Non-deterministic Semantics as a Proof-Theoretical Tool

Anna Zamansky

Vienna University of Technology

Joint work with Matthias Baaz and Ori Lahav

The Big Picture

- Our goals:
- Characterization of important syntactic properties of calculi: cut-admissibility, the subformula property, invertibility of rules,...
- Understanding the dependencies between them.
- Our tool: non-deterministic semantics.
- Our case study: canonical labelled calculi.

Cut-Admissibility

Cut-Admissibility

$$
\vdash_{\mathbf{G}} s \quad \Longrightarrow \quad \vdash_{\mathbf{G}-(c u t)} s
$$

Cut-Admissibility

Cut-Admissibility

$$
\vdash_{\mathbf{G}} s \quad \Longrightarrow \quad \vdash_{\mathbf{G - (c u t)}} s
$$

Can we semantically characterize $\vdash_{\mathbf{G - (c u t)}}$?

Cut-Admissibility

Cut-Admissibility

$$
\vdash_{\mathbf{G}} s \quad \Longrightarrow \quad \vdash_{\mathbf{G - (c u t)}} s
$$

Can we semantically characterize $\vdash_{\mathbf{G - (c u t)}}$?

For example, what is the semantics of the logic induced by LK - (cut)?

What is a logic?

(1) A formal language \mathcal{L}, based on which \mathcal{L}-formulas are constructed.
(2) A relation \vdash between sets of \mathcal{L}-formulas and \mathcal{L}-formulas, satisfying:

Reflexivity: if $\psi \in \mathcal{T}$ then $\mathcal{T} \vdash \psi$.
Monotonicity: if $\mathcal{T} \vdash \psi$ and $\mathcal{T} \subseteq \mathcal{T}^{\prime}$, then $\mathcal{T}^{\prime} \vdash \psi$.
Transitivity: if $\mathcal{T} \vdash \psi$ and $\mathcal{T}^{\prime}, \psi \vdash \varphi$ then $\mathcal{T}, \mathcal{T}^{\prime} \vdash \varphi$.

How are logics defined by sequent calculi?

- Sequent calculi can induce logics in two possible ways:

$$
\begin{array}{lll}
\mathrm{v}: \mathcal{T} \vdash_{\mathrm{G}}^{\mathrm{V}} \varphi & \Longleftrightarrow & \{\Rightarrow \psi \mid \psi \in \mathcal{T}\} \vdash_{\mathrm{G}} \Rightarrow \varphi \\
\mathrm{t}: \mathcal{T} \vdash_{\mathrm{G}}^{\mathrm{G}} \varphi & \Longleftrightarrow & \vdash_{\mathrm{G}} \Gamma \Rightarrow \varphi \text { for some finite } \Gamma \subseteq \mathcal{T}
\end{array}
$$

How are logics defined by sequent calculi?

- Sequent calculi can induce logics in two possible ways:

$$
\begin{array}{lll}
\mathrm{v}: \mathcal{T} \vdash_{\mathrm{G}}^{\mathrm{V}} \varphi & \Longleftrightarrow & \{\Rightarrow \psi \mid \psi \in \mathcal{T}\} \vdash_{\mathbf{G}} \Rightarrow \varphi \\
\mathrm{t}: \mathcal{T} \vdash_{\mathrm{G}}^{\mathrm{G}} \varphi & \Longleftrightarrow & \vdash_{\mathrm{G}} \Gamma \Rightarrow \varphi \text { for some finite } \Gamma \subseteq \mathcal{T}
\end{array}
$$

Lemma

For any sequent calculus $\mathbf{G}, \vdash_{\mathbf{G}}^{\vee}$ is a logic.
But if \mathbf{G} does not include cut, \vdash_{G}^{t} is not necessarily a logic!

Cut-Admissibility

Cut-Admissibility

$$
\vdash_{\mathbf{G}} s \quad \Longrightarrow \quad \vdash_{\mathbf{G}-(c u t)} s
$$

Can we semantically characterize the logic $\vdash_{\text {LK-(cut) }}^{\vee}$?

