
Cut-free Sequent Calculi for C-systems with

Generalized Finite-valued Semantics

Arnon Avron, Beata Konikowska and Anna Zamansky

Abstract

In [5], a general method was developed for generating cut-free ordinary
sequent calculi for logics that can be characterized by finite-valued se-
mantics based on non-deterministic matrices (Nmatrices). In this pa-
per, a substantial step towards automation of paraconsistent reasoning
is made by applying that method to a certain crucial family of thousands
of paraconsistent logics, all belonging to the class of C-systems. For that
family, the method produces in a modular way uniform Gentzen-type
rules corresponding to a variety of axioms considered in the literature.

1 Introduction

One of the main drawbacks of classical logic (CL) is that it fails to accom-
modate the fact that knowledge bases containing contradictory data may still
produce useful answers to queries. This is because in CL a single inconsis-
tency leads to trivialization of the whole knowledge base. Accordingly, over
the last decades there has been a growing interest in computer science appli-
cations of paraconsistent logics — logics which allow non-trivial inconsistent
theories. 1 Integration of information from multiple sources in large knowledge
bases, negotiations among agents with conflicting goals, and complex software
specifications in which different stake-holders have incompatible requirements
are just a few cases in point. Recently, suggestions have even been made (see,
e.g., [27]) to adopt paraconsistent logic as a foundational concept for future
information systems engineering.

One of the oldest and best known approaches to paraconsistency is da
Costa’s approach ([24, 25, 28]), which seeks to allow the use of classical logic
whenever it is safe to do so, but behaves completely differently when contra-
dictions are involved. This approach has led to the introduction of the family
of Logics of Formal (In)consistency (LFIs) ([17, 18]).2 The LFI family is based
on two key ideas. The first is that propositions should be divided into two
sorts: the “normal” (or consistent), and the “abnormal” (or inconsistent) ones.

1(See, e.g., [19, 26, 33] for some concrete examples of applications of paraconsistent logics
in computer science.

2The reason we write “(In)consistency” rather than “Inconsistency” is that the primitive
operator ◦ used in this paper (and in most other works on LFIs) actually denotes consistency

rather than inconsistency. In fact, the inconsistency of ϕ can usually be expressed by ϕ∧¬ϕ
(or ¬ϕ ∧ ϕ). In contrast, formally expressing consistency is a much more subtle problem.

1

While classical logic can be applied freely to normal propositions, its appli-
cation to the abnormal ones is restricted. The second idea is to reflect this
classification within the language used. In the most important class of LFIs
called C-systems ([18]), this is done by employing a special (either primitive or
defined) connective ◦, where the intuitive meaning of ◦ϕ is “ϕ is consistent”
(or “ϕ is normal”).

For a long time, the class of C-systems had two major shortcomings, which
in our opinion prevented it from becoming a widely-used logical formalism
for reasoning with inconsistent data and theories. The first was that origi-
nally those systems lacked corresponding intuitive and useful semantics which
would provide real insight into them. Later, bivaluations semantics and possi-
ble translations semantics were introduced for those systems ([20, 30, 17, 18]).
However, both those types of semantics are problematic from the crucial view-
point of analyticity. Roughly, a semantics is analytic if to determine whether ϕ
follows from T one need not consider the set of complete “orthodox” models,
but only the parts of those models which involve the subformulas of T ∪ {ϕ}.3

This property usually guarantees decidability if T is finite. Unfortunately, nei-
ther bivaluations semantics nor possible translations semantics are satisfactory
in this respect, as their analyticity is not guaranteed a priori. Accordingly, the
corresponding proposition should be proved from scratch (if it is true at all)
for any potentially useful instance of these types of semantics. This unfortu-
nate state of affairs was finally remedied in [4, 1, 3], where simple, modular
and analytic semantics for practically all the propositional C-systems consid-
ered in the literature were introduced. Those semantics were based on the use
of non-deterministic matrices (Nmatrices), which provide a natural (and still
analytic) generalization of the class of many-valued matrices.4 In this general-
ization, the value assigned by a valuation to a complex formula can be chosen
non-deterministically out of a certain nonempty set of options. The analyticity
of this kind of semantics guarantees that a logic which has a finite characteristic
Nmatrix is necessarily decidable.

The second shortcoming of C-systems was that their formulation was orig-
inally given in terms of Hilbert-type calculi, and for many years no analytic5

calculi were available for most of them. At first, most of the efforts towards
finding such calculi concentrated on da Costa’s historical system C1. After
an aborted attempt by Raggio in the sixties ([34]), Beziau proposed in [14]
somewhat peculiar sequent rules for C1, using an intuitive translation of cer-
tain semantical conditions. Later he proved a general completeness theorem
which explains why this intuitive translation works. Proving cut-elimination
using his “monstrous” rules (as he himself described them in [15]) was another
non-trivial task. At about the same time, Carnielli et al. introduced a tableau
system for C1 ([21, 17, 22]). Recently some analytic calculi have been intro-

3An exact definition of analyticity for the case when “models” are certain functions defined
for all formulas of the language is implicit in Proposition 18 below.

4In turn, bivaluations semantics, and especially possible translations semantics, can be
viewed as a generalization of the semantics of Nmatrices (see [16]) — but one in which the
property of analyticity is lost.

5Note that in this context we have in mind the usual syntactic analyticity of a calculus,
as opposed to the semantic analyticity described above.

2

duced also for a few other C-systems ([32, 33, 29]). However, since each of
those calculi was tailored to some specific system, their rules were introduced
in a sort of an ad-hoc manner, and so they do not have a uniform structure.
Therefore, even a slight modification in any of those systems would practically
mean starting the search for a corresponding analytic calculus all over again.

In this paper we show that for a very large class of C-systems a remedy
for the above deficiency consists in applying the algorithm given in [5] for
constructing an analytic Gentzen-type system for a logic with a characteristic
finite-valued Nmatrix whose language is sufficiently expressive for that Nma-
trix. The resulting sequent calculus automatically enjoys cut-admissibility, and
its rules have a uniform form, closely related to that used in calculi for classical
logic and other well known calculi. Based on that algorithm, we provide a
uniform and modular method for a systematic generation of cut-free sequent
calculi for a very large family of thousands of C-systems6. We believe that
these results can open the door to construction and implementation of efficient
theorem provers based on this type of paraconsistent logics, which in turn will
lead to their useful new applications for reasoning under uncertainty and in-
consistency.

2 Preliminaries

In what follows, L is a propositional language, and FrmL is its set of wffs. The
metavariables ϕ, ψ range over L-formulas, p, q range over atomic formulas, T, S
range over sets of L-formulas, and Γ,∆ range over finite sets of L-formulas.

Definition 1 A (Tarskian) consequence relation (tcr) for a language L is a
binary relation ⊢ between sets of L-formulas and L-formulas, satisfying the
following three conditions:

Reflexivity : if ψ ∈ T then T ⊢ ψ.

Monotonicity : if T ⊢ ψ and T ⊆ T ′ then T ′ ⊢ ψ.

Transitivity : if T ⊢ ψ and T, ψ ⊢ ϕ then T ⊢ ϕ.

Definition 2 A propositional logic is a pair L = 〈L,⊢〉, where ⊢ is a tcr for L
which satisfies the following:

Structurality : if T ⊢ ϕ then σ(T) ⊢ σ(ϕ), where σ is a substitution in L.

Non-triviality : p 6⊢ q, where p and q are distinct propositional variables.

The notion of paraconsistency (with respect to ¬) is usually defined as
follows (see, e.g., [17]):

Definition 3 Let L be a language which includes a unary connective ¬. A
propositional logic L = 〈L,⊢〉 is paraconsistent (with respect to ¬) if there are
formulas ψ, ϕ ∈ FrmL such that ψ,¬ψ 6⊢ ϕ.7

6A preliminary description of the method, together with an illustrative example, was given
in [8].

7As ⊢ is structural, it is enough to require that there are propositional variables p, q such
that p,¬p 6⊢ q.

3

2.1 A Taxonomy of LFIs

Notation 4 Let Lcl be the classical propositional language with the set of
connectives {∧,∨,⊃,¬}, and let L+

cl be its positive fragment (i.e., L+
cl is the

propositional language whose set of connectives is {∧,∨,⊃}).

Logics of Formal (In)consistency (LFIs) form a large family of paraconsis-
tent logics, in which the notion of consistency is expressed in the language of
the logic itself. Namely, a paraconsistent logic L = 〈L,⊢〉 is an LFI if there is a
propositional variable p and a set X(p) of L-formulas containing only the vari-
able p such that ψ,¬ψ,X{ψ/p} ⊢ ϕ8 for every ψ, ϕ ∈ FrmL. A particularly
useful subclass of LFIs is that of C-systems, in which X(p) is a singleton:

Definition 5 Let L = 〈L,⊢〉 be a logic with L containing Lcl. We say that L
is a C-system if the following holds:

1. L contains the L+
cl-fragment of classical logic,

2. L is paraconsistent,

3. L has a (primitive or defined) unary connective ◦, for which the following
axioms are valid in L:

(t) ¬ϕ ∨ ϕ (b) ◦ ϕ ⊃ (ϕ ∧ ¬ϕ ⊃ ψ) (k) ◦ ϕ ∨ (ϕ ∧ ¬ϕ)

Notation 6 In what follows, we take ◦ to be a primitive connective of the
language. We shall denote by LC the propositional language whose set of
connectives is {∧,∨,⊃,¬, ◦}.

