
An Introduction to Non-deterministic Matrices: Part I 1

An Introduction to Nmatrices: Part I

Many-valued Logics



An Introduction to Non-deterministic Matrices: Part I 2

�

�

�

�
What Do We Mean By “Logic”?

1. A formal language L, based on which L-formulas are
constructed. We denote byFL the set of well-formed formulas ofL.

2. A consequence relation ⊢ for L.

A consequence relation (cr) for L is a binary relation ⊢⊆ 2FL × FL,
having the following properties:

strong reflexivity: if ψ ∈ Γ then Γ ⊢ ψ.
monotonicity: if Γ ⊢ ψ and Γ ⊆ Γ′, then Γ′ ⊢ ψ.
transitivity (cut): if Γ ⊢ ψ and Γ, ψ ⊢ ϕ then Γ ⊢ ϕ.
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Properties of Consequence Relations

• A cr ⊢ for L is structural if for every uniform L-substitution σ
and every Γ and ψ: if Γ ⊢ ψ then σ[Γ] ⊢ σ[ψ].
Example: p ∧ q ⊢ q implies ϕ ∧ ψ ⊢ ψ for every ϕ, ψ ∈ FL.

• A cr ⊢ for L is consistent if there exist formulas ϕ and ψ, such
that ϕ 6⊢ ψ.

• A cr ⊢ for L is finitary if whenever Γ ⊢ ψ, there exists some
finite Γ′ ⊆ Γ, such that Γ′⊢ψ.

• A propositional logic is a pair 〈L,⊢〉, where ⊢ is a structural,
consistent and finitary cr for L.
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Example of a Language

• The language Lcl:

– Atomic formulas:p1, p2, ...,

– Logical connectives:¬, ∧, ∨, ⊃

– Parentheses:‘(’,‘)’

• The set of well-formed formulas Fcl = FLcl
:

– For any atomic formulap, p ∈ Fcl.

– If A,B ∈ Fcl, then(¬A), (A ∧B), (A ∨B), (A ⊃ B) ∈ Fcl.
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Ways of Defining Logics

• Semantically: Γ ⊢S ψ if every “model” of Γ is a “model” of ψ in
the semantics S.

• Syntactically: Γ ⊢D ψ if ψ has a proof from Γ in the deduction
system D.
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¬̃

t f

f t

⊃̃ t f

t t f

f t t

∧̃ t f

t t f

f f f

∨̃ t f

t t t

f t f

A classical valuation is a function v : Fcl → {t, f}, such that
v[⋄(ψ1, . . . , ψn)] = ⋄̃[v[ψ1], . . . , v[ψn]] for any connective
⋄ ∈ {¬,⊃,∨,∧}.

v[Rain] = f v[CarStarts] = t v[Trip] = f

v[¬Rain] = t v[¬Rain ∧ CarStarts] = t

v[(¬Rain ∧ CarStarts) ⊃ Trip] = f
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Semantic Way of Defining Classical Logic

• A classical valuation v is a model of an L-formula ψ if v[ψ] = t.
v is a model of a theory Γ if v is a model of every ψ ∈ Γ.

• Γ ⊢CPL ψ if every classical model of Γ is a model of ψ.

• Example:

{CarStarts ⊃ Trip,¬Trip} ⊢CPL ¬CarStarts
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Hilbert-style Proof Systems

• A Hilbert-style proof system for L consists of: (i) an (effective)
set of L-formulas called axioms, and (ii) an (effective) set of
inference rules.

• A proof of ψ from Γ in a Hilbert-style system H is a finite
sequence of L-formulas, where the last formula is ψ, and each
formula is: (i) an axiom of H, (ii) a member of Γ, or (iii) is
obtained from previous formulas in the sequence by applying
some inference rule of H. ψ is a theorem of H if ψ has a proof
in H from ∅.

• We denoteΓ ⊢H ψ if ψ has a proof fromΓ in H. ⊢H is a finitary cr

for any Hilbert-style systemH.

• A system H for L is sound for a logic L = 〈L,⊢〉 if ⊢H ⊆ ⊢. H is
complete for L if ⊢ ⊆ ⊢H.
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• Axiom schemata:

I1 ϕ ⊃ (ψ ⊃ ϕ)

I2 (ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)

I3 ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ

C1 ϕ ∧ ψ ⊃ ϕ

C2 ϕ ∧ ψ ⊃ ψ

C3 ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)

D1 ϕ ⊃ ϕ ∨ ψ

D2 ψ ⊃ ϕ ∨ ψ

D3 (ϕ ⊃ θ) ⊃ (ψ ⊃ θ) ⊃ (ϕ ∨ ψ ⊃ θ)

• Inference Rule:
ψ ψ ⊃ ϕ

ϕ MP
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Obtained by adding to HCL+ (possibly without D3):

• Either the following axioms concerning negation:

N1 (ψ ⊃ ϕ) ⊃ (ψ ⊃ ¬ϕ) ⊃ ¬ψ

N2 ¬¬ϕ ⊃ ϕ

• Or the following axioms concerning negation:

N3 ¬ϕ ∨ ϕ

N4 (ϕ ∧ ¬ϕ) ⊃ ψ

Soundness and completeness theorem for CPL:

Γ ⊢HCL ψ ⇔ Γ ⊢CPL ψ
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Gentzen-style Proof Systems

• Hilbert-style systems operate on L-formulas. Gentzen-style
systems operate on sequents.

• A sequent: an expression of the form Γ ⇒ ∆, where Γ,∆ are
finite sets of L-formulas.

• A standard Gentzen-type system for L consists of:

1. Standard axioms: ψ ⇒ ψ.

2. Structural Weakening and Cut rules:

Γ ⇒ ∆
Γ,Γ′ ⇒ ∆,∆′ (Weakening)

Γ, ψ ⇒ ∆ Γ ⇒ ∆, ψ

Γ ⇒ ∆
(Cut)

3. Logical introduction rules for the connectives of L.
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Proofs in Gentzen-style Systems

• A proof of a sequent Γ ⇒ ∆ from a set of sequents Θ in G is a
finite sequence of sequents, where the last sequent is Γ ⇒ ∆,
and each sequent is: (i) an axiom of G, (ii) a member of Θ, or
(iii) is obtained from previous sequents in the sequence by
applying some rule of G.

• Γ ⇒ ∆ is provable in G if it has a proof from the empty set of
sequents in G.

• Γ ⊢G ψ if there is some finite Γ′ ⊆ Γ, such that Γ′ ⇒ ψ is
provable in G.

• ⊢G is a finitary cr. If G is standard then ⊢G is also structural.
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The System GCPL

ψ ⇒ ψ

(Weakening)
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

(Cut)
Γ, ψ ⇒ ∆ Γ ⇒ ∆, ψ

Γ ⇒ ∆

(¬ ⇒)
Γ ⇒ ∆, ϕ

¬ϕ,Γ ⇒ ∆
(⇒ ¬)

ϕ,Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ

(⊃⇒)
Γ ⇒ ∆, ϕ ψ,Γ ⇒ ∆

ϕ ⊃ ψ,Γ ⇒ ∆
(⇒⊃)

Γ, ϕ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ⊃ ψ

(∧ ⇒)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(⇒ ∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

(∨ ⇒)
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(⇒ ∨)

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ
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Example: Proof of ⊢G ⇒ ¬(ψ ∧ ϕ) ⊃ ¬ψ ∨ ¬ϕ

ϕ⇒ ϕ

ϕ⇒ ¬ψ, ϕ
(Weakening)

⇒ ¬ψ,¬ϕ, ϕ
(⇒ ¬)

⇒ ¬ψ ∨ ¬ϕ, ψ
(⇒ ∨)

ψ ⇒ ψ

ψ ⇒ ¬ϕ, ψ
(Weakening)

⇒ ¬ψ,¬ϕ, ψ
(⇒ ¬)

⇒ ¬ψ ∨ ¬ϕ, ϕ
(⇒ ∨)

⇒ ¬ψ ∨ ¬ϕ, ψ ∧ ϕ
(⇒ ∧)

¬(ψ ∧ ϕ) ⇒ ¬ψ ∨ ¬ϕ
(¬ ⇒)

⇒ ¬(ψ ∧ ϕ) ⊃ ¬ψ ∨ ¬ϕ
(⇒⊃)
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Completeness and Cut-elimination

• A Gentzen-style System admits cut-elimination if whenever
Γ ⇒ ∆ is provable in G, Γ ⇒ ∆ also has a cut-free proof in G.

• Completeness Theorem for Classical Logic:

– Γ ⊢GCPL ψ iff Γ ⊢CPL ψ

– GCPL admits cut-elimination

• Important corollary - GCPL has the subformula property:
If Γ ⇒ ∆ has a derivation in GCPL, then all the formulas in this

derivation are subformulas of the formulas inΓ ⇒ ∆.
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Basic Principles of Classical Logic

• Bivalence:
Every proposition is either true or false (there are exactly two
truth-values).

• Inconsistency Intolerance:
A proposition and its negation cannot be both true.

• Truth-Functionality:
The truth-value of a complex proposition is uniquely defined by
the truth-values of its constituents.
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Many-valued Logic - Motivation

• Sometimes incomplete information prevents us from telling if
something is true or not.

• Łukasiewicz, “On Determinism”, 1970: If statements about future

events are already true or false, then the future is as much determined

as the past and differs from the past only in so far as it has notyet

come to pass.

• The idea: reject Bivalence by adding a third truth-value I, to be
read as “possible”.
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Three-valued Łukasiewicz Logic

⊃ f I t

f t t t

I I t t

t f I t

¬

f t

I I

t f

• A legal valuation v is a Łuk-model of a formula ψ if v[ψ] = t. v
is a Łuk-model of a theory Γ if v is a Łuk-model of every ψ ∈ Γ.

• Γ ⊢Luk ψ if every Łuk-model of Γ is a Łuk-model of ψ.

• Examples:
⊢Luk I1 [ϕ ⊃ (ψ ⊃ ϕ)]

6⊢Luk I2 [(ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)]
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Kleene and McCarthy Logics

• Modelling parallel vs. sequential computation

• The third truth-value I - for “undefined”

• Negation is defined like in Łukasiewicz three-valued logic.

• The notion of a model of a formula and the associated cr are
defined like in Łukasiewicz three-valued logic.

∨ f I t

f f I t

I I I t

t t t t

∨ f I t

f f I t

I I I I

t t t t

Kleene McCarthy
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J3

• The third truth-value I - for “paradoxical”

• Implication is defined as follows:

a⊃̃b =





t if a = f

b if a ∈ {t, I}

• Other connectives are defined like in Kleene’s logic.

• A legal valuation v is a J3-model of a formula ψ if v[ψ] ∈ {t, I}.
v is a J3-model of a theory Γ if v is a J3-model of every ψ ∈ Γ.

• Γ ⊢J3
ψ if every J3-model of Γ is a J3-model of ψ.

• Examples:
⊢J2

I2 [(ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)]

6⊢J3
N1 [(ψ ⊃ ϕ) ⊃ (ψ ⊃ ¬ϕ) ⊃ ¬ψ]
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Hilbert-type System for J3

Obtained by adding to HCL+ the following axioms for negation:

N3 ¬ψ ∨ ψ

NN ¬¬ψ ≡ ψ

NC ¬(ψ ∧ ϕ) ≡ ¬ψ ∨ ¬ϕ

ND ¬(ψ ∨ ϕ) ≡ ¬ψ ∧ ¬ϕ

NI ¬(ψ ⊃ ϕ) ≡ ψ ∧ ¬ϕ

where ψ ≡ ϕ
def
= (ψ ⊃ ϕ) ∧ (ϕ ⊃ ψ).
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Gentzen-type System for J3

Obtained by deleting(¬ ⇒) from GCPL (FromΓ ⇒ ∆, ϕ infer ¬ϕ,Γ ⇒ ∆),

and addinginsteadthe following rules:

Γ, ψ,¬ϕ⇒ ∆

Γ,¬(ψ ⊃ ϕ) ⇒ ∆

Γ ⇒ ψ,∆ Γ ⇒ ¬ϕ,∆

Γ ⇒ ¬(ψ ⊃ ϕ),∆

Γ,¬ψ ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ,¬(ψ ∧ ϕ) ⇒ ∆

Γ ⇒ ∆,¬ψ,¬ϕ

Γ ⇒ ∆,¬(ψ ∧ ϕ)

Γ,¬ψ,¬ϕ⇒ ∆

Γ,¬(ψ ∨ ϕ) ⇒ ∆

Γ ⇒ ∆,¬ψ Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ψ ∨ ϕ)

Γ, ψ ⇒ ∆

Γ,¬¬ψ ⇒ ∆

Γ ⇒ ∆, ψ

Γ ⇒ ∆,¬¬ψ
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General Semantic Method for Defining Logics

• A denotational semantics for a language L is a pair
S = 〈S, |=S〉, where S is a non-empty set of “valuations” and
|=S⊂ S × FL. A valuation is usually some mapping from FL to
some set of “truth values”.

