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Abstract. Many commonly used logics, including classical logic and in-
tuitionistic logic, are trivialized in the presence of inconsistency, in the
sense that inconsistent premises cause the derivation of any formula. It is
thus often useful to define inconsistency-tolerant variants of such logics,
which are faithful to the original logic with respect to consistent theories
but also allow for nontrivial inconsistent theories. A common way of do-
ing so is by incorporating distance-based considerations for concrete log-
ics. So far this has been done mostly in the context of two-valued seman-
tics. Our purpose in this paper is to show that inconsistency-tolerance
can be achieved for any logic that is based on a denotational semantics.
For this, we need to trade distances for the more general notion of dissim-
ilarities. We then examine the basic properties of the entailment relations
that are obtained and exemplify dissimilarity-based reasoning in various
forms of denotational semantics, including multi-valued semantics, non-
deterministic semantics, and possible-worlds (Kripke-style) semantics.
Moreover, we show that our approach can be viewed as an extension
of several well-studied forms of reasoning in the context of belief revi-
sion, database integration, consistent query answering, and inconsistency
maintenance in knowledge-based systems.

1 Introduction

A common, model-theoretic way of defining a consequence relation for a logical
system S, is to require that every model of the premises would also be a model
of the conclusion. Symbolically, this can be represented as follows:

Γ ⊢S ψ if modS(Γ ) ⊆ modS(ψ). (1)

Logics that are based on this approach (including, e.g., classical logic, intuition-
istic logic, and many forms of modal logics) face difficulties in handling inconsis-
tent information, since, by (1), if Γ has no model it entails any conclusion.3 This

3 For languages with classical negation ¬, this usually means that the underlying logic
is not paraconsistent [17]: any formula ϕ follows from ψ and ¬ψ (see also [14, 16,
43]).



problem has long been identified, and different solutions have been proposed to
it. However, many of those solutions depend on the nature of the semantics at
hand, and therefore they cannot be easily adapted to other contexts.

One way of properly maintaining inconsistency, while still being faithful
to (1), is to substitute modS(Γ ) in (1) by a non-empty set ∆S(Γ ) that coincides
with modS(Γ ) whenever the latter is non-empty. Intuitively, ∆S(Γ ) consists of
the semantic elements that are ‘as close as possible’ to satisfying Γ . This is
the basic intuition behind distance-based reasoning , which is usually defined for
standard two-valued semantics (see, e.g., [2, 8, 27, 31, 34]). In this paper, we ex-
tend the distance-based approach to arbitrary forms of denotational semantics
by incorporating the notion of dissimilarities, a generalization of the notion of
distances. To this end, we define in precise terms what a dissimilarity between
semantic objects of a given denotational semantics is, and what properties it
should satisfy in order to induce natural and useful entailments. This allows
us to apply these abstract definitions, in a uniform way, on a wide range of
semantics.

Given a logic L that is based on a denotational semantics, we provide a gen-
eral way of constructing a logic L’ that is an inconsistency-tolerant variant of L,
in the sense that L’ coincides with L with respect to consistent premises, and is
nontrivial with respect to inconsistent ones. A major advantage of this approach
is its uniformity: in order to construct an inconsistency-tolerant variant of one’s
favorite logic, one only needs to define a dissimilarity relation in this logic, and
this automatically induces a corresponding inconsistency-tolerant entailment.
This approach may be useful, for instance, for applying distance-based strate-
gies for revising or merging knowledge-bases, the semantics of which is not the
standard classical one (the evolutionary databases of [19] and the three-valued
inference relations of [28], which are based on three-valued paraconsistent logics,
are just two cases in point), or for extending standard approaches to data integra-
tion and query answering in databases, which are based on distance functions [5,
13, 37].

The rest of this paper is organized as follows: In the next section we re-
call some basic definitions and facts about denotational semantics and the logics
induced by them. Then, in Section 3, we explain what we mean by ‘inconsistency-
tolerant’ logics, and describe a general method of obtaining such logics by incor-
porating McCarthy’s [41] and Shoham’s [45] approach of preferential reasoning.
In Section 4 we provide a concrete way of implementing preferential reasoning
for any type of denotational semantics using the notion of dissimilarity. In Sec-
tion 5 we examine some common properties of the entailment relations defined
in Section 4, and in Section 6 we apply our framework to particular cases of
denotational semantics. In Section 7 we conclude and consider some directions
for future work.4

4 This is a revised and extended version of [7] and [9].
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2 Denotational Semantics and Their Logics

In the sequel, L denotes a propositional language with a countable set Atoms =
{p, q, r . . .} of atomic formulas and a (countable) set FL = {ψ, ϕ, σ, . . .} of well-
formed formulas. A theory Γ is a finite set of formulas in FL. The atoms ap-
pearing in the formulas of Γ and the subformulas of Γ are denoted, respectively,
by Atoms(Γ ) and SF(Γ ). The set of all theories of L is denoted by TL.

Definition 1. Given a language L, a propositional logic for L is a pair ⟨L,⊢⟩,
where ⊢ is a (Tarskian) consequence relation for L, i.e., a binary relation between
sets of formulas in FL and formulas in FL, satisfying the following conditions:

Reflexivity : if ψ ∈ Γ then Γ ⊢ ψ.
Monotonicity : if Γ ⊢ ψ and Γ ⊆ Γ ′, then Γ ′ ⊢ ψ.
Transitivity : if Γ ⊢ ψ and Γ ′, ψ ⊢ ϕ then Γ, Γ ′ ⊢ ϕ.

A common (model-theoretical) way of defining logics for L is based on the
notion of denotational semantics:

Definition 2. A denotational semantics for a language L is a pair S = ⟨S, |=S⟩,
where S is a non-empty set (of ‘interpretations’), and |=S (the ‘satisfiability
relation’ of S) is a computable binary relation on S ×FL.

Example 1. The most common case of denotational semantics S = ⟨S, |=S⟩ for
L is classical logic. In this case, L is a propositional language, the elements of
S are (two-valued) valuations, i.e., functions from FL to the set {t, f} of the
classical truth values, and |=S is the ordinary satisfaction relation, defined by
ν |=S Γ iff ν(ψ) = t for every ψ ∈ Γ .

Standard generalizations of classical logic to multiple-valued logics can also
be described in terms of denotational semantics and so are, e.g., the various
kinds of Kripke-structures for modal and for intuitionistic logics (some of which
are described in greater detail in Section 6 below), provided that the underlying
satisfiability relation is computable.

Definition 3. Let S = ⟨S, |=S⟩ be a denotational semantics for L, ν ∈ S an
interpretation, and ψ ∈ FL a formula.

a) If ν |=S ψ, we say that ν satisfies ψ and call ν an S-model of ψ.

b) The set of the S-models of ψ is denoted by modS(ψ). When modS(ψ) is the
set S, ψ is called an S-tautology, and when modS(ψ) is the empty set, ψ is
called an S-contradiction.

c) If ν satisfies every formula ψ in a theory Γ , it is called an S-model of Γ . The
set of the S-models of Γ is denoted by modS(Γ ). If modS(Γ ) ̸= ∅ we say that
Γ is S-consistent , otherwise Γ is S-inconsistent .

In what follows we shall sometimes omit the prefix S from the above notions.

Definition 4. A denotational semantics S = ⟨S, |=S⟩ is normal , if for each ν ∈ S
there is a formula ψ, such that ν ̸|=S ψ.
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Example 2. Any denotational semantics S for which there is an S-contradiction,
is normal.

A denotational semantics S induces the following relation on TL ×FL:

Definition 5. Γ ⊢S ψ if modS(Γ ) ⊆ modS(ψ).

Proposition 1. Let S = ⟨S, |=S⟩ be a denotational semantics for a propositional
language L. Then ⟨L,⊢S⟩ is a propositional logic for L.

Proof. We have to show that ⊢S is a Tarskian consequence relation for L. In-
deed, reflexivity and monotonicity are obvious from Definitions 3(c) and 5. For
transitivity, suppose that Γ ⊢ ψ, Γ ′, ψ ⊢ ϕ, and ν is an S-model of Γ ∪ Γ ′. In
particular, ν is an S-model of Γ , and since Γ ⊢S ψ, ν is an S-model of ψ. Thus, ν
is an S-model of Γ ′∪{ψ}, and since Γ ′, ψ ⊢S ϕ, we conclude that ν is an S-model
of ϕ as well. Thus Γ, Γ ′ ⊢ ϕ. �

3 Inconsistency Tolerance by Preferential Reasoning

The definition given in the previous section, of a logic L = ⟨L,⊢S⟩ that is induced
by a denotational semantics S = ⟨S, |=S⟩, implies that L may not tolerate in-
consistency properly. Indeed, if modS(Γ ) is empty, then by Definition 5 it holds
that Γ ⊢S ψ for every formula ψ. The next definition aims at overcoming this
drawback.

Definition 6. Let S = ⟨S, |=S⟩ be a denotational semantics for a propositional
language L. An entailment relation |∼S on TL ×FL is an inconsistency-tolerant
variant of ⊢S, if it has the following properties:

I. Faithfulness: If modS(Γ ) ̸= ∅ then for all ψ ∈ FL, Γ |∼S ψ iff Γ ⊢S ψ.

II Non-Explosiveness: If modS(Γ ) = ∅ then there is a formula ψ ∈ FL such
that Γ |̸∼S ψ.

Faithfulness guarantees that |∼S coincides with ⊢S with respect to S-consistent
theories, and non-explosiveness assures that |∼S is not trivialized when the set
of premises is not S-consistent. In what follows, when ⊢S is clear from context,
we just say that |∼S is inconsistency-tolerant.

