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The Big Picture

@ Our goals:

o Characterization of important syntactic properties of calculi:
cut-admissibility, the subformula property, invertibility of rules,...
e Understanding the dependencies between them.

@ Our tool: non-deterministic semantics.

@ Our case study: canonical labelled calculi.
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Cut-Admissibility

Cut-Admissibility

Fg s — |_G—(cut) S

Can we semantically characterize -g_(cut)?

For example, what is the semantics of the logic induced by LK — (cut)?



What is a logic?

@ A formal language £, based on which £-formulas are constructed.
@ A relation - between sets of L-formulas and L-formulas, satisfying:
Reflexivity:  if ¢ € T then T F .

Monotonicity: if T =1 and T C T', then T’ ).
Transitivity:  if T and T',¢ F ¢ then T, 7' F .



How are logics defined by sequent calculi?

@ Sequent calculi can induce logics in two possible ways:
vi THE o = {=v|veTltc=¢
tt Thgy = Fg T = ¢ for some finiteT C T



How are logics defined by sequent calculi?

@ Sequent calculi can induce logics in two possible ways:
vi THE o = {=¢|veTtre=¢
tt Thgy = Fg T = ¢ for some finiteT C T

Lemma

For any sequent calculus G, =¢ is a logic.

But if G does not include cut, F§ is not necessarily a logic!
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Classical Logic

The Matrix Mk
o Truth-values: {T,F}

@ An M\ k-valuation is a model of a sequent ' = A iff v(¢)) = F for
some ¢ € [ or v(¢)) = T for some ¢ € A.

@ Truth-tables:

:
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Soundness and Completeness

Q Frk s iff every M| k-valuation which is a model of every sequent in Q is
also a model of s.
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@ Truth-tables:
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Soundness and Completeness

Q Frk s iff every M| k-valuation which is a model of every sequent in Q is
also a model of s.

(Trivial) Observation
Every M| k-valuation v is either a model of = ¢ or of ¢ =, but not both!
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cut)

(Trivial) Observation

Every Mk-valuation v is either a model of = ¢ or of ¢ =, but not both!

N=¢p,A Tp=A

? .
@ Why not both? Because of cut: = A

@ Discarding cut makes this option possible.

e New truth-values: {{T}, {F},{T,F}}

@ New definition of model: a valuation is a model of a sequent ' = A iff
F € v(¢) for some ¢ € I or T € v(¢)) for some ¢y € A.

o For example: v(¢) = {T,F} iff v is a model of both = ¢ and ¢ =-.



The semantics for I—{K_(

cut)

(Trivial) Observation

Every Mk-valuation v is either a model of = ¢ or of ¢ =, but not both!

N=¢p,A Tp=A

? .
@ Why not both? Because of cut: = A

@ Discarding cut makes this option possible.

e New truth-values: {{T}, {F},{T,F}}

@ New definition of model: a valuation is a model of a sequent ' = A iff
F € v(¢) for some ¢ € I or T € v(¢)) for some ¢y € A.

o For example: v(¢) = {T,F} iff v is a model of both = ¢ and ¢ =-.

@ But no new truth-tables!

Theorem

(Lahav, 2012) F{k—(cur) does not have a finite characteristic matrix.



The Big Picture

@ Our goals:

o Characterization of important syntactic properties of calculi.
e Understanding the dependencies between them.

@ Our tool: non-deterministic semantics.

@ Our case study: canonical labelled calculi.



Non-deterministic Semantics - Motivation

@ Principle of Truth-Functionality (PTF): the truth-value of a complex
formula is uniquely determined by the truth-values of its subformulas.

@ Non-deterministic phenomena in possible conflict with PTF:

vagueness incompleteness
uncertainty  imprecision
inconsistency

@ Relaxing PTF: non-deterministic evaluation of formulas.

o T F
T| {r} {rF}
F | {T,Fr} {F}




Intuition for Introducing Non-determinism

Consider a fully structural calculus with the following rules:

M= A9 Ly = A
M-y = A = A,

Nyv=A Tp=A T[T =Ap
MyYyve=A =AYV




Intuition for Introducing Non-determinism

=AY My=A
r-v=A = A~

Ny=A Te=A = Av,¢
Myve=A M==AYV
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Intuition for Introducing Non-determinism