• For v ∈ S, v is a S-model of ψ if v |=S ψ. v is an S-model of Γ if
v |=S ψ for every ψ ∈ Γ.

• Γ ⊢S ψ if every S-model of Γ is an S-model of ψ.

• For any denotational semantics S = 〈S, |=S〉 for L, ⊢S is a cr.
However,〈L,⊢S〉 may not be a logic.
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Many-valued Matrices as Denotational Semantics

M = 〈V ,D,O〉 is a matrix for a propositional language L if:

• V is a nonempty set of truth-values,

• ∅ 6= D ⊂ V (the set of designated truth-values),

• for every n-ary connective ⋄ of L, O includes an operation
⋄̃ : Vn → V
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Examples

• In classical logic: V = {t, f}, while D = {t}.

• In the 3-valued logics of Łukasiewicz, Kleene, and McCarthy:
V = {t, f , I}, while D = {t}.

• In J3: V = {t, f , I}, while D = {t, I}.
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• A valuation v in a matrix M = 〈V ,D,O〉 is any function from
the set of L-formulas to V such that:

v[⋄(ψ1, ..., ψn)] = ⋄̃[v[ψ1], ..., v[ψn]]

• v is a model of an L-formula ψ in M, denoted by v |=M ψ, if
v[ψ] ∈ D.

• v is a model of a theory Γ in M, denoted by v |=M Γ, if v is a
model of every ψ ∈ Γ.
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Consequence Relation Induced by a Matrix

• Γ ⊢M ψ if for every valuation v in M: v |=M Γ implies v |=M ψ.

• Let L = 〈L,⊢〉 be some logic.
L is sound for a matrix M if ⊢ ⊆ ⊢M.
L is complete for M if ⊢M ⊆ ⊢.
M is a characteristic matrix for L if L is sound and complete
for M.

• For any matrix M for L, 〈L,⊢M〉 is a propositional logic.

• Converse direction:is every propositional logic induced by a matrix?
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Logics Induced by Matrices and their Families

• Let C be a family of matrices. We say that Γ ⊢C ψ if for every
M ∈ C: Γ ⊢M ψ.

• Every propositional logic is induced by some family of matrices.

• A set of L-formulas (theory) Γ is ⊢-consistent if there exists
some L-formula ψ such that Γ 6⊢ψ.

• A logic L = 〈L,⊢〉 is uniform if for every two theories Γ1,Γ2 and
an L-formula ψ: Γ1 ⊢ ψ whenever Γ1,Γ2 ⊢ ψ and Γ2 is a
⊢-consistent theory with no atoms in common with Γ1 ∪ {ψ}.

• Łos & Suszko: A finitary propositional logic has a characteristic
matrix iff it is uniform.
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Dunn-Belnap’s Logic for Inconsistent and Incomplete Information

A framework for information collecting and processing:

�

�

�

�Processor

�

�

�

�
Source 1: A is true, C is false

�

�

�

�Source 2: A is false
�

�

�

�Source 3: B is true



An Introduction to Non-deterministic Matrices: Part I 30

�

�

�

�
Dunn-Belnap’s Logic: 4 truth-values

The truth-values which can be assigned to a formula A are subsets
of {0, 1}:

• t = {1}: P has information that A is true, but no information that A

is false.

• f = {0}: P has information that A is false, but no information that A

is true.

• ⊤ = {0, 1}: P has both information that A is false and information

that A is true.

• ⊥ = ∅: P has no information on A.
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Belnap’s Logic: 4 truth-values

�

�

�

�Processor

�

�

�

�
Source 1: A is true, C is false

�

�

�

�Source 2: A is false
�

�

�

�Source 3: B is true

v[A] = ⊤ v[B] = t v[C] = f v[D] = ⊥
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Belnap’s Logic: 4 truth-values

Assumption 1:The sources provide information on atomic formulas,
but not necessarily all of them.

Assumption 2:P respects the classical truth-tables in the following
sense:

1. P ascribes 1 (0) to ¬ϕ iff it ascribes 0 (1) to ϕ

2. P ascribes 1 to ϕ ∨ ψ iff it ascribes 1 to either ϕ or ψ

3. P ascribes 0 to ϕ ∨ ψ iff it ascribes 0 to both ϕ and ψ

4. P ascribes 1 to ϕ ∧ ψ iff it ascribes 1 to both ϕ and ψ

5. P ascribes 0 to ϕ ∧ ψ iff it ascribes 0 to either ϕ or ψ

“The processor ascribesx ∈ {0, 1} toψ”: x is included in the subset of{0, 1}

which is assigned by the processor toψ.
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Dunn-Belnap’s Logic

• V = {t, f ,⊤,⊥}

• D = {t,⊤}

• The truth-tables for the connectives:

∨ ⊥ f t ⊤

⊥ ⊥ ⊥ t t

f ⊥ f t ⊤

t t t t t

⊤ t ⊤ t ⊤

∧ ⊥ f t ⊤

⊥ ⊥ f ⊥ f

f f f f f

t ⊥ f t ⊤

⊤ f f ⊤ ⊤

¬

⊥ ⊥

f t

t f

⊤ ⊤
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Corresponding Gentzen-type System

Obtained by deleting fromGCPL bothof the negation rules (as well as the

implication rules), and adding instead the following rules:

Γ,¬ψ ⇒ ∆ Γ,¬ϕ⇒ ∆

Γ,¬(ψ ∧ ϕ) ⇒ ∆

Γ ⇒ ∆,¬ψ,¬ϕ

Γ ⇒ ∆,¬(ψ ∧ ϕ)

Γ,¬ψ,¬ϕ⇒ ∆

Γ,¬(ψ ∨ ϕ) ⇒ ∆

Γ ⇒ ∆,¬ψ Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ψ ∨ ϕ)

Γ, ψ ⇒ ∆

Γ,¬¬ψ ⇒ ∆

Γ ⇒ ∆, ψ

Γ ⇒ ∆,¬¬ψ
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Fuzzy Logic: The Sorites Paradox

• 1 grain of wheat does not make a heap.

• If 1 grain of wheat does not make a heap then 2 grains of
wheat do not.

• If 2 grains of wheat do not make a heap then 3 grains do not.

• ...

• If 9,999 grains of wheat do not make a heap then 10,000 do
not.

——————————————————————–
10,000 grains of wheat do not make a heap???
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Fuzzy Logics (L. Zadeh)

• Fuzzy Logic is an extension of Classical Logic.

• The idea: use infinitely many truth-values in [0,1]

• The interpretations of disjunction and conjunction are
monotonic, and interpretations of all connectives agree with
the classical ones on 0 and 1.
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Gödel and Łukasiewicz Fuzzy Logics

V = [0, 1] D = {1} O = {∨̃, ∧̃, ⊃̃, ¬̃}

a∨̃b = max(a, b) a∧̃b = min(a, b) ¬̃a = a⊃̃0

a⊃̃b =





1 if a ≤ b

b if a > b
a⊃̃b =





1 if a ≤ b

1 − a+ b if a > b

(Gödel) (Łukasiewicz)
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Models and cr in Fuzzy Logics

• A legal valuation v for a fuzzy logic L is an L -model of a
formula ψ if v[ψ] = 1. v is an L -model of a theory Γ if v is an
L -model of any ψ ∈ Γ.

• Γ ⊢L ψ if every L -model of Γ is an L -model of ψ.

• Examples:
⊢L ψ ⊃ (ϕ ⊃ ψ)

6⊢L ϕ ∨ ¬ϕ

⊢Łukasiewiczψ ≡ ¬¬ψ, but 6⊢Gödelψ ≡ ¬¬ψ

⊢Gödel I2, but 6⊢ŁukasiewiczI2

• Both Gödel and Łukasiewicz fuzzy logics are decidable.
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Axioms for Gödel fuzzy logic

I1 ϕ ⊃ (ψ ⊃ ϕ)

I2 (ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)

C1 ϕ ∧ ψ ⊃ ϕ

C2 ϕ ∧ ψ ⊃ ψ

C3 ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)

D1 ϕ ⊃ ϕ ∨ ψ

D2 ψ ⊃ ϕ ∨ ψ

D3 (ϕ ⊃ θ) ⊃ (ψ ⊃ θ) ⊃ (ϕ ∨ ψ ⊃ θ)

N1 (ψ ⊃ ϕ) ⊃ (ψ ⊃ ¬ϕ) ⊃ ¬ψ

N4 (ϕ ∧ ¬ϕ) ⊃ ψ

PL (ϕ ⊃ ψ) ∨ (ϕ ⊃ ψ)
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Gödel and Łukasiewicz Finite-valued Logics

For a given finite natural number n, the n-valued counterparts of
the fuzzy logics of Gödel and Łukasiewicz are obtained by taking

V = {0,
1

n− 1
, . . . ,

n− 2

n− 1
, 1}

Then D and the interpretations of the connectives are defined
analogously as for the infinite-valued logics.
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Introduction to Nmatrices: Part II

Introducing Nmatrices
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Lack of Modularity in Matrices

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ ⇒ ∆,¬ψ

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆

Γ ⇒ ∆, ψ, ϕ

Γ ⇒ ∆, ψ ∨ ϕ

¬

t f

f t

∨

t t t

t f t

f t t

f f f
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Lack of Modularity in Matrices

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆ reject

Γ ⇒ ∆,¬ψLEM

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆

Γ ⇒ ∆, ψ, ϕ

Γ ⇒ ∆, ψ ∨ ϕ

¬

t f

f ???

∨

t t t

t f t

f t t

f f f
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Syntactic Underspecification ⇒ Non-determinism

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆

Γ, ψ ⇒ ∆

Γ ⇒ ∆,¬ψ

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆

Γ ⇒ ∆, ψ, ϕ

Γ ⇒ ∆, ψ ∨ ϕ

¬

t {f}

f {t,f}

∨

t t {t}

t f {t}

f t {t}

f f {f}
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Introducing Non-determinism

• Types of non-deterministic phenomena:
vagueness incompleteness
uncertainty imprecision
inconsistency

• Non-deterministic phenomena are in conflict with the principle of

truth-functionality.

• Representation idea: non-deterministic evaluation
(interpretation) of formulas.

An example:

⋄ t f

t {t} {t, f}

f {t, f} {f}
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Linguistic Ambiguity

In many natural languages, “or” has both inclusive and exclusive
meanings. For example, if a mathematician says:

I shall either attack problem A or attack problem B

in many cases he may solve both problems, but in some situations
he actually means “but don’t expect me to solve both”.

Capturing both meanings:

a b a OR b

t t {t, f}

t f {t}

f t {t}

f f {f}
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Circuit Example

-

-

-

-

-

G1

G2in3

in2

in1

out

HereG1 is anOR gate, andG2 is anXOR gate
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�Unknown Boolean Functions

Suppose we know that each of the gates G1 and G2 is either an OR gate or
an XOR gate, but we do not know which one exactly.

⋆ t f

t {t, f} {t}

f {t} {f}

-

-

-

-

-

G1

G2in3

in2

in1

out

Here the interpretation of the non-deterministic “truth-table” is static.



Introduction to Non-deterministic Matrices: Part II 49

�

�

�

�
Deviation from expected behavior

• Problems in the manufacturing process

• Disturbing noise sources, temperature, etc.

• Adversary operations

⋆ t f

t {t, f} {t}

f {t} {f}

-

-

-

-

-

G1

G2in3

in2

in1

out

Now the interpretation of the non-deterministic “truth-table” is dynamic.
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Evaluation with Unknown Computation Models

• We are sending a formula A ∨B for evaluation to a distant
computer, and we do not know whether it performs parallel or
sequential computation.

• As parallel computation can be described using 3-valued
Kleene connectives, and sequential computation — using
3-valued McCarthy connectives, to reason about the result of
evaluation we must use some combination of both.

∨ f I t

f {f} {I} {t}

I {I} {I} {t, I}

t {t} {t} {t}
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�Non-deterministic Matrices

A non-deterministic matrix (Nmatrix) for L is a tuple M = 〈V ,D,O〉:

• V - the set of truth-values,

• D - the set of designated truth-values,

• O - contains an interpretation function ⋄̃ : Vn → P+(V) for
every n-ary connective ⋄ of L.

