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The Big Picture

Our goals:

Characterization of important syntactic properties of calculi:
cut-admissibility, the subformula property, invertibility of rules,...
Understanding the dependencies between them.

Our tool: non-deterministic semantics.

Our case study: canonical labelled calculi.



Cut-Admissibility
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`G s =⇒ `G−(cut) s

Can we semantically characterize `G−(cut)?

For example, what is the semantics of the logic induced by LK− (cut)?



Cut-Admissibility

Cut-Admissibility

`G s =⇒ `G−(cut) s

Can we semantically characterize `G−(cut)?

For example, what is the semantics of the logic induced by LK− (cut)?



Cut-Admissibility

Cut-Admissibility

`G s =⇒ `G−(cut) s

Can we semantically characterize `G−(cut)?

For example, what is the semantics of the logic induced by LK− (cut)?



What is a logic?

1 A formal language L, based on which L-formulas are constructed.

2 A relation ` between sets of L-formulas and L-formulas, satisfying:

Reflexivity: if ψ ∈ T then T ` ψ.
Monotonicity: if T ` ψ and T ⊆ T ′, then T ′ ` ψ.
Transitivity: if T ` ψ and T ′, ψ ` ϕ then T , T ′ ` ϕ.



How are logics defined by sequent calculi?

Sequent calculi can induce logics in two possible ways:

v: T `vG ϕ ⇐⇒ { ⇒ ψ | ψ ∈ T } `G ⇒ ϕ

t: T `tG ϕ ⇐⇒ `G Γ⇒ ϕ for some finite Γ ⊆ T

Lemma

For any sequent calculus G, `vG is a logic.

But if G does not include cut, `tG is not necessarily a logic!
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`vLK and `vLK−(cut) are different logics:
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Classical Logic

The Matrix MLK

Truth-values: {t, f}
An MLK-valuation is a model of a sequent Γ⇒ ∆ iff v(ψ) = f for
some ψ ∈ Γ or v(ψ) = t for some ψ ∈ ∆.

Truth-tables:
⊃̃ t f

t t f

f t t

∧̃ t f

t t f

f f f

Soundness and Completeness

Ω `LK s iff every MLK-valuation which is a model of every sequent in Ω is
also a model of s.

(Trivial) Observation

Every MLK-valuation v is either a model of ⇒ ϕ or of ϕ⇒, but not both!
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The semantics for `v
LK−(cut)

(Trivial) Observation

Every MLK-valuation v is either a model of ⇒ ϕ or of ϕ⇒, but not both!

Why not both? Because of cut:
Γ⇒ ϕ,∆ Γ, ϕ⇒ ∆

Γ⇒ ∆

Discarding cut makes this option possible.

New truth-values: {{t}, {f}, {t, f}}
New definition of model: a valuation is a model of a sequent Γ⇒ ∆ iff
f ∈ v(ψ) for some ψ ∈ Γ or t ∈ v(ψ) for some ψ ∈ ∆.

For example: v(ϕ) = {t, f} iff v is a model of both ⇒ ϕ and ϕ⇒.

But no new truth-tables!

Theorem

(Lahav, 2012) `vLK−(cut) does not have a finite characteristic matrix.
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Non-deterministic Semantics - Motivation

Principle of Truth-Functionality (PTF): the truth-value of a complex
formula is uniquely determined by the truth-values of its subformulas.

Non-deterministic phenomena in possible conflict with PTF:
vagueness incompleteness
uncertainty imprecision
inconsistency

Relaxing PTF: non-deterministic evaluation of formulas.

� t f

t {t} {t, f}
f {t, f} {f}



Intuition for Introducing Non-determinism

Consider a fully structural calculus with the following rules:

Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆

Γ⇒ ∆, ψ, ϕ

Γ⇒ ∆, ψ ∨ ϕ
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Many-valued Matrices

A (deterministic) matrix M for L consists of:

V - the set of truth-values,

O - contains an interpretation function �̃ : Vn → V for every n-ary
connective � of L.

An M-valuation v : FrmL → V satisfies:

v(�(ψ1, . . . , ψn)) = �̃(v(ψ1), . . . , v(ψn))



Non-deterministic Matrices [Avron and Lev, 2001]

A non-deterministic matrix M for L consists of:

V - the set of truth-values,

O - contains an interpretation function �̃ : Vn → P+(V) for every
n-ary connective � of L.

An M-valuation v : FrmL → V satisfies:

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))



Example: The Paraconsistent Logic CLuN of Batens

L — a language over {∨,∧,⊃,¬}, V = {f,t},D = {t}.
∨,∧ and ⊃ are interpreted classically, while ¬ satisfies the law of excluded
middle ¬ϕ ∨ ϕ, but not the law of contradiction ¬(ϕ ∧ ¬ϕ).
M2 = 〈V,D,O〉 where O is given by:

∨̃ ∧̃ ⊃̃
t t {t} {t} {t}
t f {t} {f} {f}
f t {t} {f} {t}
f f {f} {f} {t}

¬̃
t {t, f}
f {t}



Key property of Nmatrices:

Analyticity: any partial M-valuation can be extended to a full
M-valuation.