Note 1. WhenmodS(Γ ) is non-empty for every Γ , then ⊢S itself is inconsistency-
tolerant, but in such logics the notion of inconsistency is degenerate. In what
follows we shall be interested in stronger logics (like classical logic) that do
not tolerate inconsistency and so need to be refined. Another reason that ⊢S

may not be adequate, even in cases that it is inconsistency-tolerant, is that
by Proposition 1, ⊢S is monotonic, while commonsense reasoning is frequently
nonmonotonic, in particular when contradictions are involved.
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One way of achieving non-explosiveness is by incorporating McCarthy’s [41]
and Shoham’s [45] idea of preferential semantics: Given a denotational semantics
S = ⟨S, |=S⟩ for L, we define an S-preferential operator ∆S : TL → 2S (where
2S is the power-set of S), that relates a theory Γ to a set ∆S(Γ ) of its ‘most
preferred’ (or ‘most plausible’) elements in S. The role ofmodS(Γ ) in Definition 5
is taken now by ∆S(Γ ) as follows.

Definition 7. Given a denotational semantics S = ⟨S, |=S⟩ for L and a corre-
sponding S-preferential operator ∆S : TL → 2S , we write Γ |∼∆S

ψ to denote that
∆S(Γ ) ⊆ modS(ψ).

Note 2. By faithfulness, every two S-consistent theories that are logically equiv-
alent with respect to ⊢S (that is, have the same S-models), must also share the
same |∼S-conclusions. On the other hand, while in any logic defined by denota-
tional semantics (including classical logic) all inconsistent theories are (trivially)
logically equivalent, inconsistency-tolerant logics make a distinction between in-
consistent theories, so they cannot preserve logical equivalence, and must employ
other considerations. This is common to many methods for resolving inconsis-
tencies, e.g., those that are based on information and inconsistency measures
(see, e.g., [24, 25]).

Note 3. A dual way of defining entailment relations for handling inconsistencies
is to make preferences among theories instead of interpretation, noting that every
interpretation ν ∈ S induces a corresponding theory Γν = {ψ | ν |=S ψ}. This
alternative approach is taken, e.g., in [48], where preference relations are defined
on (logically closed) nontrivial theories.5

Proposition 2. Let S = ⟨S, |=S⟩ be a normal denotational semantics. Let ∆S

be a preferential operator for S. If

1. ∆S(Γ ) is non-empty for every Γ , and

2. ∆S(Γ ) = modS(Γ ) whenever modS(Γ ) is non-empty,

then |∼∆S
is inconsistency-tolerant.

Proof. Faithfulness follows from Condition (2). For non-explosiveness, let Γ be
a theory such that modS(Γ ) = ∅. By Condition (1) ∆S(Γ ) ̸= ∅, and so there is
µ ∈ ∆S(Γ ). Since S is normal, there is some ψ ∈ FL such that µ ̸|=S ψ. Thus,
by Definition 7, Γ ̸ |∼∆S

ψ. �
Proposition 2 shows that in many cases inconsistency-tolerant entailments

can be obtained from a given denotational semantics S by a proper choice of a
preferential operator ∆S. Frequently, such an operator can be defined in terms
of a preferential function, that is, by a function P that maps every theory Γ to
a strict partial order <Γ on S. In such cases, we have that

∆P
S(Γ ) = {ν ∈ S | ¬∃µ ∈ S such that µ <Γ ν}, (2)

so, intuitively, ∆P
S(Γ ) consists of the ‘best’ elements of S, in terms of <Γ .

5 I.e., whose set of consequences is not the set of all well formed formulas.
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Proposition 3. Let S be a normal denotational semantics, and let P be a prefer-
ential function, mapping every theory Γ to a strict partial order (i.e., irreflexive,
asymmetric, transitive order) <Γ on S. If

1. for every theory Γ , <Γ is well-founded,6 and

2. for every S-consistent Γ , min<Γ
(S) [= ∆P

S(Γ )] = modS(Γ ),

then |∼∆P
S
is inconsistency-tolerant.

Proof. Clearly, the two conditions of this proposition imply, respectively, the two
conditions of Proposition 2, and so |∼∆P

S
is inconsistency-tolerant. �

A preferential function P as in Proposition 3 represents preference by satisfi-
ability , that is: the models of the underlying theory (if such elements exist) are
preferred over the other elements in S.

Example 3. Let S = ⟨S, |=S⟩ be a normal denotational semantics. Define a func-
tion P that maps a theory Γ to a strict partial order <Γ , in which for every
ν, µ ∈ S, ν <Γ µ iff ν ∈ modS(Γ ) and µ ̸∈ modS(Γ ). Clearly, P is a preference
by satisfiability, and so |∼∆P

S
is an inconsistency-tolerant variant of ⊢S. Indeed,

in this case ∆P
S(Γ ) = modS(Γ ) if modS(Γ ) ̸= ∅, and otherwise the relation <Γ

is empty (i.e., all the elements in S are <Γ -incomparable), thus ∆P
S(Γ ) = S.

It follows that both of the properties in the definition of inconsistency-tolerant
entailments trivially hold.

Proposition 3 specifies natural conditions under which a strict partial-order
<Γ induces an inconsistency-tolerant entailment. However, this proposition does
not provide a method for defining such an order. In the next sections, we consider
a simple and intuitive way of doing so by introducing the notion of dissimilarity .

4 Dissimilarity-Based Entailments

Distance functions often provide a subtle platform for choosing the most pre-
ferred interpretations for a given set Γ of premises. The reason for this is that
such functions supply numeric estimations on how ‘close’ a given interpretation
is to satisfy the formulas in Γ . However, as we shall see in the sequel, such es-
timations are not adequate in some particular cases of denotational semantics,
and so they need to be refined. For this, we first generalize the notion of dis-
tance between interpretations to that of dissimilarity between interpretations.
Intuitively, dissimilarity functions provide quantitative indications on the dis-
tinction between their arguments.

Definition 8. Let S = ⟨S, |=S⟩ be a denotational semantics. An S-dissimilarity
is a function d : S×S → R+, satisfying the following properties for all ν, µ ∈ S:

Symmetry: d(ν, µ) = d(µ, ν),

Reflexivity: d(ν, ν) = 0,

Absorption: if d(ν, µ) = 0 then d(ν, σ) = d(µ, σ) for every σ ∈ S.

6 That is, every <Γ -descending chain has a <Γ -minimum.
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Example 4. The discrete (uniform, drastic) metric du on S, defined by du(ν, µ) =
0 if ν = µ and du(ν, µ) = 1 otherwise, is an S-dissimilarity. The Hamming
distance dh [18], where dh(ν, µ) is the number of atoms p for which ν(p) ̸= µ(p),
is a dissimilarity on, e.g., two-valued valuations (Example 1), restricted to a
finite number of atomic formulas. Other definitions of distance and dissimilarity
functions can be found, e.g., in [5–7, 27, 29].

Note 4. Dissimilarities are a generalization of the notion of pseudo distances:
If d is a pseudo distance on S (that is, if d is a symmetric total function on
S that preserves identities: ∀ν, µ ∈ S d(ν, µ) = 0 iff ν = µ), then d is also
an S-dissimilarity. However, dissimilarities are a weaker notion than distances:
First, a function d that satisfies all the conditions in Definition 8 is not neces-
sarily a pseudo distance, since d(ν, µ) = 0 does not mean that ν and µ must be
equal (dissimilarity does not preserve identities). Second, dissimilarities do not
necessarily satisfy the triangular inequality.

To be computable, dissimilarity functions should take into consideration only
finite fragments of the compared interpretations (which are in general infinite).
This is done by restricting the computation to finite contexts, determined by the
given set of assumptions.

Definition 9. A context is a finite set of formulas (i.e., an element of TL). A
context generator (for L) is a function G : TL → TL, producing a context for
every theory.

Intuitively, G(Γ ) is a relevant context for the computations about a theory
Γ . In what follows we shall denote by G ⊆ G′ that G(Γ ) ⊆ G′(Γ ) for every Γ .

Example 5. Common examples for context generators are, e.g., the functions
GAt, GID, GSF, defined, respectively, for every theory Γ by GAt(Γ ) = Atoms(Γ ),
GID(Γ ) = Γ , and GSF(Γ ) = SF(Γ ). Obviously, GAt ⊆ GSF and GID ⊆ GSF.

Dissimilarities will be used in what follows to determine how ‘close’ an inter-
pretation is to satisfying a set of formulas Γ . In particular, they should differenti-
ate between the models of Γ and the valuations that do not satisfy Γ . However,
as dissimilarities are a weaker notion (and so more general) than pseudo dis-
tances (Note 4), it may be the case that d(ν, µ) = 0 where ν is a model of Γ
while µ is not. To avoid this, the dissimilarity under consideration should be Γ -
dependent. This is achieved by dissimilarity generators that produce a different
dissimilarity for each theory. For defining dissimilarity generators we shall need
the next notation and notion:

Definition 10. ν ∼Γ µ if for every ψ ∈ Γ , ν |=S ψ iff µ |=S ψ.

Definition 11. We say that a formula ψ is G-independent of a theory Γ , if
G({ψ}) ∩ G(Γ ) = ∅.

Definition 12. Let S = ⟨S, |=S⟩ be a denotational semantics for a language L
and G a context generator for the same language. A G-dissimilarity generator
for S is a function dG : TL → (S × S → R+), such that, for every Γ ∈ TL,
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1. dG(Γ ) is an S-dissimilarity,

2. there exists an nΓ ∈ R, such that nΓ = max{dG(Γ )(ν, µ) | ν, µ ∈ S},
3. for every ν, µ ∈ S, if dG(Γ )(ν, µ) = 0, then ν ∼Γ µ.