- $\vdash_{L_{K}}^{\mathcal{K}}$ and $\vdash_{L_{K-(c u t)}^{\prime}}^{\mathcal{L}}$ are different logics:

$$
\begin{gathered}
\Rightarrow p_{1} \supset p_{2} \vdash_{\mathbf{L K}} \Rightarrow p_{1} \supset\left(p_{3} \supset p_{2}\right) \\
\Rightarrow p_{1} \supset p_{2} \vdash_{\mathbf{L K}-(c u t)} \Rightarrow p_{1} \supset\left(p_{3} \supset p_{2}\right)
\end{gathered}
$$

Cut-Admissibility

Cut-Admissibility

$$
\vdash_{\mathbf{G}} s \quad \Longrightarrow \quad \vdash_{\mathbf{G}-(c u t)} s
$$

Can we semantically characterize the logic $\vdash_{\text {LK-(cut) }}^{\vee}$?

- $\vdash_{L_{K}}^{\mathcal{K}}$ and $\vdash_{L_{K-(c u t)}^{\prime}}^{\mathcal{L}}$ are different logics:

$$
\begin{gathered}
\Rightarrow p_{1} \supset p_{2} \vdash_{\mathbf{L K}} \Rightarrow p_{1} \supset\left(p_{3} \supset p_{2}\right) \\
\Rightarrow p_{1} \supset p_{2} \vdash_{\mathbf{L K}-(c u t)} \Rightarrow p_{1} \supset\left(p_{3} \supset p_{2}\right)
\end{gathered}
$$

Classical Logic

The Matrix MLK

- Truth-values: $\{\mathrm{T}, \mathrm{F}\}$
- An $\mathbf{M}_{\mathbf{L K} \text {-valuation }}$ is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(\psi)=\mathrm{F}$ for some $\psi \in \Gamma$ or $v(\psi)=\mathrm{T}$ for some $\psi \in \Delta$.
- Truth-tables:

$\check{\supset}$	T	F
T	T	F
F	T	T

$\widetilde{\wedge}$	T	F
T	T	F
F	F	F

Soundness and Completeness

$\Omega \vdash_{\mathbf{L K}} s$ iff every $\mathbf{M}_{\mathbf{L K}}$-valuation which is a model of every sequent in Ω is also a model of s.

Classical Logic

The Matrix MLK

- Truth-values: $\{\mathrm{T}, \mathrm{F}\}$
- An $\mathbf{M}_{\mathbf{L K} \text {-valuation }}$ is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $v(\psi)=\mathrm{F}$ for some $\psi \in \Gamma$ or $v(\psi)=\mathrm{T}$ for some $\psi \in \Delta$.
- Truth-tables:

$\check{\supset}$	T	F
T	T	F
F	T	T

$\widetilde{\wedge}$	T	F
T	T	F
F	F	F

Soundness and Completeness

$\Omega \vdash_{\text {LK }} s$ iff every $\mathbf{M}_{\text {LK }}$-valuation which is a model of every sequent in Ω is also a model of s.

(Trivial) Observation

Every $\mathbf{M}_{\mathbf{L K} \text {-valuation } v}$ is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

The semantics for \vdash^{Σ} LK-(cut)

(Trivial) Observation

Every $\mathbf{M}_{\mathbf{L K}}$-valuation v is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

- Why not both? Because of cut: $\quad \begin{aligned} & \\ & \end{aligned}$
- Discarding cut makes this option possible.

The semantics for $\vdash_{\text {LK-(cut) }}^{V}$

(Trivial) Observation

Every $\mathbf{M}_{\mathbf{L K} \text {-valuation } v}$ is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

- Why not both? Because of cut: $\quad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$
- Discarding cut makes this option possible.
- New truth-values: $\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$

The semantics for $\vdash_{L K-(c u t)}^{V}$

(Trivial) Observation

Every $\mathbf{M}_{\text {LK }}$-valuation v is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

- Why not both? Because of cut: $\quad \begin{aligned} & \\ & \end{aligned}$
- Discarding cut makes this option possible.
- New truth-values: $\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
- New definition of model: a valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $\mathrm{F} \in v(\psi)$ for some $\psi \in \Gamma$ or $\mathrm{T} \in v(\psi)$ for some $\psi \in \Delta$.
- For example: $v(\varphi)=\{\mathrm{T}, \mathrm{F}\}$ iff v is a model of both $\Rightarrow \varphi$ and $\varphi \Rightarrow$.