Ordinary matrices correspond to the case when each⋄̃ is a function taking

singleton values only(then it can be treated as a functioñ⋄ : Vn → V).
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Example 1: Two Truth-values

Let L — a language over {∨,∧,⊃,¬}, V = {f , t},D = {t}.

Suppose that ∨,∧ and ⊃ are interpreted classically, while ¬

satisfies the law of excluded middle ¬ϕ ∨ ϕ, but not necessarily the
law of contradiction ¬(ϕ ∧ ¬ϕ). This leads to the Nmatrix
M2 = 〈V ,D,O〉 where O is given by:

∨̃ ∧̃ ⊃̃

t t {t} {t} {t}

t f {t} {f} {f}

f t {t} {f} {t}

f f {f} {f} {t}

¬̃

t {t, f}

f {t}
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Example 2: Three Truth-values

Two 3-valued Nmatrices withV = {f , I, t}, D = {I, t}

M3
L = 〈V,D,OL〉 M3

S = 〈V,D,OS〉

Standard interpretations of disjunction, conjunction andimplication:

ae∨b =

8
<
:

D if eithera ∈ D or b ∈ D

{f} if a = b = f

ae∧b =

8
<
:

D if a, b ∈ D

{f} if eithera = f or b = f

ae⊃b =

8
<
:

D if eithera = f or b ∈ D

{f} if a ∈ D andb = f

Negation is interpreted more liberally inM3
L, and more strictly inM3

S :

M3
L :

e¬

t {f}

I V

f {t}

M3
S :

e¬

t {f}

I D

f {t}
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Dynamic and Static Valuations

• An M-legal dynamic valuation v is any function from
L-formulas to V which satisfies the condition:

v[⋄(ψ1, ..., ψn)] ∈ ⋄̃[v[ψ1], ..., v[ψn]]

• An M-legal static valuation is an M-legal dynamic valuation v
which satisfies also the following compositionality principle:

v[⋄(ψ1, ..., ψn)] = v[⋄(ϕ1, ..., ϕn)] if v[ψi] = v[ϕi] for 1 ≤ i ≤ n

• Unlike the static semantics, the dynamic semantics is
non-truth-functional.

• In the deterministic case there is no difference between static and

dynamic valuations.
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Dynamic and Static Valuations Explained

Two possible ways to choose the truth-value of⋄(ψ1, ..., ψn):

• Dynamic (online) computation:separately for every formula.

• Static (offline) choice:separately for every connective⋄, but uniformly for

all formulas⋄(ψ1, ..., ψn).

As opposed to static valuations, dynamic valuations need not be truth-functional:

v1[p1] = v1[p2] = t ; v1[q1] = v1[q2] = t; v1[p1 ⋆ q1] = v1[p2 ⋆ q2] = t

v2[p1] = v2[p2] = t ; v2[q1] = v2[q2] = t; v2[p1 ⋆ q1] = t ; v2[p2 ⋆ q2] = f

⋆ t f

t {t, f} {t}

f {t} {f}
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�Non-deterministic Semantics

Let M = 〈V ,D,O〉 be an Nmatrix for L.

• A valuation v in M is a model of a formula ψ if v[ψ] ∈ D.
A valuation v is a model of a set of formulas Γ if it is a model of
every formula in Γ.

• Γ ⊢d
M ψ if every dynamic model in M of Γ is a model of ψ.

• Γ ⊢s
M ψ if every static model in M of Γ is a model of ψ.

• For every Nmatrix M, both ⊢s
M and ⊢d

M define logics.

• A logic L = 〈L,⊢L〉 is dynamically (statically) sound for an
Nmatrix M for L if ⊢L ⊆ ⊢d

M (⊢L ⊆ ⊢s
M). L is dynamically

(statically) complete for M if ⊢d
M ⊆ ⊢L (⊢s

M ⊆ ⊢L). M is
dynamically (statically) characteristic for L if ⊢d

M=⊢L

(⊢s
M=⊢L).
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�The Nmatrix M2 Revisited

e∨ e∧ e⊃

t t {t} {t} {t}

t f {t} {f} {f}

f t {t} {f} {t}

f f {f} {f} {t}

e¬

t {t, f}

f {t}

• Any dynamic valuation satisfies ¬ψ ∨ ψ but not necessarily ψ ⊃ ¬¬ψ.

• Any static valuation satisfies both ¬ψ ∨ ψ and ψ ⊃ ¬¬ψ (it admits only

two interpretations of¬: the classical one andλx.t). However, it satisfies
neither ¬¬ψ ⊃ ψ nor (ϕ ∧ ¬ϕ) ⊃ ψ (takee¬ = λx.t, v[ϕ] = t, v[ψ] = f ).

• The dynamic semantics and the static semantics generate two

different paraconsistent logics, known as CLuN and CAR.
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Reminder: The System GCPL

ψ ⇒ ψ

(Weakening)
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

(Cut)
Γ, ψ ⇒ ∆ Γ ⇒ ∆, ψ

Γ ⇒ ∆

(¬ ⇒)
Γ ⇒ ∆, ϕ

¬ϕ,Γ ⇒ ∆
(⇒ ¬)

ϕ,Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ

(⊃⇒)
Γ ⇒ ∆, ϕ ψ,Γ ⇒ ∆

ϕ ⊃ ψ,Γ ⇒ ∆
(⇒⊃)

Γ, ϕ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ⊃ ψ

(∧ ⇒)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(⇒ ∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

(∨ ⇒)
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(⇒ ∨)

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ
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Reminder: The System HCL+

• Axiom schemata:

I1 ϕ ⊃ (ψ ⊃ ϕ)

I2 (ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)

I3 ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ

C1 ϕ ∧ ψ ⊃ ϕ

C2 ϕ ∧ ψ ⊃ ψ

C3 ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)

D1 ϕ ⊃ ϕ ∨ ψ

D2 ψ ⊃ ϕ ∨ ψ

D3 (ϕ ⊃ θ) ⊃ (ψ ⊃ θ) ⊃ (ϕ ∨ ψ ⊃ θ)

• Inference Rule:
ψ ψ ⊃ ϕ

ϕ MP
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The Logic CLuN

• A Gentzen-style system sound and complete for the dynamic
semantics of M2 is obtained by deleting from GCPL the rule
(¬ ⇒), and leaving the single negation rule (⇒ ¬), i.e.:

Γ, ϕ⇒ ∆

Γ ⇒ ∆,¬ϕ

• As the above rule corresponds to N3: ¬ϕ ∨ ϕ, a Hilbert-style
system sound and complete for ⊢d

M2
is obtained by adding N3

to the system HCL+ for positive classical logic.

• Since the above systems are respectively the standard
Gentzen- and Hilbert-style systems used for the paraconsistent
logic CluN of Batens, the logic corresponding to the dynamic
semantics of M2 is indeed CluN .
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The Logic CAR

• A Hilbert-style system sound and complete for the static
semantics of M2 is obtained by supplementing HCL+ with N3
(¬ϕ ∨ ϕ) and the following weak form of N4: (ϕ ∧ ¬ϕ) ⊃ ¬ψ

• As the above system is equivalent to the original Hilbert-style
system for the paraconsistent logic CAR of da Costa and
Beziau, the logic corresponding to the static semantics of M2

is CAR.



Introduction to Non-deterministic Matrices: Part II 62

�

�

�

�
M3

L and M3
S Revisited

V = {f , I, t}, D = {I, t}

M3
L = 〈V,D,OL〉 M3

S = 〈V,D,OS〉

ae∨b =

8
<
:

D if eithera ∈ D or b ∈ D

{f} if a = b = f
ae∧b =

8
<
:

D if a, b ∈ D

{f} if eithera = f or b = f

ae⊃b =

8
<
:

D if eithera = f or b ∈ D

{f} if a ∈ D andb = f

M3
L :

e¬

t {f}

I V

f {t}

M3
S :

e¬

t {f}

I D

f {t}
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Proof System for Dynamic Semantics of M3

L and M3
S

• Let the Gentzen-style system GCmin be obtained by replacing
the rule (¬ ⇒) in GCPL with the rule:

Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

It can be shown that GCmin is sound and complete for the
dynamic semantics of both M3

L and M3
S .

• Thus the dynamic semantics of the Nmatrices M3
L and M3

S

generate the same logic.
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The Logic Cmin

• As the negation rules

Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

Γ, ϕ⇒ ∆

Γ,⇒ ∆,¬ϕ

of GCmin translate to N2 (¬¬ϕ ⊃ ϕ) and N3 (¬ϕ ∨ ϕ),
respectively, GCmin is equivalent to the system HCmin

obtained by adding the above axiom schemes to HCL+.

• The system HCmin represents the basic paraconsistent logic
Cmin. That logic was originally defined in terms of the proof systems

only, without any semantics.
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An Application: Decidability of Cmin

• By the foregoing, the system HCmin is sound and complete for
the dynamic semantics of both M3

L and M3
S . In consequence,

M3
L and M3

S provide sound and complete semantics for the
logic Cmin.

• This fact can be used for showing that some formulas are, or
are not, theorems of Cmin – by showing that they are, or resp.
are not, valid in the dynamic semantics of M3

L (or M3
S). Thus

ϕ ⊃ ¬¬ϕ is not derivable in Cmin, since 6⊢M3
L
ϕ ⊃ ¬¬ϕ.

To see this, take v[ϕ] = I and v[¬ϕ] = t. Then v is a legal
dynamic valuation in M3

L and v[¬¬ϕ] ∈ ¬̃[t] = {f}, whence
v[ϕ ⊃ ¬¬ϕ] ∈ I⊃̃f = {f} and so 6⊢M3

L
ϕ ⊃ ¬¬ϕ.

• It follows that Cmin is decidable.
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Information Sources Logic: Generalization of Belnap’s Logic

A processor P collects information from some sources, and
assigns to a formula A the value:

• t = {1}, if P has information that A is true, but no information that A

is false.

• f = {0}, if P has information that A is false, but no information that

A is true.

• ⊤ = {0, 1}, if P has both information that A is false and information

that A is true.

• ⊥ = ∅, if P has no information on A.
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Information Sources Logic

Assumption 1:The sources can provide information on any formula
(also complex ones), but not necessarily on all of them,

Assumption 2:P respects the classical truth-tables, i.e.:

1. P ascribes 1(0) to ¬ϕ iff it ascribes 0 (1) to ϕ

2. P ascribes 1 to ϕ ∨ ψ if it ascribes 1 to either ϕ or ψ

3. P ascribes 0 to ϕ ∨ ψ iff it ascribes 0 to both ϕ and ψ

4. P ascribes 1 to ϕ ∧ ψ iff it ascribes 1 to both ϕ and ψ

5. P ascribes 0 to ϕ ∧ ψ if it ascribes 0 to either ϕ or ψ

This framework generalizes Belnap’s one by allowing the sources
to give information on complex formulas too, and, in opposition to
the former, cannot be captured using deterministic matrices.
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Assignment of Values to Formulas by the Processor

The processor P assigns to a formula ψ a value v[ψ] in the set

⊥ = ∅ f = {0} ⊤ = {0, 1} t = {1}

whereby 1 ∈ v[ψ] (resp. 0 ∈ v[ψ]) iff either one of the sources tells
P that ψ is true (resp. false), or P concludes the latter from the
information it already has and from Rules 1-5 it obeys.

Thus ifv[ϕ] = v[ψ] = f = {0}, then surely0 ∈ v[ϕ ∨ ψ] by Rule 3. However, if

some source saysϕ ∨ ψ is true, thenP will ascribe 1 toϕ ∨ ψ, making

v[ϕ ∨ ψ] = {0, 1} = ⊤. Otherwise, we havev[ϕ ∨ ψ] = {0} = f . Summing up,

v[ϕ ∨ ψ] ∈ {f ,⊤} — which shows that the interpretation of∨ must be

non-deterministic.