A G-dissimilarity generator dG is called normal , if it satisfies the following nor-
mality condition:

– For every theory Γ , if ψ is a non S-tautological formula that is G-independent
of Γ , then for each ν ∈ modS(ψ) there is µ ̸∈ modS(ψ) so that dG(Γ )(ν, µ)=0.

Below, we shall sometimes write dG(Γ ) instead of dG(Γ ).

Note that dG(Γ )(ν, µ) = 0 only means that ν and µ are similar on G(Γ ),
but this does not imply any correspondence between ν and µ elsewhere (this is
also indicated in Note 4 as one of the differences between dissimilarities and dis-
tances). The second condition of Definition 12 is needed for proper computations
of dissimilarities (see Definition 15) and the third condition assures, intuitively,
that dG(Γ ) is faithful to Γ . The normality condition makes sure that the mea-
surements by dG(Γ ) depend only on the relevant context G(Γ ).

Example 6. Let G = GAt or G = GSF, and let S be the standard two-valued
semantics (Example 1). The following functions are all normal G-dissimilarity
generators for S.

a) dsG , where for every Γ , dsG(Γ )(ν, µ) = 0 if ν ∼Γ µ, otherwise dsG(Γ )(ν, µ) = 1.

b) duG , where for every Γ , duG(Γ )(ν, µ)= 0 if for all ψ ∈ G(Γ ) ν(ψ) = µ(ψ) and

otherwise duG(Γ )(ν, µ) = 1.

c) dhG , in which dhG(Γ )(ν, µ) is the number of formulas ψ ∈ G(Γ ), for which it

holds that ν(ψ) ̸= µ(ψ).

The last two dissimilarity generators are generalizations of the standard discrete
and Hamming distances considered in Example 4. In Section 6 we consider other
(normal) dissimilarity generators.

Note that unlike related formalisms in standard two-valued semantics (see,
e.g., [29, 34]), it is not necessary to assume here that (the set of atomic formulas
of) the underlying language is finite. This is because the dissimilarity calculations
are made with respect to finite contexts.

Definition 13. A (numeric) aggregation function is a total function f , such
that: (1) for every multiset of real numbers, the value of f is a real number,
(2) the value of f does not decrease when the number of elements in its multiset
increases, (3) f({x1, . . . , xn}) = 0 iff x1 = x2 = . . . xn = 0, (4) ∀x ∈ R f({x}) =
x.

For nonnegative numeric values (such as those provided by dissimilarities),
the summation, average, median, and the maximum function, are all aggregation
functions (see, e.g., [29, 36]).
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Definition 14. Let S be a denotational semantics for a language L. A (semanti-
cal) setting for S is a triple S = ⟨G, d, f⟩, where G is a context generator (for L),
d is a G-dissimilarity generator (for S), and f is a numeric aggregation function.

Definition 15. Let S = ⟨G, d, f⟩ be a setting for a denotational semantics S =
⟨S, |=S⟩. For an interpretation ν ∈ S and a theory Γ = {ψ1, . . . , ψn}, we define:

mΓ
S (ν, ψi) =

{
min

{
dG(Γ )(ν, µ) | µ ∈ modS(ψi)

}
if modS(ψi) ̸= ∅,

1 +max
{
dG(Γ )(µ, σ) | µ, σ ∈ S

}
otherwise. 7

MS(ν, Γ ) = f
({

mΓ
S (ν, ψ1), . . . ,m

Γ
S (ν, ψn)

})
.

Intuitively, mΓ
S (ν, ψ) is a quantitative indication for how ‘close’ ν is to be a

model of ψ. The function MS(ν, Γ ) indicates how ‘close’ ν is to be a model of Γ .
It is easy to verify that if ψ is S-consistent, then the closest elements to ψ are
its models, and if ψ is not S-consistent, all the elements in S are equally close
to ψ.

Definition 16. A setting S = ⟨G, d, f⟩ for a denotational semantics S = ⟨S, |=S⟩
is normal , if so is d (recall Definition 12). We say that S is effective, if for every
theory Γ , the set {MS(ν, Γ ) | ν ∈ S} has a minimal element.

Reasoning by dissimilarities is now defined as follows:

Definition 17. Given a setting S for a denotational semantics S = ⟨S, |=S⟩, the
S-most plausible interpretations of a (non-empty) theory Γ , are the elements of
the following set:

∆S(Γ ) =
{
ν ∈ S | ∀µ ∈ S MS(ν, Γ ) ≤ MS(µ, Γ )

}
.

In case that Γ is empty, we define ∆S(∅) = S.

Note 5. If S is effective, then ∆S(Γ ) ̸= ∅ for every Γ .

Definition 18. Given a semantic setting S for a denotational semantics S, the
dissimilarity-based entailment |∼S is defined by: Γ |∼S ψ iff ∆S(Γ ) ⊆ modS(ψ).

5 Reasoning with |∼S

The following example is a simple illustration of how inconsistency is handled
by a dissimilarity-based entailment.

Example 7. Consider the setting S = ⟨GAt, dh, Σ⟩ for the standard two-valued
semantics (Example 1), where dh = dhGAt is the dissimilarity generator computing

for each Γ the Hamming distance on GAt(Γ ) from Example 6c and Σ is the
summation function. Now, let Γ = {p, ¬p, q}. In this case, ∆S(Γ ) = {ν ∈ S |
7 Note that mΓ

S (ν, ψi) is well-defined by the second property in Definition 12.
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ν(q) = t}, thus Γ |∼S q while Γ |̸∼S¬q. Intuitively, this is justified by the fact that
q is ‘unrelated’ to the inconsistency of Γ (more precisely, q is GAt-independent
of {p,¬p}). On the other hand, Γ |̸∼S p and Γ |̸∼S ¬p, since both of p and ¬p
are ‘related’ to the inconsistency of Γ .

Next, we consider some important properties of |∼S .

Theorem 1. Let S = ⟨G, d, f⟩ be an effective setting for a denotational seman-
tics S. If S is normal (Definition 4), or S is normal (Definition 16), then |∼S is
an inconsistency-tolerant variant of ⊢S.

Proof. We show that the two properties in Definition 6 are satisfied in this case.
First, we show that |∼S is faithful to ⊢S. For this, consider the following lemma:

Lemma 1. Let S = ⟨G, d, f⟩ be an effective setting for a denotational semantics
S = ⟨S, |=S⟩. Then for every theory Γ and every ψ ∈ Γ it holds that mΓ

S (ν, ψ) = 0
iff ν ∈ modS(ψ).

Proof. If ν ∈ modS(ψ), then by Reflexivity (Definition 8) and since dG(Γ ) is an S-
dissimilarity (Definition 12, Property (1)), we have thatmΓ

S (ν, ψ) = dG(Γ )(ν, ν) =
0. For the converse, suppose that ν ̸∈ modS(ψ). If ψ is not S-satisfiable, we
are done, as mΓ

S (ν, ψ) = 1 + max{dG(Γ )(µ, σ) | µ, σ ∈ S} > 0. Otherwise, let
µ ∈ modS(ψ). Since µ |=S ψ while ν ̸|=S ψ, it holds that ν ̸∼Γ µ and so, by
Property (3) in Definition 12, dG(Γ )(ν, µ) > 0. Hence, mΓ

S (ν, ψ) is a minimum of
a set of strictly positive numbers, and so mΓ

S (ν, ψ) > 0 as well. �

By Lemma 1 and since f is an aggregation function, for every theory Γ it holds
that MS(ν, Γ ) = 0 iff ν ∈ modS(Γ ). Thus, for every S-consistent theory Γ and
every ν ∈ S, we have that ν ∈ modS(Γ ) iff MS(ν, Γ ) = 0, iff ∀µ ∈ S MS(ν, Γ ) ≤
MS(µ, Γ ), iff ν ∈ ∆S(Γ ). It follows that if Γ is S-consistent, ∆S(Γ ) = modS(Γ ),
and so Γ |∼S ψ iff Γ ⊢S ψ. This shows faithfulness.

Next, we show non-explosiveness. If S is normal, then non-explosiveness follows
from the fact that as S is effective, ∆S(Γ ) is non-empty (Note 5), thus for every
ν ∈ ∆S(Γ ) there is some ψ such that ν ̸|=S ψ, and so Γ ̸|∼S ψ. If S is normal,
non-explosiveness follows from the following lemma:

Lemma 2. Let S = ⟨G, d, f⟩ be an effective and normal setting for S. For every
Γ and every ψ which is G-independent of Γ , it holds that Γ |∼S ψ iff ψ is an
S-tautology.