Definition 7 Let HCL+ be a standard Hilbert-style system which has Modus
Ponens as the only inference rule, and is sound and strongly complete for the
positive fragment (i.e., the L+

cl-fragment) of classical propositional logic.

1. The system B for LC is obtained by adding to HCL+ the axioms (t) and
(b).

2. The system BK (for LC) is obtained by adding to B the axiom (k).

Remark 8 According to our definition of a C-system, the system BK intro-
duced above is the minimal (and most basic) C-system. It should be noted,
though, that our notion of a “C-system” is somewhat narrower than that used
in [17, 18], and corresponds to what would be called there “a C-system based
on classical logic in which axioms (t) and (k) are valid”. However, all the “C-
systems” which are studied in [17, 18] are based on classical logic, and in all of
them (t) is valid. Therefore the actual difference is that in [17, 18] the validity
of (k) is not required. Accordingly, the system B (called mbC there) is the
one which is considered there to be the most basic C-system. Nevertheless,
we find it much more appropriate to choose BK for this role, for the following
reasons:

8The substitution X{ψ/p} is understood in the standard way.

4

1. Given the intended meaning of ◦ϕ as “ϕ is consistent”, the meaning of
axiom (b) is that no formula is both consistent and contradictory. Axiom
(k) complements this by saying that every formula is either consistent or
contradictory. This last principle seems to be as essential for the intended
meaning of ◦ϕ as that expressed by axiom (b).

2. Another strong indication that BK is the most natural basic C-system
is that in the Gentzen-type system for this logic which is presented in
Subsection 3.2 the right and left introduction rules for all the connectives
other than ¬ are dual: including one of them guarantees the invertibility
(Definition 43) of the other in BK (see Proposition 44 below). This also
applies to the rules for ◦ corresponding to axioms (b) and (k).

3. (k) is anyway a theorem of almost every important C-system ever studied.
This is due to the fact that it is derivable in B from each of the three most
important axioms concerning ◦ which have been studied in the literature:
the axiom denoted below by (i), as well as axioms (l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ,
and (d) ¬(¬ϕ ∧ ϕ) ⊃ ◦ϕ, which are not handled in this paper9. Those
dependencies are easily established (see Example 42 for the case of (l)).

Next, we provide a list of axioms which are frequently used for defining indi-
vidual C-systems:

Definition 9 Let A be the following set of axioms for ♯ ∈ {∧,⊃,∨}:

(c) ¬¬ϕ ⊃ ϕ (e) ϕ ⊃ ¬¬ϕ
(i1) ¬◦ϕ ⊃ ϕ (i2) ¬◦ϕ ⊃ ¬ϕ
(o1

♯) ◦ϕ ⊃ ◦(ϕ♯ψ) (o2

♯) ◦ψ ⊃ ◦(ϕ♯ψ)

(a♯) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ♯ψ) (a¬) ◦ϕ ⊃ ◦¬ϕ

Remark 10 The literature on LFIs usually mentions an axiom denoted by
(i) which is the conjunction of our (i1) and (i2). Similarly, the axiom (o♯)
frequently mentioned in the literature is the conjunction of our (o1

♯) and (o2

♯).
Note also that the extensions of B with (c), and with both (c) and (i), are
denoted in [29] by bC and Ci, respectively.

Definition 11 For any A ⊆ A, BK[A] is the system obtained out of BK by
extending it with the axioms from A.

Notation 12 In the sequel we shall usually omit the various brackets, and
write, e.g., BKco1

∧ instead of BK[{(c), (o1
∧)}]. Moreover, we shall write, e.g.,

BKi instead of BK[{(i1), (i2)}] and BKa instead of BK[{(a∧), (a∨), (a⊃)}].
We will also use similar abbreviations for the (o)-axioms.

9 Unfortunately, the problem of handling axioms (l) and (d) is outside the scope of this
paper, because (as shown in [4]) C-systems which include one of them cannot be given a
finite semantic characterization in terms of Nmatrices. As result, the method used in this
paper does not apply to such systems. However, recently we have found (see [9]) that also
for such systems it is possible to develop in a modular way cut-free sequent calculi (albeit of
a more complex nature), but this requires an essential change in the method.

5

Remark 13 Not all of the systems of the form BK[A] for A ⊆ A are different
from each other. Thus, e.g., (a¬) is equivalent to (c) in BK. For this reason,
we do not mention the former in the sequel. All other dependencies can be
checked mechanically using the semantics provided below. See Corollary 32
and Remark 33 below for details on the dependencies between the axioms in
A. Another dependency not mentioned there (due to the fact that the (k)-
axiom is not included in A) is that (i) implies (k) in BK.

2.2 Non-deterministic Matrices

Our main semantic tool in what follows will be the following generalization of
the concept of a many-valued matrix introduced in [10, 11] (for a comprehensive
survey on non-deterministic matrices, see also [13]):

Definition 14

1. A non-deterministic matrix (Nmatrix) for a language L is a tuple M =
〈V ,D,O〉, where: V is a non-empty set of truth values, D (the set of des-
ignated truth values) is a non-empty proper subset of V , and O includes
an interpretation function ⋄̃M : Vn → P+(V) for every n-ary connective
⋄ (where P+(V) is the set of nonempty subsets of V). We say that M is
finite if so is V .

2. Let M = 〈V ,D,O〉 be an Nmatrix. Let F be some set of L-formulas
closed under subformulas. An M-valuation on F is a function v : F → V
which satisfies the following condition for every n-ary connective ⋄ of L
and every ψ1, . . . , ψn ∈ F such that ⋄(ψ1, . . . , ψn) ∈ F :

v(⋄(ψ1, . . . , ψn)) ∈ ⋄̃M(v(ψ1), . . . , v(ψn))

A full M-valuation is an M-valuation on FrmL.

3. Let F be as above, and let ψ ∈ F . An M-valuation v on F satisfies ψ,
denoted by v |=M ψ, if v(ψ) ∈ D. v satisfies a set T ⊆ F of formulas,
denoted by v |=M T , if it satisfies every formula of T .

4. Let F be as above, and let v be an M-valuation on F . A sequent Γ ⇒ ∆
such that Γ ∪ ∆ ⊆ F is satisfied by v if v |=M ψ for some ψ ∈ ∆, or
v 6|=Mψ for some ψ ∈ Γ. A sequent is valid in M if it is satisfied by every
full M-valuation.

5. ⊢M, the consequence relation induced by M, is defined by: T ⊢M ψ if
v |=M ψ for every full M-valuation v such that v |=M T .

Notation 15 Below we shall frequently write just ⋄ instead of ⋄̃M, relying on
the context to indicate whether we mean the connective itself or its interpre-
tation in some Nmatrix M.

Nmatrices enjoy many of the attractive properties of usual (deterministic)
finite-valued matrices. These properties include the following (see ([11]) for
the full proofs):

6

Proposition 16 For every Nmatrix M for L, L = 〈L,⊢M〉 is a propositional
logic.

Proposition 17 (Compactness) If M is finite, then T ⊢M ψ implies that
there is a finite Γ ⊆ T such that Γ ⊢M ψ.

Proposition 18 (Semantic Analyticity) Let F be a set of L-formulas closed
under subformulas, and let M be an Nmatrix for L. Any M-valuation on F
can be extended to a full M-valuation.

Corollary 19 If T ∪ {ψ} ⊆ F , then T ⊢M ψ iff ψ is satisfied by every M-
valuation on F which satisfies T .

Corollary 20 (Decidability) Given a finite Nmatrix M, a finite theory Γ,
and a formula ψ, it is decidable whether Γ ⊢M ψ or not.

The following notion will be useful in the sequel:

Definition 21 LetM1 = 〈V1,D1,O1〉 andM2 = 〈V2,D2,O2〉. M2 is a simple
refinement of M1 if V1 = V2, D1 = D2 and for every n-ary connective ⋄ and
every a1, . . . , an ∈ V1, ⋄̃M2

(a1, . . . , an) ⊆ ⋄̃M1
(a1, . . . , an).

Proposition 22 ([4]) If M2 is a simple refinement of M1, then ⊢M1
⊆⊢M2

.

3 A Systematic Generation of Analytic Calculi

Our method for a systematic construction of Gentzen-type calculi for all the
C-systems presented in this paper is based on the following two facts:

Fact 1: All the systems presented above have semantic characterizations in
terms of finite-valued (in fact, three-valued) Nmatrices (this was first
shown in [1], and is proved again in Subsection 3.1 below). Those char-
acterizations can be obtained in a modular way within the finite-valued
non-deterministic semantic framework developed in [1, 3, 4].

Fact 2: [5] provides an algorithm for constructing cut-free Gentzen-type sys-
tems for logics which have a characteristic finite-valued Nmatrix M, and
the language of which is sufficiently expressive with respect to M (see
Definition 35 below for the meaning of this notion).