Similarly, if v[ϕ] = ⊥, then surely0 6∈ v[ϕ ∨ ψ] by rule 3. Hence

v[ϕ ∨ ψ] ∈ {t,⊥} in this case. If in additionv[ψ] ∈ {t,⊤} (i.e. 1 ∈ v[ψ]) then

rule 2 dictates thatv[ϕ ∨ ψ] = {t}. Otherwisev[ϕ ∨ ψ] = {t,⊥}.
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Nmatrix M4

I for the Information Sources Logic

V = {f ,⊥,⊤, t} D = {t,⊤}
¬̃ f ⊥ ⊤ t

t ⊥ ⊤ f

e∨ f ⊥ ⊤ t

f {f ,⊤} {t,⊥} {⊤} {t}

⊥ {t,⊥} {t,⊥} {t} {t}

⊤ {⊤} {t} {⊤} {t}

t {t} {t} {t} {t}

e∧ f ⊥ ⊤ t

f {f} {f} {f} {f}

⊥ {f} {f ,⊥} {f} {f ,⊥}

⊤ {f} {f} {⊤} {⊤}

t {f} {f ,⊥} {⊤} {t,⊤}
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Gentzen System for the Information Sources Logic

Standard axioms, cut, weakening and the rules:

(¬¬ ⇒)
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆
(⇒ ¬¬)

Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

(⇒ ∨)
Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ

(¬∨ ⇒)
Γ,¬ϕ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆
(⇒ ¬∨)

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∨ ψ)

(∧ ⇒)
Γ, ϕ, ψ ⇒ ∆,

Γ, ϕ ∧ ψ ⇒ ∆
(⇒ ∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

(⇒ ¬∧)
Γ ⇒ ∆,¬ϕ,¬ψ

Γ ⇒ ∆,¬(ϕ ∧ ψ)



Introduction to Non-deterministic Matrices: Part II 71

�

�

�

�
Power of Dynamic Semantics

• Let M be a 2-valued Nmatrix which has at least one proper
non-deterministic operation. There is no finite family of finite
ordinary matrices C, such that ⊢d

M= ⊢C .

• If in addition M includes the classical implication, then there is
even no finite family of finite ordinary matrices C such that
⊢d
M ψ iff ⊢C ψ.
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Expressive Power of Static Semantics

• For every (finite) Nmatrix M there is a (finite) family C of
matrices such that ⊢s

M=⊢C .

• Thus only the expressive power of the dynamic semantics
based on Nmatrices is stronger than that of ordinary matrices.

Accordingly, in the rest of this course our main focus will beon the

dynamic semantics, and we shall write simply⊢M instead of⊢d
M.
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Analycity, Decidability and Compactness

An obvious, yet crucial fact: any partial M-legal valuation defined
on a set closed under subformulas can be extended to a full
M-legal valuation.

If M is finite then this entails that ⊢M is:

• Decidable

• Finitary (the compactness theorem obtains)
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�Refinements

Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for L.

• M1 is a refinement of M2 if:

1. V1 ⊆ V2

2. D1 = D2 ∩ V1

3. ⋄̃M1
[x1, . . . , xn] ⊆ ⋄̃M2

[x1, . . . , xn] for every n-ary
connective ⋄ of L and every x1, . . . , xn ∈ V1.

• If M1 is a refinement of M2 then ⊢M2
⊆ ⊢M1

.
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Examples of Refinements

• M3
S is a refinement of M3

L.

• The classical two-valued matrix is a refinement of M3
S .

• The classical two-valued matrix is also a refinement of M2.

M3
L :

¬̃

t {f}

I V

f {t}

M3
S :

¬̃

t {f}

I D

f {t}

M2 :

¬̃

t {t, f}

f {t}
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Expansions

Let M = 〈V ,D,O〉 be an Nmatrix for L. Assume that F is a
function that assigns to each x ∈ V a nonempty set F [x] so that
F [x1]∩F [x2] = ∅ if x1 6= x2. The F -expansion of M is the following
Nmatrix MF = 〈VF ,DF ,OF 〉:

• VF =
⋃

x∈V F [x]

• DF =
⋃

x∈D F [x]

• ⋄̃MF
[y1, . . . , yn] =

⋃
z∈e⋄M[x1,...,xn] F [z] whenever ⋄ is an n-ary

connectives of L, and xi ∈ V , yi ∈ F [xi] for every 1 ≤ i ≤ n.

If M1 is an expansion of M2 then ⊢M2
=⊢M1

.
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Example

Let F [t] = {t, I} and F [f ] = {f}. The {∨,∧,⊃}-part of M3
L (or

M3
S) is obtained as the F -expansion of the positive part of the

classical two-valued matrix.

V = {f , I, t}, D = {I, t}

a∨̃b =





D if either a ∈ D or b ∈ D

{f} if a = b = f
a∧̃b =





D if a, b ∈ D

{f} if either a = f or b = f

a⊃̃b =





D if either a = f or b ∈ D

{f} if a ∈ D and b = f
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Introduction to Nmatrices: Part III

Example: Non-deterministic Semantics for Logics of
Formal (In)consistency
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�Problem: Inconsistent Information in Databases

There are two main approaches to this problem:

1. Belief revision: eliminating contradictions.
Make an inconsistent theory consistent by revising it.

2. Paraconsistent logics: reasoning in the presence of
contradictions.
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�
Paraconsistent Logics

• In classical logic (and most other logics), the explosive
non-contradiction principle

ϕ,¬ϕ ⊢ ψ

allows us to derive any formula out of a contradiction. This
makes any inconsistent theory trivial, and so no sensible
reasoning can take place in the presence of contradictions.

• Paraconsistent logics do allow non-trivial inconsistent theories.
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�The Brazilian School of da Costa

The explosive character of contradictions is controlled using the
following two ideas:

• There are two types of formulas: “normal” (“consistent”) and
“abnormal” (“inconsistent”). Contradictions should be explosive
only for “normal” formulas.

• The consistency of a formula ϕ is expressed by a formula ◦ϕ of
the language.
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An Example: da Costa’s System C1

Obtained by:

• Taking◦ϕ = ¬(ϕ ∧ ¬ϕ)

• Adding to some Hilbert-style system forpositiveclassical logic (e.g.
HCL+) the following axioms concerningnegation:

N2: ¬¬ϕ ⊃ ϕ

N3: ¬ϕ ∨ ϕ

a∧: (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∧ ψ)

a∨: (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∨ ψ)

a⊃: (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ⊃ ψ)

andeitherof the following two axioms:

N◦1: ◦ϕ ⊃ (ψ ⊃ ϕ) ⊃ (ψ ⊃ ¬ϕ) ⊃ ¬ψ

N◦4: (◦ϕ ∧ ϕ ∧ ¬ϕ) ⊃ ψ
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�

�HCL
+

I1 ϕ ⊃ (ψ ⊃ ϕ)

I2 (ϕ ⊃ ψ ⊃ θ) ⊃ (ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)

I3 ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ

C1 ϕ ∧ ψ ⊃ ϕ

C2 ϕ ∧ ψ ⊃ ψ

C3 ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)

D1 ϕ ⊃ ϕ ∨ ψ

D2 ψ ⊃ ϕ ∨ ψ

D3 (ϕ ⊃ θ) ⊃ (ψ ⊃ θ) ⊃ (ϕ ∨ ψ ⊃ θ)

MP ϕ, ϕ ⊃ ψ ⊢ ψ



Introduction to Non-deterministic Matrices: Part III 84

�

�

�

�
Logics of Formal (In)Consistency - LFIs

• Internalize the meta-theoretical notions of consistency and
inconsistency by adding to the language a new unary
connective ◦. The intended meaning of ◦ϕ is “ϕ is consistent”.

• Control the explosive character of contradictions:

ϕ,¬ϕ, ◦ϕ ⊢ ψ

but in general

ϕ,¬ϕ 6⊢ ψ
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The Basic Logic of Formal (In)Consistency

Language: LC = {∧,∨,⊃,¬, ◦}.
Logic: B is the minimal logic in LC which extends classical positive
logic and satisfies the following two conditions:

(t) ⊢ ¬ϕ ∨ ϕ

(b) ◦ϕ,¬ϕ, ϕ ⊢ ψ

Corresponding Hilbert-type System: Add the following two axioms
to HCL+:

(N3) ¬ϕ ∨ ϕ

(N◦4) (◦ϕ ∧ ϕ ∧ ¬ϕ) ⊃ ψ
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�Extensions of B

(c) ¬¬ϕ ⊃ ϕ

(e) ϕ ⊃ ¬¬ϕ

(i1) ¬◦ϕ ⊃ ϕ (i2) ¬◦ϕ ⊃ ¬ϕ

(k1) ◦ϕ ∨ ϕ (k2) ◦ϕ ∨ ¬ϕ

(l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ

(a♯) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ♯ψ) for ♯ ∈ {∧,∨,⊃}

(o♯) (◦ϕ ∨ ◦ψ) ⊃ ◦(ϕ♯ψ) for ♯ ∈ {∧,∨,⊃}

An example:C1 is Equivalent toBcila
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�Reminder: Non-deterministic Matrices

A non-deterministic matrix M for L is a tuple 〈V ,D,O〉:

• V - the set of truth-values,

• D - the set of designated truth-values (∅ 6= D ⊂ V ),

• O - contains an interpretation function ⋄̃ : Vn → P+(V) for
every n-ary connective ⋄ of L.
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�5-valued Semantics for B - Intuition

• The idea: include all the relevant data concerning a formula ψ
in the truth-value assigned to ψ:

1. The truth/falsity of ψ

2. The truth/falsity of ¬ψ

3. The truth/falsity of ◦ψ

• This leads to the use of elements from {0, 1}3 as truth-values,
where the intended meaning of v[ψ] = 〈x, y, z〉 is as follows:

x = 1 iff v[ψ] ∈ D

y = 1 iff v[¬ψ] ∈ D

z = 1 iff v[◦ψ] ∈ D
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�5-valued Semantics for B - Intuition

However, the axioms of B rule out some of the truth-values:

• ϕ ∨ ¬ϕ rules out 〈0, 0, 1〉 and 〈0, 0, 0〉.

• (◦ϕ ∧ ϕ ∧ ¬ϕ) ⊃ ψ rules out 〈1, 1, 1〉.

We are left with the following five truth-values:

t = 〈1, 0, 1〉, tI = 〈1, 0, 0〉, I = 〈1, 1, 0〉, f = 〈0, 1, 1〉, fI = 〈0, 1, 0〉

Note that since the first component of a truth-value assignedto a formula should

indicate whether that formula is true, the designated truth-values should be those

whose first component is 1:D = {t, tI , I}.
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�5-valued Semantics for B

M5 = 〈V ,D,O〉 is defined by:

V = {t, tI , I, fI , f}, D = {t, I, tI}, and for F = V − D:

ae∧b =

8
<
:

D if a ∈ D andb ∈ D

F if a ∈ F or b ∈ F
ae⊃b =

8
<
:

D if a ∈ F or b ∈ D

F if a ∈ D andb ∈ F

e¬a =

8
<
:

D if a ∈ {I, f, fI}

F if a ∈ {t, tI}
e◦a =

8
<
:

D if a ∈ {t, f}

F if a ∈ {I, tI , fI}

�

�

�

�
t = 〈1, 0, 1〉 tI = 〈1, 0, 0〉 I = 〈1, 1, 0〉 f = 〈0, 1, 1〉 fI = 〈0, 1, 0〉
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�Reminder: Refinements

Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for L.

• M1 is a refinement of M2 if:

1. V1 ⊆ V2

2. D1 = D2 ∩ V1

3. ⋄̃M1
(x1, . . . , xn) ⊆ ⋄̃M2

(x1, . . . , xn) for every n-ary
connective ⋄ of L and every x1, . . . , xn, y ∈ V1.

• If M1 is a refinement of M2 then ⊢M2
⊆ ⊢M1

.
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�Effects of the Axioms

(c) ¬¬ϕ ⊃ ϕ

Cond(c): if x ∈ {f, fI} then¬̃x ⊆ {t, tI}

M5:
e¬ f fI I t tI

{I, t, tI} {I, t, tI} {I, t, tI} {f, fI} {f, fI}

e◦ f fI I t tI

{I, t, tI} {f, fI} {f, fI} {I, t, tI} {f, fI}

M5c:

e¬ f fI I t tI

{I,t, tI} {I,t, tI} {I, t, tI} {f, fI} {f, fI}

�

�

�

�
t = 〈1, 0, 1〉 tI = 〈1, 0, 0〉 I = 〈1, 1, 0〉 f = 〈0, 1, 1〉 fI = 〈0, 1, 0〉
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�Effects of the Axioms

(c) ¬¬ϕ ⊃ ϕ (i1) ¬◦ϕ ⊃ ϕ

Cond(c): if x ∈ {f, fI} then¬̃x ⊆ {t, tI}

Cond(i1): fI should be deleted, and̃◦f ⊆ {t, tI}

M5:
e¬ f fI I t tI

{I, t, tI} {I, t, tI} {I, t, tI} {f, fI} {f, fI}

e◦ f fI I t tI

{I, t, tI} {f, fI} {f, fI} {I, t, tI} {f, fI}

M5ci1:

e¬ f I t tI

{I,t, tI} {I, t, tI} {f} {f}

e◦ f I t tI

{I,t, tI} {f} {I, t, tI} {f}
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�Effects of the Axioms

(c) ¬¬ϕ ⊃ ϕ (i1) ¬◦ϕ ⊃ ϕ (i2) ¬◦ϕ ⊃ ¬ϕ

Cond(c): if x ∈ {f, fI} then¬̃x ⊆ {t, tI}

Cond(i1): fI should be deleted, and̃◦f ⊆ {t, tI}

Cond(i2): tI should be deleted, and̃◦t = {t}

M5:
e¬ f fI I t tI

{I, t, tI} {I, t, tI} {I, t, tI} {f, fI} {f, fI}

e◦ f fI I t tI

{I, t, tI} {f, fI} {f, fI} {I, t, tI} {f, fI}

M5ci1i2 (M5ci):

e¬ f I t

{t} {I, t} {f}

e◦ f I t

{t} {f} {t}



Introduction to Non-deterministic Matrices: Part III 95

�

�

�

�
Effects of the Axioms (except for Axiom (l))

Cond(c) : if x ∈ {f, fI} then¬̃x ⊆ {t, tI}

Cond(e): ¬̃I = {I}

Cond(i1) : fI should be deleted, and̃◦f ⊆ {t, tI}

Cond(i2) : tI should be deleted, and̃◦t = {t}

Cond(k1) : fI should be deleted.