Proof. One direction is clear: if ψ is an S-tautology, then for every ν ∈ ∆S(Γ ),
ν |=S ψ and so Γ |∼S ψ. For the converse, suppose that ψ is not an S-tautology.
Since S is effective, by Note 5 there is an interpretation ν ∈ ∆S(Γ ). If ν ̸|=S ψ,
we are done: Γ ̸|∼S ψ. Otherwise, since dG is normal, there is some µ ∈ S
such that µ ̸|=S ψ, and dG(Γ )(ν, µ) = 0. But dG(Γ ) is an S-dissimilarity and
so, by Absorption (Definition 8), for every ψ ∈ Γ and every ν0 ∈ modS(ψ),
dG(Γ )(ν, ν0) = dG(Γ )(µ, ν0). Hence mΓ

S (ν, ψ) = mΓ
S (µ, ψ), and so MS(ν, Γ ) =

MS(µ, Γ ) as well. Now, since ν ∈ ∆S(Γ ), it holds also that µ ∈ ∆S(Γ ), and
since µ ̸|=S ψ, we have that Γ |̸∼S ψ. �
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This concludes the proof of Theorem 1. �

It is important to note that while |∼S is faithful to ⊢S (as implied by The-
orem 1), unlike ⊢S, entailments of the form |∼S are usually not consequence
relations (in the sense of Definition 1). In fact, as shown e.g. in [2], each prop-
erty in Definition 1 may be violated already by distance-based entailments for
classical logic. In the context of nonmonotonic reasoning, however, it is usual to
consider the following weaker conditions that guarantee a ‘proper behaviour’ of
nonmonotonic entailments in the presence of inconsistency (see, e.g., [3, 30, 33,
38]):

Theorem 2. Let S = ⟨G, d, f⟩ be an effective setting for a denotational seman-
tics S, in which f is hereditary8. Then |∼S is a cautious consequence relation (in
the sense of [3]), i.e., it has the following properties:

Cautious Reflexivity: if Γ is S-satisfiable and ψ ∈ Γ then Γ |∼S ψ

Cautious Monotonicity [21]: if Γ |∼S ψ and Γ |∼S ϕ then Γ, ϕ |∼S ψ

Cautious Transitivity [30]: if Γ |∼S ψ and Γ, ψ |∼S ϕ then Γ |∼S ϕ

Proof. Cautious reflexivity follows from the facts that |∼S is faithful to ⊢S and
that ⊢S is a Tarskian consequence relation, thus it is in particular reflexive.

For cautious monotonicity, let Γ = {γ1, . . . , γn} and suppose that Γ |∼Sψ, Γ |∼Sϕ,
and ν ∈∆S(Γ ∪ {ψ}). We show that ν ∈∆S(Γ ) and since Γ |∼S ϕ this implies
that ν ∈ modS({ϕ}). Indeed, if ν /∈∆S(Γ ), there is an element µ ∈ S such that
µ ∈∆S(Γ ) so that MS(µ, Γ )<MS(ν, Γ ), i.e., f({mΓ

S (µ, γ1), . . . ,m
Γ
S (µ, γn)}) <

f({mΓ
S (ν, γ1), . . . ,m

Γ
S (ν, γn)}). Also, as Γ |∼Sψ, µ ∈ modS({ψ}), thusmΓ

S (µ, ψ) =
0. By these facts, and since f is hereditary,

MS(µ, Γ ∪ {ψ}) = f({mΓ
S (µ, γ1), . . . ,m

Γ
S (µ, γn), 0})

< f({mΓ
S (ν, γ1), . . . ,m

Γ
S (ν, γn), 0})

≤ f({mΓ
S (ν, γ1), . . . ,m

Γ
S (ν, γn),m

Γ
S (ν, ψ)})

= MS(ν, Γ ∪ {ψ}),

a contradiction to ν ∈ ∆S(Γ ∪ {ψ}).
For cautious transitivity, let again Γ = {γ1, . . . , γn} and assume that Γ |∼S ψ,
Γ, ψ|∼Sϕ, and ν∈∆S(Γ ). We show that ν∈modS({ϕ}). Indeed, since ν ∈ ∆S(Γ ),
for all µ ∈ S, f({mΓ

S (ν, γ1), . . . ,m
Γ
S (ν, γn)}) ≤ f({mΓ

S (µ, γ1), . . . ,m
Γ
S (µ, γn)}).

Moreover, since Γ |∼S ψ, ν ∈modS({ψ}), and so mΓ
S (ν, ψ) = 0 ≤ mΓ

S (µ, ψ). It
follows, then, that for every µ ∈ S,

MS(ν, Γ ∪ {ψ}) = f({mΓ
S (ν, γ1), . . . ,m

Γ
S (ν, γn),m

Γ
S (ν, ψ)})

≤ f({mΓ
S (µ, γ1), . . . ,m

Γ
S (µ, γn),m

Γ
S (ν, ψ)})

≤ f({mΓ
S (µ, γ1), . . . ,m

Γ
S (µ, γn),m

Γ
S (µ, ψ)})

= MS(µ, Γ ∪ {ψ}).
8 An aggregation function f is called hereditary, if f({x1, . . . , xn}) < f({y1, . . . , yn})
implies that f({x1, . . . , xn, z1, . . . , zm}) < f({y1, . . . , yn, z1, . . . , zm}) (see [2]).

11



Thus, ν ∈ ∆S(Γ ∪ {ψ}), and since Γ, ψ |∼S ϕ, necessarily ν ∈ modS({ϕ}). �

The next proposition shows that many dissimilarity-based entailments of the
form |∼S are paraconsistent .

Proposition 4. Let S be a denotational semantics for a language L with a unary
connective ¬. Let S = ⟨G, d, f⟩ be an effective and normal setting for S, in which
G ⊆ GSF. Then |∼S is ¬-paraconsistent: ψ,¬ψ |̸∼Sϕ for some formulas ψ, ϕ ∈ FL.

Proof. For the proof, we observe the following lemma:

Lemma 3. Let S = ⟨G, d, f⟩ be an effective and normal setting for S, in which
G ⊆ GSF, and let ψ be a formula that is GSF-independent of a theory Γ . Then
Γ |∼S ψ iff ψ is an S-tautology.

Proof. Since G(Γ ) ⊆ SF(Γ ) and G({ψ}) ⊆ SF(ψ), and since ψ is GSF-independent
of Γ , ψ is also G-independent of Γ . The lemma now follows from Lemma 2. �

Now, let p, q ∈ Atoms. Since {p,¬p} and q do not share variables, and since
q is not an S-tautology, by Lemma 3 it follows that p,¬p ̸ |∼S q and so |∼S is
¬-paraconsistent. �

Another interesting property of dissimilarity-based entailments is that their
set of conclusions is always consistent (even for inconsistent sets of premises).

Proposition 5. Let S = ⟨G, d, f⟩ be an effective setting for a denotational se-
mantics S. Then for every theory Γ the set of the formulas that are |∼S-entailed
by Γ is S-consistent.

Proof. Let CS(Γ ) = {ψ | Γ |∼S ψ}. If CS(Γ ) is not S-consistent for some Γ ,
that is, if modS(CS(Γ )) = ∅, then since ∆S(Γ ) ⊆ modS(ψ) for every ψ ∈ CS(Γ ),
we have: ∆S(Γ ) ⊆

∩
ψ∈CS(Γ )modS(ψ) = modS(CS(Γ )) = ∅. Thus ∆S(Γ ) = ∅,

contradicting the fact that if S is effective, ∆S(Γ ) is non-empty for every Γ (see
Note 5). �

Finally, we consider the decidability of |∼S . Checking whether Γ |∼S ψ, i.e.,
whether the most plausible interpretations of Γ are models of ψ, may not be
feasible for several reasons. For instance, interpretations may be infinite objects,
and there can be infinitely many of them, so the dissimilarities among them may
not be computable. To guarantee decidability one has to show that entailments
in our framework can be reduced to terminating computations. This can be
formalized as follows.

Definition 19. Let S = ⟨G, dG , f⟩ be a setting for a denotational semantics
S = ⟨S, |=⟩. We say that S is computable, if it satisfies the following conditions
for every theory Γ : 9

9 Below, when saying that a mathematical object that is related to Γ is ‘computable’,
we actually mean that it is ‘uniformly computable in Γ ’, in the sense that there is
an effective way to determine if (and how) this object is computed (see also [44]).
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1. The functions G, f , dG and dG(Γ ) are computable.

2. There is a surjective function ξΓ : S → Sfin, where Sfin is some finite set of
elements satisfying the following conditions:

(a) For all ν, µ ∈ S: ξΓ (ν) = ξΓ (µ) iff dG(Γ )(ν, µ) = 0.

(b) Denote by ξ−1
Γ [s] the preimage of s, i.e., ξ−1

Γ [s] = {ν ∈ S | ξ(ν) = s}.
Then for every formula ψ and every s ∈ Sfin there is an effective way to
decide whether ξ−1

Γ [s] ⊆ modS(ψ).

3. There is a computable function FdG(Γ ) : Sfin × Sfin → R+, such that for all
ν, µ ∈ S, FdG(Γ )(ξΓ (ν), ξΓ (µ)) = dG(Γ )(ν, µ).

Example 8. It can be verified that the setting S = ⟨G, dG , f⟩ for the classical two-
valued semantics is computable for every context generator G in Example 5, all
the dissimilarity generators dG in Example 6, and every computable aggregation
function f . We show this for the case of dG = dhG (where dhG(Γ )(ν, µ) is the number

of formulas ψ ∈ G(Γ ) for which ν(ψ) ̸= µ(ψ)): Given a theory Γ , we let Sfin be
the set of all the restrictions of classical two-valued valuations to G(Γ ). For this
Γ , we define the function ξΓ : S → Sfin so that ξΓ (µ) is the restriction of µ to
G(Γ ). Clearly, ξΓ (ν) = ξΓ (µ) iff dG(Γ )(ν, µ) = 0, since the latter means that ν
and µ agree on all formulas in G(Γ ). Now, for every s ∈ Sfin and every formula
ψ, we can decide whether ξ−1

Γ [s] is contained in the set of the (classical) models
of ψ by going over all possible extensions s′ of s to SF(G(Γ ) ∪ {ψ}), which
respect the classical truth tables, and checking whether s′(ψ) = t. Next, we
define FdG(Γ )(s, s

′) as the number of formulas ψ in G(Γ ), for which s(ψ) ̸= s′(ψ).
Clearly, FdG(Γ ) is computable, and for every two classical valuations ν, µ it holds
that FdG(Γ )(ξΓ (ν), ξΓ (µ)) = dG(Γ )(ν, µ). Hence, the functions ξΓ and FdG(Γ )

defined above satisfy the conditions in Definition 19, and so S is computable.

