. However, the results above
show that this property is not a necessary condition for decidability. To guarantee
the latter, instead of requiring that all partial valuations are extendable, it is
sufficient to have an algorithm that establishes which of them are.

4.3 Minimality

In the next section, we show that the framework of PNmatrices provides a seman-
tic way of characterizing canonical labelled systems. A natural question in this
context is how one can obtain minimal such characterizations. Next we provide
lower bounds on the number of truth-values that are needed to characterize `M
of some PNmatrix M satisfying a separability condition defined below. More-
over, we provide a method to extract from a given (separable) PNmatrix an
equivalent PNmatrix with the minimal number of truth-values.

Definition 14. Let M be a PNmatrix for L and £.

1. A truth-value x ∈ VM is called useful in M if x ∈ VN for some proper
PNmatrix N ⊆M.

5 This property is sometimes called (semantic) analyticity. Note that in this paper the
term ‘analyticity’ refers to a proof-theoretic property (see Definition 20).



2. The PNmatrix R[M] is the simple refinement of M, defined as follows.
VR[M] consists of all truth-values in VM which are useful in M; DR[M](l) =
DM(l) ∩ VR[M] for every l ∈ £; and �R[M](x1, . . . , xn) = �M(x1, . . . , xn) ∩
VR[M] for every n-ary connective � of L and x1, . . . , xn ∈ VR[M].

Proposition 3. Let M be a PNmatrix for L and £, and let v be an M-legal
L-valuation. Then: (1) For every formula ψ, v(ψ) is useful in M; and (2) Every
M-legal L-valuation is also R[M]-legal.

Corollary 3. `M = `R[M] for every PNmatrix M.

Proof. One direction follows from Proposition 1, simply because R[M] is a sim-
ple refinement ofM by definition. The converse is easily established using Propo-
sition 3. We leave the details to the reader. ut

Definition 15. Let M be a PNmatrix for L and £. We say that two truth-
values x1, x2 ∈ VM are separable in M for l ∈ £ if x1 ∈ DM(l)⇔ x2 6∈DM(l)
holds. M is called separable if every pair of truth-values in VM are separable in
M for some l ∈ £.

We are now ready to obtain a lower bound on the number of truth-values
needed to characterize `M for a given separable PNmatrix M:

Theorem 2. LetM be a separable PNmatrix for L and £. If `M=`N for some
PNmatrix N for L and £, then N contains at least |VR[M]| truth-values.

Remark 3. As done for usual matrices, it is also possible to define `F , the con-
sequence relation induced by a family of proper PNmatrices to be

⋂
M∈F `M.

A PNmatrix can then be thought of as a succinct presentation of a family of
proper PNmatrices in the following sense. The consequence relation induced by a
PNmatrix N can be shown to be equivalent to the relation induced by the family
of all the proper PNmatricesM, such thatM⊆ N . Conversely, for every family
of proper PNmatrices it is easy to construct an equivalent PNmatrix.

5 Finite PNmatrices for Canonical Labelled Systems

Definition 16. We say that a PNmatrix M (for L and £) is characteristic for
a canonical labelled system G (for L and £) if `M=`G.

Next we provide a systematic way to obtain a characteristic PNmatrix MG

for every canonical labelled system G. The intuitive idea is as follows: the prim-
itive rules of G determine the set of the truth-values of MG, while the intro-
duction rules for the logical connectives dictate their corresponding truth-tables.
Like in the case of usual Nmatrices, the semantics based on PNmatrices is thus
modular: each such rule corresponds to a certain semantic condition, and the
semantics of a system is obtained by joining the semantic effects of each of its
derivation rules.



Definition 17. Let r = {L1, . . . , Ln}/L0 be a primitive rule for £. Define:

r∗ = {L ⊆ £ | Li ∩ L = ∅ for some 1 ≤ i ≤ n or L0 ∩ L 6= ∅}

Example 9. For a canonical axiom r = ∅/L0, r∗ = {L ⊆ £ | L0 ∩ L 6= ∅}. For
a canonical cut r = {L1, . . . , Ln}/∅, r∗ = {L ⊆ £ | Li ∩ L = ∅ for some 1 ≤
i ≤ n}. In particular, continuing Examples 2 and 3 (for £ = {t, f}), we have
r∗ = {{t}, {f}, {t, f}} for the classical axiom, and r∗ = {∅, {t}, {f}} for the
classical cut.

Definition 18. Let � be an n-ary connective, and let r = S/L0 : �(p1, . . . , pn)
be a canonical introduction rule for � and £. For every L1, . . . , Ln ⊆ £, define:

r∗[L1, . . . , Ln] =

{
{L ⊆ £ | L0 ∩ L 6= ∅} ∀s ∈ S((L1 : p1) ∪ . . . ∪ (Ln : pn)) ∩ s 6= ∅
P (£) otherwise

Example 10. Let £ = {t, f}. Recall the usual introduction rules for conjunction
from Example 4. By Definition 18:

r∗1 [L1, L2] =

{
{{f}, {t, f}} f ∈ L1 or f ∈ L2

P ({t, f}) otherwise
r∗2 [L1, L2] =

{
{{t}, {t, f}} t ∈ L1 ∩ L2

P ({t, f}) otherwise

Definition 19 (The PNmatrix MG). Let G be a canonical labelled system
for L and £. The PNmatrix MG (for L and £) is defined by:

1. VMG
= {L ⊆ £ | L ∈ r∗ for every r ∈ PG}.

2. For every l ∈ £, DMG
(l) = {L ∈ VMG

| l ∈ L}.
3. For every n-ary connective � of L and L1, . . . , Ln ∈ VMG

:

�MG
(L1, . . . , Ln) = {L ∈ VMG

| L ∈ r∗[L1, . . . , Ln] for every r ∈ R�G}

Example 11. Let £ = {t, f} and consider the calculus G∧ whose primitive rules
include only the classical axiom, and the classical cut (see Examples 2 and 3),
and whose only introduction rules are the two usual rules for conjunction (see
Example 4). By Example 9 and the construction above, VMG∧

= {{t}, {f}},
DMG∧

(t) = {t}, and DMG∧
(f) = {f}. Using Example 10, we obtain the follow-

ing interpretation of ∧:
∧MG∧

{t} {f}
{t} {t} {f}
{f} {f} {f}

We note that the calculus G∧ defined above is an instance of signed canonical
calculi of [4], as well as of labelled calculi of [6], and the semantics obtained for
it here coincides with the semantics given in [4, 6].