The semantics for $\vdash_{L K-(c u t)}^{V}$

(Trivial) Observation

Every $\mathbf{M}_{\text {LK }}$-valuation v is either a model of $\Rightarrow \varphi$ or of $\varphi \Rightarrow$, but not both!

- Why not both? Because of cut: $\quad \Gamma \Rightarrow \varphi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta$
- Discarding cut makes this option possible.
- New truth-values: $\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
- New definition of model: a valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $\mathrm{F} \in v(\psi)$ for some $\psi \in \Gamma$ or $\mathrm{T} \in v(\psi)$ for some $\psi \in \Delta$.
- For example: $v(\varphi)=\{\mathrm{T}, \mathrm{F}\}$ iff v is a model of both $\Rightarrow \varphi$ and $\varphi \Rightarrow$.
- But no new truth-tables!

Theorem

(Lahav, 2012) $\vdash_{\text {LK-(cut) }}^{V}$ does not have a finite characteristic matrix.

The Big Picture

- Our goals:
- Characterization of important syntactic properties of calculi.
- Understanding the dependencies between them.
- Our tool: non-deterministic semantics.
- Our case study: canonical labelled calculi.

Non-deterministic Semantics - Motivation

- Principle of Truth-Functionality (PTF): the truth-value of a complex formula is uniquely determined by the truth-values of its subformulas.
- Non-deterministic phenomena in possible conflict with PTF:
vagueness incompleteness
uncertainty imprecision
inconsistency
- Relaxing PTF: non-deterministic evaluation of formulas.

\diamond	T	F
T	$\{\mathrm{T}\}$	$\{\mathrm{T}, \mathrm{F}\}$
F	$\{\mathrm{T}, \mathrm{F}\}$	$\{\mathrm{F}\}$

Intuition for Introducing Non-determinism

Consider a fully structural calculus with the following rules:

$$
\frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta} \quad \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma, \psi \vee \varphi \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \Delta, \psi, \varphi}{\Gamma \Rightarrow \Delta, \psi \vee \varphi}
$$

Intuition for Introducing Non-determinism

$$
\frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta} \quad \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \psi}
$$

$$
\frac{\Gamma, \psi \Rightarrow \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma, \psi \vee \varphi \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \Delta, \psi, \varphi}{\Gamma \Rightarrow \Delta, \psi \vee \varphi}
$$

Intuition for Introducing Non-determinism

$$
\frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta}
$$

$$
\cdots \quad \frac{\Gamma \Rightarrow \Delta, \psi, \varphi}{\Gamma \Rightarrow \Delta, \psi \vee \varphi}
$$

Intuition for Introducing Non-determinism

$$
\frac{\Gamma \Rightarrow \Delta, \psi}{\Gamma, \neg \psi \Rightarrow \Delta}
$$

Many-valued Matrices

A (deterministic) matrix \mathbf{M} for \mathcal{L} consists of:

- \mathcal{V} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond}: \mathcal{V}^{n} \rightarrow \mathcal{V}$ for every n-ary connective \diamond of \mathcal{L}.

An M-valuation $v: \operatorname{Frm}_{\mathcal{L}} \rightarrow \mathcal{V}$ satisfies:

$$
v\left(\diamond\left(\psi_{1}, \ldots, \psi_{n}\right)\right)=\tilde{\diamond}\left(v\left(\psi_{1}\right), \ldots, v\left(\psi_{n}\right)\right)
$$

Non-deterministic Matrices [Avron and Lev, 2001]

A non-deterministic matrix \mathbf{M} for \mathcal{L} consists of:

- \mathcal{V} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond}: \mathcal{V}^{n} \rightarrow P^{+}(\mathcal{V})$ for every n-ary connective \diamond of \mathcal{L}.