Theorem 3. Let S be a setting for a denotational semantics S = ⟨S, |=S⟩. If S
is computable, then checking whether Γ |∼S ϕ is decidable.

Proof. Since S is computable, for every theory Γ there are functions ξΓ :S → Sfin

and FdG(Γ ) : Sfin × Sfin → R+ that satisfy the properties in Definition 19. For
every s ∈ Sfin and ψ ∈ Γ , we define:

FmΓ
S (s, ψ) =

{
min{FdG(Γ )(s, s

′) | ξ−1
Γ [s′] ⊆ modS(ψ)} if modS(ψ) ̸= ∅,

1 +max{FdG(Γ )(s
′, s′′) | s′, s′′ ∈ Sfin} otherwise.

FMS(s, Γ ) = f
({

FmΓ
S (s, ψ1), . . . ,Fm

Γ
S (s, ψn)

})
.

Accordingly, we define:

∆fin
S (Γ ) =

{{
s | ∀s′ ∈ Sfin FMS(s, Γ ) ≤ FMS(s

′, Γ )
}

if Γ ̸= ∅,
Sfin otherwise.
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Lemma 4. For every theory Γ , formula ψ ∈ Γ , and interpretation ν ∈ S,

{FdG(Γ )(ξΓ (ν), s
′) | ξ−1

Γ [s′] ⊆ modS(ψ)} = {dG(Γ )(ν, µ) | µ ∈ modS(ψ)}.

Proof. We denote the set on the left-hand side of the equation by S1 and
the set on the right-hand side of the equation by S2. To see that S1 ⊆ S2,
let n ∈ S1. Then there is some s′ ∈ Sfin, such that FdG(Γ )(ξΓ (ν), s

′) = n

and ξ−1
Γ [s′] ⊆ modS(ψ). Let µ0 ∈ ξ−1

Γ [s′] (the set ξ−1
Γ [s′] is non-empty as the

function ξΓ is surjective). Then µ0 ∈ modS(ψ). We have that dG(Γ )(ν, µ0) =
FdG(Γ )(ξΓ (ν), ξΓ (µ0)) = FdG(Γ )(ξΓ (ν), s

′) = n, and so n ∈ S2. To see that
S2 ⊆ S1, let n ∈ S2. Then there is some µ ∈ modS(ψ), such that dG(Γ )(ν, µ) = n.

Let s′ = ξΓ (µ) and µ0 ∈ ξ−1
Γ [s′]. Then ξΓ (µ) = ξΓ (µ0), and by Property 2a

of Definition 19, dG(Γ )(µ0, µ) = 0. By Property 3 of Definition 12, µ ∼Γ µ0,

and so µ0 ∈ modS(ψ) as well. Hence, ξ−1
Γ [s′] ⊆ modS(ψ), and it follows that

FdG(Γ )(ξΓ (ν), s
′) = FdG(Γ )(ξΓ (ν), ξΓ (µ)) = dG(Γ )(ν, µ) = n. Thus, n ∈ S1. �

Lemma 5. For every theory Γ and formula ψ ∈ Γ ,

{FdG(Γ )(s
′, s′′) | s′, s′′ ∈ Sfin} = {dG(Γ )(µ, σ) | µ, σ ∈ S}.

Proof. Let n ∈ {FdG(Γ )(s
′, s′′) | s′, s′′ ∈ Sfin}, i.e., FdG(Γ )(s

′, s′′) = n for some
s′, s′′ ∈ Sfin. Let ν

′, ν′′ ∈ S such that s′ = ξΓ (ν
′) and s′′ = ξΓ (ν

′′) (their existence
is guaranteed by the surjectiveness of ξΓ ). Then we have that dG(Γ )(ν

′, ν′′) =
FdG(Γ )(ξΓ (ν

′), ξΓ (ν
′′)) = FdG(Γ )(s

′, s′′) = n, and so n ∈ {dG(Γ )(µ, σ) | µ, σ ∈ S}.
Conversely, suppose that n ∈ {dG(Γ )(µ, σ) | µ, σ ∈ S}, i.e., dG(Γ )(µ, σ) = n
for some µ, σ ∈ S. Let s′ = ξΓ (µ) and s′′ = ξΓ (σ). Then FdG(Γ )(s

′, s′′) =
FdG(Γ )(ξΓ (µ), ξΓ (σ)) = dG(Γ )(µ, σ) = n, and so n ∈ {FdG(Γ )(s

′, s′′) | s′, s′′ ∈
Sfin}. �
Corollary 1. For every Γ ∈ TL, ψ ∈ Γ and ν ∈ S, FmΓ

S (ξΓ (ν), ψ) = mΓ
S (ν, ψ).

Proof. If modS(ψ) ̸= ∅, then by Lemma 4,

FmΓ
S (ξΓ (ν), ψ) = min{FdG(Γ )(ξΓ (ν), s

′) | ξ−1
Γ [s′] ⊆ modS(ψ)}

= min{dG(Γ )(ν, µ) | µ ∈ modS(ψ)} = mΓ
S (ν, ψ).

Otherwise, if modS(ψ) = ∅, by Lemma 5,

FmΓ
S (ξΓ (ν), ψ) = 1 +max{FdG(Γ )(s

′, s′′) | s′, s′′ ∈ Sfin}
= 1 +max{dG(Γ )(µ, σ) | µ, σ ∈ S} = mΓ

S (ν, ψ).

�
By Corollary 1 it now follows that for every theory Γ and interpretation ν ∈ S,
FMS(ξΓ (ν), Γ ) = MS(ν, Γ ). This implies that ν ∈ ∆S(Γ ) iff ξΓ (ν) ∈ ∆fin

S (Γ ).
Hence, the question whether Γ |∼S ϕ is reducible to the question whether for
each s ∈ ∆fin

S (Γ ), it holds that ξ−1[s] ⊆ modS(ϕ). It is easy to see that ∆fin
S (Γ ) is

finite and computable (using the facts that G, f , dG and dG(Γ ) are computable).
Also, by Property 2b of Definition 19, the question whether ξ−1[s] ⊆ modS(ϕ)
is decidable for each s ∈ ∆fin

S (Γ ). Thus, checking whether Γ |∼S ϕ is decidable.
This proves Theorem 3. �
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6 Applications

In this section we demonstrate the usefulness (and generality) of dissimilarity-
based reasoning for defining a variety of inconsistency-tolerant logics based on
different types of denotational semantics. In particular, we consider normal and
effective settings, so the properties discussed in the previous section hold for
these logics.

6.1 Multi-Valued Logics

The most standard way of defining multi-valued logics (including, of course,
classical logic), is by the following structures (see, e.g., [23, 39, 49]):

Definition 20. A (multi-valued) matrix for a language L is a triple M =
⟨V,D,O⟩, where V is a non-empty set of truth values, D is a non-empty proper
subset of V, and O contains an interpretation ⋄̃ : Vn → V for each n-ary con-
nective ⋄ of L.

Henceforth, we shall consider only finite matrices, i.e., matrices in which the
set of truth values is finite. Given a matrix M = ⟨V,D,O⟩, we shall assume
that V includes at least the two classical values t and f , and that only the
former belongs to the set D of the designated elements in V. Intuitively, D
consists of the truth values that are assigned to ‘true’ assertions. The set O
contains the interpretations (the ‘truth tables’) of each connective in L. The
associated semantical notions are now defined as usual: An M-valuation is a
function ν : FL → V so that, for every connective ⋄ in L, ν(⋄(ψ1, . . . , ψn)) =
⋄̃(ν(ψ1), . . . , ν(ψn)). The set of all M-valuations is denoted by ΛM. We say that
a valuation ν ∈ ΛM is an M-model of ψ, denoted ν |=M ψ, if ν(ψ) ∈ D. An
M-valuation ν is an M-model of a theory Γ , if ν |=M ψ for every ψ ∈ Γ . When
the matrix M is clear from the context we shall sometimes omit the prefix M
from the notions defined above.

Note that the pair ⟨ΛM, |=M⟩ is a denotational semantics in the sense of
Definition 2. In what follows, we shall sometimes identify this semantics with
the matrix M that defines it. In particular, we shall say that M is normal if so
is the denotational semantics ⟨ΛM, |=M⟩ that it induces. By Proposition 1 we
have, then, that:

Proposition 6. The relation ⊢M, induced by a matrix M by Definition 5, is a
Tarskian consequence relation.

Example 9. The most common matrix-based logics are induced by two-valued
matrices. Thus, for instance, when L is the standard propositional language, V =
{t, f}, D = {t}, and O consists of the standard interpretations of the connectives
in L, the pair ⟨L,⊢M⟩ for M = ⟨V,D,O⟩ is the classical propositional logic.