M= A%
M-y =A

= A, 0
M= A4vVe
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Intuition for Introducing Non-determinism

M= A
r-v=A
=499
M= A4vVe
| v
- T T| {T}
T {F} T F| {1}
F || {T,F} F T| {T}
F F| {T,F}



Many-valued Matrices

A (deterministic) matrix M for £ consists of:

@ )V - the set of truth-values,

@ O - contains an interpretation function & : V" — ) for every n-ary
connective ¢ of L.

v(o(¥1s- -, 9¥n)) = 3(v(¥1), - .-, v(¥n))




Non-deterministic Matrices [Avron and Lev, 2001]

A non-deterministic matrix M for £ consists of:

@ )V - the set of truth-values,

o O - contains an interpretation function & : V" — P* (V) for every
n-ary connective ¢ of L.

v(o(¥r1, ..., ¥n)) € 3(v(¢1), .., v(¥n))




Example: The Paraconsistent Logic CLuN of Batens

L — a language over {V,A,D,=}, V ={F,T},D = {T}.

V, A and D are interpreted classically, while — satisfies the law of excluded
middle = V ¢, but not the law of contradiction — (¢ A —¢p).

M?2 = (V, D, O) where O is given by:

v A |53 )
[ {o [{y [ | o
Fl{T (R [ {7} T {n.F)
T
F

{ry [ {F} [ {ry  # | {7)
{F} [ {7} | {m}

SRR




Key property of Nmatrices:

@ Analyticity: any partial M-valuation can be extended to a full
M-valuation.

e Consequence: decidability (in the finite case).
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@ We start with the simplest system: identity axiom + weakening (no
logical rules, no cut)
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What is the semantics ofF—{K_(

cut) ?

@ We start with the simplest system: identity axiom + weakening (no
logical rules, no cut)

e Truth-values: {{T},{F},{T,F}}

The corresponding Nmatrix:

A {r} | {r} | {r,r}
{r} | Hrh Ay A e} | {({r) {F} AT, 73 | ({7}, {7}, {T, F}}
{r} | {h {rd A rp} | {1) {F} {7 F3) | ({7}, {F}, {7, F}}

{r,r}

{r}, {F}, {1, ¥}}

{r} {F) {1, ¥}

Hry {Fh {1 71}



What is the semantics of I—KK_(

cut) ?

Adding the rule:

Fr=A¢y TT=Ap

(=7 F=AoAg

The corresponding Nmatrix:

Al {r} | {r} | {r,F}

{r} [ {r}, {r}, {r,¥}} [ {{x}, {F}, {7, F}} [ {7}, {F}, {1, F}}
{F} [ {{x} {F}, {7} [{{z}, {F}, {r, F}} | {7}, {F}, {T,F}}
{r, 7} | {{T} {7}, (T, F}} [ {7}, {F ) {1, )} | ({7}, {F}, {T, F}}




What is the semantics of I—KK_(

cut) ?

Adding the rule:

Fr=A¢y TT=Ap

(=7 F=AoAg

The corresponding Nmatrix:

Al {r} | {r} | {r,F}

{r} | {{o}{nr}} [{m}, {Fh{n,F} [ {1} {1,F}}
{F} [ {{x}, {F}, {r, ¥}} [ {{z}, {F}, {r, 7)) | {r}, {F}, {T,F}}
{r,r) | (o {nF)y | UThiFL{T,F)} | ({1} {T.F})




What is the semantics of I—KK_(

cut) ?

Adding the rule:
Ly, p= A
LYyAp=A

(A=)

The corresponding Nmatrix:

A {r} | {r} | {r,r}
{r} {ry {rryy | {{h {F} {1 P}y | {1}, {7, F}}
{r} |y ged, {r, v} | {1} {F} {m F}} | {1}, {F}, {7, F}}
{mr}f| Hrh{nrdr [{rh{Fh{mF}} | {1} {1, F}}




What is the semantics ofF—{K_(

cut) ?

Adding the rule:

L= A
N=) Forne=a
The corresponding Nmatrix:
Al | {m | (v

{ry | Hrh A rh) | {({F) AT, 1y | {({T,F}}
() || {Fh AT P} | {F) AT P | {{F) AT, P
{mrH|| {nryr [ H{FhAT R | TRl




What is the semantics ofF—{K_(

cut) ?