Example 12. Assume that L contains only a unary connective ?, and £ =
{a, b, c}. Let us start with the calculus G0, the primitive rules of which include
the canonical axiom ∅/{a, b, c} and the canonical cuts {a}, {c}/∅ and {a}, {b}/∅,
while G0 has no introduction rules. Here we have VMG0

= {{a}, {b}, {c}, {b, c}},
DMG

(a) = {{a}}, DMG
(b) = {{b}, {b, c}} and DMG

(c) = {{b, c}}. ?MG0
is



given in the table below (it is completely non-deterministic). One can now obtain
a calculus G1 by adding the rule {a : p1}/{b, c} : ?p1. This leads to a refinement
of the truth-table, described below. Finally, one can obtain the calculus G2 by
adding {b : p1}/{a} : ?p1, resulting in another refinement of truth-table, also
described below.

x ?MG0
(x) ?MG1

(x) ?MG2
(x)

{a} {{a},{b},{c},{b, c}} {{b},{b, c}} {{b},{b, c}}
{b} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a}}
{c} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}}
{b, c} {{a},{b},{c},{b, c}} {{a},{b},{c},{b, c}} {{a}}

Theorem 3 (Soundness and completeness). For every canonical labelled
system G, MG is a characteristic PNmatrix for G.

Proof. Immediately follows from Corollary 9 in Appendix A. ut

Corollary 4 (Decidability). Given a canonical labelled system G, a finite set
S of sequents, and a sequent s, it is decidable whether S `G s or not.

Corollary 5. The question whether a given canonical labelled system G is con-
sistent (i.e. 6`G∅) is decidable.

MG provides a semantic characterization for G, however it may not be a
minimal one (in terms of the number of truth-values). For a minimal semantic
representation, we should consider the equivalent PNmatrix R[MG]:

Corollary 6 (Minimality). For every canonical labelled system G, R[MG] is
a minimal (in terms of number of truth-values) characteristic PNmatrix for G.

Proof. The claim follows by Theorem 2 from the fact that MG is separable for
every system G. ut

6 Proof-Theoretic Applications

In this section we apply the semantic framework of PNmatrices to provide decid-
able semantic criteria for syntactic properties of canonical labelled calculi that
are usually hard to generally characterize by other means. Namely, we focus
on the notions of analyticity and cut-admissibility, extended to the context of
reasoning with assumptions.

6.1 Strong Analyticity

Strong analyticity is a crucial property of a useful (propositional) calculus, as it
implies its consistency and decidability. Intuitively, a calculus is strongly analytic
if whenever a sequent s is provable in it from a set of assumptions S, then s can
be proven using only the formulas available within S and s.

Definition 20. A canonical labelled system G is strongly analytic if whenever
S `G s, there exists a derivation in G of s from S consisting solely of (sequents
consisting of) formulas from sub[S ∪ {s}].



Below we provide a decidable semantic characterization of strong analyticity
of canonical labelled calculi:

Theorem 4 (Characterization of Strong Analyticity). Let G be a canon-
ical labelled system for L and £. Suppose that G does not include the (trivial)
primitive rule ∅/∅. Then, G is strongly analytic iff MG is proper.

Corollary 7. The question whether a given canonical labelled system is strongly
analytic is decidable.

6.2 Strong Cut-Admissibility

As the property of strong analyticity is sometimes difficult to establish, it is
traditional in proof theory to investigate the property of cut-admissibility, which
means that whenever s is provable in G, it has a cut-free derivation in G. In
this paper we investigate a stronger notion of this property, defined as follows
for labelled calculi:

Definition 21. A labelled system G enjoys strong cut-admissibility if whenever
S `G s, there exists a derivation in G of s from S in which only formulas from
frm[S] serve as cut-formulas.

Due to the special form of primitive and introduction rules of canonical calculi
(which, except for canonical cuts, enjoy the subformula property), the above
property guarantees strong analyticity:

Proposition 4. Let G be a canonical labelled system. If G enjoys strong cut-
admissibility, then G is strongly analytic.

Although for two-sided canonical sequent calculi the notions of strong analyticity
and strong cut-admissibility coincide (see [3]), this is not the case for general
labelled calculi, for which the converse of Proposition 4 does not necessarily
hold, as shown by the following example:

Example 13. Assume that L contains only a unary connective ?, and £ =
{a, b, c}. Let G be the canonical labelled system G for L and £, the primi-
tive rules of which include only the canonical cuts {a}, {b}/∅, {a}, {c}/∅, and
{b}, {c}/∅, and its only introduction rules are {a : p1}/{a, b} : ?p1 and {a :
p1}/{b, c} : ?p1. To see that this system is strongly analytic, by Theorem 4, it
suffices to constructMG and check that it is proper. The construction proceeds
as follows: VMG

= {∅, {a}, {b}, {c}}, DMG
(l) = {l} for l ∈ {a, b, c}, and the

truth-table for ? is the following:

x ?MG
(x)

∅ {∅, {a}, {b}, {c}}
{a} {{b}}
{b} {∅, {a}, {b}, {c}}
{c} {∅, {a}, {b}, {c}}

This is a proper PNmatrix, and so G is strongly analytic. We also note that
it impossible to derive the sequent {b : ?p1} from the singleton set {{a : p1}}



using only p1 as a cut-formula. However, by applying the two introduction rules
of G and then using the cut {a}, {c}/∅ (with ?p1 as cut-formula), we can derive
{b : ?p1} from {{a : p1}}. Thus although this system is strongly analytic, it does
not enjoy strong cut-admissibility.