Three-valued logics are obtained by adding to V a third element. For instance,
Kleene’s logic [26] and McCarthy’s logic [40] are obtained, respectively, from the
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matrices M3⊥
K = ⟨{t, f,⊥}, {t},OK⟩ and M3⊥

M = ⟨{t, f,⊥}, {t},OM ⟩, in which
the disjunction and conjunction are interpreted differently:

¬̃
f t
⊥ ⊥
t f

(Kleene)

∧̃ f ⊥ t

f f f f
⊥ f ⊥ ⊥
t f ⊥ t

∨̃ f ⊥ t

f f ⊥ t
⊥ ⊥ ⊥ t
t t t t

(McCarthy)

∧̃ f ⊥ t

f f f f
⊥ ⊥ ⊥ ⊥
t f ⊥ t

∨̃ f ⊥ t

f f ⊥ t
⊥ ⊥ ⊥ ⊥
t t t t

Priest’s logic LP [42] is similar to Kleene’s logic, but the third (middle)
element is designated, so we denote it by ⊤ rather than ⊥. This logic is induced
by the matrix M3⊤

P = ⟨{t, f,⊤}, {t,⊤},OP ⟩, where OP is obtained from OK by
replacing ⊥ by ⊤.

Given a matrix-based denotational semantics ⟨ΛM, |=M⟩ and a corresponding
consequence relation ⊢M, one may define inconsistency-tolerant variants of ⊢M
by a dissimilarity-based setting S = ⟨G, d, f⟩, just as in Definition 18. Next, we
describe such a construction.

Proposition 7. Let M = ⟨V,D,O⟩ be a finite matrix for a propositional lan-
guage L, d a pseudo distance on V, g an aggregation function, and G a context
generator for L. We define, for every Γ ∈ TL, a function dgG(Γ ) : ΛM×ΛM → R+

by:
dgG(Γ )(ν, µ) = g

(
{d(ν(ψ), µ(ψ)) | ψ ∈ G(Γ )}

)
.

Then dgG((Γ ) is a dissimilarity function. Moreover,

– if GAt ⊆ G or GID ⊆ G, dgG is a G-dissimilarity generator,10

– if GAt ⊆ G and GAt ◦G ⊆ G,11 then dgG is a normal G-dissimilarity generator.

Proof. Let us first show that dgG(Γ ) is a dissimilarity function. Indeed, since

d(ν(ψ), ν(ψ)) = 0 and g({0, . . . , 0}) = 0, we have that dgG(Γ )(ν, ν) = 0, so dgG(Γ )

is reflexive. Clearly, it is also symmetric (since so is the pseudo distance d). For
Absorption, suppose that dgG(Γ )(ν, µ) = 0. This necessarily means that ν(ψ) =

µ(ψ) for every ψ ∈ G(Γ ) and so, for every σ ∈ ΛM,

dgG(Γ )(ν, σ) = g
(
{d(ν(ψ), σ(ψ)) | ψ ∈ G(Γ )}

)
=

= g
(
{d(µ(ψ), σ(ψ)) | ψ ∈ G(Γ )}

)
= dgG(Γ )(µ, σ).

To see that dgG is a G-dissimilarity generator it remains to show Properties (2)
and (3) in Definition 12. Indeed, Property (2) in that definition is guaranteed by
the first condition in Definition 13 and the fact that the number of truth values
of M is finite. For Property (3), note that if dgG(Γ )(ν, µ) = 0 then ν(ψ) = µ(ψ) for

10 It is interesting to note that while context generators are needed only for defining
normality of dissimilarity generators (see Definition 12), here the context G is crucial
also for guaranteeing the other properties of a dissimilarity genertator.

11 I.e., GAt(G(Γ )) ⊆ G(Γ ) for every Γ .
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every ψ ∈ G(Γ ). Thus, if Atoms(Γ ) = GAt(Γ ) ⊆ G(Γ ), we have that ν(p) = µ(p)
for every p ∈ Atoms(Γ ), which means that ν(ψ) = µ(ψ) for every ψ ∈ Γ , and so
ν ∼Γ µ. Otherwise, if GID ⊆ G then again since ν(ψ) = µ(ψ) for every ψ ∈ G(Γ )
we have that ν(ψ) = µ(ψ) for every ψ ∈ Γ , and so ν ∼Γ µ.

To see that dgG is normal, let ψ be a non-tautological formula that is G-
independent of Γ and suppose that σ ̸∈ modM(ψ). Since Atoms(G(Γ )) ⊆ G(Γ )
and Atoms(ψ) ⊆ G(ψ), this means that Atoms(G(Γ )) ∩ Atoms(ψ) = ∅. Thus,
for every ν ∈ modM(ψ) there is a valuation µ ∈ ΛM such that µ(p) = ν(p) if
p ∈ Atoms(G(Γ )) and µ(p) = σ(p) if p ∈ Atoms(ψ). Clearly, µ ̸∈ modM(ψ), but
since ν(ψ) = µ(ψ) for every ψ ∈ G(Γ ), still dgG(Γ )(ν, µ) = 0. �

Given a propositional logic ⟨L,⊢M⟩ induced by a matrix M = ⟨V,D,O⟩,
Proposition 7 yields a simple and general way of defining entailments that are
inconsistency-tolerant variants of ⊢M. We note that many of the inconsistency-
tolerant entailments that have been considered in the literature (e.g., those in [8,
22, 27, 29]) are particular cases of this construction, where M is a two-valued
matrix and G = GAt.

Example 10. Let S = ⟨GAt, d, Σ⟩ be a setting for Kleene’s three-valued logic
M3⊥

K (Example 9), where GAt is the atom-based context generator, Σ is a sum-
mation function, and d is a GAt-dissimilarity generator, producing for each Γ the
following dissimilarity:

dΣGAt(Γ )(ν, µ) = Σ {d0(ν(p), µ(p)) | p ∈ GAt(Γ )}.

Here, d0 is a pseudo distance on {t, f,⊥}, for which d0(t, f) = 1 and d0(t,⊥) =
d0(f,⊥) = 0.5 (see also [2, 19]). Note that the fact that d is a GAt-dissimilarity
generator follows by Proposition 7.

Now, consider the theory Γ = {¬p,¬q, p∨ q}. Clearly, Γ is not M3⊥
K -satisfiable.

We compute its most plausible interpretations with respect to S:

p q ¬p ¬q p ∨ q 1 2 3 MS(νi, Γ )

ν1 t t f f t 1 1 0 2
ν2 t f f t t 1 0 0 1
ν3 t ⊥ f ⊥ t 1 0.5 0 1.5
ν4 f t t f t 0 1 0 1
ν5 f f t t f 0 0 1 1
ν6 f ⊥ t ⊥ ⊥ 0 0.5 0.5 1
ν7 ⊥ t ⊥ f t 0.5 1 0 1.5
ν8 ⊥ f ⊥ t ⊥ 0.5 0 0.5 1
ν9 ⊥ ⊥ ⊥ ⊥ ⊥ 0.5 0.5 0.5 1.5

Legend. 1 = mΓ
S (νi,¬p), 2 = mΓ

S (νi,¬q), 3 = mΓ
S (νi, p ∨ q).

Hence, ∆S(Γ ) = {ν2, ν4, ν5, ν6, ν8}, and so, for instance, Γ |∼S¬p ∨ ¬q (even
though Γ |̸∼S¬p and Γ |̸∼S¬q).
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6.2 Non-deterministic Logics

Matrix-based semantics is truth-functional in the sense that the truth-value of a
complex formula is uniquely determined by the truth-values of its subformulas.
However, real-world information is inescapably incomplete, uncertain, vague,
imprecise or inconsistent, and these phenomena are in an obvious conflict with
the principle of truth-functionality. One possible solution to this problem is to
relax this principle by borrowing from automata and computability theory the
idea of non-deterministic computations, and apply it in evaluations of truth-
values of formulas. This leads to the idea of non-deterministic matrices [11],
allowing non-deterministic evaluations of formulas. This kind of semantics has a
variety of applications for reasoning under uncertainty (see, e.g., [12]).

Definition 21. A non-deterministic matrix (Nmatrix ) for L is a tuple M =
⟨V,D,O⟩, where V is a non-empty set of truth values, D is a non-empty proper
subset of V, and O contains an interpretation function ⋄̃ : Vn → 2V \ {∅} for
every n-ary connective ⋄ of L. Again, we say that M is finite if so is V.

An M-valuation is a function ν : FL → V such that for every connective ⋄
in L,

ν(⋄(ψ1, . . . , ψn)) ∈ ⋄̃(ν(ψ1), . . . , ν(ψn)).

The set of all M-valuations is denoted by ΛM. Again, ν ∈ ΛM is an M-model
of ψ (denoted ν |=M ψ), if ν(ψ) ∈ D.

Ordinary matrices can be thought of as Nmatrices whose interpretations
return singletons of truth-values. Again, for an Nmatrix M, the pair ⟨ΛM, |=M⟩
is a denotational semantics and it induces a Tarskian consequence relation ⊢M.

Example 11. It is well-known that McCarthy’s three-valued logics (Example 9) is
appropriate for describing sequential (lazy) computations with errors. Its asym-
metric conjunction and disjunction correspond to computation processes that
halt after encountering the first error, evaluated from left to right. Thus, e.g.,
when ν(ψ) = ⊥, we have that ν(ψ ∨ ϕ) = ⊥ as well, regardless of ν(ϕ). In turn,
Kleene’s three-valued logics (see again Example 9) is more appropriate for de-
scribing parallel computations with errors, since it has symmetric conjunction
and disjunction.