We will shortly see that the language of the C-systems studied in this paper
is sufficiently expressive with respect to all the three-valued Nmatrices men-
tioned in Fact 1 above. Hence we can indeed exploit the algorithm mentioned
in Fact 2 in order to construct cut-free Gentzen-type systems for all the para-
consistent logics presented in the foregoing.

We start by recalling some basic relevant definitions:

Definition 23 We say that an Nmatrix M is characteristic for a Gentzen-type
system G if, for every Γ and ∆, ⊢G Γ ⇒ ∆ holds iff Γ ⇒ ∆ is valid in M.

7

Remark 24 If M is characteristic for G, then ⊢G Γ ⇒ ψ iff Γ ⊢M ψ. By
the compactness theorem (Proposition 17), if M is finite, then the foregoing
implies that ⊢M=⊢G.

Below we define non-deterministic three-valued semantics for BK[A] for all
A ⊆ A, and then introduce the corresponding Gentzen-type systems for those
logics.

3.1 Non-deterministic Semantics

Our non-deterministic semantics is based on the following four truth values,
the intuition being that a formula ϕ is assigned a truth value of the form 〈x, y〉,
where x = 1 iff ϕ is “true”, and y = 1 iff ¬ϕ is “true”:

t = 〈1, 0〉, f = 〈0, 1〉,⊤ = 〈1, 1〉,⊥ = 〈0, 0〉

First we note that the axiom (t) ϕ ∨ ¬ϕ, included already in B, rules out the
fourth truth value ⊥ (as (t) intuitively means that ϕ and ¬ϕ cannot be both
“false”), and so we are left with three truth values: t, f and ⊤. Semantics for
systems without the axiom (t) (which are obtained from the positive fragment
of classical logic by adding some axioms from A) can be provided in a similar
way using the above four truth values.

We start by defining the Nmatrix M3 for BK:

Definition 25 The Nmatrix M3 = ({t, f,⊤}, {t,⊤},O) for LC is defined as
follows:

a ¬a ◦a
t {f} {t,⊤}
⊤ {t,⊤} {f}
f {t,⊤} {t,⊤}

∧ t ⊤ f
t {t,⊤} {t,⊤} {f}
⊤ {t,⊤} {t,⊤} {f}
f {f} {f} {f}

∨ t ⊤ f
t {t,⊤} {t,⊤} {t,⊤}
⊤ {t,⊤} {t,⊤} {t,⊤}
f {t,⊤} {t,⊤} {f}

⊃ t ⊤ f
t {t,⊤} {t,⊤} {f}
⊤ {t,⊤} {t,⊤} {f}
f {t,⊤} {t,⊤} {t,⊤}

The next theorem was first proved in [1]. In order to make this paper self-
contained, we provide here a direct proof (which is very similar to the proof of
Theorem 2 in [4]).

Theorem 26 T ⊢M3 ψ iff T ⊢BK ψ.

Proof: Proving soundness is easy. For completeness, assume that T is a theory
and ϕ0 a formula such that T 6⊢BK ϕ0. We construct a model of T in M3

which is not a model of ϕ0. For this, we extend T to a maximal theory T∗

such that T∗ 6⊢BK ϕ0. Then T∗ has the following properties:

1. ψ 6∈ T∗ iff ψ ⊃ ϕ0 ∈ T∗.

8

2. If ψ 6∈ T∗ then ψ ⊃ ϕ ∈ T∗ for every formula ϕ of LC .

3. ϕ ∨ ψ ∈ T∗ iff either ϕ ∈ T∗ or ψ ∈ T∗.

4. ϕ ∧ ψ ∈ T∗ iff both ϕ ∈ T∗ and ψ ∈ T∗.

5. ϕ ⊃ ψ ∈ T∗ iff either ϕ 6∈ T∗ or ψ ∈ T∗.

6. For every formula ϕ of LC , either ϕ ∈ T∗ or ¬ϕ ∈ T∗.

7. ◦ϕ ∈ T∗ iff either ϕ 6∈ T∗ or ¬ϕ 6∈ T∗.

The proofs of Properties 1–5 are exactly as in the case of HCL+ (see definition
7): Property 1 follows from the deduction theorem (which is obviously valid for
BK) and the maximality of T∗. Property 2 is proved first for ψ = ϕ0 as follows:
by 1, if ϕ0 ⊃ ϕ 6∈ T∗ then (ϕ0 ⊃ ϕ) ⊃ ϕ0 ∈ T∗. Hence ϕ0 ∈ T∗ by the positive
tautology ((ϕ0 ⊃ ϕ) ⊃ ϕ0) ⊃ ϕ0 — a contradiction. Property 2 then follows
for all ψ 6∈ T∗ by 1 and the transitivity of implication. Properties 3–5 are easy
corollaries of 1, 2 and the closure of T∗ under positive classical inferences (for
example: suppose ϕ ∨ ψ ∈ T∗, but neither ϕ ∈ T∗, nor ψ ∈ T∗. By Property
1, ϕ ⊃ ϕ0 ∈ T∗ and ψ ⊃ ϕ0 ∈ T∗. Since ϕ0 follows in positive classical logic
from ϕ ∨ ψ, ϕ ⊃ ϕ0, and ψ ⊃ ϕ0, we get ϕ0 ∈ T∗ — a contradiction). Finally,
Property 6 is immediate from Property 3 and Axiom (t), and Property 7 easily
follows from Axioms (b) and (k) and Properties 3,4.

Now define a valuation v in M3 as follows:

v(ψ) =

f if ψ 6∈ T∗

t if ¬ψ 6∈ T∗

⊤ if ψ ∈ T∗,¬ψ ∈ T∗

Then, by Property 6, v is well-defined and v(ψ) ∈ D = {⊤, t} iff ψ ∈ T∗. We
use this to prove that v is a legal valuation, i.e., it respects the interpretations
of the connectives in M3. That this is the case for the positive connectives
easily follows from Properties 3–5 of T∗. We prove next the cases of ¬ and ◦:

• Assume v(ψ) = f . Then ψ 6∈ T∗. Hence ¬ψ ∈ T∗ by Property 6 of T∗,
and ◦ψ ∈ T∗ by Property 7. Thus v(¬ψ) ∈ {⊤, t} and v(◦ψ) ∈ {⊤, t}.

• Assume v(ψ) = t. By definition, this implies ¬ψ 6∈ T∗, and so ◦ψ ∈ T∗

by Property 7. By the definition of v it follows that v(¬ψ) = f , and
v(◦ψ) ∈ {⊤, t}.

• Assume v(ψ) = ⊤. By definition, this implies ψ ∈ T∗ and ¬ψ ∈ T∗. The
latter implies v(¬ψ) ∈ {⊤, t}. Together with the former, it also implies
that ◦ψ 6∈ T∗, by Property 7 of T∗. Hence v(◦ψ) = f .

Since v(ψ) ∈ D iff ψ ∈ T∗, v(ψ) ∈ D for every ψ ∈ T, while v(ϕ0) 6∈ D. Hence
v is a model of T which is not a model of ϕ0.

Next we turn to providing non-deterministic semantics for the extensions
of BK with axioms from A. Our semantics is modular in the following sense:
each axiom ax ∈ A corresponds to some finite set C(ax) of semantic conditions.

9

These conditions lead to simple refinements of the basic Nmatrix M3 (which
amount to reducing the level of non-determinism in M3). The semantics of
BK[A] is then obtained by straightforwardly combining the semantic effects of
all the axioms from A.

Tables 1 and 2 below include the various semantic conditions that corre-
spond to the axioms in A. Most of them are either taken from [4], or are easily
derivable using the method employed in that paper.

Example 27 By way of example, we will explain the derivation of C(o1
∨) from

Table 2. For this purpose, assume that v is a valuation in M3. If v(ϕ) = ⊤,
then v certainly satisfies ◦ϕ ⊃ ◦(ϕ ∨ ψ). Otherwise it satisfies this formula iff
it satisfies ◦(ϕ ∨ ψ), which is the case iff v(ϕ ∨ ψ) 6= ⊤. This again necessarily
holds if v(ϕ) = v(ψ) = f . In the remaining five cases, all we know is that
v(ϕ ∨ ψ) ∈ {t,⊤}. Hence to ensure that indeed v(ϕ ∨ ψ) 6= ⊤ we have to force
it to be t in those cases. This requires five basic semantic conditions, which
can be conveniently grouped as follows: (i) t ∨ t = t ∨ ⊤ = t ∨ f = {t} (i.e.,
t ∨ x = {t} for x ∈ {t,⊤, f}), and (ii) f ∨ t = f ∨ ⊤ = {t}. These are exactly
the elements of C(o1

∨) given in Table 2.

Definition 28 For any A ⊆ A, the Nmatrix M3[A] is the weakest simple
refinement of M3 in which C(ax) (from Tables 1 and 2) holds for every ax ∈ A.

Remark 29 It is easy to check that none of the combinations of the conditions
in Tables 1 and 2 is contradictory. Hence M3[A] is well-defined for every
A ⊆ A.