The intuitive explanation is that non-eliminable applications of canonical
cuts (like the one in the above example) are not harmful for strong analytic-
ity because they enjoy the subformula property. Thus, the equivalence between
strong analyticity and cut-admissibility can be restored if we enforce the follow-
ing condition:

Definition 22. A canonical labelled system G for L and £ is cut-saturated if
for every canonical cut {L1, . . . , Ln}/∅ of G and l ∈ £, G contains the primitive
rule {L1, . . . , Ln}/{l}.

Proposition 5. For every canonical labelled system G, there is an equivalent
cut-saturated canonical labelled system G′.

Example 14. Revisiting the system from Example 13, we observe that G is
not cut-saturated. To obtain a cut-saturated equivalent system G′, we add
the following primitive rules to G: r1 = {a}, {b}/{c}, r2 = {a}, {c}/{b}, and
r3 = {b}, {c}/{a}. Note that the addition of these rules does not affect the set
of truth-values, i.e., VMG

= VMG′ . However, we can now derive {b : ?p1} from
{{a : p1}} without any cuts by by the two introduction rules and the new rule
r2. Moreover, by Corollary 8 below, G′ does enjoy strong cut-admissibility.

We are now ready to provide a decidable semantic characterization of strong
cut-admissibility.

Theorem 5. Let G be a cut-saturated canonical labelled system for L and £.
Suppose that G does not include the (trivial) primitive rule ∅/∅. Then, G enjoys
strong cut-admissibility iff MG is proper.

Corollary 8. Let G be a cut-saturated canonical labelled system for L and £.
Suppose that G does not include the (trivial) primitive rule ∅/∅. Then the follow-
ing statements concerning G are equivalent: (i)MG is proper, (ii) G is strongly
analytic, and (iii) G enjoys strong cut-admissibility.

7 Conclusions and Further Research

Establishing proof-theoretical properties of syntactic calculi is in many cases
a complex and error-prone task. For instance, proving that a calculus admits
cut-elimination is often carried out using heavy syntactic arguments and many
case-distinctions, leaving room for mistakes and omissions. This leads to the need
of automatizing the process of reasoning about calculi6. However, a faithful for-
malization is an elusive goal, as such important properties as cut-admissibility,

6 In [8], e.g., proofs of cut-admissibility, contraction-admissibility and Graig’s inter-
polation theorem are formalized for some particular sequent calculi using the proof
assistant Isabelle.



analyticity and decidability, as well as the dependencies between them are little
understood for the general case. We believe that the abstract view on labelled
calculi taken in this paper is a substantial step towards finding the right level of
abstraction for reasoning about these properties. Moreover, the simple and decid-
able semantic characterizations of these properties for canonical labelled calculi
are a key to their faithful axiomatization in this context. To provide these char-
acterizations, we have introduced PNmatrices, a generalization of Nmatrices,
in which empty entries in logical truth-tables are allowed, while still preserv-
ing the effectiveness of the semantics. A characteristic PNmatrix MG has been
constructed for every canonical labelled calculus, which in turn implies its de-
cidability. If in addition MG has no empty entries (i.e, is proper) — which is
decidable, G is strongly analytic. For cut-saturated canonical calculi, the latter
is also equivalent to strong cut-admissibility.

The results of this paper extend the theory of canonical sequent calculi of
[2], as well as of the labelled calculi of [6] and signed calculi of [4], all of which
are particular instances of canonical labelled calculi defined here. Moreover, the
semantics obtained for these families of calculi in the above mentioned papers,
coincide with the PNmatrices semantics obtained for them here. It is partic-
ularly interesting to note that [6] provides a list of conditions, under which a
labelled calculus has a characteristic finite-valued logic. These conditions include
(i) reducibility of cuts (which can be shown to be equivalent to the criterion of
coherence of [4]), which entails thatMG is proper, and (ii) eliminability of com-
pound axioms,7 which in its turn entails that MG is completely deterministic
(in other words, it can be identified with an ordinary finite-valued matrix). We
conclude that, as shown in this paper, none of the conditions required in any
of the mentioned papers [2, 6, 4] from a “well-behaved” calculus are necessary
when moving to the more general semantic framework of PNmatrices, where
any canonical labelled calculus has an effective finite-valued semantics.

An immediate direction for further research is investigating the applications
of the theory of canonical labelled calculi developed here. One possibility is ex-
ploiting this theory for sequent calculi, whose rules are more complex than the
canonical ones, but which can be reformulated in terms of canonical labelled cal-
culi. This applies, e.g., to the large family of sequent calculi for paraconsistent
logics given in [5]. The rules of these calculi have a particular uniform form: (i)
each of them introduces exactly one formula in its conclusion; (ii) the formula
which is introduced is either of the form �(ψ1, . . . , ψn) or ¬ � (ψ1, . . . , ψn); (iii)
the principal formulas in the premises of the rule are all taken from the set
{ψ1, . . . , ψn,¬ψ1, . . . ,¬ψn}; and (iv) there are no restrictions on the side formu-
las of the application. For an example, consider the (two-sided) Gentzen-type
system GK of [5] over the language LC = {∧,∨,⊃, ◦,¬}, obtained from LK by
discarding the left rule for negation and adding the following schemas for the
unary connective ◦:

Γ ⇒ ψ,∆ Γ ⇒ ¬ψ,∆
Γ, ◦ψ ⇒ ∆

(◦ ⇒)
Γ, ψ,¬ψ ⇒ ∆

Γ ⇒ ◦ψ,∆ (⇒ ◦)

Clearly, these schemas cannot be formulated as canonical rules in the sense
of [2] (since they use ¬ψ as a principal formula). However, we can reformu-

7 This property intuitively means that compound axioms can be reduced to atomic
ones. It is called ‘axiom-expansion’ in [7].



late GK in terms of canonical labelled calculi by using the set of labels £4 =
{t+, t−, f+, f−}, where t and f denote the side on which the formula occurs,
and + and − determine whether its occurrence is positive or negative (i.e. pre-
ceded with negation). Now each (two-sided) rule of GK can be translated into
a labelled canonical rule over £4. For instance, (◦ ⇒) and (⇒ ◦) above are
translated into {t+ : p1}, {t− : p1}/{f+} : ◦p1 and {f+ : p1, f