Cond(k1) : tI should be deleted.

Cond(a♯) : if a, b ∈ {t, f}, thena♯̃b ⊆ {t, f}

Cond(o♯) : if a ∈ {t, f} or b ∈ {t, f}, thena♯̃b ⊆ {t, f}

For X ⊆ Ax, M5(X) is the weakest refinement ofM5, in which the

conditions of the schemata fromX are satisfied.
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Some Applications

• Axiom kj follows in B from Axiom ij (j = 1, 2).

• 1. ⊢Bia ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ)

2. 6⊢Bcie ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ)

• BX is decidable for every X ⊆ Ax.

• Let L be a logic in a language which includes {¬,∧,∨,⊃}. If
Bcioe is an extension of L then two formulas in {¬,∧,∨,⊃}

are logically indistinguishable in L iff they are identical.

(Two formulas A and B are called logically indistinguishablein L

if ϕ(A) ⊢L ϕ(B) and ϕ(B) ⊢L ϕ(A) for every formula ϕ(p) in
the language of L.)
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No Improvements Possible

Theorem. Let L be either {¬,∧,∨,⊃} or LC , and let L be a logic in
L. Assume that the set of valid formulas of L includes that of
positive classical logic, and is included in that of Bcioe. Then L

does not have a finite weakly characteristic matrix.

Theorem. Let L be as above. Then L does not have a weakly
characteristic two-valued Nmatrix.
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Axiom (l): ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ

• The validity of (l) means that whenever ◦ϕ is “false”, so is
¬(ϕ ∧ ¬ϕ). Thus conjunction of an “inconsistent” formula with its

negation should be distinguishable from other types of conjunctions.

• Enforcing a unique connection between the truth-value of an
“inconsistent” formula and its negation requires a supply of
infinitely many truth-values corresponding to “inconsistent”
formulas. What truth-values should we use?
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Reminder: Expansions

Let M = 〈V ,D,O〉 be an Nmatrix for L. Assume that F is a
function that assigns to each x ∈ V a nonempty set F [x] so that
F [x1]∩F [x2] = ∅ if x1 6= x2. The F -expansion of M is the following
Nmatrix MF = 〈VF ,DF ,OF 〉:

• VF =
⋃

x∈V F [x]

• DF =
⋃

x∈D F [x]

• ⋄̃MF
[y1, . . . , yn] =

⋃
z∈e⋄M[x1,...,xn] F [z] whenever ⋄ is an n-ary

connectives of L, and xi ∈ V , yi ∈ F [xi] for every 1 ≤ i ≤ n.

If M1 is an expansion of M2 then ⊢M2
=⊢M1

.
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Axiom (l): ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ

Observation: the axioms (k1) and (k2) are theorems of Bl.

Accordingly, our Nmatrix forBl will be a refinement of an expansionof

the Nmatrix forM5({(k1), (k2)}). Recall that in this Nmatrix

V = {t, I, f}, D = {t, I}, and forF = V − D:

ae∧b =

8
<
:

D if a ∈ D andb ∈ D

F if a ∈ F or b ∈ F
ae⊃b =

8
<
:

D if a ∈ F or b ∈ D

F if a ∈ D andb ∈ F

e¬a =

8
<
:

D if a ∈ {I, f, fI}

F if a ∈ {t, tI}
e◦a =

8
<
:

D if a ∈ {t, f}

F if a ∈ {I, tI , fI}
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The Nmatrix MBl = 〈V ,D,O〉

The idea:making infinitely many copies of the truth-valuest, I

T = {tji | i ≥ 0, j ≥ 0} I = {Ij
i | i ≥ 0, j ≥ 0}

V = T ∪I ∪F , T = {tji | i ≥ 0, j ≥ 0}, I = {Ij
i | i ≥ 0, j ≥ 0}, F = {f}, D = T ∪I

e¬a =

8
>><
>>:

F if a ∈ T

D if a ∈ F

{Ij+1
i , t

j+1
i } if a = I

j
i

e◦a =

8
<
:

D if a ∈ F ∪ T

F if a ∈ I

ae⊃b =

8
<
:

D if a ∈ F or b ∈ D

F if a ∈ D andb ∈ F
ae∧b =

8
>><
>>:

F if a ∈ F or b ∈ F

T if a = I
j
i andb ∈ {Ij+1

i , t
j+1
i }

D otherwise
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�
Effects of the Axioms (in the Presence of (l))

Cond(c) : ¬̃f ⊆ T

Cond(e): e¬(Ij
i ) = {Ij+1

i }

Cond(i1) : ◦̃f ⊆ T

Cond(i2) : If a ∈ T then◦̃a ⊆ T

Cond(a♯) : if a, b ∈ T ∪ F , thena♯̃b ⊆ T ∪ F

Cond(o♯) : if a ∈ T ∪ F or b ∈ T ∪ F , thena♯̃b ⊆ T ∪ F

For X ⊆ Ax, MBlX is the weakest refinement ofMBl, in which the

conditions of the schemata fromX are satisfied.
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�BlX is Decidable

To check whether a given formula ϕ is provable in BlX (where
X ⊆ Ax), it suffices to check all legal partial valuations v in MBlX

which assign to subformulas of ϕ values in

{f} ∪ {tji | 0 ≤ i ≤ n(ϕ), 0 ≤ j ≤ k(ϕ)} ∪ {Ij
i | 0 ≤ i ≤ n(ϕ), 0 ≤ j ≤ k(ϕ)}

where n(ϕ) is the number of subformulas of ϕ which do not begin
with ¬, and k(ϕ) is the maximal number of consecutive negation
symbols occurring within ϕ. This is a finite process.
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Analycity

An obvious, yet crucial fact: if M is an Nmatrix, then any partial
M-legal assignment which is defined on a set closed under
subformulas can be extended to a full M-legal assignment.

If M is finite, this entails that ⊢M is:

• Decidable

• Finitary (the compactness theorem obtains)
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Example: Semantics for C1

da Costa’s system C1 is decidable, and its semantics is as follows:

e¬a =

8
>><
>>:

F if a ∈ T

T if a ∈ F

{Ij+1
i , tj+1

i } if a = Ij
i

ae⊃b =

8
>>>>><
>>>>>:

F if a ∈ D and b ∈ F

T if a ∈ F and b 6∈ I

T if b ∈ T and a 6∈ I

D otherwise

ae∧b =

8
>>>>><
>>>>>:

F if a ∈ F or b ∈ F

T if a ∈ T and b ∈ T

T if a = Ij
i and b ∈ {Ij+1

i , tj+1
i }

D otherwise
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No Improvements Possible

Theorem.No logic betweenBl andBlcieo can have a finite

characteristic Nmatrix.

Corollary.da Costa’s systemC1 has no finite characteristic Nmatrix.
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Introduction to Nmatrices: Part IV

Proof Systems
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Reminder: What is a Propositional Logic?

A propositional logic is a pair 〈L,⊢〉, where L is a formal
propositional language, and ⊢ is a structural, consistent and finitary
consequence relation for L.

A consequence relation (cr) for L is a binary relation ⊢⊆ 2FL × FL,
having the following properties:

strong reflexivity: if ψ ∈ Γ then Γ ⊢ ψ.
monotonicity: if Γ ⊢ ψ and Γ ⊆ Γ′, then Γ′ ⊢ ψ.
transitivity (cut): if Γ ⊢ ψ and Γ, ψ ⊢ ϕ then Γ ⊢ ϕ.
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Reminder: What is a Propositional Logic?

A cr ⊢ for L is:

• structural if for every uniform L-substitution σ and every Γ and
ψ: if Γ ⊢ ψ then σ[Γ] ⊢ σ[ψ].

• consistent if there exist formulas ϕ and ψ such that ϕ 6⊢ ψ.

• finitary if whenever Γ ⊢ ψ, there exists some finite Γ′ ⊆ Γ such
that Γ′⊢ψ.
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Reminder: Gentzen-type Systems

• A Gentzen-type systemG is an axiomatic system which
manipulates sequentsof the form Γ ⇒ ∆, where Γ,∆ are finite
sets of formulas.

• Intuitive meaning of Γ ⇒ ∆: either one of the formulas in Γ is
false, or one of the formulas in ∆ is true.

• The associated cr is:
Γ ⊢G ψ iff Γ

′

⇒ ψ is a theorem of G for some finite Γ
′

⊆ Γ.

• A Gentzen-type system G is called standardif:

1. Its set of axioms includes the standard axioms:

ψ ⇒ ψ

2. It has weakeningand cut as its structural rules.



Introduction to Non-deterministic Matrices: Part IV 111

�

�

�

�
The System GCPL

ψ ⇒ ψ

(Weak)
Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

(Cut)
Γ, ψ ⇒ ∆ Γ ⇒ ∆, ψ

Γ ⇒ ∆

(¬ ⇒)
Γ ⇒ ∆, ϕ

¬ϕ,Γ ⇒ ∆
(⇒ ¬)

ϕ,Γ ⇒ ∆

Γ ⇒ ∆,¬ϕ

(⊃⇒)
Γ ⇒ ∆, ϕ ψ,Γ ⇒ ∆

ϕ ⊃ ψ,Γ ⇒ ∆
(⇒⊃)

Γ, ϕ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ⊃ ψ

(∧ ⇒)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(⇒ ∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

(∨ ⇒)
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(⇒ ∨)

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ
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�What is a Canonical Rule?

• An “ideal” logical rule: an introduction rule for exactly one

connective, on exactly one side of a sequent.

• In its formulation: exactly one occurrenceof the introduced
connective, no other occurrences of other connectives.

• The rule should also be pure (i.e. context-independent): no
side conditions limiting its application.

• Its active formulas: immediate subformulasof its principal
formula.
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�What is a Canonical Rule?

Stage 1.
Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ ⇒ ∆, ψ Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ∧ ϕ

Stage 2.
ψ, ϕ⇒

ψ ∧ ϕ⇒

⇒ ψ ⇒ ϕ

⇒ ψ ∧ ϕ

Stage 3.

{p1, p2 ⇒}/p1 ∧ p2 ⇒ {⇒ p1 ; ⇒ p2}/⇒ p1 ∧ p2
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Canonical Systems

• A sequent: an expression of the form Γ ⇒ ∆, where Γ and ∆

are finite sets of L-formulas.

• A clause: a sequent consisting of atomic formulas.