An M-valuation $v: \operatorname{Frm}_{\mathcal{L}} \rightarrow \mathcal{V}$ satisfies:

$$
v\left(\diamond\left(\psi_{1}, \ldots, \psi_{n}\right)\right) \in \tilde{\diamond}\left(v\left(\psi_{1}\right), \ldots, v\left(\psi_{n}\right)\right)
$$

Example: The Paraconsistent Logic CLuN of Batens

$\mathcal{L}-$ a language over $\{\vee, \wedge, \supset, \neg\}, \mathcal{V}=\{\mathrm{F}, \mathrm{T}\}, \mathcal{D}=\{\mathrm{T}\}$.
\vee, \wedge and \supset are interpreted classically, while \neg satisfies the law of excluded middle $\neg \varphi \vee \varphi$, but not the law of contradiction $\neg(\varphi \wedge \neg \varphi)$. $\mathbf{M}^{2}=\langle\mathcal{V}, \mathcal{D}, \mathcal{O}\rangle$ where \mathcal{O} is given by:

		\widetilde{V}	$\widetilde{\wedge}$	\mathcal{S}
T	T	$\{\mathrm{~T}\}$	$\{\mathrm{T}\}$	$\{\mathrm{T}\}$
T	F	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{F}\}$
F	T	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}\}$
F	F	$\{\mathrm{F}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}\}$

	$\widetilde{\sim}$
T	$\{\mathrm{T}, \mathrm{F}\}$
F	$\{\mathrm{T}\}$

Key property of Nmatrices:

- Analyticity: any partial M-valuation can be extended to a full M-valuation.
- Consequence: decidability (in the finite case).

What is the semantics of $\vdash^{v}{ }_{L K-(c u t)}$?

- We start with the simplest system: identity axiom + weakening (no logical rules, no cut)
- Truth-values: $\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$

What is the semantics of $\vdash^{v}{ }_{L K-(c u t)}$?

- We start with the simplest system: identity axiom + weakening (no logical rules, no cut)
- Truth-values: $\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$

What is the semantics of $\vdash_{L K-(\text { cut })}^{V}$?

Adding the rule:

$$
(\Rightarrow \wedge) \frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \wedge \varphi}
$$

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$

What is the semantics of $\vdash_{L K-(c u t)}^{v}$?

Adding the rule:

$$
(\Rightarrow \wedge) \frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \wedge \varphi}
$$

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$

What is the semantics of $\vdash_{L K-(\text { cut })}^{V}$?

Adding the rule:

$$
(\wedge \Rightarrow) \frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \wedge \varphi \Rightarrow \Delta}
$$

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$

What is the semantics of $\vdash_{L K-(\text { cut })}^{V}$?

Adding the rule:

$$
(\wedge \Rightarrow) \frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \wedge \varphi \Rightarrow \Delta}
$$

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$

What is the semantics of $\vdash^{v}{ }_{L K-(c u t)}$?

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$

Recall: An valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $f \in v(\psi)$ for some $\psi \in \Gamma$ or $\mathrm{T} \in v(\psi)$ for some $\psi \in \Delta$.

What is the semantics of $\vdash_{L K-(c u t)}^{V}$?

The corresponding Nmatrix:

$\tilde{\wedge}$	$\{\mathrm{T}\}$	$\{\mathrm{F}\}$	$\{\mathrm{T}, \mathrm{F}\}$
$\{\mathrm{T}\}$	$\{\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{F}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$
$\{\mathrm{T}, \mathrm{F}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{F}\},\{\mathrm{T}, \mathrm{F}\}\}$	$\{\{\mathrm{T}, \mathrm{F}\}\}$

Recall: An valuation is a model of a sequent $\Gamma \Rightarrow \Delta$ iff $f \in v(\psi)$ for some $\psi \in \Gamma$ or $\mathrm{T} \in v(\psi)$ for some $\psi \in \Delta$.

Soundness and Completeness

$\Omega \vdash_{\mathbf{L K}-(\text { cut })} s$ iff every $\mathbf{M}_{\mathbf{L K}-(\text { cut })}$-valuation which is a model of every sequent in Ω is also a model of s.
\hookrightarrow New formulation of results of Schütte (1960) and Girard (1987).