Consider now a situation in which it is not known whether a certain system
performs sequential or parallel computations, and that in each particular case
it may apply a different kinds of computations. This scenario can be captured
by the following non-deterministic matrix, combining Kleene’s and McCarthy’s
three-valued interpretations of the connectives:

¬̃
f {t}
⊥ {⊥}
t {f}

∧̃ f ⊥ t

f {f} {f} {f}
⊥ {f,⊥} {⊥} {⊥}
t {f} {⊥} {t}

∨̃ f ⊥ t

f {f} {⊥} {t}
⊥ {⊥} {⊥} {t,⊥}
t {t} {t} {t}

The suitability of the above Nmatrix for reasoning about computation errors is
shown in [10]. In Example 12 below we shall demonstrate its use for dissimilarity-
based reasoning.
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The dissimilarities-based approach can be applied to the framework of Nma-
trices in a way which is quite similar to the deterministic case. However, as was
shown in [6], it is important to note that some dissimilarity generators (and the
respective settings) that are definable with respect to standard matrices, are
not applicable in the non-deterministic case. This is due to the fact that non-
deterministic valuations are not truth-functional, so they can agree on atomic
formulas, but may make different non-deterministic choices on complex formulas.
This is also the reason why Proposition 7 is not extendable to non-deterministic
semantics. Yet, a stricter version of that proposition does hold also in the non-
deterministic case:

Proposition 8. Let M = ⟨V,D,O⟩ be a finite Nmatrix for a propositional lan-
guage L, d a pseudo distance on V, g an aggregation function, and G a context
generator for L. For each Γ ∈ TL define a function dgG(Γ ) : ΛM ×ΛM → R+ by:

dgG(Γ )(ν, µ) = g
(
{d(ν(ψ), µ(ψ)) | ψ ∈ G(Γ )}

)
.

Then dgG((Γ ) is a dissimilarity function. Moreover,

– if GID ⊆ G then dgG is a G-dissimilarity generator,

– if GSF ⊆ G and GSF ◦ G ⊆ G, then dgG is a normal G-dissimilarity generator.

Proof. Similar to that of Proposition 7, leaving only the case that GID ⊆ G in
the proof that dgG is a G-dissimilarity generator (note that this case covers also

the condition that GSF ⊆ G), and replacing Atoms(Γ ) by SF(Γ ) in the proof of
normality. �

Example 12. Let S = ⟨GSF, d, Σ⟩ be a setting for the denotational semantics
M3⊥

KM , induced by the Nmatrix of Example 11, combining Kleene’s and Mc-
Carthy’s three-valued logics. Here, GSF is the context generator by subformulas,
Σ is the summation function, and d is a GSF-dissimilarity generator, producing
for each Γ the following dissimilarity:

dΣGSF(Γ )(ν, µ) = Σ {d0(ν(ψ), µ(ψ)) | ψ ∈ SF(Γ )},

where d0 : {t, f,⊥}×{t, f,⊥} → {0, 0.5, 1} is defined as in Example 10. The fact
that d is indeed a GSF-dissimilarity generator follows by Proposition 8.

Now, as in Example 10, we consider the theory Γ = {¬p,¬q, p ∨ q}. It is easy
to verify that Γ is not M3⊥

KM -satisfiable, so we compute its most plausible in-
terpretations. Note that this time, in addition to the nine valuations computed
in Example 10, we now have an additional valuation, which stems from the fact
that in M3⊥

KM the value of ⊥∨̃t may be either t or ⊥, so we need two valuations
to represent this (denoted ν7a and ν7b in the table below) instead of just one
valuation (ν7 in the table of Example 10), as in the deterministic case. So we
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now have:

p q ¬p ¬q p ∨ q 1 2 3 MS(νi, Γ )

ν1 t t f f t 2 2 0 4
ν2 t f f t t 3 0 0 3
ν3 t ⊥ f ⊥ t 2.5 1 0 3.5
ν4 f t t f t 0 3 0 3
ν5 f f t t f 0 0 3 3
ν6 f ⊥ t ⊥ ⊥ 0 1.5 1.5 3
ν7a ⊥ t ⊥ f t 1 2.5 0 3.5
ν7b ⊥ t ⊥ f ⊥ 1.5 2 0.5 4
ν8 ⊥ f ⊥ t ⊥ 1.5 0 1.5 3
ν9 ⊥ ⊥ ⊥ ⊥ ⊥ 1 1 1.5 3.5

Legend. 1 = mΓ
S (νi,¬p), 2 = mΓ

S (νi,¬q), 3 = mΓ
S (νi, p ∨ q).

Thus, ∆S(Γ ) = {ν2, ν4, ν5, ν6, ν8}. Note that, restricted to SF(Γ ), these are
exactly the same most plausible interpretations of Γ as those obtained in Ex-
ample 10 (for the deterministic matrix M3⊥

K ).

Note 6. Clearly, there are useful dissimilarity generators other than those that
are covered by the construction of Proposition 8. One of them is the dissimilarity
generator dnG , in which dnG(Γ )(ν, µ) is the number of formulas ψ ∈ G(Γ ), for which
(i) ν(ψ) ̸= µ(ψ), and (ii) if ψ = ⋄(φ1, . . . , φn), then for all 1 ≤ i ≤ n: ν(φi) =
µ(φi). This function is one of the pseudo distances that are introduced in [6] for
distance-based reasoning for non-deterministic matrices. It can be verified that
dnG is also a G-dissimilarity generator.

Example 13. Consider a transmission protocol for a system with three transmit-
ters T1, T2 and T3, where the first two are connected to a bus through an arbiter
A, and the third one is connected directly to the bus. The bus has a line Msg
for the transmitted message, and a line Busy, which is turned on whenever a
transmission occurs. When one of the transmitters T1 or T2 has a message to
transmit, it signals to the arbiter by turning on the line M1 or M2 respectively.
The arbiter then turns on the line Busy, and Ti transmits its message on the line
Msg. As for the third transmitter, whenever T3 wants to transmit a message,
it turns on M3 and transmits the message on Msg. A schematic presentation of
this circuit (excluding some details of the logic of Msg, which are not relevant
for this example) is shown in Figure 1.

Suppose now that the arbiter has no synchronization method, and whenever
T1 and T2 request the line at the same time, the result is unpredictable: the line
Busy can either stay on or be turned off. This non-deterministic behavior of the
arbiter can be described using the following interpretation of the connective ⊙

⊙̃ f t
f {f} {t}
t {t} {t, f}

Let M be the two-valued Nmatrix for the language of {¬,∨,⊙}, which includes
the above non-deterministic interpretation for ⊙ and the standard interpreta-
tions of negation ¬ and disjunction ∨.
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Fig. 1. The system of Example 13

Next, suppose that we observe the following unexpected behavior of the ar-
biter: although T1 has a message to transmit, while T2 has none, the line Busy
is not turned on. This can be captured by the following theory:

Γ = {M1,¬M2,¬Busy}

where Busy is an abbreviation of the formula (M1⊙M2) ∨M3, representing the
normal behavior of the line Busy. Obviously, this theory is not M-satisfiable. For
reasoning with this abnormality, we use the setting S = ⟨GSF, dnGSF , Σ⟩, where dnGSF

is the dissimilarity generator defined in Note 6. The dissimilarity computations
for this case are represented in the table below:

M1 M2 M3 ¬M2 M1⊙M2 Busy ¬Busy 1 2 3 MS(νi, Γ )

ν1 t t t f t t f 0 1 2 3
ν2 t t t f f t f 0 1 1 2
ν3 t t f f t t f 0 1 1 2
ν4 t t f f f f t 0 1 0 1
ν5 t f t t t t f 0 0 2 2
ν6 t f f t t t f 0 0 1 1
ν7 f t t f t t f 1 1 2 4
ν8 f t f f t t f 1 1 1 3
ν9 f f t t f t f 1 0 1 2
ν10 f f f t f f t 1 0 0 1

Legend. 1 = mΓ
S (νi,M1), 2 = mΓ

S (νi,¬M2), 3 = mΓ
S (νi,¬Busy).

Hence, ∆S(Γ ) = {ν4, ν6, ν10}, and so, for instance, Γ |∼S¬M3, even though
neither M1 nor ¬M2 are |∼S -inferrable from Γ . Hence, although one can say
nothing about T1 and T2, it is still possible to conclude in this case that T3 has
no message to transmit.
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6.3 Modal Logics

Next, we consider a denotational semantics that is based on a many-valued ex-
tension of standard Kripke semantics (see [20]), where the logical connectives are
interpreted by a finite matrix M,12 and qualifications of the truth of a judge-
ment are expressed by the necessitation operator “�”. In case of the standard
two-valued matrix we get the usual Kripke-style (possible worlds) semantics.

Definition 22. Let L be a propositional language.

– A frame for L is a triple Fr = ⟨W,R,M⟩, where W is a non-empty set (of
“worlds”), R (the “accessibility relation”) is a binary relation on W , and
M = ⟨V,D,O⟩ is a matrix for L. We say that a frame is finite if so is W .

– Let Fr = ⟨W,R,M⟩ be a frame for L. An Fr-valuation is a function ν :
W × FL → V that assigns truth values to the L-formulas at each world in
W according to the following conditions:

• For every connective ⋄, ν(w, ⋄(ψ1, . . . , ψn))= ⋄̃M(ν(w,ψ1), . . . , ν(w,ψn)),
• ν(w,�ψ)∈D iff ν(w′, ψ)∈D for all w′ such that R(w,w′).

The set of Fr-valuations is denoted by ΛFr. The set of Fr-valuations that
satisfy a formula ψ in a world w ∈ W is modwFr(ψ) = {ν ∈ ΛFr | ν(w,ψ) ∈
D}.