ZN N . S IS 0 S S ¢ %)
{ry | {rhArrh) | {({Fh AT, P}y | {({T,F}}
{r} | H{Fd A r3} | {7} {7, F}} | {{F) {7, F})
{rr}| {rr [ {FLA{TF ] {1 F))
Recall: An valuation is a model of a sequent I = A iff f € v(v) for some
el ort € v(y) for some ¢ € A.




What is the semantics of I—KK_(

cut) ?

The corresponding Nmatrix:

Al {vp | {»} | {nF}
{ry | {rhArrh) | {({Fh AT, P}y | {({T,F}}
{r} | H{Fd A r3} | {7} {7, F}} | {{F) {7, F})
{rr}| {rr [ {FLA{TF ] {1 F))
Recall: An valuation is a model of a sequent I = A iff f € v(v) for some
el ort € v(y) for some ¢ € A.

Soundness and Completeness

Q FLk—(cut) S iff every Mg _(cur)-valuation which is a model of every
sequent in €2 is also a model of s.

— New formulation of results of Schiitte (1960) and Girard (1987).
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Application: Semantic Proof of Cut-Admissibility in LK

Cut-Admissibility in LK
Fik s = FLK—(cut) S
@ Reduces to proving that for every Mk _(c,)-valuation which is not a
model of some sequent s, there exists an M k-valuation which is not a

model of s.

@ Proof by induction on the build-up of formulas.



The Big Picture

@ Our goals:

o Characterization of important syntactic properties of calculi.
e Understanding the dependencies between them.

@ Our tool: non-deterministic semantics.

@ Our case study: canonical labelled calculi.



What is a Canonical Rule?

o An “ideal” logical rule: an introduction rule for exactly one connective,
on exactly one side of a sequent.

@ In its formulation: exactly one occurrence of the introduced
connective, no other occurrences of other connectives.

@ lts active formulas: immediate subformulas of its principal formula.



Examples of Canonical Rules

My, o= A N=A¢y I'=Ap
MyYyAp=A M==AY Ap

M= A9 My=A
M-y =A =AY




Example 1

Let G; be a fully structural calculus with the following rules:

{201 =) /1o = {Y1=; 2=}/ =10

all bl o(ab)
T|T| {F}
T|F| {TF}
F|T| {TF}
F|F| {T}



Example 2

Let Gy be a fully structural calculus with the following rules:

{e=} /oo =  {=1}/ =109

a ” b | o(a, b)
T|T| {71}
T || F | 0?7777
F|T| {TF}
F|F| {F}



Non-deterministic Matrices

A non-deterministic matrix for £ consists of:
@ 7 - the set of truth-values,

e O - contains an interpretation function & : V" — PT (V) for every
n-ary connective ¢ of L.



Non-deterministic Partial Matrices

A non-deterministic partial matrix for £ consists of:
@ T - the set of truth-values,

e O - contains an interpretation function & : V" — P(V) for every n-ary
connective ¢ of L.

A PNmatrix is proper if it includes no “empty spots”.



Key property of Nmatrices:

@ Analyticity: any partial M-valuation can be extended to a full
M-valuation.

e Consequence: decidability (in the finite case).



Key property of PNmatrices:

o Weak Analyticity: it is decidable whether a partial M-valuation can be
extended to a full M-valuation.

e Consequence: decidability (in the finite case).



The two-sided case: a direct correspondence

Theorem

If G is a (two-sided) canonical calculus, then the following statements are
equivalent:

@ G has a characteristic proper two-valued PNmatrix.
@ G enjoys strong cut-admissibility.
© G enjoys the subformula property.



The two-sided case: a direct correspondence

Theorem

If G is a (two-sided) canonical calculus, then the following statements are
equivalent:

@ G has a characteristic proper two-valued PNmatrix.
@ G enjoys strong cut-admissibility.
© G enjoys the subformula property.

@ The Subformula Property: Whenever Q F¢ s, there is a derivation of s from
Q in G consisting solely of £-sequents (i.e. sequents consisting solely of
formulas from £).

@ Strong Cut-Admissibility Whenever Q ¢ s, there is a derivation of s from Q
in G in which cuts are allowed only on formulas from Q.