− : p1}/{t+} : ◦p1
respectively. Adding further rules, it can be shown that for each (non-canonical)
two-sided calculus G from [5], an equivalent8 labelled canonical calculus G′ can
be constructed, which automatically implies the decidability of the calculi from
[5]. Characterizing the non-canonical sequent calculi which have useful transla-
tions into labelled canonical calculi is a question for further research. Another
direction is generalizing the results of this paper to more complex classes of la-
belled calculi, e.g., like those defined in [11] for inquisitive logic. Extending the
results to the first-order case is another future goal.
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A Soundness and Completeness Proofs

A.1 Soundness

Definition 23. Let G be a canonical labelled system for L and £. For every set
S ∪ {s} of sequents and set F of formulas, we write S `FG s iff there if there
exists a derivation in G of s from S consisting only of (sequents consisting of)
formulas from F .

Theorem 6. Let G be a canonical labelled system for L and £. Let S ∪ {s} be
a set of sequents, and let F ⊆ FrmL such that sub[S ∪ {s}] ⊆ F . Suppose that
S `FG s. Then, v |=MG

S implies v |=MG
s for every MG-legal F-valuation v.

Proof. Assume there exists a derivation P in G of a sequent s from a set S of
sequents consisting only of (sequents consisting of) formulas from F . Let v be an
MG-legal F-valuation. Suppose that v |=MG

S. Using induction on the length
of P , we show that v |=MG

s for every sequent s occurring in P . This trivially
holds for the sequents of S. We show that this property is also preserved by
applications of the rules of G. This obviously holds for the weakening rule. We
show it holds for primitive rules and for canonical rules as well:

– Suppose (L : ψ) ∪ s1 ∪ . . . ∪ sn is derived from the sequents
(L1 : ψ) ∪ s1, . . . , (Ln : ψ) ∪ sn using the primitive rule r = {L1, . . . , Ln}/L.
Assume that v |=MG

(Li : ψ) ∪ si for every 1 ≤ i ≤ n. We show that
v |=MG

(L : ψ) ∪ s1 ∪ . . . ∪ sn. By definition it suffices to show that there
exists some l : ϕ ∈ (L : ψ) ∪ s1 ∪ . . . ∪ sn such that v(ϕ) ∈ DMG

(l). If there
exists some l : ϕ ∈ s1 ∪ . . . ∪ sn such that v(ϕ) ∈ DMG

(l), then we are
done. Assume otherwise. Then our assumption entails that v |=MG

(Li : ψ)
for every 1 ≤ i ≤ n, and so for every 1 ≤ i ≤ n, there exists some l ∈ Li

such that v(ψ) ∈ DMG
(l). The definition of DMG

entails that for every
1 ≤ i ≤ n, there exists some l ∈ Li such that l ∈ v(ψ). In other words,
for every 1 ≤ i ≤ n, Li ∩ v(ψ) 6= ∅. Since v is MG-legal, v(ψ) ∈ VMG

. In
particular, v(ψ) ∈ r∗, and so v(ψ) ∩ L 6= ∅. Hence there exists some l0 ∈ L,
such that l0 ∈ v(ψ). It follows that v(ψ) ∈ DMG

(l0). Thus, in this case
v |=MG

(L : ψ).
– Suppose (L0 : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm is derived from the sequents
σ(c1) ∪ s1, . . . , σ(cm) ∪ sm using the canonical introduction rule r =
{c1, . . . , cm}/L0 : �(p1, . . . , pn) . Assume that v |=MG

σ(ci) ∪ si for every
1 ≤ i ≤ m. We show that v |=MG

(L0 : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm.
By definition it suffices to show that there exists some l : ϕ ∈
(L0 : σ(�(p1, . . . , pn))) ∪ s1 ∪ . . . ∪ sm such that v(ϕ) ∈ DMG

(l). If there ex-
ists some l : ϕ ∈ s1 ∪ . . . ∪ sm such that v(ϕ) ∈ DMG

(l), then we are done.
Assume otherwise. Then our assumption entails that v |=MG

σ(ci) for every
1 ≤ i ≤ m. Thus for every 1 ≤ i ≤ m there exists some l : p ∈ ci, such that
v(σ(p)) ∈ DMG

(l). The definition of DMG
entails that for every 1 ≤ i ≤ m

there exists some l : p ∈ ci, such that l ∈ v(σ(p)). Let Li = v(σ(pi)) for
every 1 ≤ i ≤ n. It follows that ((L1 : p1)∪ . . .∪ (Ln : pn))∩ ci 6= ∅ for every



1 ≤ i ≤ m. Thus r∗[L1, . . . , Ln] = {L ⊆ £ | L∩L0 6= ∅}. Since v isMG-legal
and σ(�(p1, . . . , pn)) ∈ F , v(σ(�(p1, . . . , pn))) ∈ r∗[v(σ(p1), . . . , v(σ(pn))].
Hence, v(σ(�(p1, . . . , pn))) ∩ L0 6= ∅. Thus there exists some l ∈ L0, such
that l ∈ v(σ(�(p1, . . . , pn))). It follows that v(σ(�(p1, . . . , pn))) ∈ DMG

(l).
Thus, in this case v |=MG

(L0 : σ(�(p1, . . . , pn))). ut

A.2 Completeness

Definition 24. Let G be a canonical labelled system for L and £. For every set

S ∪ {s} of sequents and sets F , C of formulas, we write S `〈F,C〉
G s iff there if

there exists a derivation P in G of s from S such that:

1. P consists only of (sequents consisting of) formulas from F .
2. Only formulas from C serve as cut-formulas in P .

Notation: We denote by Gcf the canonical labelled system obtained from a
canonical labelled system G by discarding all the canonical cut rules of G.