Application: Semantic Proof of Cut-Admissibility in LK

$$
\vdash_{\mathbf{L K}} s \quad \Longrightarrow \quad \vdash_{\mathbf{L K}-(c u t)} s
$$

Application: Semantic Proof of Cut-Admissibility in LK

Cut-Admissibility in LK

$$
\vdash_{\mathbf{L K}} s \quad \Longrightarrow \quad \vdash_{\mathbf{L K}-(c u t)} s
$$

- Reduces to proving that for every $\mathbf{M}_{\mathbf{L K}-(c u t)}$-valuation which is not a model of some sequent s, there exists an $\mathbf{M}_{\mathbf{L K} \text {-valuation which is not a }}$ model of s.
- Proof by induction on the build-up of formulas.

The Big Picture

- Our goals:
- Characterization of important syntactic properties of calculi.
- Understanding the dependencies between them.
- Our tool: non-deterministic semantics.
- Our case study: canonical labelled calculi.

What is a Canonical Rule?

- An "ideal" logical rule: an introduction rule for exactly one connective, on exactly one side of a sequent.
- In its formulation: exactly one occurrence of the introduced connective, no other occurrences of other connectives.
- Its active formulas: immediate subformulas of its principal formula.

Examples of Canonical Rules

$$
\begin{array}{r}
\frac{\Gamma, \psi, \varphi \Rightarrow \Delta}{\Gamma, \psi \wedge \varphi \Rightarrow \Delta} \\
\frac{\Gamma \Rightarrow \Delta, \psi \quad \Gamma \Rightarrow \Delta, \varphi}{\Gamma \Rightarrow \Delta, \psi \wedge \varphi} \\
\Gamma, \neg \psi \Rightarrow \Delta
\end{array} \frac{\Gamma, \psi \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg \psi}
$$

Example 1

Let \mathbf{G}_{1} be a fully structural calculus with the following rules:

$$
\left\{\Rightarrow \psi_{1} ; \Rightarrow \psi_{2}\right\} / \psi_{1} \diamond \psi_{2} \Rightarrow \quad\left\{\psi_{1} \Rightarrow ; \psi_{2} \Rightarrow\right\} / \Rightarrow \psi_{1} \diamond \psi_{2}
$$

a	b	$\diamond(a, b)$
T	T	$\{\mathrm{F}\}$
T	F	$\{\mathrm{T}, \mathrm{F}\}$
F	T	$\{\mathrm{T}, \mathrm{F}\}$
F	F	$\{\mathrm{T}\}$

Example 2

Let \mathbf{G}_{2} be a fully structural calculus with the following rules:

$$
\left\{\psi_{2} \Rightarrow\right\} / \psi_{1} \circ \psi_{2} \Rightarrow \quad\left\{\Rightarrow \psi_{1}\right\} / \Rightarrow \psi_{1} \circ \psi_{2}
$$

a	b	$\circ(a, b)$
T	T	$\{\mathrm{T}\}$
T	F	$\emptyset ? ? ? ?$
F	T	$\{\mathrm{~T}, \mathrm{~F}\}$
F	F	$\{\mathrm{F}\}$

Non-deterministic Matrices

A non-deterministic matrix for \mathcal{L} consists of:

- \mathcal{T} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond}: \mathcal{V}^{n} \rightarrow P^{+}(\mathcal{V})$ for every n-ary connective \diamond of \mathcal{L}.

Non-deterministic Partial Matrices

A non-deterministic partial matrix for \mathcal{L} consists of:

- \mathcal{T} - the set of truth-values,
- \mathcal{O} - contains an interpretation function $\tilde{\diamond}: \mathcal{V}^{n} \rightarrow P(\mathcal{V})$ for every n-ary connective \diamond of \mathcal{L}.
A PNmatrix is proper if it includes no "empty spots".

Key property of Nmatrices:

- Analyticity: any partial M-valuation can be extended to a full M-valuation.
- Consequence: decidability (in the finite case).

Key property of PNmatrices:

- Weak Analyticity: it is decidable whether a partial M-valuation can be extended to a full \mathbf{M}-valuation.
- Consequence: decidability (in the finite case).