Labelled Calculi

P1,02 = V3,904,005 = {F 11, F1p, T :11)3, T s, T: s}

@ A finite set of labels t.
o A labelled formula: a: % for a et
@ A sequent: a finite set of labelled formulas.

@ Canonical labelled calculi have in addition to weakening two types of
rules: primitive rules and canonical introduction rules.



Primitive Rules

(Li:y)Us ... (Lp:9y)Us
(L:y)UsU...Us

Notation: we write ({a, b, c} : 1) instead of {a:1,b: 1, c: ¢}

Examples:
{F:¢}Us {T:9¢}Us

S

({T,F} :¢Y)Us

({a}:9)us ({b}:9)Us
({c,d}: ) Us




Canonical Introduction Rules

{T:¢1}Us {T:¢p}Us
{ridr A2} Us

{F:Y1,F:Yn}Us
{Filﬁl/\d}z}US

{a:yn,biptUs {c:ivp,atihs, bithztUs
({3, b} : O(¢17¢2a¢3) Us




Semantics for Canonical Labelled Calculi

Possible truth-values in the two-sided case: {0, {F},{T},{T,F}}.
Possible truth-values in the labelled case: P(L).

A valuation v is a model of a sequent Q if for some labelled formula
a:yinQ, ae v(y).
Primitive rules determine the actual set of truth-values.

Introduction rules determine the truth-tables of the logical connectives.



Example

Start with the calculus over L = {a, b, ¢} including only weakening.

Vals = {0, {a}, {b},{c},{a, b},{a,c},{b,c},{a,b,c}}



Start with the calculus over L = {a, b, ¢} including only weakening.
Vals = {0, {a}, {b}, {c}.{a, b},{a,c}. {b,c},{a, b, c}}

Now we add the primitive rules:

{a:y}Us {b:y}Us {c:9¢}Us

s
({a, b} : ) Us
Vals = {{b}’ {a}’ {37 b}}



Example

Start with the calculus over L = {a, b, ¢} including only weakening.
Vals = {0,{a}, {b}, {c},{a, b},{a,c}, {b,c},{a, b, c}}

Now we add the primitive rules:

{a:¢Y}Us {b:yY}Us {c:¢}Us

s
({a,b} : ) Us
Vals = {{b}’ {a}’ {37 b}}

The corresponding PNmatrix:

Al {a} | {b} | {a, b}

{a} | {{a},{b},{a b}} | {{a},{b},{a b}} | {{a},{b},{a, b}}
{6} | {{a},{b}.{a b}} | {{a}, {b},{a b}} | {{a},{b},{a, b}}
{a,b} || {{a}, {b},{a, b}} | {{a}, {b},{a, b}} | {{a}, {b}, {a, b}}




Example

Adding the introduction rule:

{a:1}Us {a:¢n}Us
{ai’ngAibz}US

The corresponding PNmatrix:

Al {a} | {b} | {a, b}

{a} | {{a},{b},{a b}} | {{a}, {b}.{a, b}} | {{a}, {b},{a, b}}
(b} || {{a},{b},{a,b}} | {{a},{b},{a b}} | {{a}, {b}, {a, b}}
{a, b} || {{a}, {b},{a, b}} | {{a}, {b}, {a, b}} | {{a}, {b}, {a, b}}




Example

Adding the introduction rule:

{a:1}Us {a:¢n}Us
{ai’ngAibz}US

The corresponding PNmatrix:

Al {a} | {b} | {a, b}

{a} {{a}. {a,6}} | {{a},{b}.{a b}} | {{a}.{a b}}
(b} || {{a},{b},{a,b}} | {{a},{b},{a b}} | {{a}, {b}, {a, b}}
{a,b} | {{ah.{a b} [{{a},{b},{a,b}} | {{a},{a,b}}




Example

Adding the introduction rule:

{b:v1,b: 9} Us
{b:¢1A¢2}US

The corresponding PNmatrix:

Al {a} | {b} | {a, b}

{a} {{a}. {a,6}} | {{a},{b}.{a b}} | {{a}.{a b}}
(b} || {{a},{b},{a,b}} | {{a},{b},{a b}} | {{a}, {b}, {a, b}}
{a,b} | {{ah.{a b} [{{a},{b},{a,b}} | {{a},{a,b}}