Remark 30 The semantic conditions for (c), (e), (i1), (i2) correspond to
their respective axioms already in the framework of the system B. For other
conditions, this holds only for BK.

Theorem 31 For any A ⊆ A, T ⊢M3[A] ψ iff T ⊢BK[A] ψ.

Proof: The proof is similar to that of Theorem 26, with BK[A] used instead of
BK. We only have to show that the extra conditions on a valuation imposed
by the axioms from A are respected by the valuation v defined in that proof.
This is easy, and by way of example we show it for the case where (o1

∨) ∈ A.
So assume that v(ϕ) is in {t, f}. Like in the proof of Theorem 26, this implies
that ◦(ϕ) ∈ T∗, and so ◦(ϕ ∨ ψ) ∈ T∗ by o1

∨. If in addition v(ϕ) ∈ {t,⊤} or
v(ψ) ∈ {t,⊤} then either ϕ ∈ T∗ or ψ ∈ T∗, and so ϕ ∨ ψ ∈ T∗ (by positive
classical logic). But if both ϕ∨ ψ and ◦(ϕ∨ψ) are in T∗ then ¬((ϕ ∨ψ) 6∈ T∗

(by Property 7 of T∗ — see the proof of Theorem 26). Hence v(ϕ ∨ ψ) = t
under the two assumptions.

Corollary 32 For ♯ ∈ {∧,∨,⊃}, each of (o1

♯) and (o2

♯) implies (a♯) in BK.

Remark 33 A mechanical check using the semantic conditions from Tables
1,2 shows that there are no other dependencies among the axioms in A.

10

ax C(ax) R(ax)

(c) ¬¬ϕ ⊃ ϕ ¬f = {t}

Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

(e) ϕ ⊃ ¬¬ϕ ¬⊤ = {⊤}

Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

(i1) ¬◦ϕ ⊃ ϕ ◦f = {t}

Γ, ϕ⇒ ∆

Γ,¬ ◦ ϕ⇒ ∆

(i2) ¬◦ϕ ⊃ ¬ϕ ◦t = {t}

Γ,¬ϕ⇒ ∆

Γ,¬ ◦ ϕ⇒ ∆

(a∧) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∧ ψ) t ∧ t = {t}

Γ,¬ϕ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∧ ψ) ⇒ ∆

t ∨ t = t ∨ f = {t}

Γ,¬ϕ⇒ ∆ Γ,¬ψ, ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(a∨) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∨ ψ)

t ∨ t = f ∨ t = {t}

Γ,¬ψ ⇒ ∆ Γ,¬ϕ, ϕ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

f ⊃ t = f ⊃ f = {t}

Γ, ϕ⇒ ∆ Γ,¬ψ, ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(a⊃) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ⊃ ψ)

f ⊃ t = t ⊃ t = {t}

Γ,¬ϕ, ϕ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

Table 1: Axioms, semantic conditions and Gentzen-type rules

11

ax C(ax) R(ax)

(o1
∧) ◦ϕ ⊃ ◦(ϕ ∧ ψ) t ∧ t = t ∧ ⊤ = {t}

Γ,¬ϕ⇒ ∆ Γ ⇒ ψ,∆

Γ,¬(ϕ ∧ ψ) ⇒ ∆

(o2
∧) ◦ψ ⊃ ◦(ϕ ∧ ψ) t ∧ t = ⊤ ∧ t = {t}

Γ,¬ψ ⇒ ∆ Γ ⇒ ϕ,∆

Γ,¬(ϕ ∧ ψ) ⇒ ∆

t ∨ x = {t}

Γ,¬ϕ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(o1
∨) ◦ϕ ⊃ ◦(ϕ ∨ ψ)

f ∨ t = f ∨⊤ = {t}

Γ, ϕ⇒ ∆ Γ ⇒ ∆, ψ

Γ,¬(ϕ ∨ ψ) ⇒ ∆

x ∨ t = {t}

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(o2
∨) ◦ψ ⊃ ◦(ϕ ∨ ψ)

t ∨ f = ⊤ ∨ f = {t}

Γ, ψ ⇒ ∆ Γ ⇒ ∆, ϕ

Γ,¬(ϕ ∨ ψ) ⇒ ∆

t ⊃ t = t ⊃ ⊤ = {t}

Γ,¬ϕ⇒ ∆ Γ ⇒ ∆, ψ

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(o1
⊃) ◦ϕ ⊃ ◦(ϕ ⊃ ψ)

f ⊃ x = {t}

Γ, ϕ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

x ⊃ t = {t}

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(o2
⊃) ◦ψ ⊃ ◦(ϕ ⊃ ψ)

f ⊃ f = {t}

Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

Table 2: Axioms, semantic conditions and rules (for x ∈ {t,⊤, f}) — continued

12

Example 34 • The truth tables for ◦ and ¬ in the Nmatrix M3[{(c), (e)}]
(which is characteristic for the system BKce) are defined as follows:

a ¬a ◦a
t {f} {t,⊤}
⊤ {⊤} {f}
f {t} {t,⊤}

• The system denoted by Cie in [18, 17] is equivalent to our BKcie (or
just Bcie, by Remark 13). In the corresponding characteristic Nmatrix
M3[{(c), (e), (i1), (i2)}], the truth tables for ◦ and ¬ are as follows10:

a ¬a ◦a
t {f} {t}
⊤ {⊤} {f}
f {t} {t}

• The Nmatrix M3[{(a∨), (a∧), (a⊃)}], which is characteristic for BKa, is
defined as follows:

a ¬a ◦a
t {f} {t,⊤}
⊤ {t,⊤} {f}
f {t,⊤} {t,⊤}

∧ t ⊤ f
t {t} {t,⊤} {f}
⊤ {t,⊤} {t,⊤} {f}
f {f} {f} {f}

∨ t ⊤ f
t {t} {t,⊤} {t}
⊤ {t,⊤} {t,⊤} {t,⊤}
f {t} {t,⊤} {f}

⊃ t ⊤ f
t {t} {t,⊤} {f}
⊤ {t,⊤} {t,⊤} {f}
f {t} {t,⊤} {t}

3.2 Corresponding Gentzen-type Systems

Before constructing cut-free Gentzen-type systems for all the logics discussed
above, we need some preparatory technicalities.

Definition 35 The language L is sufficiently expressive for an Nmatrix M =
〈V ,D,O〉 if for any x ∈ V there exist natural numbers lx,mx ≥ 0 and formulas
Ax

j , B
x
k (1 ≤ j ≤ lx, 1 ≤ k ≤ mx) such that the following conditions are

satisfied:

(i) Fv(Ax
j) = Fv(Bx

k) = {p1} for every 1 ≤ j ≤ lx and 1 ≤ k ≤ mx.

(ii) For any valuation v in M and any formula ϕ of L, v(ϕ) = x if and only
if Ax

j {ϕ/p1} ⇒ and ⇒ Bx
k{ϕ/p1} are satisfied by v for every 1 ≤ j ≤ lx

and 1 ≤ k ≤ mx.
11

10An alternative possible-translations semantics for this logic was presented in [31].
11See Item 4 of Definition 14 for the semantic meaning of a sequent.

13

As we have said above, [5] provides a method for constructing a cut-free,
sound and complete Gentzen-type system for a given finite Nmatrix M whose
language is sufficiently expressive for M. The next proposition implies that
this method is applicable to the logics investigated here:

Proposition 36 LC is sufficiently expressive for every simple refinement of
M3.

Proof: It is easy to verify that the following conditions hold in M3 and any
simple refinement of that Nmatrix:

• v(ψ) = t iff v does not satisfy ¬ψ (i.e., v(¬ψ)6∈D).

• v(ψ) = f iff v does not satisfy ψ (i.e., v(ψ)6∈D).

• v(ψ) = ⊤ iff v satisfies both ψ and ¬ψ (i.e., v(ψ) ∈ D and v(¬ψ) ∈ D).

Hence, taking lt = lf = m⊤ = 0, mt = mf = 1, l⊤ = 2, Bt
1 = ¬p1, B

f
1 = p1,

A⊤
1 = p1, and A

⊤
2 = ¬p1, we can conclude that LC is sufficiently expressive for

every simple refinement of M3.

Now the way the algorithm of [5] works (see below for an explanation and
demonstration), together with the proof of Proposition 36, imply that each
application of one of the Gentzen-type rules we obtain in the present case has
the following uniform form:

1. It introduces exactly one formula in its conclusion, on exactly one of its
two sides;

2. The formula being introduced is either of the form ⋄(ψ1, . . . , ψn) or of the
form ¬⋄(ψ1, . . . , ψn), where ⋄ is a primitive connective of the language;

3. Let ⋄(ψ1, . . . , ψn) be the formula mentioned in Item 2. Then all the princi-
pal formulas in the premises belong to the set {ψ1, . . . , ψn,¬ψ1, . . . ,¬ψn};

4. There are no restrictions on the side formulas (i.e., every context is legit-
imate).

Our next definition formalizes this observation in precise terms, and introduces
notation that will be useful for the process of deriving rules.