• A canonical rulehas one of the forms:

{Πi ⇒ Σi}1≤i≤m/ ⋄ (p1, ..., pn) ⇒

{Πi ⇒ Σi}1≤i≤m/⇒ ⋄(p1, ..., pn)

wherem ≥ 0 and for all1 ≤ i ≤ m: Πi ⇒ Σi is a clause over

{p1, ..., pn}.
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�Canonical Rules

Application of a canonical rule of the form
{Πi ⇒ Σi}1≤i≤m/ ⋄ (p1, ..., pn) ⇒:

{Γ,Π∗
i ⇒ ∆,Σ∗

i }1≤i≤m

Γ, ⋄(ψ1, ..., ψn) ⇒ ∆

whereΠ∗
i andΣ∗

i are obtained fromΠi andΣi respectively by

substitutingψj for pj for all 1 ≤ j ≤ n, andΓ,∆ are any finite sets of

formulas (thecontext).
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Example 1

Conjunction rules:

{p1, p2 ⇒} / p1 ∧ p2 ⇒ {⇒ p1 ; ⇒ p2} / ⇒ p1 ∧ p2

Their applications:

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ ⇒ ∆, ψ Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ∧ ϕ
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Example 2

Implication rules:

{p1 ⇒ p2} / ⇒ p1 ⊃ p2 {⇒ p1 ; p2 ⇒} / p1 ⊃ p2 ⇒

Their applications:

Γ, ψ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ⊃ ϕ

Γ ⇒ ∆, ψ Γ, ϕ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
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Example 3

Semi-implication rules:

{⇒ p1 ; p2 ⇒} / p1  p2 ⇒ {⇒ p2} / ⇒ p1  p2

Their applications:

Γ ⇒ ∆, ψ Γ, ϕ⇒ ∆

Γ, ψ  ϕ⇒ ∆

Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ  ϕ
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Example 4

“Tonk” rules:

{p2 ⇒} / p1Tp2 ⇒ {⇒ p1} / ⇒ p1Tp2

Their applications:

Γ, ψ ⇒ ∆

Γ, ϕTψ ⇒ ∆

Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ϕTψ
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What Sets of Rules are Acceptable?

• A standard Gentzen-type system is canonical if each of its
logical (i.e. non-structural) rules is canonical.

• If G is a canonical system, then ⊢G is a structural and finitary
cr. But is it a logic? i.e., is it also consistent?
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�Coherence

• A canonical calculus G is coherentif for every pair of rules
Θ1/⇒ ⋄(p1, ..., pn) and Θ2/ ⋄ (p1, ..., pn) ⇒, the set of clauses
Θ1 ∪ Θ2 is classically unsatisfiable (and so inconsistent, i.e.,
the empty sequent can be derived from it using only cuts)

• For a canonical calculus G, ⊢G is a logic iff G is coherent.
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�Coherent Calculi:

{p1, p2 ⇒} / p1 ∧ p2 ⇒ {⇒ p1 ; ⇒ p2} / ⇒ p1 ∧ p2

{p1 ⇒ p2} / ⇒ p1 ⊃ p2 {⇒ p1 ; p2 ⇒} / p1 ⊃ p2 ⇒

{⇒ p1 ; p2 ⇒} / p1  p2 ⇒ {⇒ p2} / ⇒ p1  p2

{p1 ⇒} / ⇒ ¬p1 {⇒ p1} / ¬p1 ⇒
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�Non-coherent: “Tonk”!

{p2 ⇒} / p1Tp2 ⇒ {⇒ p1} / ⇒ p1Tp2

From these rules, we can derive p⇒ q for any p, q:

p⇒ p q ⇒ q

p⇒ pTq pTq ⇒ q

p⇒ q
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Every Coherent Calculus Has a Characteristic 2Nmatrix

Consider the canonical calculus G0 over the language {∧, } with
no canonical rules whatsoever:

ψ ϕ ψ∧ϕ

t t {t,f}

t f {t,f}

f t {t,f}

f f {t,f}

ψ ϕ ψ ϕ

t t {t,f}

t f {t,f}

f t {t,f}

f f {t,f}
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Every Coherent Calculus Has a Characteristic 2Nmatrix

Add the rule {p1, p2 ⇒}/p1 ∧ p2 ⇒, which can be split in
{p1 ⇒}/p1 ∧ p2 ⇒ and {p2 ⇒}/p1 ∧ p2 ⇒

ψ ϕ ψ∧ϕ

t t {t,f}

t f {f}

f t {f}

f f {f}

ψ ϕ ψ ϕ

t t {t,f}

t f {t,f}

f t {t,f}

f f {t,f}
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Every Coherent Calculus Has a Characteristic 2Nmatrix

Add the rule {⇒ p1;⇒ p2}/⇒ p1 ∧ p2

ψ ϕ ψ∧ϕ

t t {t}

t f {f}

f t {f}

f f {f}

ψ ϕ ψ ϕ

t t {t,f}

t f {t,f}

f t {t,f}

f f {t,f}
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Every Coherent Calculus Has a Characteristic 2Nmatrix

Add the rule {⇒ p2}/⇒ p1  p2

ψ ϕ ψ∧ϕ

t t {t}

t f {f}

f t {f}

f f {f}

ψ ϕ ψ ϕ

t t {t}

t f {t,f}

f t {t}

f f {t,f}



Introduction to Non-deterministic Matrices: Part IV 128

�

�

�

�
Every Coherent Calculus Has a Characteristic 2Nmatrix

Add the rule {⇒ p1 ; p2 ⇒}/p1  p2 ⇒

ψ ϕ ψ∧ϕ

t t {t}

t f {f}

f t {f}

f f {f}

ψ ϕ ψ ϕ

t t {t}

t f {f}

f t {t}

f f {t,f}
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Every 2Nmatrix Has a Corresponding Coherent Calculus

p1 p2 p1◦p2

t t {f}

t f {f}

f t {t,f}

f f {t}

{⇒ p1 ; ⇒ p2} / p1 ◦ p2 ⇒

{⇒ p1 ; p2 ⇒} / p1 ◦ p2 ⇒

{p1 ⇒ ; p2 ⇒} / ⇒ p1 ◦ p2
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Exact Correspondence

Definition: A Gentzen-type system G admits strong cut-eliminationif
whenever a sequent is provable in G from a set of sequents Θ, it
also has a proof in which all cut formulas occur in Θ. G admits
cut-eliminationif every sequent provable in G has a cut-free proof.

Theorem: If G is a canonical calculus, then the following
statements are equivalent:

1. ⊢G is consistent (and so it is a logic).

2. G is coherent.

3. G has a characteristic 2Nmatrix.

4. G admits strong cut-elimination.

5. G admits cut-elimination.
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Signed Formulas: the Two-valued Case

An alternative formulation of Gentzen-type calculi:

• instead of ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk, write:

{f : ϕ1, . . . , f : ϕn, t : ψ1, . . . , t : ψk}

f : ϕ and t : ψ are called signed formulas.

• Examples how the rules are reformulated:

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ ⇒ ∆, ψ Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ∧ ϕ

are rewritten as

{f : ψ, f : ϕ} ∪ Ω

{f : ψ ∧ ϕ} ∪ Ω

{t : ψ} ∪ Ω {t : ϕ} ∪ Ω

{t : ψ ∧ ϕ} ∪ Ω

where Ω = {f : ϕ | ϕ ∈ Γ} ∪ {t : ψ | ψ ∈ ∆}



Introduction to Non-deterministic Matrices: Part IV 132

�

�

�

�
Signed Formulas: the General Case

Let V be a finite set of signs.

• A signed formula: an expression of the form a : ψ, where ψ is a
formula and a ∈ V .

• A sequent: a finite set of signed formulas.

• A clause: a sequent consisting of atomic signed formulas.

• A valuation v satisfiesa signed formula a : ψ if v[ψ] = a.

• v satisfiesa set of signed formulas Ω if it satisfies some signed
formula in Ω. Sequents are interpreted disjunctively.

• v satisfiesa set of sequents Θ if it satisfies all sequents in Θ.
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Signed Calculi

Let L be a propositional language and V a finite set of signs.
Denote: LV = {a : ψ | a ∈ V , ψ ∈ FL}.

• A standard axiomfor LV is a sequent of the form {a : ψ | a ∈ V}.

• The cut and weakeningrules for LV :

Ω ∪ {a : ψ | a ∈ A1} Ω ∪ {a : ψ | a ∈ A2}

Ω ∪ {a : ψ | a ∈ A1 ∩A2}

Ω
Ω, a : ψ

where A1, A2 ⊆ V and a ∈ V .

• Standard signed calculi are defined exactly like standard
Gentzen-type calculi.
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Semantics for Signed Calculi

• We use Nmatrices of the form M = 〈V ,D,O〉 for calculi over a
set of signs V .

• Given a family of sets of signed formulas Θ and a set of signed
formulas Ω, Θ ⊢M Ω if each M-legal valuation satisfying (all
elements of) Θ satisfies also Ω (i.e. it satisfies some signed
formula of Ω).

• The connection with the cr between formulas induced by M:

Γ ⊢M ψ iff ⊢M {d : ψ | d ∈ D} ∪ {n : ϕ | n ∈ V − D, ϕ ∈ Γ}
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Signed Calculus Generated by an Nmatrix

Given an n-valued Nmatrix M = 〈V ,D,O〉, let SCM be the
following standard signed calculus:

Axioms: The standard axioms {a : ψ | a ∈ V}.

Structural inference rules: Weakening, Cut.

Logical inference rules: For every m-ary connective ⋄ ∈ O and any
logical values a1, a2, . . . , am, b1, b2, . . . , bk ∈ V such that
⋄̃(a1, . . . , am) = {b1, . . . , bk}, SCM contains the rule:

Ω, a1 : ψ1 . . . Ω, am : ψm

Ω, b1 : ⋄(ψ1, . . . , ψm), . . . , bk : ⋄(ψ1, . . . , ψm)

• SCM is sound and complete for ⊢M.

• If ⊢M Ω then Ω has a cut-free proof in SCM.
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Example: McCarthy-Kleene Nmatrix

MMK = 〈V ,D,O〉, with V = {f , I, t},D = {t},O = {¬̃, ∨̃}, where:

∨̃ f I t

f {f} {I} {t}

I {I} {I} {t, I}

t {t} {t} {t}

¬̃

f t

I I

t f
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Example 1: Signed Calculus for MMK

Ω, f : ϕ

Ω, t : ¬ϕ

Ω, I : ϕ

Ω, I : ¬ϕ

Ω, t : ϕ

Ω, f : ¬ϕ

Ω, f : ϕ Ω, a : ψ

Ω, a : ϕ ∨ ψ
(a = f , I, t)

Ω, t : ϕ

Ω, t : ϕ ∨ ψ

Ω, I : ϕ Ω, I : ψ, f : ψ

Ω, I : ϕ ∨ ψ

Ω, I : ϕ Ω, t : ψ

Ω, I : ϕ ∨ ψ, t : ϕ ∨ ψ
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Canonical Signed Rules

• V = {t, f}:

{p1 ⇒ p2} / ⇒ p1 ⊃ p2

{⇒ p1 , p2 ⇒} / p1 ⊃ p2 ⇒

{ {f : p1, t : p2} } / {t} : p1 ⊃ p2

{{t : p1} , { f : p2}} / {f} : p1 ⊃ p2

• V = {a, b, c}:

{{a : p1, c : p2}, {a : p3, b : p2}} / {a, c} : ◦(p1, p2, p3)

{ {c : p2} , {a : p3, b : p3} , {c : p1}} / {b, c} : ◦(p1, p2, p3)
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Canonical Signed Rules

• A signed canonical rulefor an n-ary connective ⋄:

{Σ1, ...,Σm} / S : ⋄(p1, . . . , pn)

whereS ⊂ V ,m ≥ 0 and for every1 ≤ j ≤ m: Σj is a clause

consisting of atomic signed formulas of the forma : pk, wherea ∈ V

and1 ≤ k ≤ n.

• An applicationof a rule {Σ1, ...,Σm} / S : ⋄(p1, . . . , pn):

Ω ∪ Σ∗
1 ... Ω ∪ Σ∗

m

Ω ∪ S : ⋄(ψ1, ..., ψn)

whereψ1, ..., ψn areL-formulas,Ω is a sequent, for all1 ≤ i ≤ m:

Σ∗
i is obtained fromΣi by replacingpj byψj for every1 ≤ j ≤ n,

andS : ⋄(ψ1, ..., ψn) = {a : ⋄(ψ1, ..., ψn) | a ∈ S}.
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Example 1

Standard conjunction rules:

{{f : p1, f : p2}} / {f} : p1 ∧ p2 {{t : p1}, {t : p2}} / {t} : p1 ∧ p2

Their applications:

Ω ∪ {f : ψ1, f : ψ2}

Ω ∪ {f : ψ1 ∧ ψ2}

Ω ∪ {t : ψ1} Ω ∪ {t : ψ2}

Ω ∪ {t : ψ1 ∧ ψ2}
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Example 2

Two canonical rules for disjunction in MMK :

{{t : p1}}/t : p1 ∨ p2 {{I : p1}, { t : p2}}/{I, t} : p1 ∨ p2

Their applications:

Ω, t : ϕ

Ω, t : ϕ ∨ ψ

Ω, I : ϕ Ω, t : ψ

Ω, I : ϕ ∨ ψ, t : ϕ ∨ ψ
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�Coherence

• Example for V = {a, b, c}:

{{a : p1} , {c : p2}} / {a, b} : p1 ⋄ p2

{{a : p1} , {c : p2}} / {b, c} : p1 ⋄ p2

{{a : p1} , {c : p2}} / {a, c} : p1 ⋄ p2

It is not enough to check only pairs of rules.