Theorem 7. Let G be a canonical labelled system for L and £. Let S ∪{s} be a
set of sequents, F ⊆ FrmL such that sub[S ∪ {s}] ⊆ F , and C ⊆ FrmL. Suppose
that v |=MGcf

S implies v |=MGcf
s for every MGcf

-legal F-valuation v such

that v(ψ) ∈ VMG
for every ψ ∈ C ∩ F . Then S `〈F,C〉

G s.

Proof. Assume that S 6`〈F,C〉
G s. We construct anMGcf

-legal F-valuation v such
that v(ψ) ∈ VMG

for every ψ ∈ C ∩ F , and v |=MGcf
S but v 6|=MGcf

s. Call a
set Ω of labelled formulas maximal if it satisfies the following conditions:

1. frm[Ω] ⊆ F .

2. S 6`〈F,C〉
G s for every sequent s ⊆ Ω.

3. For every labelled formula l : ψ 6∈Ω for ψ ∈ F , there exists a sequent s ⊆ Ω

such that S `〈F,C〉
G s ∪ {l : ψ}.

Let Ω be a maximal set extending s. An existence of such a set is ensured
by the next lemma.

Lemma: Let s′ be a set of labelled formulas, such that frm[s′] ⊆ F . If

S 6`〈F,C〉
G s′, then there exists a maximal set Ω such that s′ ⊆ Ω.

Proof: Let γ1, γ2, . . . be an enumeration of all labelled formulas, such that
frm[γi] ∈ F and γi 6∈s′ for every i ≥ 1. We recursively define a sequence of
sets of labelled formulas, {Ωk}k=∞k=0 . Let Ω0 = s. For k ≥ 1, let Ωk = Ωk−1

iff there exists a sequent s ⊆ Ωk−1 such that S `〈F,C〉
G s ∪ {γk}. Otherwise, let

Ωk = Ωk−1 ∪ {γk}. Finally, let Ω =
⋃

k≥0Ωk. It is easy to verify that Ω has all
required properties.

Next, let v be a function from F to P (£) defined by v(ψ) = {l ∈ £ | l : ψ 6∈Ω}
for every ψ ∈ F . We claim that:



(A) For every sequent c, such that frm[c] ⊆ F : there exists a sequent s′ ⊆ Ω

such that S `〈F,C〉
G c ∪ s′ iff (v(ψ) : ψ) ∩ c 6= ∅.

(B) v is an MGcf
-legal F-valuation.

(C) v(ψ) ∈ VMG
for every ψ ∈ C ∩ F .

(D) v |=MGcf
S.

(E) v 6|=MGcf
s.

Proof of (A): Let c be a sequent such that frm[c] ⊆ F . Suppose that there

exists a sequent s′ ⊆ Ω such that S `〈F,C〉
G c ∪ s′. The maximality of Ω entails

that c 6⊆ Ω. Thus there exists a signed formula l : ψ ∈ c such that l : ψ 6∈Ω.
The construction of v entails that l ∈ v(ψ), and so (v(ψ) : ψ) ∩ c 6= ∅. For
the converse, assume that (v(ψ) : ψ) ∩ c 6= ∅. Hence there exists some l ∈ v(ψ)
such that l : ψ ∈ c. By definition, l : ψ 6∈Ω. The maximality of Ω entails that

there exists a sequent s′ ⊆ Ω such that S `〈F,C〉
G s′ ∪ {l : ψ}. Using weakening,

we obtain S `〈F,C〉
G c ∪ s′.

Proof of (B): We first show that v(ψ) ∈ VMGcf
for every ψ ∈ F . Thus we prove

that for every formula ψ ∈ F , v(ψ) ∈ r∗ for every rule r ∈ PGcf
. Let ψ ∈ F ,

and let r = {L1, . . . , Ln}/L be a primitive rule of Gcf . To see that v(ψ) ∈ r∗,
we show that if Li ∩ v(ψ) 6= ∅ for every 1 ≤ i ≤ n, then L ∩ v(ψ) 6= ∅. Suppose
that Li ∩ v(ψ) 6= ∅ for every 1 ≤ i ≤ n. (A) entails that for every 1 ≤ i ≤ n,

there exists some sequent si ⊆ Ω such that S `〈F,C〉
G (Li : ψ)∪ si. Using the rule

r (which is not a canonical cut), we obtain S `〈F,C〉
G (L : ψ) ∪ s1 ∪ . . . ∪ sn. (A)

again entails that L ∩ v(ψ) 6= ∅.
Next, we show that v(�(ψ1, . . . , ψn)) ∈ �MGcf

(v(ψ1), . . . , v(ψn)) for ev-
ery formula �(ψ1, . . . , ψn) ∈ F . Thus we prove that for every formula
�(ψ1, . . . , ψn) ∈ F , v(�(ψ1, . . . , ψn)) ∈ r∗[v(ψ1), . . . , v(ψn)] for every rule r ∈ R�G.
Let �(ψ1, . . . , ψn) ∈ F , and let r = S/L : �(p1, . . . , pn) be a rule in R�G.
To see that v(�(ψ1, . . . , ψn)) ∈ r∗[v(ψ1), . . . , v(ψn)], we show that if ((v(ψ1) :
p1) ∪ . . . ∪ (v(ψn) : pn)) ∩ c 6= ∅ for every c ∈ S, then v(�(ψ1, . . . , ψn)) ∩ L 6= ∅.
Suppose that ((v(ψ1) : p1) ∪ . . . ∪ (v(ψn) : pn)) ∩ c 6= ∅ for every c ∈ S.
Let σ be an L-substitution assigning ψi to pi for every 1 ≤ i ≤ n. Thus
((v(ψ1) : ψ1)∪. . .∪(v(ψn) : ψn))∩σ(c) 6= ∅ for every c ∈ S. Hence for every c ∈ S,
there exists some 1 ≤ i ≤ n, such that (v(ψi) : ψi)∩σ(c) 6= ∅. (A) entails that for

every c ∈ S, there exists some sequent sc ⊆ Ω such that S `〈F,C〉
G σ(c) ∪ sc. By

applying r, we obtain S `〈F,C〉
G (L : �(ψ1, . . . , ψn)) ∪

⋃
c∈S sc. Since

⋃
c∈S sc ⊆ Ω,

(A) entails that v(�(ψ1, . . . , ψn)) ∩ L 6= ∅.