Definition 37

1. A quasi-canonical rule of arity n is an expression of the form

{Πi ⇒ Σi}1≤i≤m

C

where m ≥ 0, Πi,Σi ⊆ {p1,¬p1, p2,¬p2, . . . , pn,¬pn} for 1 ≤ i ≤ m, and
C has one of the following forms:

⋄(p1, p2, . . . , pn) ⇒ ⇒ ⋄(p1, p2, . . . , pn)

¬ ⋄ (p1, p2, . . . , pn) ⇒ ⇒ ¬ ⋄ (p1, p2, . . . , pn)

14

2. An application of a quasi-canonical rule {Πi ⇒ Σi}1≤i≤m / ⋄(p1, . . . , pn) ⇒
is any inference step of the form:

{Γ,Π∗
i ⇒ ∆,Σ∗

i }1≤i≤m

Γ, ⋄(ψ1, . . . , ψn) ⇒ ∆

where Π∗
i and Σ∗

i are obtained from Πi and Σi (respectively) by substi-
tuting ψj for pj (for all 1 ≤ j ≤ n), and Γ,∆ are any sets of formulas.
An application of a quasi-canonical rule of one of the other three forms
is defined similarly.

3. A Gentzen-type system in which all rules are either structural or quasi-
canonical is called quasi-canonical.

Remark 38 All the Gentzen-type systems developed in this paper are quasi-
canonical. Now quasi-canonical systems provide a natural generalization of the
class of canonical systems ([10, 11, 13]) — the type of the standard Gentzen-
type systems for classical logic. The difference is that canonical systems allow
only rules which introduce formulas of the form ⋄(ψ1, . . . , ψn) in their conclu-
sion, while the principal formulas in their premises are taken just from the set
{ψ1, . . . , ψn}. It should be noted that quasi-canonical Gentzen-type systems
have already been used extensively in the proof theory of non-classical logics
(see e.g. [2]). As far as we know, this cannot be said about any Gentzen-type
formulation of a C-system that has been suggested before.

Now we are ready to apply the method described in [5]. This method has
two stages.

1. At the first (and more important) stage, every entry of every truth table
of M is translated into a set of rules. In the case of M3 and its simple
refinements the general process can be significantly simplified, since each
nontrivial subset of their set of truth values can easily be characterized
using one or two very simple sequents:

• v(ψ) = t iff ¬ψ ⇒ is satisfied by v.

• v(ψ) = f iff ψ ⇒ is satisfied by v.

• v(ψ) = ⊤ iff ⇒ ψ and ⇒ ¬ψ are both satisfied by v.

• v(ψ) ∈ {f,⊤} iff ⇒ ¬ψ is satisfied by v.

• v(ψ) ∈ {t,⊤} iff ⇒ ψ is satisfied by v.

• v(ψ) ∈ {t, f} iff ψ,¬ψ ⇒ is satisfied by v.

Using these six facts12, we can directly and easily translate every entry
of every truth table of M3 (or any of its simple refinements) into either
a single rule, or a pair of rules in case of an entry o(x1, ..., xn) = {⊤}.
Examples of how this is done are provided below.

12Note that since for every valuation v and every formula ψ exactly one of the sequents
⇒ ψ and ψ ⇒ is satisfied by v, the fourth fact is actually equivalent to the first, the fifth to
the second, and the sixth to the third, so we actually use here just three semantic facts.

15

2. The first stage usually results in a large set of often complicated, unwieldy
rules. Accordingly, at the second stage the obtained rules are combined
and simplified in order to get an optimal set of rules. This is done by
using streamlining principles whose applications to a system in which the
cut rule is admissible preserve that property. The set of principles that
we use here for this purpose is a modified variant of the streamlining
principles which were introduced in [7] (and used in [5]). If we denote the
system under consideration by R, then the said streamlining principles
consist in: deleting from the premises of a rule a sequent derivable from
the remainder of the premises (Princ. 1), replacing a sequent in the
premises of a rule by one of its subsequents13 if the latter is derivable
from the premises (Princ. 2), and combining two rules with the same
conclusion (Princ. 3):

Principle 1 If ρ =
S
Σ

(where S is a finite set of premises) is a rule in

R, Π ∈ S and Π is derivable from S \ {Π}, then ρ can be replaced

with
S \ {Π}

Σ
.

Principle 2 If ρ =
S
Σ

is a rule in R, Π ∈ S,Π∗ ⊆ Π, and Π∗ is

derivable from S, then ρ can be replaced with
S∗

Σ
, where S∗ is

obtained from S by replacing Π with Π∗.

Principle 3 Rules
Σ1 . . . Σk

Σ
and

Σ′
1 . . . Σ′

l

Σ
can be replaced

with the rule
{Σi ∪Σ′

j}1≤i≤k,1≤j≤l

Σ

By saying in Principles 1,2 that a sequent Π = Γ ⇒ ∆ is derivable from a
set of sequents S′ we mean in the present case that either Γ and ∆ have
some literal in common, or Π can be derived using cuts and weakening
from S′ ∪ {⇒ p,¬p | p ∈ At(Π)}, where At(Π) is the set of atomic
formulas occurring in Π. Note however that the cut rule is not needed
for deriving the original set of rules from that obtained using the above
three principles. In consequence, by using these principles for simplifying
a system in which the cut rule is admissible we do not lose this property.
Hence the method of [5] guarantees the admissibility of the cut rule in all
the systems obtained below.

To see how the whole process of rule generation and streamlining works,
take for example the truth table for ∨ in M3. We will show how the quasi-
canonical rules for ∨ are derived from that table, using for better readability
ϕ and ψ instead of p1 and p2.

13Here we assume that inclusion and union of sequents are defined componentwise, i.e.: if
Σ1 = Γ1 ⇒ ∆1,Σ2 = Γ2 ⇒ ∆2 then Σ1 ⊆ Σ2 iff Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2; and Σ1 ∪ Σ2 is the
sequent Γ1 ∪ Γ2 ⇒ ∆1 ∪∆2.

16

First, the entry f ∨ f = {f} is translated into the condition: if ϕ ⇒ is
satisfied by a valuation v, and ψ ⇒ is satisfied by v, then ϕ ∨ ψ ⇒ is satisfied
by v. From this, we obtain the rule:

ϕ⇒ ψ ⇒

ϕ ∨ ψ ⇒

Or with the context explicitly mentioned:

Γ, ϕ⇒ ∆ Γ ⇒ ∆, ψ

ϕ ∨ ψ,Γ ⇒ ∆

Next, the entry f ∨ ⊤ = {t,⊤} is translated into the condition: if ϕ ⇒, ⇒ ψ
and ⇒ ¬ψ are all satisfied by v, then so is ⇒ ϕ∨ψ. This gives rise to the rule:

(i)

ϕ⇒ ⇒ ψ ⇒ ¬ψ

⇒ ϕ ∨ ψ

Similarly, the entry f ∨ t = {t,⊤} is translated into the rule

(ii)
ϕ⇒ ¬ψ ⇒

⇒ ϕ ∨ ψ

Since rules (i), (ii) have the same conclusion, we can combine them using Prin-
ciple 3. What we get is the rule which has the conclusion ⇒ ϕ ∨ ψ and the
following 6 premises:

(1) ϕ⇒; (2) ϕ⇒ ψ; (3) ϕ⇒ ¬ψ; (4) ¬ψ, ϕ⇒; (5) ¬ψ ⇒ ψ; (6) ¬ψ ⇒ ¬ψ
In this rule, Premise (6) is an axiom, and so can be deleted by Principle 1.
Further, Premises (2), (3), (4) can all be derived from Premise (1) using weak-
ening, and so can also be deleted by Principle 1. We are left with two premises:
(1) ϕ⇒ and (5) ¬ψ ⇒ ψ. However, by Principle 2, premise (5) can be replaced
by ⇒ ψ, because ⇒ ψ ⊆ ¬ψ ⇒ ψ and ⇒ ψ can be derived from ¬ψ ⇒ ψ by
a cut on ¬ψ with the derivable sequent ⇒ ψ,¬ψ. As a result, rules (i), (ii)
finally combine into the rule:

ϕ⇒ ⇒ ψ
⇒ ϕ ∨ ψ

From the semantic viewpoint, this rule says that if ϕ is assigned f, while ψ is
assigned a value in {t,⊤}, then ϕ ∨ ψ should get a valued in {t,⊤}. This is
precisely what is said by the two entries of the truth table for ∨ which have
given rise to this rule.

Continuing in this way, we can show that the 8 entries of the above table
different from f ∨ f = {f} are finally subsumed by the rule

⇒ ϕ, ψ
⇒ ϕ ∨ ψ

Or with the context explicitly mentioned:

Γ,⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ

17

Remark 39 Instead of first deriving eight different rules, and then combining
them, we can actually derive the last rule directly by observing that the relevant
eight entries taken together mean that if either v(ϕ) ∈ {t,⊤} or v(ψ) ∈ {t,⊤}
then v(ϕ∨ψ) ∈ {t,⊤}. This directly translates into two basic rules: from ⇒ ϕ
infer ⇒ ϕ ∨ ψ, and from ⇒ ψ infer ⇒ ϕ ∨ ψ. By combining these rules using
Principle 3, we obtain the same final rule reached above.