• A canonical signed calculus G is coherentif Θ1 ∪ ... ∪ Θm is
unsatisfiable (and so inconsistent, i.e., the empty sequent can
be derived from it using only cuts) whenever
Θ1/S1 : ⋄(p1, . . . , pn), ...,Θm/Sm : ⋄(p1, . . . , pn) is a set of rules
of G such that S1 ∩ ... ∩ Sm = ∅.
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Examples

Non-coherent:

{{a : p1}, {b : p2}} / {a, b} : ◦(p1, p2, p3)

{{a : p2, c : p3}} / {c} : ◦(p1, p2, p3)

The set {{a : p1}, {b : p2}, {a : p2, c : p3}} is satisfiable.

Coherent:

1. {{f : p1, f : p2}} / {f} : p1∧p2 {{t : p1}, {t : p2}} / {t} : p1∧p2

{t : p1} {f : p1, f : p2}

{f : p2}
cut

{t : p2}

∅
cut

2. {{f : p1}, {f : p2}} / {f} : p1 ∨ p2

{{I : p1}, {t : p2}} / {I, t} : p1 ∨ p2
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Signed Calculus for an Nmatrix Revisited

The sound and complete signed calculus SCM for an Nmatrix
M = 〈V ,D,O〉 defined above is canonical. It can be described as
consisting of:

• The standard axioms and structural rules

• A rule of the form

{{a1 : p1}, . . . , {am : pm}}/{b1, . . . , bk} : ⋄(p1, . . . , pm)

for every m-ary connective ⋄ ∈ O and any a1, a2, . . . , am,

b1, b2, . . . , bk ∈ V such that ⋄̃(a1, . . . , am) ={b1, . . . , bk}.

Since SCM is also coherent, this shows that every finite
Nmatrix has a corresponding coherent canonical calculus.
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“Reading off” the Semantics from Canonical Rules

Let V = {t, f,⊤,⊥}. Let G be a calculus with no rules for ◦.

◦ t f ⊤ ⊥

t V V V V

f V V V V

⊤ V V V V

⊥ V V V V
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“Reading off” the Semantics from Canonical Rules

Add the rule

{{f : p1, f : p2}} / {⊥, f} : p1 ◦ p2

◦ t f ⊤ ⊥

t V {⊥, f} V V

f {⊥, f} {⊥, f} {⊥, f} {⊥, f}

⊤ V {⊥, f} V V

⊥ V {⊥, f} V V
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“Reading off” the Semantics from Canonical Rules

Add the rule

{{t : p1,⊤ : p1}} / {f} : p1 ◦ p2

◦ t f ⊤ ⊥

t {f} {⊥,f} {f} {f}

f {⊥, f} {⊥, f} {⊥, f} {⊥, f}

⊤ {f} {⊥,f} {f} {f}

⊥ V {⊥, f} V V
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Another Exact Correspondence

A Gentzen system G admits:

• analytic cut-eliminationif whenever ⊢G Ω, Ω has a proof in G
where each cut formula is a subformula of some formula in Ω,

• strong analytic cut-eliminationif whenever Θ ⊢G Ω, Ω has a proof
from Θ in G where each cut formula is a subformula of some
formula in Θ ∪ {Ω}.

For any canonical calculus G, the following are equivalent:

1. G is coherent.

2. G has a strongly characteristic Nmatrix.

3. G admits strong analytic cut-elimination.

4. G admits analytic cut-elimination.
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Introduction to Nmatrices: Part V

Nmatrices for Languages with Quantifiers
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Reminder: First-order Languages

A first-order language L includes:

• A set of variablesx1, x2, ...,

• Parentheses, logicalconnectives(e.g.∧,∨,⊃,¬) andquantifiers

(e.g.,∀ and∃)

• The signature ofL:

– a (non-empty) set ofpredicate symbols

– a set ofconstants

– a set offunction symbols
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Unary Quantifiers in Deterministic Matrices

A unary quantifier Q is usually interpreted by Q̃ : P+(V) → V .

Examples:

• Truth-values: {f, t} (or {0, 1})

H ∀̃[H]

{t} t

{t,f} f

{f} f

H ∃̃[H]

{t} t

{t,f} t

{f} f

• Truth-values: {0, 1
n−1 ,

2
n−1 , ..., 1} (n > 1)

∀̃ = min ∃̃ = max
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Matrices with Unary Quantifiers

M = 〈V ,D,O〉 is a (deterministic) matrix for a language L with
unary quantifiers if:

1. V is a nonempty set of truth-values,

2. ∅ 6= D ⊂ V is a set of designated truth-values,

3. for every n-ary connective ⋄ of L, O includes an operation
⋄̃ : Vn → V ,

4. for every unary quantifier Q of L, O includes an operation
Q̃ : P+(V) → V .
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�L-structures

An L-structure for a matrix M = 〈V ,D,O〉 is a pair S = 〈D, I〉,
where D is a non-empty domain and I satisfies the following
conditions:

• For every constant c of L: I[c] ∈ D.

• For an n-ary predicate symbol p of L: I[p] : Dn → V .

• For every n-ary function symbol f of L: I[f ] : Dn → D.

I is extended to interpret closed terms of L as follows:

I[f(t1, ..., tn)] = I[f ][I[t1], ..., I[tn]]
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Examples

LetL have the signature:0 : ι ⊕ : ι2 → ι
.
= : ι2 → o.

1. M2 is the classical 2-valued matrix. LetS1 = 〈D1, I1〉, whereD1 = N,

I1[0] = 0 I1[⊕] = +

I1[
.
=][n1, n2] = t ⇔ n1 = n2

2. K is the Kleene 3-valued matrix (whereV = {t, I, f}). LetS2 = 〈D2, I2〉,

whereD2 = N ∪ {u}, I2[0] = 0, and

I2[⊕][n1, n2] =

8
<
:
n1 + n2 if n1, n2 ∈ N

u otherwise

I2[
.
=][n1, n2] =

8
>><
>>:

t if n1 = n2 and n1, n2 ∈ N

f if n1 6= n2 and n1, n2 ∈ N

I otherwise
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Matrices: Objectual Quantification

• A variable is thought of as ranging over a set of objects from the

domain, and assignments map variables to elements of the domain.

• Given an L-structure S = 〈D, I〉, a variable assignmentG in S is
any function mapping the variables of L to D.
G is extended to terms: G[c] = I[c] and
G[f(t1, ..., tn)] = I[f ][G[t1], ..., G[tn]].

• Given S and G, the valuation vS,G : FL → V is defined by:

– vS,G[p(t1, ..., tn)] = I[p][G[t1], ..., G[tn]].

– vS,G[⋄(ψ1, ..., ψn)] = ⋄̃[vS,G[ψ1], ..., vS,G[ψn]].

– vS,G[Qxψ] = Q̃[{vS,G{x:=a}[ψ] | a ∈ D}].
where G{x := a} is the variable assignment which coincides

with G except for assigininga ∈ D to x.
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Matrices: Substitutional Quantification

• In classical first-order substitutional semantics, a universally

quantifiedsentenceis true iff each of its substitution instances is true.

• Assumption: every element of the domain has a name.
Given anL-structureS = 〈D, I〉, extend the language with the set of

individual constants{a | a ∈ D} interpreted as the corresponding

domain elements:I[a] = a. Denote the resulting languageL(D).

• The valuation vS : F cl

L(D) → V is defined as follows:

– vS [p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]]

– vS [⋄(ψ1, ..., ψn)] = ⋄̃[vS [ψ1], ..., vS[ψn]]

– vS [Qxψ] = Q̃[{vS [ψ{a/x}] | a ∈ D}]
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Example 1

Let M2 be the classical two-valued matrix.

S = 〈{1, 2, 3}, I〉

I[1] = 1 I[2] = 2 I[3] = 3

I[p][1] = I[p][2] = t I[p][3] = f

vS [p(1)] = I[p][I[1]] = I[p][1] = t

vS [∀xp(x)] = ∀̃[{vS [p(a)] | a ∈ D}] = ∀̃[{t, f}] = f

vS [∃xp(x)] = ∃̃[{vS [p(a)] | a ∈ D}] = ∃̃[{t, f}] = t
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Example 2

Let V = {0, 1
2 , 1}, ∀̃ = min and ∃̃ = max.

S = 〈N ∪ {u}, I〉

I[Zero][0] = 1 I[Zero][u] =
1

2
I[Zero][n] = 0 for n ∈ N−{0,u}

vS [Zero(0)] = I[Zero][I[0]] = I[Zero][0] = 1

vS [∀xZero(x)] = ∀̃[{vS [p(a)] | a ∈ D}] = min{0,
1

2
, 1} = 0

vS [∃xZero(x)] = ∃̃[{vS [p(a)] | a ∈ D}] = max{0,
1

2
, 1} = 1
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Nmatrices with Unary Quantifiers

M = 〈V ,D,O〉 is a non-deterministic matrix (Nmatrix) for a
language L with unary quantifiers if:

1. V is a nonempty set of truth-values,

2. ∅ 6= D ⊂ V is a set of designated truth-values,

3. for every n-ary connective ⋄ of L, O includes an operation
⋄̃ : Vn → P+(V),

4. for every unary quantifier Q of L, O includes an operation
Q̃ : P+(V) → P+(V).
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Example

Consider the two-valued Nmatrix M1 = 〈{t, f}, {t},O〉 for a
language L over {Q, ∀,¬}, where O contains the following
operations:

H Q̃[H]

{t} {t}

{t,f} {t,f}

{f} {f}

H ∀̃[H]

{t} {t}

{t,f} {f}

{f} {f}

a ¬a

t {t,f}

f {t}
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�L-structures

An L-structure for an Nmatrix M = 〈V ,D,O〉 is a pair S = 〈D, I〉,
where D is a non-empty domain and I satisfies the following
conditions:

• For every constant c of L: I[c] ∈ D.

• For an n-ary predicate symbol p of L: I[p] : Dn → V .

• For every n-ary function symbol f of L: I[f ] : Dn → D.

I is extended to interpret closed terms of L as follows:

I[f(t1, ..., tn)] = I[f ][I[t1], ..., I[tn]]
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Nmatrices: Objectual Quantification

Given anL-structureS = 〈D, I〉, avariable assignmentG in S is any

function mapping the variables ofL toD.

vS,G : FL → V is a valuation in an Nmatrix M = 〈V ,D,O〉 if:

• vS,G[p(t1, ..., tn)] = I[p][G[t1], ..., G[tn]].

• vS,G[⋄(ψ1, ..., ψn)] ∈ ⋄̃[vS,G[ψ1], ..., vS,G[ψn]].

• vS,G[Qxψ] ∈ Q̃[{vS,G[x:=a][ψ]
︸ ︷︷ ︸

???

| a ∈ D}].
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A Better Option: Substitutional Quantification

Reminder: ForS = 〈D, I〉, the language extended by individual

constants is denoted byL(D)

Let S = 〈D, I〉 be an L-structure. A valuation in an Nmatrix M for
L is a function v from sentences of L(D) to V , satisfying:

• v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]]

• v[⋄(ψ1, . . . , ψn)] ∈ ⋄̃[v[ψ1], . . . , v[ψn]]

• v[Qxψ] ∈ Q̃[{v[ψ{a/x}] | a ∈ D}]
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The Problem of α-Equivalence

• ψ ≡α ψ
′ if ψ can be obtained from ψ′ by renaming bound

variables.

• Problem: two α-equivalent sentences are not necessarily
assigned the same truth-value.

• Example:

H ∀̃[H]

{t} {t}

{t,f} {f}

{f} {f}

a ¬a

t {t,f}

f {t}

LetS = 〈{1, 2}, I〉, I[p][1] = I[p][2] = t.

Consider: ¬∀xp(x) and ¬∀yp(y)
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�Definition of a Non-deterministic Valuation - Corrected

Let S = 〈D, I〉 be an L-structure. A valuation in an Nmatrix M for
L is a function v from closed sentences of L(D) to V satisfying:

• v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]].

• v[⋄(ψ1, . . . , ψn)] ∈ ⋄̃[v[ψ1], . . . , v[ψn]].

• v[Qxψ] ∈ Q̃[{v[ψ{a/x}] | a ∈ D}].

• If ψ1 ≡α ψ2, then v[ψ1] = v[ψ2].
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�Other Problems to Handle

• Terms denoting the same objects cannot be used interchangeably.

• Void quantification for first-order quantifiers∀ and∃.