– A frame interpretation is a pair I = ⟨Fr, ν⟩, in which Fr = ⟨W,R,M⟩ is
a frame and ν is an Fr-valuation. We say that I satisfies ψ (or that I is a
model of ψ), if ν ∈ modwFr(ψ) for every w ∈ W . We say that I satisfies Γ if
it satisfies every ψ ∈ Γ .

Definition 23. A set I = {⟨⟨Wi, Ri,M⟩, νi⟩ | i = 1, 2, . . .} of frame interpre-
tations is called M-closed, if for each interpretation ⟨Fr, ν⟩ ∈ I and µ ∈ ΛM
there is an interpretation ⟨Fr, µ⟩ ∈ I.

Let I be a non-empty set of frame interpretations. We define a satisfaction
relation |=I on I × FL by I |=I ψ iff I satisfies ψ. Note that I = ⟨I, |=I⟩ is a
denotational semantics in the sense of Definition 2. By Proposition 1, then, the
induced relation ⊢I is a Tarskian consequence relation for L.

Given a possible-world semantics I = ⟨I, |=I⟩, it is possible to define an
inconsistency-tolerant variant of ⊢I by introducing a dissimilarity-based setting
S = ⟨G, d, f⟩ and applying the definitions in Section 4. As frame interpretations
are more complicated semantic structures than those considered in the previous
sections, defining intuitive and simple dissimilarity generators is more challeng-
ing in this case. Below, we consider a simple and useful case: a set of frame
interpretations in which all the frames share the same set of worlds and accessi-
bility relation. In this case, dissimilarity between frame interpretations may be
defined by comparing valuations in each world and then aggregating over the
worlds:
12 This framework can be extended to Nmatrices as well, but for simplicity we stick to

deterministic matrices.
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Proposition 9. Let I = ⟨I, |=I⟩ be a possible world semantics, where I =
{⟨⟨W,R,M⟩, νi⟩ | i = 1, 2, . . .} and W is finite. Let dMG be a G-dissimilarity
generator for ⟨ΛM, |=M⟩ (e.g., of the form considered in Proposition 7). We
define, for an aggregation function g, a function dgG, such that for any Γ and
frame interpretations I1 = ⟨⟨W,R,M⟩, ν1⟩ and I2 = ⟨⟨W,R,M⟩, ν2⟩ ∈ I,

dgG(Γ )(I1, I2) = g
(
{dMG (Γ )(ν1(w), ν2(w)) | w ∈W}

)
where, for i = 1, 2, νi(w) is the ‘restriction’ of νi to the world w, that is: for
every formula ψ, νi(w)(ψ) = νi(w,ψ). Then:

a) dgG is a G-dissimilarity generator for I,

b) if I is M-closed and dMG is normal, then dgG is a normal G-dissimilarity
generator for I.

Proof. The fact that for every theory Γ the function dgG(Γ ) is a G-dissimilarity

follows by the facts that dMG (Γ ) is a G-dissimilarity function for M and that
g is an aggregation function. These facts also assure the second condition in
Definition 12. To see that dgG satisfies also the last condition in that definition,

suppose that dgG(Γ )(I1, I2) = 0. Then dMG (Γ )(ν1(w), ν2(w)) = 0 for all w ∈ W
and so ν1(w) ∼Γ ν2(w) for every w ∈W . Since the frame interpretations have the
same accessibility relation, for every ψ ∈ Γ and every w ∈W , ν1(w) ∈ modM(ψ)
iff ν2(w) ∈ modM(ψ). It follows that for every ψ ∈ Γ , I1 |=I ψ iff I2 |=I ψ, and
so I1 ∼Γ I2.
For Item (b), let ϕ be a non-tautological formula that is G-independent of Γ
and let I1 = ⟨⟨W,R,M⟩, ν1⟩ ∈ modI(ϕ). Then ν1(w) ∈ modM(ϕ) for every
w ∈ W . Now, since dMG is a normal G-dissimilarity generator for M, for ev-
ery w ∈ W there is some µ2(w) ∈ ΛM such that µ2(w) ̸∈ modM(ϕ) but still
dMG (Γ )(ν1(w), µ2(w)) = 0. Let ν2 ∈ ΛM be any valuation such that for ev-
ery world w ∈ W and formula σ, ν2(w, σ) = µ2(w)(σ). Since I is M-closed,
I2 = ⟨⟨W,R,M⟩, ν2⟩ ∈ I. Moreover, I2 ̸|=I ϕ, but still d

g
G(Γ )(I1, I2) = 0. Thus

dgG is normal. �

Example 14. A committee of three people, P1, P2 and P3 should nominate two or
less candidates among a and b for a governmental position. A committee member
Pi may consult with any other member. Moreover, Pi will vote for x ∈ {a, b} only
if Pi believes that x is qualified, and no member that Pi consults with believes
otherwise. A candidate is recommended only upon a consensus.

A journalist J wants to predict the committee’s recommendation, based on
his partial knowledge about the committee and some leaking rumors. Suppose
that he knows that P1 believes that both candidates are qualified and that P2

believes that b is qualified. Moreover, J knows that P1 and P2 consult with P3,
but P3 never asks anyone else for advice.

This situation can be represented by the classical matrix and a modal lan-
guage L = {�,∧,¬}. The atoms qa and qb respectively represent the belief
that a and b are qualified, and the formula Qx = �qx indicates that x is in the
list of qualified candidates. Each world is associated with a committee member:
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Fig. 2. The frame of Example 14

W = {P1, P2, P3}. Accessibility between worlds indicates a consulting relation
between the members, thus: R = {⟨P1, P1⟩, ⟨P2, P2⟩, ⟨P3, P3⟩, ⟨P1, P3⟩, ⟨P2, P3⟩}.
The corresponding frame is shown in Figure 2.

Next, suppose that two contradictory rumors are brought to J’s attention:
according to one, the list includes the names of both a and b. According to
the other, at least one of the members disqualified a. This information may
be represented by Γ = {¬�qa,�qa ∧ �qb}. For maintaining this contradictory
theory, J uses |∼S , induced by the setting S = ⟨GAt, dΣ , Σ⟩, where dΣ is the
dissimilarity-generator defined like in Proposition 9 for g=Σ and dMG =dhG . Note
that since I is normal, by Theorem 1 and Proposition 9, |∼S is inconsistency-
tolerant.

The dissimilarity calculations for the frame interpretations that correspond
to the partial knowledge of J are given below (where ψi

x, for ψ ∈ {q,Q}, x ∈ {a, b}
and 1≤ i≤3, denotes the value of the formula ψx in the world Pi).

q1a q2a q3a q1b q2b q3b Q1
a Q2

a Q3
a Q1

b Q2
b Q3

b 1 2 3

I1 t t t t t t t t t t t t 1 0 1
I2 t t t t t f t t t f f f 1 1 2
I3 t t f t t t f f f t t t 0 1 1
I4 t t f t t f f f f f f f 0 2 2
I5 t f t t t t t f t t t t 0 1 1
I6 t f t t t f t f t f f f 0 2 2
I7 t f f t t t f f f t t t 0 2 2
I8 t f f t t f f f f f f f 0 3 3

Legend. 1=mΓ
S (Ii,¬Qa), 2=mΓ

S (Ii,Qa ∧ Qb)), 3=MS(i, Γ ).

Thus, ∆S(Γ ) = {I1, I3, I5}, and so Γ |∼SQb while Γ |̸∼SQa, Γ |̸∼S¬Qa. Based on
his knowledge, then, J may assume that b will be nominated, while nothing can
be predicted about a.
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7 Conclusion

We have introduced an abstract and modular framework of supplementing differ-
ent logics, based on denotational semantics, with some extra apparatus of incon-
sistency tolerance. To obtain an inconsistency-tolerant variant of one’s favorite
logic (defined by some denotational semantics S), one simply needs to choose an
appropriate semantic setting for S according to some application-specific con-
siderations. This automatically induces an operator that relates each theory to
its most plausible interpretations, and so a corresponding inconsistency-tolerant
variant of the original logic is available. Our framework is schematically depicted
in Figure 3.

Fig. 3. The dissimilarity-based framework

Similar methods for generating such logics were already introduced, e.g., in [2]
for deterministic matrices, and in [6] for two-valued non-deterministic matrices.
However, all these methods heavily depend on their underlying semantics. The
framework presented here, however, is substantially more general — it assumes
nothing about the underlying semantics, except for its being denotational. This
is done by identifying what a “similarity” between abstract semantic entities is,
and what properties it should satisfy. In particular, we have found that the stan-
dard notion of a distance is not adequate for our purpose, and that a more general
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notion is required. The generalized notion of a dissimilarity admits the definition
of some preferential logics that are not even cumulative (the weakest family of
preferential logics considered in the well-known framework of Makinson [38] and
Kraus-Lehmann-Magidor [30]), but which still have some merit for AI applica-
tions. We have shown, moreover, that our approach may be used for extending
traditional distance-related methodologies in the context of revision and merging
systems [27, 29, 34], cardinality-based methods for database repair [5, 13, 37] and
consistent query answering [1, 47], and forgetting-based approaches to reasoning
with inconsistency [32, 35].

An important subject for future research is a comparative study of the differ-
ent entailment relations that are induced by different dissimilarity-based settings.
This involves extensions to the nonmonotonic case of works such as that in [4]
(which introduces a list of desirable properties that paraconsistent consequence
relations should have13). A better understanding of the relationships between
semantic settings and the entailment relations that they induce will be helpful
in providing guidelines on how to adapt semantic settings to application-specific
needs. Other directions for future work include the extension of our framework to
the first-order case, and the incorporation of semantics that are not denotational,
such as the one in [15], which is induced by ordinal conditional functions [46].
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