Proof of (C): Let ψ ∈ C ∩ F . We show that v(ψ) ∈ VMG
. Following (B),

it suffices to show that v(ψ) ∈ r∗ for every canonical cut r of G. Let r =
{L1, . . . , Ln}/∅ be a canonical cut of G. To have v(ψ) ∈ r∗, it suffices to prove
that Li ∩ v(ψ) = ∅ for some 1 ≤ i ≤ n. Suppose otherwise. (A) entails that for

every 1 ≤ i ≤ n, there exists some sequent si ⊆ Ω such that S `〈F,C〉
G (Li :

ψ) ∪ si. Using the canonical cut r (with the cut-formula ψ ∈ C), we obtain

S `〈F,C〉
G s1 ∪ . . . ∪ sn. This contradicts the fact that s1 ∪ . . . ∪ sn ⊆ Ω.



Proof of (D): Let s′ ∈ S. Clearly, S `〈F,C〉
G s′. By (A), there exists some l ∈

v(ψ) such that l : ψ ∈ s′. Since l ∈ v(ψ), we have v(ψ) ∈ DMGcf
(l). Hence,

v |=MGcf
s′. Consequently, v |=MGcf

S.

Proof of (E): Since s ⊆ Ω, l 6∈v(ψ) for every l : ψ ∈ s. It follows that for every
l : ψ ∈ s, v(ψ)6∈DMGcf

(l). Therefore, v 6|=MGcf
s.

Finally, properties (B)-(E) show that v is an MGcf
-legal F-valuation with

all required properties. ut

A.3 Corollaries

Proposition 6. Let G be a canonical labelled system for L and £. Suppose
that G′ is obtained from G by omitting some primitive rules. Let F be a set of
formulas closed under subformulas. Then, every MG′-legal F-valuation v such
that v(ψ) ∈ VMG

for every ψ ∈ F , is also anMG-legal F-valuation. In addition,
for every sequent s such that frm[s] ⊆ F , v |=MG

s iff v |=MG′ s.

Proof. Let v be an MG′ -legal F-valuation. We first note that
VMG

⊆ VMG′ (this follows by definition from the fact that PG′ ⊆ PG).
Now let � be an n-ary connective and �(ψ1, . . . , ψn) ∈ F . Since
v is MG′ -legal, v(�(ψ1, . . . , ψn)) ∈ �MG′ (v(ψ1), . . . , v(ψn)). We
show that v(�(ψ1, . . . , ψn)) ∈ �MG

(v(ψ1), . . . , v(ψn)). Let r ∈ R�G.
Since R�G′ , v(�(ψ1, . . . , ψn)) ∈ �MG′ (v(ψ1), . . . , v(ψn)) implies that
v(�(ψ1, . . . , ψn)) ∈ r∗[v(ψ1), . . . , v(ψn)]. Since v(�(ψ1, . . . , ψn)) ∈ VMG

,
we obtain v(�(ψ1, . . . , ψn)) ∈ �MG

(v(ψ1), . . . , v(ψn)). It follows that v is
MG-legal. The second part is left to the reader. ut

Corollary 9. For every canonical labelled system G, `MG
=`G.

Proof. One direction follows directly from Theorem 6 (by choosing F = FrmL).
For the converse, suppose that S `MG

s. We prove that v |=MGcf
S implies

v |=MGcf
s for everyMGcf

-legal L-valuation v such that v(ψ) ∈ VMG
for every

ψ ∈ FrmL. Theorem 7 then implies that S `G s (choose F = C = FrmL). Let v
be an MGcf

-legal L-valuation such that v(ψ) ∈ VMG
for every ψ ∈ FrmL, and

v |=MGcf
S. Since v(ψ) ∈ VMG

for every ψ ∈ FrmL, Proposition 6 entails that
v is also anMG-legal L-valuation. Similarly, v |=MG

S. Our assumption entails
that v |=MG

s. This implies that v |=MGcf
s. By Theorem 7, S `G s. ut

Corollary 10. Let G be a canonical labelled system for L and £, and let S∪{s}
be a set of sequents. There exists a derivation of s from S in G in consisting
solely of (sequents consisting of) formulas from sub[S ∪ {s}] iff v |=MG

S implies
v |=MG

s for every MG-legal sub[S ∪ {s}]-valuation v.

Proof. One direction follows directly from Theorem 6 (by choosing F =
sub[S ∪ {s}]). For the converse, suppose that for every MG-legal sub[S ∪ {s}]-
valuation v, v |=MG

s whenever v |=MG
S. We prove that v |=MGcf

S implies
v |=MGcf

s for everyMGcf
-legal sub[S ∪ {s}]-valuation v such that v(ψ) ∈ VMG



for every ψ ∈ sub[S ∪ {s}]. Theorem 7 then implies that there exists a deriva-
tion of s from S in G consisting solely of (sequents consisting of) formulas
from sub[S ∪ {s}] (choose F = C = sub[S ∪ {s}]). Let v be an MGcf

-legal
sub[S ∪ {s}]-valuation such that v(ψ) ∈ VMG

for every ψ ∈ sub[S ∪ {s}], and
v |=MGcf

S. Since v(ψ) ∈ VMG
for every ψ ∈ sub[S ∪ {s}], Proposition 6 entails

that v is also an MG-legal sub[S ∪ {s}]-valuation. Similarly, v |=MG
S. Our

assumption entails that v |=MG
s. This implies that v |=MGcf

s. The claim then
follows from Theorem 7. ut

B Proofs of Selected Propositions

Proof of Proposition 1:
(1) is easy and left to the reader. For (2), let S `M s. Let v be an N -legal
L-valuation, such that v |=N S. For every s′ ∈ S, v(ψ) ∈ DN (l) for some
l : ψ ∈ s′. Since DN (l) ⊆ DM(l) for every l ∈ £, we have that for every s′ ∈ S,
v(ψ) ∈ DM(l) for some l : ψ ∈ s′. Thus v |=M S, and since v is M-legal (using
(1)) v |=M s. Then v(ψ) ∈ DM(l) for some l : ψ ∈ s. Since DN = DM ∩VN and
v(ψ) ∈ VN (since v is N -legal), v(ψ) ∈ DN (l) and so v |=N s. ut