• Example:

H ∀̃[H]

{t} {t}

{t,f} {f}

{f} {f}

a ¬a

t {t,f}

f {t}

LetS = 〈{1, 2}, I〉, I[p][1] = I[p][2] = t andI[c] = I[d] = 1. Consider:

(i) ¬p(c) and¬p(d), (ii) ¬∀xp(c) and¬p(c).

• Solution: add appropriate congruence relations.For instance,A ∼void QxA

if x 6∈ Fv(A).
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Analycity

• An Nmatrix M for L is analytic if for every L-structure S and
every partial M-legal S-valuation vp defined on a set of
L-sentences closed under subformulas: vp can be extended to
a full M-legal valuation.

• Analycity is not guaranteed anymore when congruence
relations are involved.

• Some good cases:

– Analycity for ≡α is always guaranteed.

– Denote ϕ1 ∼dc ϕ2 if ϕ2 can be obtained from ϕ1 by
renaming bound variables and deleting/adding void
quantifiers. Analycity for ∼dc is guaranteed iff a ∈ Q̃M({a})

for every quantifier Q of L.
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Application: First-order LFIs

Language: LQC = {∧,∨,⊃,¬, ◦,∀, ∃}.
Logic: QB is obtained by adding the following axioms to some standard

Hilbert-type system for classical positive FOL (e.g, HFOL +):

(N3) ¬ϕ ∨ ϕ

(N◦4) (◦ϕ ∧ ϕ ∧ ¬ϕ) ⊃ ψ

(DC) ϕ1 ⊃ ϕ2 whenever ϕ1 ∼dc ϕ2.

ϕ1 ∼dc ϕ2 if ϕ2 can be obtained fromϕ1 by renaming bound variables and

deleting/adding void quantifiers.
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�HFOL +

Add to HCL + the following axioms and rules:

∀xψ → ψ{t/x} ψ{t/x} → ∃xψ

(ϕ→ ψ)

(ϕ→ ∀xψ)

(ψ → ϕ)

(∃xψ → ϕ)

where t is free for x in ψ and x is not free in ϕ.
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Extensions of QB

(c) ¬¬ϕ ⊃ ϕ

(e) ϕ ⊃ ¬¬ϕ

(i1) ¬◦ϕ ⊃ ϕ (i2) ¬◦ϕ ⊃ ¬ϕ

(l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ

(a♯) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ♯ψ) for ♯ ∈ {∧,∨,⊃}

(o♯) (◦ϕ ∨ ◦ψ) ⊃ ◦(ϕ♯ψ) for ♯ ∈ {∧,∨,⊃}

(aQ) ∀x◦ϕ⊃ ◦(Qxϕ) for Q ∈ {∀, ∃}

(oQ) ∃x◦ϕ⊃ ◦(Qxϕ) for Q ∈ {∀, ∃}

Example: da-Costa’s originalC∗
1 is equivalent toQBcila.
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5-valued Semantics for QB - Reminder

• The idea: include all the relevant data concerning a sentence
ψ in the truth-value:

1. The truth/falsity of ψ

2. The truth/falsity of ¬ψ

3. The truth/falsity of ◦ψ

• This leads to the use of elements from {0, 1}3 as truth-values,
where the intended meaning of v[ψ] = 〈x, y, z〉 is as follows:

x = 1 iff v[ψ] ∈ D

y = 1 iff v[¬ψ] ∈ D

z = 1 iff v[◦ψ] ∈ D
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5-valued Semantics for QB - Reminder

However, the axioms of QB rule out some of the truth-values:

• ϕ ∨ ¬ϕ rules out 〈0, 0, 1〉 and 〈0, 0, 0〉.

• (◦ϕ ∧ ϕ ∧ ¬ϕ) ⊃ ψ rules out 〈1, 1, 1〉.

We are left with the following five truth-values:

t = 〈1, 0, 1〉, tI = 〈1, 0, 0〉, I = 〈1, 1, 0〉, f = 〈0, 1, 1〉, fI = 〈0, 1, 0〉

The designated truth-values are those whose first componentis 1: D = {t, tI , I}.
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5-valued Semantics for QB

The Nmatrix QM5 = 〈V ,D,O〉 is defined by:

V = {t, tI , I, fI , f}, D = {t, I, tI}, and for F = {f, fI}:

ae∧b =

8
<
:

D if a ∈ D andb ∈ D

F if a ∈ F or b ∈ F
ae⊃b =

8
<
:

D if a ∈ F or b ∈ D

F if a ∈ D andb ∈ F

e¬a =

8
<
:

D if a ∈ {I, f, fI}

F if a ∈ {t, tI}
e◦a =

8
<
:

D if a ∈ {t, f}

F if a ∈ {I, tI , fI}

e∀[H] =

8
<
:
D if H ⊆ D

F otherwise
e∃[H] =

8
<
:
D if H ∩ D 6= ∅

F otherwise
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Effects of Axioms (Except for (l))

Cond(c) : if x ∈ {f, fI} then¬̃x ⊆ {t, tI}

Cond(e): ¬̃I = {I}

Cond(i1) : fI should be deleted, and̃◦f ⊆ {t, tI}

Cond(i2) : tI should be deleted, and̃◦t = {t}

Cond(a♯) : if a, b ∈ {t, f}, thena♯̃b ⊆ {t, f}

Cond(o♯) : if a ∈ {t, f} or b ∈ {t, f}, thena♯̃b ⊆ {t, f}

Cond(aQ) : for everyH ⊆ {t, f}, Q̃[H] ⊆ {t, f}

Cond(oQ) : if H ∩ {t, f} 6= ∅ thenQ̃[H] ⊆ {t, f}

For X ⊆ Ax, QM5(X) is the weakest refinement ofQM5, in which the
conditions of the schemata fromX are satisfied.
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Effects of (a) and (o)

Cond(aQ) : for every H ⊆ {t, f}, Q̃[H] ⊆ {t, f}

Cond(oQ) : if H ∩ {t, f} 6= ∅ then Q̃[H] ⊆ {t, f}

QB + (i) : QB + (i) + (a) : QB + (i) + (o) :

H e∀[H] e∃[H]

{t} {t, I} {t, I}

{f} {f} {f}

{I} {t, I} {t, I}

{t, f} {f} {t, I}

{t, I} {t, I} {t, I}

{f, I} {f} {t, I}

{t, f, I} {f} {t, I}

H e∀[H] e∃[H]

{t} {t} {t}

{f} {f} {f}

{I} {t, I} {t, I}

{t, f} {f} {t}

{t, I} {t, I} {t, I}

{f, I} {f} {t, I}

{t, f, I} {f} {t, I}

H e∀[H] e∃[H]

{t} {t} {t}

{f} {f} {f}

{I} {t, I} {t, I}

{t, f} {f} {t}

{t, I} {t} {t}

{f, I} {f} {t}

{t, f, I} {f} {t}
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The Nmatrix MC∗

1

V = T ∪I ∪F , T = {t
j

i
| i ≥ 0, j ≥ 0} , I = {I

j

i
| i ≥ 0, j ≥ 0} , F = {f}, D = T ∪I.

ae⊃b =

8
>>>><
>>>>:

F if a ∈ D andb ∈ F

T if a ∈ F andb 6∈ I

T if b ∈ T anda 6∈ I

D otherwise

ae∧b =

8
>>>><
>>>>:

F if a ∈ F or b ∈ F

T if a ∈ T andb ∈ T

T if a = I
j

i
andb ∈ {I

j+1

i
, t

j+1

i
}

D otherwise

e¬a =

8
>><
>>:

F if a ∈ T

T if a ∈ F

{I
j+1

i
, t

j+1

i
} if a = I

j

i

e∀[H] =

8
>><
>>:

T if H ⊆ T

D if H ⊆ D andH ∩ I 6= ∅

F f ∈ H

e∃[H] =

8
>><
>>:

T if H ⊆ T ∪ F andH ∩ T 6= ∅

D if H ∩ I 6= ∅

F H = {f}

Note thatMC∗
1

is analytic.
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Application: ¬∃x¬p(x) 6⊢C∗

1
∀xp(x)

• A rather complex syntactic proof of da Costa (1974).

• A much easier semantic proof: refutation using MC∗
1
.

S = 〈{a, b}, I〉

I[p][a] = I0
0 I[p][b] = f

Next define a partial valuation v on the set of subformulas of
{¬∃x¬p(x), ∀xp(x)} as follows:

v[p(a)] = I0
0 v[p(b)] = f v[¬p(a)] = I1

0 v[¬p(b)] = t00

v[∃x¬p(x)] = I1
0 v[¬∃x¬p(x)] = t20 v[∀xp(x)] = f

v is MC∗
1
-legal, and (by the analycity of MC∗

1
) it can be

extended to a full MC∗
1
-legal valuation.
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Another Application: Canonical Systems with Quantifiers

Universal quantification rules:

Γ, A{t/w} ⇒ ∆

Γ,∀wA⇒ ∆

Γ ⇒ A{z/w},∆

Γ ⇒ ∀wA,∆

wherez is a variablefree forw in A, z is not free inΓ ∪ ∆ ∪ {∀wA}, andt is

anytermfree forw in A.

⇓

A{t/w} ⇒

∀wA⇒

⇒ A{z/w}

⇒ ∀wA

⇓

{p(c) ⇒}/∀w p(w) ⇒ {⇒ p(y)}/⇒ ∀w p(w)

An eigenvariable is marked by a variable, and a term is markedby a constant.



Introduction to Non-deterministic Matrices: Part V 179

�

�

�

�Coherence

• A canonical calculus G is coherent if for every two canonical
rules of G of the form Θ1/⇒ A and Θ2/ A⇒, the set of
clauses Θ1 ∪ Θ2 is classically inconsistent.

• The coherence of a canonical calculusG is decidable.

• Examples:

Coherent:

{p(c) ⇒} / ∀x p(x) ⇒ {⇒ p(y)} / ⇒ ∀x p(x)

Non-coherent:

{⇒ p(c)} / ⇒ Qxp(x) {p(d) ⇒} / Qxp(x) ⇒
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Correspondence Theorem

The following statements concerning a canonical system G with
unary quantifiers are equivalent:

1. G is coherent.

2. G has a characteristic 2Nmatrix.

3. G admits cut elimination.

4. G admits strong cut elimination.
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More General Quantifiers

• A natural step: n-ary quantifiers:

If Q is ann-ary quantifier, thenQx(ψ1, ..., ψn) is a formula.

• Examples:

1. Unary quantifiers:∀, ∃.

2. Binary quantifiers: bounded universal and existential quantifiers∀

and∃, where:

– ∀(ψ1, ψ2) means ∀x(ψ1 → ψ2).
– ∃(ψ1, ψ2) means ∃x(ψ1 ∧ ψ2).
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Nmatrices with n-ary quantifiers

• An n-ary quantifier Q in an Nmatrix M = 〈V ,D,O〉 is
interpreted by a function Q̃ : P+(Vn) → P+(V).

• Example: for every E ∈ P+({t, f}2):

∀̃[E ] =




{f} if 〈t , f 〉 ∈ E

{t} otherwise
∃̃[E ] =




{t} if 〈t , t〉 ∈ E

{f} otherwise

The definition of an M-valuation v is now modified as follows:

v[Qx(ψ1, ..., ψn)] ∈ Q̃M[{〈v[ψ1{a/x}], ..., v[ψn{a/x}]〉 | a ∈ D}]
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H ∀̃[H] ∃̃[H] Q̃2[H]

{〈t, t〉} {t} {t} {t, f}

{〈t, f〉} {f} {t} {t}

{〈f , f〉} {t} {f} {t, f}

{〈f , t〉} {t} {t} {f}

{〈t, t〉, 〈t, f〉} {f} {t} {t, f}

{〈t, t〉, 〈f , t〉} {t} {t} {t, f}

{〈t, t〉, 〈f , f〉} {t} {t} {t, f}

{〈f , t〉, 〈t, f〉} {f} {t} {t}

{〈f , t〉, 〈f , f〉} {t} {t} {t}

{〈t, f〉, 〈f , f〉} {f} {t} {t}

{〈t, t〉, 〈t, f〉, 〈f , t〉} {f} {t} {f}

{〈t, t〉, 〈f , f〉, 〈f , t〉} {t} {t} {t, f}

{〈f , t〉, 〈t, f〉, 〈f , f〉} {f} {t} {t}

{〈f , f〉, 〈t, f〉, 〈f , t〉} {f} {t} {t, f}

{〈t, t〉, 〈t, f〉, 〈f , t〉, 〈f , f〉} {f} {t} {t}