Consequence: decidability (in the finite case).



What is the semantics of `v
LK−(cut)?

We start with the simplest system: identity axiom + weakening (no
logical rules, no cut)

Truth-values: {{t}, {f}, {t, f}}

The corresponding Nmatrix:
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Soundness and Completeness

Ω `LK−(cut) s iff every MLK−(cut)-valuation which is a model of every
sequent in Ω is also a model of s.

↪→ New formulation of results of Schütte (1960) and Girard (1987).
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Application: Semantic Proof of Cut-Admissibility in LK

Cut-Admissibility in LK

`LK s =⇒ `LK−(cut) s

Reduces to proving that for every MLK−(cut)-valuation which is not a
model of some sequent s, there exists an MLK-valuation which is not a
model of s.

Proof by induction on the build-up of formulas.
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Our goals:

Characterization of important syntactic properties of calculi.
Understanding the dependencies between them.
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What is a Canonical Rule?

An “ideal” logical rule: an introduction rule for exactly one connective,
on exactly one side of a sequent.

In its formulation: exactly one occurrence of the introduced
connective, no other occurrences of other connectives.

Its active formulas: immediate subformulas of its principal formula.



Examples of Canonical Rules

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ⇒ ∆, ψ Γ⇒ ∆, ϕ

Γ⇒ ∆, ψ ∧ ϕ

Γ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ⇒ ∆,¬ψ



Example 1

Let G1 be a fully structural calculus with the following rules:

{⇒ ψ1 ; ⇒ ψ2} / ψ1 � ψ2 ⇒ {ψ1 ⇒ ; ψ2 ⇒} / ⇒ ψ1 � ψ2

a b �(a, b)

t t {f}
t f {t,f}
f t {t,f}
f f {t}



Example 2

Let G2 be a fully structural calculus with the following rules:

{ψ2 ⇒} / ψ1 ◦ ψ2 ⇒ {⇒ ψ1} / ⇒ ψ1 ◦ ψ2

a b ◦(a, b)

t t {t}
t f ∅????
f t {t,f}
f f {f}



Non-deterministic Matrices

A non-deterministic matrix for L consists of:

T - the set of truth-values,

O - contains an interpretation function �̃ : Vn → P+(V) for every
n-ary connective � of L.



Non-deterministic Partial Matrices

A non-deterministic partial matrix for L consists of:

T - the set of truth-values,

O - contains an interpretation function �̃ : Vn → P(V) for every n-ary
connective � of L.

A PNmatrix is proper if it includes no “empty spots”.



Key property of Nmatrices:

Analyticity: any partial M-valuation can be extended to a full
M-valuation.

Consequence: decidability (in the finite case).



Key property of PNmatrices:

Weak Analyticity: it is decidable whether a partial M-valuation can be
extended to a full M-valuation.

Consequence: decidability (in the finite case).



The two-sided case: a direct correspondence

Theorem

If G is a (two-sided) canonical calculus, then the following statements are
equivalent:

1 G has a characteristic proper two-valued PNmatrix.

2 G enjoys strong cut-admissibility.

3 G enjoys the subformula property.

The Subformula Property: Whenever Ω `G s, there is a derivation of s from
Ω in G consisting solely of E-sequents (i.e. sequents consisting solely of
formulas from E).

Strong Cut-Admissibility Whenever Ω `G s, there is a derivation of s from Ω
in G in which cuts are allowed only on formulas from Ω.
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Labelled Calculi

ψ1, ψ2 ⇒ ψ3, ψ4, ψ5 ⇒ {f : ψ1, f : ψ2,t : ψ3,t : ψ4,t : ψ5}

A finite set of labels  L.

A labelled formula: a : ψ for a ∈  L

A sequent: a finite set of labelled formulas.

Canonical labelled calculi have in addition to weakening two types of
rules: primitive rules and canonical introduction rules.



Primitive Rules

(L1 : ψ) ∪ s . . . (Ln : ψ) ∪ s

(L : ψ) ∪ s ∪ . . . ∪ s

Notation: we write ({a, b, c} : ψ) instead of {a : ψ, b : ψ, c : ψ}.

Examples:
{f : ψ} ∪ s {t : ψ} ∪ s

s

s
({t, f} : ψ) ∪ s

({a} : ψ) ∪ s ({b} : ψ) ∪ s

({c , d} : ψ) ∪ s



Canonical Introduction Rules

{t : ψ1} ∪ s {t : ψ2} ∪ s

{t : ψ1 ∧ ψ2} ∪ s

{f : ψ1, f : ψ2} ∪ s

{f : ψ1 ∧ ψ2} ∪ s

{a : ψ1, b : ψ2} ∪ s {c : ψ2, a : ψ3, b : ψ3} ∪ s

({a, b} : ◦(ψ1, ψ2, ψ3) ∪ s



Semantics for Canonical Labelled Calculi

Possible truth-values in the two-sided case: {∅, {f}, {t}, {t, f}}.
Possible truth-values in the labelled case: P( L).

A valuation v is a model of a sequent Ω if for some labelled formula
a : ψ in Ω, a ∈ v(ψ).