Proof of Theorem 1:
(⇒) Let v′ be an M-legal L-valuation that extends v. Define the PNma-

trix N as follows: VN = Image(v′); for every l ∈ £, DN (l) = DM(l) ∩ VN ;
and for every n-ary connective � of L, and x1, . . . , xn ∈ VN , �N (x1, . . . , xn)
is {v′(�(ψ1, . . . , ψn)) | ψ1, . . . , ψn ∈ FrmL and v′(ψi) = xi for every 1 ≤ i ≤
n}. Note that �N (x1, . . . , xn) ⊆ VN for every n-ary connective � of L, and
x1, . . . , xn ∈ VN . First we verify that N is proper. Clearly, VN is non-empty. Let
� be an n-ary connective of L, and let x1, . . . , xn ∈ VN . Since VN = Image(v′),
there are some ψ1, . . . , ψn ∈ FrmL, such that v′(ψi) = xi for every 1 ≤ i ≤ n.
Since v′ is an L-valuation, v′(�(ψ1, . . . , ψn)) is defined, and so �N (x1, . . . , xn)
is non-empty. To see that N ⊆ M it suffices to show that for every n-ary con-
nective � of L and x1, . . . , xn ∈ VN , we have �N (x1, . . . , xn) ⊆ �M(x1, . . . , xn).
Let � be an n-ary connective of L, x1, . . . , xn ∈ VN , and let y ∈ �N (x1, . . . , xn).
Then there are some ψ1, . . . , ψn ∈ FrmL, such that y = v′(�(ψ1, . . . , ψn)) and
v′(ψi) = xi for all 1 ≤ i ≤ n. Since v′ is M-legal, y ∈ �M(v′(ψ1), . . . , v′(ψn)) =
�M(x1, . . . , xn). Finally, we show that v is N -legal. Let �(ψ1, . . . , ψn) ∈ F . By
definition v′(�(ψ1, . . . , ψn)) = v(�(ψ1, . . . , ψn)), and since F is closed under sub-
formulas we also have v′(ψi) = v(ψi) for every 1 ≤ i ≤ n. The construction of
�N then ensures that v(�(ψ1, . . . , ψn)) ∈ �N (v(ψ1), . . . , v(ψn)).

(⇐) Suppose that there is some proper PNmatrix N ⊆ M, such that v is
N -legal. By Proposition 2, there exists an N -legal L-valuation v′ that extends
v. By Proposition 1, v′ is M-legal. Thus v is extendable in M. ut

Proof of Corollary 2:
Using Corollary 1, it is possible to enumerate all functions
v : sub[S ∪ {s}]→ VM, and check if one of them is an M-legal sub[S ∪ {s}]-
valuation extendable in M, such that v |=M S but v 6|=M s. We claim that



S `M s iff such a function is not found. To see this, note that if S 6`M s, then
by definition there exists an M-legal L-valuation v′ such that v′ |=M S but
v′ 6|=M s. Its restriction v to sub[S ∪ {s}] is an M-legal sub[S ∪ {s}]-valuation
extendable in M, such that v |=M S but v 6|=M s. On the other hand, if there
exists anM-legal sub[S ∪ {s}]-valuation v extendable inM, such that v |=M S
but v 6|=M s, then for any of its M-legal extensions v′, we have v′ |=M S but
v′ 6|=M s. Consequently, S 6`M s in this case. ut

Proof of Proposition 3:
(2) easily follows from (1). For (1), note that v is trivially extendable inM, and
so Theorem 1 entails that there is some proper PNmatrix N ⊆M, such that v
is N -legal. Clearly, v(ψ) ∈ VN for every formula ψ. Thus v(ψ) is useful in M
for every formula ψ. ut

Proof of Theorem 2:
Let N be a PNmatrix for L and £ with |VN | < |VR[M]|. We show that `N 6= `M.
For every y ∈ VN , define Vy = {x ∈ VM | ∀l ∈ £.y ∈ DN (l) ⇔ x ∈ DM(l)}.
Since M is separable, Vy is either singleton or empty for every y ∈ VN . Since
|VN | < |VR[M]| (and VR[M] ⊆ VM), there exists some x0 ∈ VR[M], such that
x0 6∈Vy for every y ∈ VN . Let L = {l ∈ £ | x0 ∈ DM(l)}. Let S be the set of
all 1-clauses of the form {l : p1} for l ∈ L, and s be the 1-clause (£ \ L : p1).
We claim that S `N s. Suppose otherwise. Then there exists an N -legal L-
valuation v such that v |=N S, but v 6|=N s. Thus v(p1) ∈ DN (l) for every l ∈ L,
and v(p1)6∈DN (l) for every l 6∈L. But, it then follows that x0 ∈ Vv(p1), and this
contradicts our assumption concerning x0.

On the other hand, it is easy to see that S 6`M s. Indeed, consider an R[M]-
legal {p1}-valuation v that assigns x0 to p1. Since x0 is useful inM, there exists
some proper PNmatrix N ⊆ M such that x0 ∈ VN . v is trivially an N -legal
{p1}-valuation, and so by Theorem 1, v is extendable inM. Let v′ be anM-legal
L-valuation which extends v. Clearly, v′ |=M S, but v′ 6|=M s. ut

Proof of Theorem 4:
Suppose that MG is proper. Assume that there does not exist a derivation
of a sequent s from a set S of sequents in G that consists solely of formulas
from sub[S ∪ {s}]. We show that S 6`G s. By Corollary 10 (in Appendix A),
there exists some MG-legal sub[S ∪ {s}]-valuation v, such that v |=MG

S but
v 6|=MG

s. By Proposition 2, v is extendable to a full MG-legal L-valuation v′.
Clearly, v′ |=MG

S but v′ 6|=MG
s, and so S 6`MG

s. By the soundness of MG

for G, S 6`G s.
For the converse, suppose that MG is not proper. If VMG

is empty, then
`MG

∅, and so (by Theorem 3) `G ∅. Clearly, without using a rule of the form
∅/∅, there is no derivation in G that does not contain any formula. It follows
that G is not strongly analytic in this case. Otherwise VMG

is non-empty. Thus
�MG

(L1, . . . , Ln) = ∅ for some n-ary connective � of L and L1, . . . , Ln ∈ VMG
.