The two-sided case: a direct correspondence

Theorem

If \mathbf{G} is a (two-sided) canonical calculus, then the following statements are equivalent:
(1) G has a characteristic proper two-valued PNmatrix.
(2) G enjoys strong cut-admissibility.
(3) G enjoys the subformula property.

The two-sided case: a direct correspondence

Theorem

If \mathbf{G} is a (two-sided) canonical calculus, then the following statements are equivalent:
(1) G has a characteristic proper two-valued PNmatrix.
(2) G enjoys strong cut-admissibility.
(3) \mathbf{G} enjoys the subformula property.

- The Subformula Property: Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} consisting solely of \mathcal{E}-sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).
- Strong Cut-Admissibility Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} in which cuts are allowed only on formulas from Ω.

Labelled Calculi

$$
\psi_{1}, \psi_{2} \Rightarrow \psi_{3}, \psi_{4}, \psi_{5} \Rightarrow\left\{\mathrm{~F}: \psi_{1}, \mathrm{~F}: \psi_{2}, \mathrm{~T}: \psi_{3}, \mathrm{~T}: \psi_{4}, \mathrm{~T}: \psi_{5}\right\}
$$

- A finite set of labels \downarrow.
- A labelled formula: $a: \psi$ for $a \in Ł$
- A sequent: a finite set of labelled formulas.
- Canonical labelled calculi have in addition to weakening two types of rules: primitive rules and canonical introduction rules.

Primitive Rules

$$
\frac{\left(L_{1}: \psi\right) \cup s \ldots\left(L_{n}: \psi\right) \cup s}{(L: \psi) \cup s \cup \ldots \cup s}
$$

Notation: we write $(\{a, b, c\}: \psi)$ instead of $\{a: \psi, b: \psi, c: \psi\}$.

Examples:

$$
\frac{\{\mathrm{F}: \psi\} \cup s \quad\{\mathrm{~T}: \psi\} \cup s}{s}
$$

$$
\frac{s}{(\{\mathrm{~T}, \mathrm{~F}\}: \psi) \cup s}
$$

$$
\frac{(\{a\}: \psi) \cup s \quad(\{b\}: \psi) \cup s}{(\{c, d\}: \psi) \cup s}
$$

Canonical Introduction Rules

$$
\begin{gathered}
\frac{\left\{\mathrm{T}: \psi_{1}\right\} \cup s \quad\left\{\mathrm{~T}: \psi_{2}\right\} \cup s}{\left\{\mathrm{~T}: \psi_{1} \wedge \psi_{2}\right\} \cup s} \\
\frac{\left\{\mathrm{~F}: \psi_{1}, \mathrm{~F}: \psi_{2}\right\} \cup s}{\left\{\mathrm{~F}: \psi_{1} \wedge \psi_{2}\right\} \cup s} \\
\frac{\left\{a: \psi_{1}, b: \psi_{2}\right\} \cup s \quad\left\{c: \psi_{2}, a: \psi_{3}, b: \psi_{3}\right\} \cup s}{\left(\{a, b\}: \circ\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \cup s\right.}
\end{gathered}
$$

Semantics for Canonical Labelled Calculi

- Possible truth-values in the two-sided case: $\{\emptyset,\{\mathrm{F}\},\{\mathrm{T}\},\{\mathrm{T}, \mathrm{F}\}\}$.
- Possible truth-values in the labelled case: $P(Ł)$.
- A valuation v is a model of a sequent Ω if for some labelled formula $a: \psi$ in $\Omega, a \in v(\psi)$.
- Primitive rules determine the actual set of truth-values.
- Introduction rules determine the truth-tables of the logical connectives.