The procedure we have just described can be justified as followed: it is
obvious that it produces sound rules. It is also easy to see that any rule which
is obtained from one of the relevant entries can be derived using only weakenings
from one of the basic rules which are produced by the direct method. Hence the
completeness and cut-admissibilty of the set of rules obtained by the original
method imply those properties for the set of rules obtained by the direct one.

The method described above provides the following system GK for ⊢M3 :

Axioms of GK: ϕ⇒ ϕ

Rules of GK: Cut, Weakening, and the following logical rules:

(∧⇒)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
(⇒∧)

Γ ⇒ ∆, ϕ Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ∧ ψ

(∨⇒)
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(⇒∨)

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ

(⊃⇒)
Γ ⇒ ϕ,∆ Γ, ψ ⇒ ∆

Γ, ϕ ⊃ ψ ⇒ ∆
(⇒⊃)

Γ, ϕ⇒ ψ,∆

Γ ⇒ ϕ ⊃ ψ,∆

(⇒ ¬)
Γ, ϕ⇒ ∆

Γ ⇒ ∆,¬ϕ

(◦ ⇒)
Γ ⇒ ϕ,∆ Γ ⇒ ¬ϕ,∆

Γ, ◦ϕ⇒ ∆
(⇒ ◦)

Γ, ϕ,¬ϕ⇒ ∆

Γ ⇒ ◦ϕ,∆

Remark 40 An alternative, equivalent formulation ofGK is obtained by delet-
ing the weakening rule, and instead taking as axioms all sequents of the form
Γ, ϕ⇒ ∆, ϕ. As this formulation shortens the proofs, it is used in some of the
examples below.

Now from the results of [5] we directly obtain the following two facts (both of
which can easily be proved directly):

Proposition 41

1. BK is equivalent to GK.

2. GK enjoys cut-admissibility.

18

Example 42 Below we provide a proof that (l) ⇒ (k2) in the system which
is obtained from GK by deleting the rule (⇒ ◦), where (l) is the axiom which
is implicit in da Costa’s historical system C1 mentioned in Item 3 of Remark
8. The proof of (l) ⇒ (k1) is similar.

ϕ,¬ϕ⇒ ◦ϕ,¬ϕ
ϕ ∧ ¬ϕ⇒ ◦ϕ,¬ϕ

(∧ ⇒)

⇒ ¬(ϕ ∧ ¬ϕ), ◦ϕ,¬ϕ
(⇒ ¬)

◦ϕ⇒ ◦ϕ,¬ϕ

¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ⇒ ◦ϕ,¬ϕ
(⊃⇒)

¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ⇒ ◦ϕ ∨ ¬ϕ
(⇒ ∨)

It is important to note that the rules in GK, except of the rule for negation,
are particularly well-behaved in the following sense:

Definition 43 An introduction rule ρ is invertible in a Gentzen-type system
G if each of the premises of ρ has a derivation in G from the conclusion of ρ.

Proposition 44 All the rules for the positive connectives (∧,∨,⊃ and ◦) are
invertible in GK.

Proof: For the connectives of positive classical logic, the proofs are like in
the classical case. We show the proof for the rules for ◦. The following is a
derivation of Γ, ϕ,¬ϕ ⇒ ∆ from Γ ⇒ ◦ϕ,∆ (which proves the derivability of
the converse of (⇒ ◦)) in GK:

Γ ⇒ ◦ϕ,∆

Γ, ϕ⇒ ∆, ϕ Γ,¬ϕ⇒ ∆,¬ϕ

Γ, ◦ϕ, ϕ,¬ϕ⇒ ∆
(◦ ⇒)

Γ, ϕ,¬ϕ⇒ ∆
cut

The derivation of Γ ⇒ ϕ,∆ from Γ, ◦ϕ⇒ ∆ (which proves the derivability of
one converse of (◦ ⇒)) in GK is as follows:

Γ, ◦ϕ⇒ ∆

Γ, ϕ,¬ϕ⇒ ϕ,∆

Γ ⇒ ϕ, ◦ϕ,∆
(⇒ ◦)

Γ ⇒ ϕ,∆
cut

The derivation of Γ ⇒ ¬ϕ,∆ from Γ, ◦ϕ⇒ is similar.

The method we have just used for M3 can be applied to each of its simple
refinements separately. In this way, we can obtain a cut-free Gentzen-type
formulation for each of the C-systems we have considered above. However, as
described in Remark 39, this can be done much easier in a modular way, by
translating the semantic effect of each extra axiom into rules (and using the
streamlining principles to simplify the outcome). This shorter procedure can
be justified using the same kind of reasoning that was used in Remark 39.

The results of this process are again given in Tables 1 and 2.

19

Example 45 To see how the Gentzen-type rules from Tables 1,2 are derived,
we revisit the axiom (o1

∨). As explained in Example 27, the validity of this
axiom is equivalent to the combination of the following two conditions: (i)
t ∨ x = t and (ii) f ∨ t = f ∨⊤ = {t}. Now (i) can be reformulated as follows:
if ¬ϕ⇒ is true, then ¬(ϕ ∨ ψ) ⇒ is true. By adding context, we obtain:

Γ,¬ϕ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

In turn, (ii) can be reformulated as follows: if ϕ⇒ and ⇒ ψ are true, then so
is ¬(ϕ ∨ ψ) ⇒. Again, by adding context we get the following rule:

Γ, ϕ⇒ ∆ Γ ⇒ ∆, ψ

Γ,¬(ϕ ∨ ψ) ⇒ ∆

Taken together, these two Gentzen-type rules correspond to the axiom (o1
∨).

Definition 46 For each ax ∈ A, the set of Gentzen-type rules R(ax), corre-
sponding to ax, is defined as in Tables 1,2. For A ⊆ A, GK[A] is the Gentzen-
type system obtained by adding to GK the set of rules R(ax) for every ax ∈ A.

Example 47 Figure 1 at the end of this paper provides three examples of cut-
free proofs in three of our systems: BKa∧, BKo1

∧, and the basic system BK.
Note that the first example in Figure 1 shows that axiom (a∧) indeed has a cut-
free proof in BKa∧, even though the Gentzen-type rule (a∧) corresponding to
this axiom does not even mention the connective ◦. The second example does
the same for axiom (o1

∧) and the system BK(o1
∧). Finally, the third example

shows that the axiom which corresponds to the semantic condition t ∨ t = {t}
follows from the axiom (a∨) in the basic system BK.

Theorem 48 Let A ⊆ A.

1. BK[A] is equivalent to GK[A].

2. GK[A] enjoys cut-admissibility.

Proof: It is not difficult to see that GK[A] is the calculus obtained for M3[A]
using the algorithm from [5]. Thus the theorem follows from Theorem 31 and
the results of [5].

Remark 49 The process by which we have derived a Gentzen-type system G
from a Hilbert-style system H ensures the equivalence of the two systems in the
sense that T ⊢H ψ iff T ⊢G ψ (where the consequence relation ⊢G is defined,
as usual, by: T ⊢G ψ if there is a finite Γ ⊆ T such that ⊢G Γ ⇒ ψ). In
particular, ψ is a theorem of H iff ⊢G⇒ ψ. It is also possible of course (and
easy) to establish this equivalence directly in the usual way (with the help of
the cut rule).

20

Remark 50 The modularity of our method can be easily further increased
as follows. From Remark 30 it follows that our method can also handle any
extension of B with a subset of the set {(c), (e), (i1), (i2), (k1), (k2)} (but not
systems like Bk1a!). For this purpose, we first derive the semantic conditions
for (k1) and (k2):

C(k1) : ◦t = {t,⊤}

C(k2) : ◦f = {t,⊤}

We then translate these conditions C(k1) and C(k2) into the following rules:

(R(k1))
Γ, ψ ⇒ ∆

Γ ⇒ ∆, ◦ψ
(R(k2))

Γ,¬ψ ⇒ ∆

Γ ⇒ ∆, ◦ψ

Now we can develop cut-free Gentzen type systems for this family of logics
by first deleting (⇒ ◦) from GK (and obtaining in this way a cut-free system
for B), then using in a modular way these two rules together with the rules
associated in Table 1 with the other four axioms. Since (i1) entails (k1) already
in B, and (i2) entails (k2), there are exactly twenty logics in this family which
are not extensions of BK: namely, the extensions of either B, Bk1, Bk2, Bi1
or Bi2 with some subset of {(c), (e)}.14 It should be noted that in the cut-
free systems for the extensions of Bi1 (Bi2) with some subset of {(c), (e)} one
should include both R(k1) and R(i1) (both R(k2) and R(i2)).

Remark 51 [3] treats many other classical tautologies involving ¬ (but not ◦)
in exactly the same way the axioms in A have been treated here: it modularly
associates with each of them a semantic condition on M3 and its translation to
a quasi-canonical Gentzen-type rule. Table 3 includes the list of axioms treated
there which are not in A, together with the corresponding semantic conditions
and Gentzen-type rules.