For every 1 ≤ i ≤ n, let Si be the set of all clauses of the form {l : pi} where
l ∈ Li, and let si = {l : pi | l 6∈Li}. We claim that S1 ∪ . . . ∪ Sn `G s1 ∪ . . . ∪ sn,



but there does not exist a derivation of s1 ∪ . . . ∪ sn from S1 ∪ . . . ∪ Sn in G
that consists solely of formulas from {p1, . . . , pn}. For the latter, note that for
the MG-legal {p1, . . . , pn}-valuation v assigning Li to pi for every 1 ≤ i ≤ n,
we have v |=MG

S1 ∪ . . . ∪ Sn but v 6|=MG
s1 ∪ . . . ∪ sn. Thus the claim follows

by Corollary 10. For the former, note that every MG-legal L-valuation v′ for
which v′ |=MG

S1 ∪ . . .∪Sn but v′ 6|=MG
s1 ∪ . . .∪ sn, we must have v′(pi) = Li

for every 1 ≤ i ≤ n. But then v′(�(p1, . . . , pn)) should be an element of the
empty set. Since such an L-valuation does not exist, Theorem 3 entails that
S1 ∪ . . . ∪ Sn `G s1 ∪ . . . ∪ sn. ut

Proof of Theorem 5:
Suppose that MG is not proper. By Theorem 4, G is not strongly analytic. By
Proposition 4, it follows that G does not enjoy strong cut-admissibility.
For the converse, we need the following lemmas:

Lemma 1. Let G be a canonical labelled system for L and £. For every n-ary
connective � of L, and every L1, . . . , Ln, L

′
1, . . . , L

′
n ∈ VMG

such that Li ⊆ L′i
for every 1 ≤ i ≤ n, we have �MG

(L′1, . . . , L
′
n) ⊆ �MG

(L1, . . . , Ln).

Lemma 2. Let G be a cut-saturated canonical labelled system for L and £.
VMGcf

= VMG
∪ {£}, DMGcf

(l) = DMG
(l) ∪ {£} for every l ∈ £, and

�MGcf
(L1, . . . , Ln) = �MG

(L1, . . . , Ln) ∪ {£} for every n-ary connective � of

L and every L1, . . . , Ln ∈ VMG
.9

Now suppose thatMG is proper. Assume that there does not exist a deriva-
tion of a sequent s from a set S of sequents in G in which only formulas from
frm[S] serve as cut-formulas. We show that S 6`G s. By choosing F = FrmL
and C = frm[S] in Theorem 7 (see Appendix A), we obtain that there exists
some MGcf

-legal L-valuation v′ assigning only values from VMG
to the formu-

las in frm[S], such that v′ |=MGcf
S but v′ 6|=MGcf

s. By Lemma 2, v′ is a
function from FrmL to VMG

∪ {£}. We construct a function v : FrmL → VMG
,

such that v is an MG-legal L-valuation; v(ψ) ⊆ v′(ψ) for every ψ ∈ FrmL; and
v(ψ) = v′(ψ) whenever v′(ψ) ∈ VMG

. In particular, it is easy to verify that we
will have v |=MG

S, and v 6|=MG
s, and consequently S 6`G s. The construction

of v is done by recursion on the build-up of formulas. First, for atomic formulas, if
v′(p) ∈ VMG

, we choose v(p) = v′(p). Otherwise, v′(p) = £, and we (arbitrarily)
choose v(p) to be an element of VMG

(VMG
is non-empty sinceMG is proper).

Now, let � be an n-ary connective of L, and suppose v(ψi) was defined for ev-
ery 1 ≤ i ≤ n. We choose v(�(ψ1, . . . , ψn)) to be equal to v′(�(ψ1, . . . , ψn))
if the latter is in VMG

. Otherwise, v′(�(ψ1, . . . , ψn)) = £, and we choose
v(�(ψ1, . . . , ψn)) to be some element of �MG

(v(ψ1), . . . , v(ψn)) (such an element
exists since MG is proper). Obviously, v(ψ) ⊆ v′(ψ) for every ψ ∈ FrmL, and
v(ψ) = v′(ψ) whenever v′(ψ) ∈ VMG

. To see that v is a valuation in MG, sup-
pose (for contradiction) that v(�(ψ1, . . . , ψn)) 6∈ �MG

(v(ψ1), . . . , v(ψn)) for some

9 Recall that we denote by Gcf the canonical labelled system obtained from G by
discarding all the canonical cuts.



formula �(ψ1, . . . , ψn). By Lemma 2, v(�(ψ1, . . . , ψn)) 6∈�MGcf
(v(ψ1), . . . , v(ψn)).

Now, since v(ψ) ⊆ v′(ψ) for every ψ ∈ FrmL, Lemma 1 entails that
v(�(ψ1, . . . , ψn)) 6∈ �MGcf

(v′(ψ1), . . . , v′(ψn)). Consequently, since v′ is a valua-
tion inMGcf

, v′(�(ψ1, . . . , ψn)) 6= v(�(ψ1, . . . , ψn)). Now, if v′(�(ψ1, . . . , ψn)) =
£, then v(�(ψ1, . . . , ψn)) ∈ �MG

(v(ψ1), . . . , v(ψn)) by definition. Otherwise,
v(�(ψ1, . . . , ψn)) = v′(�(ψ1, . . . , ψn)), reaching a contradiction. ut