Example

Start with the calculus over $Ł=\{a, b, c\}$ including only weakening.

$$
\text { Vals }=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Example

Start with the calculus over $Ł=\{a, b, c\}$ including only weakening.

$$
\text { Vals }=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Now we add the primitive rules:

$$
\begin{gathered}
\frac{s}{(\{a, b\}: \psi) \cup s} \quad \frac{\{a: \psi\} \cup s \quad\{b: \psi\} \cup s \quad\{c: \psi\} \cup s}{s} \\
\text { Vals }=\{\{b\},\{a\},\{a, b\}\}
\end{gathered}
$$

Example

Start with the calculus over $Ł=\{a, b, c\}$ including only weakening.

$$
\text { Vals }=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

Now we add the primitive rules:

$$
\begin{gathered}
\frac{s}{(\{a, b\}: \psi) \cup s} \quad \frac{\{a: \psi\} \cup s \quad\{b: \psi\} \cup s \quad\{c: \psi\} \cup s}{s} \\
\text { Vals }=\{\{b\},\{a\},\{a, b\}\}
\end{gathered}
$$

The corresponding PNmatrix:

$\tilde{\wedge}$	$\{a\}$	$\{b\}$	$\{a, b\}$
$\{a\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$
$\{b\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$
$\{a, b\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$

Example

Adding the introduction rule:

$$
\frac{\left\{a: \psi_{1}\right\} \cup s \quad\left\{a: \psi_{2}\right\} \cup s}{\left\{a: \psi_{1} \wedge \psi_{2}\right\} \cup s}
$$

The corresponding PNmatrix:

$\tilde{\wedge}$	$\{a\}$	$\{b\}$	$\{a, b\}$
$\{a\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$
$\{b\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$
$\{a, b\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$

Example

Adding the introduction rule:

$$
\frac{\left\{a: \psi_{1}\right\} \cup s \quad\left\{a: \psi_{2}\right\} \cup s}{\left\{a: \psi_{1} \wedge \psi_{2}\right\} \cup s}
$$

The corresponding PNmatrix:

$\tilde{\wedge}$	$\{a\}$	$\{b\}$	$\{a, b\}$
$\{a\}$	$\{\{a\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{a, b\}\}$
$\{b\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$
$\{a, b\}$	$\{\{a\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{a, b\}\}$

Example

Adding the introduction rule:

$$
\frac{\left\{b: \psi_{1}, b: \psi_{2}\right\} \cup s}{\left\{b: \psi_{1} \wedge \psi_{2}\right\} \cup s}
$$

The corresponding PNmatrix:

$\tilde{\wedge}$	$\{a\}$	$\{b\}$	$\{a, b\}$
$\{a\}$	$\{\{a\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{a, b\}\}$
$\{b\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$
$\{a, b\}$	$\{\{a\},\{a, b\}\}$	$\{\{a\},\{b\},\{a, b\}\}$	$\{\{a\},\{a, b\}\}$

Example

Adding the introduction rule:

$$
\frac{\left\{b: \psi_{1}, b: \psi_{2}\right\} \cup s}{\left\{b: \psi_{1} \wedge \psi_{2}\right\} \cup s}
$$

The corresponding PNmatrix:

$\tilde{\wedge}$	$\{a\}$	$\{b\}$	$\{a, b\}$
$\{a\}$	$\{\{a\},\{a, b\}\}$	$\{\{b\},\{a, b\}\}$	$\{\{a, b\}\}$
$\{b\}$	$\{\{b\},\{a, b\}\}$	$\{\{b\},\{a, b\}\}$	$\{\{b\},\{a, b\}\}$
$\{a, b\}$	$\{\{a, b\}\}$	$\{\{b\},\{a, b\}\}$	$\{\{a, b\}\}$

Example

Adding the introduction rule:

$$
\frac{\left\{b: \psi_{1}\right\} \cup s \quad\left\{b: \psi_{2}\right\} \cup s}{\left\{c: \psi_{1} \wedge \psi_{2}\right\} \cup s}
$$

The corresponding PNmatrix:

$\tilde{\wedge}$	$\{a\}$	$\{b\}$	$\{a, b\}$
$\{a\}$	$\{\{a\},\{a, b\}\}$	$\{\{b\},\{a, b\}\}$	$\{\{a, b\}\}$
$\{b\}$	$\{\{b\},\{a, b\}\}$	\emptyset	\emptyset
$\{a, b\}$	$\{\{a, b\}\}$	\emptyset	\emptyset

All Labelled Calculi are Decidable

Theorem

Every canonical labelled calculus has a characteristic (finite) PNmatrix.

All Labelled Calculi are Decidable

Theorem

Every canonical labelled calculus has a characteristic (finite) PNmatrix.