Example

Adding the introduction rule:

{b:’g/)l,biwg}US
{b:i,[)l/\dlz}US

The corresponding PNmatrix:

Al {3 | {6 | {ab}
{a} | {{a}.{a,b}} | {{b}.{a,b}} | {{a b}}
{b} | {{b},{a,b}} | {{b},{a b}} | {{b},{a, b}}
{a,b} || {{ab}} [{{b}.{a,b}}| {{a b}}




Example

Adding the introduction rule:

{b:1}Us {b:yo}Us
{C:i/Jl/\lﬁz}US

The corresponding PNmatrix:

A {a} | {b} | {a,b}
{a} || {{a}.{a,b}} | {{b},{a b}} | {{a b}}
{6} || {{b},{a,b}} 0 0

{a, b} {{a, b}} ] 0




All Labelled Calculi are Decidable

Every canonical labelled calculus has a characteristic (finite) PNmatrix.




All Labelled Calculi are Decidable

Every canonical labelled calculus has a characteristic (finite) PNmatrix.

Corollary

Any logic induced by canonical labelled calculus is decidable.
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The Subformula Property

Whenever Q2 g s, there is a derivation of s from € in G consisting solely of
E-sequents (i.e. sequents consisting solely of formulas from &).
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The Subformula Property

Whenever Q2 g s, there is a derivation of s from € in G consisting solely of
E-sequents (i.e. sequents consisting solely of formulas from &).

Strong Cut-Admissibility

Whenever 2 kg s, there is a derivation of s from € in G in which cuts are
allowed only on formulas from Q.

We call cut any primitive rule of the form S



Application: characterization of syntactic properties

The Subformula Property

Whenever Q2 g s, there is a derivation of s from € in G consisting solely of
E-sequents (i.e. sequents consisting solely of formulas from &).

Strong Cut-Admissibility

Whenever 2 kg s, there is a derivation of s from € in G in which cuts are
allowed only on formulas from Q.

We call cut any primitive rule of the form S

Are these properties equivalent?



The subformula property #- strong cut-admissibility

t ={a, b,c}

G has the following cuts:

{a:y}Us {b:yY}Us {a:9y}Us {c:9y}Us {b:9y}Us {c:¢}Us

and the following introduction rules:

({a, b} :9)Us  ({b,c}:9)Us
{a:*x)}Us {a:*x)} Us

Then we can derive:

{a: v} {a: ¢}
{a,b} : %xp  {b,c}:x cut
{b: *¢}

But {b: x9} has no derivation from {a: ¢} with cuts only on 1.



Solution: harmless primitive rules

@ The problem can be solved by adding the primitive rule (which does
not affect the semantics of the calculus):

({a,b} : )Us ({b,c}:9¥)Us

pr
{b:¢}Us
Then we have a (cut-free!) derivation:
{a: 9} {a: 9}

{a,b} : %) {b,c}: or
{b: xy}



Solution: harmless primitive rules

@ The problem can be solved by adding the primitive rule (which does
not affect the semantics of the calculus):

({a,b} : )Us ({b,c}:9¥)Us

(b:d}Us Pr
Then we have a (cut-free!) derivation:
{a: 9} {a: 9}
{a,b} :xp  {b,c} :x pr
{b: *x}

@ The addition of all such harmless primitive rules leads to a
cut-saturated calculus.

Theorem

For every labelled canonical calculus G an equivalent cut-saturated G’ can
be constructed.



Finally: a semantic characterization

Theorem

Let G be a cut-saturated canonical labelled calculus. Then the following
statements are equivalent:

@ G has a proper characteristic PNmatrix.
@ G enjoys strong cut-admissibility.
© G enjoys the subformula property.



The Big Picture

@ Our goals:

o Characterization of important syntactic properties of calculi.
e Understanding the dependencies between them.

@ Our tool: non-deterministic semantics.

@ Our case study: canonical labelled calculi.



Summary

@ The techniques can be applied to many families of proof systems:
single-conclusioned canonical calculi, basic systems, canonical Godel
hypersequent systems and more.

o Future research directions:

o First-order case

o Extension to calculi with less restrictive primitive and introduction rules.
e Substructural logics...