Using the rules from Table 3, one can provide in a modular way a cut-
free quasi-canonical Gentzen-type system for almost every logic L which is
obtained by adding some subset of the axioms listed in Table 3 to any of the
systems treated here so far (including those mentioned in Remark 50). The only
condition is that L should have a simple refinement of M3 as a characteristic
Nmatrix. This, in turn, is the case iff the various semantic conditions imposed
by the axioms of L do not contradict each other (this claim can be shown rather
easily by applying the same proof method as used for showing Theorem 31).
Now it is straightforward to find out all such contradictions. Here is their full
list:

1. If L includes both (nr⊃) and (o1
⊃) then t ⊃ ⊤ causes a conflict.

2. If L includes both (nr∨) and (o1
∨) then f ∨ ⊤ causes a conflict.

3. If L includes both (nr∨) and (o2
∨) then ⊤ ∨ f causes a conflict.

14One of those systems is the system Bc, for which a cut-free Gentzen-type system was
provided in [29] (where it was called bC).

21

ax C(ax) R(ax)

(nr1∧) ¬ϕ ⊃ ¬(ϕ ∧ ψ) ⊤ ∧ t = ⊤ ∧⊤ = {⊤}

Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

(nr2∧) ¬ψ ⊃ ¬(ϕ ∧ ψ) t ∧ ⊤ = ⊤ ∧⊤ = {⊤}

Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

(nl∧) ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ) t ∧ t = {t}

Γ,¬ϕ⇒ ∆ Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∧ ψ) ⇒ ∆

(nr∨) (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ) f ∨⊤ = ⊤ ∨ f = ⊤ ∨ ⊤ = {⊤}

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∨ ψ)

(nl1∨) ¬(ϕ ∨ ψ) ⊃ ¬ϕ t ∨ x = {t}

Γ,¬ϕ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(nl2∨) ¬(ϕ ∨ ψ) ⊃ ¬ψ x ∨ t = {t}

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(nr⊃) (ϕ ∧ ¬ψ) ⊃ ¬(ϕ ⊃ ψ) t ⊃ ⊤ = ⊤ ⊃ ⊤ = {⊤}

Γ ⇒ ∆, ϕ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ⊃ ψ)

(nl1⊃) ¬(ϕ ⊃ ψ) ⊃ ϕ f ⊃ x = {t}

Γ, ϕ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(nl2⊃) ¬(ϕ ⊃ ψ) ⊃ ¬ψ x ⊃ t = {t}

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

Table 3: More axioms, conditions, and Gentzen-type rules (for x ∈ {t,⊤, f})

22

4. If L includes both (nr1∧) and (o2
∧) then ⊤ ∧ t causes a conflict.

5. If L includes both (nr2∧) and (o1
∧) then t ∧ ⊤ causes a conflict.

It is not difficult to show that in the first three cases the resulting L is
classical logic, with λx ∈ {t, f}.t taken as the interpretation of ◦. Things are
more complicated in cases 4 and 5. Here we leave it as an exercise for the reader
to show that in both cases ϕ follows from a theory T in the resulting logic L
iff it follows from it in both of the logics which are induced by the following
two (deterministic) matrices: the one which is obtained from M3 by deleting
⊤, and the one which is obtained from M3 by deleting t. Since q does not
follow from {p,¬p} in the second matrix, L is still paraconsistent in this case.
However, ¬ϕ ⊃ (ϕ ⊃ ¬ψ) is valid in it, and L can actually be axiomatized by
adding this schema to BK as a new axiom. Classical logic itself is obtained
from this logic by adding to it any axiom from those investigated in this paper
which forces the availability of t (e.g. (c)).

Tables 1,2,3 can also be used to find out easily all the dependencies (over
BK) that exist among the axioms dealt with in these tables. In fact, a full
list is obtained by adding the following dependencies to those mentioned in
Corollary 32: (nl∧) is equivalent to (a∧) (and so it follows from (o1

∧), as well
as from (o2

∧)); (nl
1
∨) follows from (o1

∨); (nl
2
∨) follows from (o2

∨); (a∨) follows
from {(nl1∨), (nl

2
∨)}; (nl

1
⊃) follows from (o1

⊃); (nl
2
⊃) follows from (o2

⊃); (a⊃)
follows from {(nl1⊃), (nl

2
⊃)}.

4 Conclusions and Further Research

In this paper we provide a uniform way to systematically construct analytic
calculi for a large family of thousands of C-systems, each having a semantic
characterization in terms of a three-valued Nmatrix. We believe that these
results will help produce efficient tools for automated reasoning with inconsis-
tency, eventually making LFIs a more appealing formalism for reasoning under
uncertainty. A first step in this direction has been recently taken in [23]: an
algorithm for a fully automatic generation of non-deterministic semantics and
cut-free sequent calculi for practically all the C-systems studied in this paper
(and many more) has been implemented there in Prolog.

The most immediate directions for further research include:

• Extending the method to LFIs like Ba, which have finite-valued non-
deterministic semantics with more than three truth values. The easiest
natural step to achieve that would be to try to adapt the method given
here to the use of the five-valued semantics for extensions of B with
axioms from A ∪ {(k1), (k2)}, given in [4].

• It is clear that in order to build theorem provers based on C-systems
for real-life applications the results of this paper need to be extended to
the first-order case. To the best of our knowledge, currently there are

23

no known analytic systems available on the first-order level. However,
[12] provided finite non-deterministic semantics for first-order C-systems,
which could be exploited along the lines of the approach presented here.

• As we have noted in Remark 38, all the sequent systems presented in
this paper are what we call “quasi-canonical”. Now there exists a quite
well-developed theory of canonical systems ([11, 13]). Thus it is known
that such systems have semantic characterizations in terms of two-valued
Nmatrices, and that there is a strong connection between their semantics,
their non-triviality, and the admissibility of the cut rule in them. There
is also a strong connection between the determinism of their semantics,
and their possession of the invertibility and axiom-expansion properties
([6]). A similar theory should be developed for quasi-canonical systems.

Acknowledgements

The first author is supported by The Israel Science Foundation under grant
agreement no. 280-10. The third author is supported by the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment no. 252314.

References

[1] A. Avron. Non-deterministic Matrices and Modular Semantics of Rules. In
J.-Y. Béziau, editor, Logica Universalis, pages 149–167. Birkhűser, 2005.

[2] A. Avron. A Nondeterministic View on Nonclassical Negations. Studia
Logica, 80:159–194, 2005.

[3] A. Avron. Non-deterministic Semantics for Families of Paraconsistent
Logics. In J.-Y. Béziau, W. A. Carnielli, and D. M. Gabbay, editors,
Handbook of Paraconsistency, volume 9 of Studies in Logic, pages 285–
320. College Publications, 2007.

[4] A. Avron. Non-deterministic Semantics for Logics with a Consistency
Operator. Journal of Approximate Reasoning, 45:271–287, 2007.

[5] A. Avron, J. Ben-Naim, and B. Konikowska. Cut-free ordinary sequent
calculi for logics having generalized finite-valued semantics. Logica Uni-
versalis, 1:41–69, 2006.

[6] A. Avron, A. Ciabattoni, and A. Zamansky. Canonical calculi: Invert-
ibility, Axiom-Expansion and (Non)-determinism. In Proceedings of the
4th Computer Science Symposium in Russia, LNCS 5675, pages 26–37.
Springer, 2009.

[7] A. Avron and B. Konikowska. Multi-valued calculi for logics based on non-
determinism. Journal of the Interest Group in Pure and Applied Logic,
10:365–387, 2005.

24

[8] A. Avron, B. Konikowska, and A. Zamansky. Analytic calculi for logics
of formal inconsistency. In J.-Y. Bziau and M. E. Coniglio, editors, Logic
without Frontiers: Festschrift for W.A. Carnielli on the occasion of his
60th Birthday, volume 17 of Tribute. College Publications, London, 2011.

[9] A. Avron, B. Konikowska, and A. Zamansky. Modular construction of
cut-free sequent calculi for paraconsistent logics. In 2012 27th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 85–
94. Conference Publishing Services, 2012.

[10] A. Avron and I. Lev. Canonical Propositional Gentzen-Type Systems.
In Proceedings of the 1st International Joint Conference on Automated
Reasoning (IJCAR 2001), LNAI 2083. Springer Verlag, 2001.

[11] A. Avron and I. Lev. Non-deterministic Multi-valued Structures. Journal
of Logic and Computation, 15:241–261, 2005.

[12] A. Avron and A. Zamansky. Many-valued Non-deterministic Semantics
for First-order Logics of Formal (In)consistency. In S. Aguzzoli, A. Cia-
battoni, B. Gerla, C. Manara, and V. Marra, editors, Algebraic and Proof-
theoretic Aspects of Non-classical Logics, number 4460 in LNAI, pages
1–24. Springer, 2007.

[13] A. Avron and A. Zamansky. Non-deterministic semantics for logical sys-
tems - A survey. In D. Gabbay and F. Guenther, editors, Handbook of
Philosophical Logic, volume 16, pages 227–304. Springer, 2011.