Corollary

Any logic induced by canonical labelled calculus is decidable.

Application: characterization of syntactic properties

The Subformula Property

Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} consisting solely of \mathcal{E}-sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

Application: characterization of syntactic properties

The Subformula Property

Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} consisting solely of \mathcal{E}-sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

Strong Cut-Admissibility

Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} in which cuts are allowed only on formulas from Ω.
We call cut any primitive rule of the form $\frac{\left(L_{1}: \psi\right) \ldots\left(L_{n}: \psi\right)}{s}$

Application: characterization of syntactic properties

The Subformula Property

Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} consisting solely of \mathcal{E}-sequents (i.e. sequents consisting solely of formulas from \mathcal{E}).

Strong Cut-Admissibility

Whenever $\Omega \vdash_{\mathbf{G}} s$, there is a derivation of s from Ω in \mathbf{G} in which cuts are allowed only on formulas from Ω.
We call cut any primitive rule of the form $\frac{\left(L_{1}: \psi\right) \ldots\left(L_{n}: \psi\right)}{s}$
Are these properties equivalent?

The subformula property \nRightarrow strong cut-admissibility

$$
Ł=\{a, b, c\}
$$

G has the following cuts:

$$
\frac{\{a: \psi\} \cup s \quad\{b: \psi\} \cup s}{s} \frac{\{a: \psi\} \cup s \quad\{c: \psi\} \cup s}{s} \quad \frac{\{b: \psi\} \cup s \quad\{c: \psi\} \cup s}{s}
$$

and the following introduction rules:

$$
\frac{(\{a, b\}: \psi) \cup s}{\{a: \star \psi\} \cup s} \quad \frac{(\{b, c\}: \psi) \cup s}{\{a: \star \psi\} \cup s}
$$

Then we can derive:

$$
\frac{\frac{\{a: \psi\}}{\{a, b\}: \star \psi} \frac{\{a: \psi\}}{\{b, c\}: \star \psi}}{\{b: \star \psi\}} \text { cut }
$$

But $\{b: \star \psi\}$ has no derivation from $\{a: \psi\}$ with cuts only on ψ.

Solution: harmless primitive rules

- The problem can be solved by adding the primitive rule (which does not affect the semantics of the calculus):

$$
\frac{(\{a, b\}: \psi) \cup s \quad(\{b, c\}: \psi) \cup s}{\{b: \psi\} \cup s} p r
$$

Then we have a (cut-free!) derivation:

$$
\frac{\frac{\{a: \psi\}}{\{a, b\}: \star \psi} \frac{\{a: \psi\}}{\{b, c\}: \star \psi}}{\{b: \star \psi\}} p r
$$

Solution: harmless primitive rules

- The problem can be solved by adding the primitive rule (which does not affect the semantics of the calculus):

$$
\frac{(\{a, b\}: \psi) \cup s \quad(\{b, c\}: \psi) \cup s}{\{b: \psi\} \cup s} p r
$$

Then we have a (cut-free!) derivation:

$$
\frac{\frac{\{a: \psi\}}{\{a, b\}: \star \psi} \frac{\{a: \psi\}}{\{b, c\}: \star \psi}}{\{b: \star \psi\}} p r
$$

- The addition of all such harmless primitive rules leads to a cut-saturated calculus.

Theorem

For every labelled canonical calculus \mathbf{G} an equivalent cut-saturated \mathbf{G}^{\prime} can be constructed.

Finally: a semantic characterization

Theorem

Let \mathbf{G} be a cut-saturated canonical labelled calculus. Then the following statements are equivalent:
(1) G has a proper characteristic PNmatrix.
(2) G enjoys strong cut-admissibility.
(3) Genjoys the subformula property.

The Big Picture

- Our goals:
- Characterization of important syntactic properties of calculi.
- Understanding the dependencies between them.
- Our tool: non-deterministic semantics.
- Our case study: canonical labelled calculi.

Summary

- The techniques can be applied to many families of proof systems: single-conclusioned canonical calculi, basic systems, canonical Gödel hypersequent systems and more.
- Future research directions:
- First-order case
- Extension to calculi with less restrictive primitive and introduction rules.
- Substructural logics...