Primitive rules determine the actual set of truth-values.

Introduction rules determine the truth-tables of the logical connectives.



Example

Start with the calculus over  L = {a, b, c} including only weakening.

Vals = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Now we add the primitive rules:

s
({a, b} : ψ) ∪ s

{a : ψ} ∪ s {b : ψ} ∪ s {c : ψ} ∪ s
s

Vals = {{b}, {a}, {a, b}}

The corresponding PNmatrix:

∧̃ {a} {b} {a, b}
{a} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}}
{b} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}}
{a, b} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}}
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Example

Adding the introduction rule:

{a : ψ1} ∪ s {a : ψ2} ∪ s

{a : ψ1 ∧ ψ2} ∪ s

The corresponding PNmatrix:

∧̃ {a} {b} {a, b}
{a} {{a}, {a, b}} {{a}, {b}, {a, b}} {{a}, {a, b}}
{b} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}}
{a, b} {{a}, {a, b}} {{a}, {b}, {a, b}} {{a}, {a, b}}



Example

Adding the introduction rule:

{b : ψ1, b : ψ2} ∪ s

{b : ψ1 ∧ ψ2} ∪ s

The corresponding PNmatrix:

∧̃ {a} {b} {a, b}
{a} {{a}, {a, b}} {{a}, {b}, {a, b}} {{a}, {a, b}}
{b} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}} {{a}, {b}, {a, b}}
{a, b} {{a}, {a, b}} {{a}, {b}, {a, b}} {{a}, {a, b}}



Example

Adding the introduction rule:

{b : ψ1, b : ψ2} ∪ s

{b : ψ1 ∧ ψ2} ∪ s

The corresponding PNmatrix:

∧̃ {a} {b} {a, b}
{a} {{a}, {a, b}} {{b}, {a, b}} {{a, b}}
{b} {{b}, {a, b}} {{b}, {a, b}} {{b}, {a, b}}
{a, b} {{a, b}} {{b}, {a, b}} {{a, b}}



Example

Adding the introduction rule:

{b : ψ1} ∪ s {b : ψ2} ∪ s

{c : ψ1 ∧ ψ2} ∪ s

The corresponding PNmatrix:

∧̃ {a} {b} {a, b}
{a} {{a}, {a, b}} {{b}, {a, b}} {{a, b}}
{b} {{b}, {a, b}} ∅ ∅
{a, b} {{a, b}} ∅ ∅



All Labelled Calculi are Decidable

Theorem

Every canonical labelled calculus has a characteristic (finite) PNmatrix.

Corollary

Any logic induced by canonical labelled calculus is decidable.
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Application: characterization of syntactic properties

The Subformula Property

Whenever Ω `G s, there is a derivation of s from Ω in G consisting solely of
E-sequents (i.e. sequents consisting solely of formulas from E).

Strong Cut-Admissibility

Whenever Ω `G s, there is a derivation of s from Ω in G in which cuts are
allowed only on formulas from Ω.

We call cut any primitive rule of the form
(L1 : ψ) . . . (Ln : ψ)

s

Are these properties equivalent?
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The subformula property 6⇒ strong cut-admissibility

 L = {a, b, c}
G has the following cuts:

{a : ψ} ∪ s {b : ψ} ∪ s
s

{a : ψ} ∪ s {c : ψ} ∪ s
s

{b : ψ} ∪ s {c : ψ} ∪ s
s

and the following introduction rules:

({a, b} : ψ) ∪ s

{a : ?ψ} ∪ s

({b, c} : ψ) ∪ s

{a : ?ψ} ∪ s

Then we can derive:

{a : ψ}
{a, b} : ?ψ

{a : ψ}
{b, c} : ?ψ

{b : ?ψ} cut

But {b : ?ψ} has no derivation from {a : ψ} with cuts only on ψ.



Solution: harmless primitive rules

The problem can be solved by adding the primitive rule (which does
not affect the semantics of the calculus):

({a, b} : ψ) ∪ s ({b, c} : ψ) ∪ s

{b : ψ} ∪ s
pr

Then we have a (cut-free!) derivation:

{a : ψ}
{a, b} : ?ψ

{a : ψ}
{b, c} : ?ψ

{b : ?ψ}
pr

The addition of all such harmless primitive rules leads to a
cut-saturated calculus.

Theorem

For every labelled canonical calculus G an equivalent cut-saturated G′ can
be constructed.
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Finally: a semantic characterization

Theorem

Let G be a cut-saturated canonical labelled calculus. Then the following
statements are equivalent:

1 G has a proper characteristic PNmatrix.

2 G enjoys strong cut-admissibility.

3 G enjoys the subformula property.



The Big Picture

Our goals:

Characterization of important syntactic properties of calculi.
Understanding the dependencies between them.

Our tool: non-deterministic semantics.

Our case study: canonical labelled calculi.



Summary

The techniques can be applied to many families of proof systems:
single-conclusioned canonical calculi, basic systems, canonical Gödel
hypersequent systems and more.

Future research directions:

First-order case
Extension to calculi with less restrictive primitive and introduction rules.
Substructural logics...