[14] J.-Y. Béziau. Nouveaux résultats et nouveau regard sur la logique para-
consistante C1. Logique et Analyse, 141-142:45–58, 1993.

[15] J.-Y. Béziau. From Paraconsistent Logic to Universal Logic. Sorites, 12:5–
32, 2001.

[16] W. A. Carnielli and M. E. Coniglio. Splitting logics. In S. Artemov,
H. Barringer, A. S. Avila Garcez, L. C. Lamb, and J. Woods, editors, We
Will Show Them: Essays in Honour of Dov Gabbay, pages 389–414. King’s
College Publications, London, 2005.

[17] W. A. Carnielli, M. E. Coniglio, and J. Marcos. Logics of formal in-
consistency. In D. M. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 14, pages 15–107. Springer, 2007. Second edi-
tion.

[18] W. A. Carnielli and J. Marcos. A taxonomy of C-systems. In W. A.
Carnielli, M. E. Coniglio, and I. D’Ottaviano, editors, Paraconsistency:
The Logical Way to the Inconsistent, number 228 in Lecture Notes in
Pure and Applied Mathematics, pages 1–94. Marcel Dekker, 2002.

[19] W. A. Carnielli, J. Marcos, and S. de Amo. Formal inconsistency and
evolutionary databases. Logic and logical philosophy, 8:115–152, 2000.

25

[20] W.A. Carnielli. Possible-translations semantics for paraconsistent logics.
In Frontiers in paraconsistent logic: Proceedings of the I World Congress
on Paraconsistency, Ghent, pages 159–172, 1998.

[21] W.A. Carnielli and M. Lima-Marques. Reasoning under inconsistent
knowledge. Journal of Applied Non-classical Logics, 2(1):49–79, 1992.

[22] W.A. Carnielli and J. Marcos. Tableau systems for logics of formal incon-
sistency. In Proceedings of the 2001 International Conference on Artificial
Intelligence, volume 2, pages 848–852. CSREA Press, 2001.

[23] A. Ciabattoni, O. Lahav, L. Spendier, and A. Zamansky. Automated
support for investigating paraconsistent and other logics. To appear.

[24] N. C. A. da Costa. On the theory of inconsistent formal systems. Notre
Dame Journal of Formal Logic, 15:497–510, 1974.

[25] N. C. A. da Costa, J.-Y. Béziau, and O.A.S. Bueno. Aspects of paracon-
sistent logic. Bulletin of the IGPL, 3:597–614, 1995.

[26] N.C.A. da Costa and V. S. Subrahmanian. Paraconsistent logics as a
formalism for reasoning about inconsistent knowledge bases. Artificial
Intelligence in Medicine, 1(4):167–174, 1989.

[27] H. Decker. A case for paraconsistent logic as foundation of future infor-
mation systems. In Information Systems @ Y, CAiSE Workshops, pages
451–461, 2005.

[28] I. D’Ottaviano. On the development of paraconsistent logic and da Costa’s
work. Journal of Non-classical Logic, 7(1–2):89–152, 1990.

[29] P. Gentilini. Proof theory and mathematical meaning of paraconsistent
C-systems. Journal of Applied Logic, 9:171–202, 2011.

[30] J. Marcos. Possible-translations semantics. In Proceedings of the Workshop
on Combination of Logics: theory and applications (CombLog’09), pages
119–128. Departamento de Matemática, Instituto Superior Técnico, 2004.

[31] J. Marcos. Possible-translations semantics for some weak classically-based
paraconsistent logics. Journal of Applied Non-Classical Logics, 18(1):7–28,
2008.

[32] A. Neto and M. Finger. A KE tableau for a logic for formal inconsis-
tency. In Proceedings of TABLEAUX’07 position papers and Workshop on
Agents, Logic and Theorem Proving, volume LSIS.RR.2007.002, 2007.

[33] A. Neto, C. A. A. Kaestner, and M. Finger. Towards an efficient prover
for the C1 paraconsistent logic. Electronic Notes in Theoretical Computer
Science, 256:87–102, December 2009.

[34] A.R. Raggio. Propositional sequence-calculi for inconsistent systems.
Notre Dame Journal of Formal Logic, 9:359–366, 1968.

26

A proof of ⇒ (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∧ ψ) in BKa∧:

ϕ,ψ,¬(ϕ ∧ ψ) ⇒ ϕ, ψ

ϕ ∧ ψ,¬(ϕ ∧ ψ) ⇒ ϕ,ψ
(∧ ⇒)

⇒ ◦(ϕ ∧ ψ), ϕ, ψ
(⇒ ◦)

¬(ϕ ∧ ψ), ϕ, ψ ⇒ ϕ,¬ψ

¬(ϕ ∧ ψ), ϕ ∧ ψ ⇒ ϕ,¬ψ
(∧ ⇒)

⇒ ◦(ϕ ∧ ψ), ϕ,¬ψ
(⇒ ◦)

◦ψ ⇒ ◦(ϕ ∧ ψ), ϕ
(◦ ⇒)

¬(ϕ ∧ ψ), ϕ, ψ ⇒ ¬ϕ, ψ

¬(ϕ ∧ ψ), ϕ ∧ ψ ⇒ ¬ϕ,ψ
(∧ ⇒)

⇒ ◦(ϕ ∧ ψ),¬ϕ,ψ
(⇒ ◦)

¬ϕ,ϕ, ψ ⇒ ¬ϕ,¬ψ ¬ψ, ϕ, ψ ⇒ ¬ϕ,¬ψ

¬(ϕ ∧ ψ), ϕ, ψ ⇒ ¬ϕ,¬ψ
(a∧)

¬(ϕ ∧ ψ), ϕ ∧ ψ ⇒ ¬ϕ,¬ψ
(∧ ⇒)

⇒ ◦(ϕ ∧ ψ),¬ϕ,¬ψ
(⇒ ◦)

◦ψ ⇒ ◦(ϕ ∧ ψ),¬ϕ
(◦ ⇒)

◦ϕ, ◦ψ ⇒ ◦(ϕ ∧ ψ)
(◦ ⇒)

◦ϕ ∧ ◦ψ ⇒ ◦(ϕ ∧ ψ)
(∧ ⇒)

⇒ (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∧ ψ)
(⇒⊃)

A proof of ⇒ ◦ϕ ⊃ ◦(ϕ ∧ ψ) in BKo1

∧:

¬(ϕ ∧ ψ), ϕ, ψ ⇒ ϕ

¬(ϕ ∧ ψ), ϕ ∧ ψ ⇒ ϕ
(∧ ⇒)

⇒ ◦(ϕ ∧ ψ), ϕ
(◦ ⇒)

ϕ,ψ,¬ϕ ⇒ ¬ϕ ϕ,ψ ⇒ ¬ϕ, ψ

¬(ϕ ∧ ψ), ϕ, ψ ⇒ ¬ϕ
(o1

∧
)

¬(ϕ ∧ ψ), ϕ ∧ ψ ⇒ ¬ϕ
(∧ ⇒)

⇒ ◦(ϕ ∧ ψ),¬ϕ
(◦ ⇒)

◦ϕ ⇒ ◦(ϕ ∧ ψ)
(◦ ⇒)

⇒ ◦ϕ ⊃ ◦(ϕ ∧ ψ)
(⇒⊃)

A proof of (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∨ ψ) ⇒ ¬(ϕ ∨ ψ) ⊃ (¬ϕ ∨ ¬ψ) in BK:

¬(ϕ ∨ ψ),¬ϕ,ϕ ⇒ ¬ϕ,¬ψ

¬(ϕ ∨ ψ) ⇒ ◦ϕ,¬ϕ,¬ψ
(⇒ ◦)

¬(ϕ ∨ ψ),¬ψ, ψ ⇒ ¬ϕ,¬ψ

¬(ϕ ∨ ψ) ⇒ ◦ψ,¬ϕ,¬ψ
(⇒ ◦)

¬(ϕ ∨ ψ) ⇒ (◦ϕ ∧ ◦ψ),¬ϕ,¬ψ
(⇒ ∧)

¬(ϕ ∨ ψ), ψ ⇒ ϕ,ψ,¬ϕ

¬(ϕ ∨ ψ) ⇒ ϕ, ψ,¬ϕ,¬ψ
(⇒ ¬)

¬(ϕ ∨ ψ) ⇒ ϕ ∨ ψ,¬ϕ,¬ψ
(⇒ ∨)

¬(ϕ ∨ ψ) ⇒ ¬(ϕ ∨ ψ),¬ϕ,¬ψ

¬(ϕ ∨ ψ), ◦(ϕ ∨ ψ) ⇒ ¬ϕ,¬ψ
(◦ ⇒)

(◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∨ ψ),¬(ϕ ∨ ψ) ⇒ ¬ϕ,¬ψ
(⊃⇒)

(◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∨ ψ),¬(ϕ ∨ ψ) ⇒ ¬ϕ ∨ ¬ψ
(⇒ ∨)

(◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ ∨ ψ) ⇒ ¬(ϕ ∨ ψ) ⊃ (¬ϕ ∨ ¬ψ)
(⇒⊃)

Figure 1: Selected examples of proofs

2
7

