
S. Ur, E. Bin, and Y. Wolfsthal (Eds.): Haifa Verification Conf. 2005, pp. 56 – 75, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Simultaneous SAT-Based Model Checking
of Safety Properties

Zurab Khasidashvili1, Alexander Nadel1,2, Amit Palti1, and Ziyad Hanna1

1 Design Technology Solutions, INTEL Corporation
{zurab.khasidashvili, alexander.nadel, amit.palti,

ziyad.hanna}@intel.com
2 Department of Computer Science,

Tel Aviv University, Ramat Aviv, Israel

Abstract. We present several algorithms for simultaneous SAT (propositional
satisfiability) based model checking of safety properties. More precisely, we
focus on Bounded Model Checking and Temporal Induction methods for
simultaneously verifying multiple safety properties on the same model. The
most efficient among our proposed algorithms for model checking are based on
a simultaneous propositional satisfiability procedure (SSAT for short), which
we design for solving related propositional objectives simultaneously, by
sharing the learned clauses and the search. The SSAT algorithm is fully
incremental in the sense that all clauses learned while solving one objective can
be reused for the remaining objectives. Furthermore, our SSAT algorithm
ensures that the SSAT solver will never re-visit the same sub-space during the
search, even if there are several satisfiability objectives, hence one traversal of
the search space is enough. Finally, in SSAT all SAT objectives are watched
simultaneously, thus we can solve several other SAT objectives when the
search is oriented to solve a particular SAT objective first. Experimental results
on Intel designs demonstrate that our new algorithms can be orders of
magnitude faster than the previously known techniques in this domain.

1 Introduction

Bounded Model Checking (BMC) [BCCZ99, BCC+03] is a SAT (or satisfiability)
[DLL62] based verification technique, well suited for finding counter-examples to a
given safety property P, in a transition system. It arose as a complementary approach
to BDD-based [Bry86] Symbolic Model Checking technique [McM93], and is
increasingly adopted by the industry [PBG05]. The idea of BMC is to unroll the
transition system to k time steps, and search using a SAT solver for a state transition
path of length less or equal to k, starting with an initial state and ending in a state
violating the property. We recall that a SAT solver searches for a satisfying
assignment to a Boolean formula written in CNF form; such a formula is represented
as a set of clauses, a clause being a disjunction of literals, where a literal is a Boolean
variable or its negation.

 Simultaneous SAT-Based Model Checking of Safety Properties 57

We restrict ourselves to safety properties written as AGp in Computation Tree
Logic (CTL, [CGP99]). Such properties are often called invariants. Proving a
property P using BMC technique means showing that there is no counter-example to
P of the length less or equal to the diameter of the system, i.e., the maximum length
of a shortest (thus loop-free) path between any two states. From practical point of
view, BMC is an incomplete technique in that it can rarely prove a property arising
from an industrial application of software or hardware verification, since the diameter
for such systems is too large to handle by current SAT solvers. A practical, complete
SAT-based model checking method was proposed by Sheeran.et. al. [SSS00] as a
(temporal) induction method, allowing proving safety properties by means of
unrolling to much lower depths than the diameter. Roughly, BMC in this method
corresponds to the base of temporal induction, and the induction step, at depth m,
attempts to prove that there is no state transition path s0,…,sm, sm+1 such that P holds
in all but the last state (here s0 needs not be an initial state). Once such an m is found,
and it has been shown in the base of induction that there is no counter-example to the
property of length m or less, the property P is proven valid at all states reachable from
the initial state.

Several usability enhancements have been proposed in the literature to the above
methods, boosting the capacity to handle larger systems and complex properties, and
faster. These enhancements are very important for successful application of the
methods in practice. Here we review briefly two enhancements that are most relevant
to our work. For more information, we refer the reader to a recent survey of
SAT-based model checking [PBG05].

In a BMC run, to avoid unnecessary unrolling of the transition relation, one starts
with low bounds k, and if no counter example is found for the property of length
smaller or equal to k, the bound k is increased, repeatedly, till it reaches the diameter
or a maximal user given value for the bound. Therefore a BMC run involves a number
of calls to the SAT solver. Similarly, proving the induction step in temporal induction
method needs several calls to the SAT solver, with increasing bounds m. These SAT
instances are closely related, and the idea of incremental SAT solving in BMC and
induction (as well as in other SAT applications), proposed independently by
Strichman [Str04] and Whittemore et al [WKS01], is in re-using pervasive learned
conflict clauses across consecutive calls to the SAT solver. Here pervasive
learned clauses are logical consequences of all involved SAT instances, thus adding
them to the clause set permanently is safe. Eén and Sörensson [ES03] extended this
approach to temporal induction, and proposed a simple interface to a SAT solver
enabling incremental BMC and induction schemes where all conflict clauses are
pervasive and can be re-used.

In typical industrial model checking applications, one needs to prove a number
of properties on the same model. Since several properties may share the “cone of
influence” in the model, (dis)proving several properties in one model-checking
session may yield a significant speedup. To the best of our knowledge, Fraer et al.
[FIK+02] were the first to propose an extension to the classic BMC and the induction
method allowing to simultaneously check a number of safety properties P1,…,Pn on
the same model.

Here we propose a number of new algorithms for simultaneous SAT-based model
checking of multiple safety properties, which strengthen the method of [FIK+02].

58 Z. Khasidashvili et al.

Incrementality through verification depths is one source of incremental SAT-based
model checking [Str04, WKS01, ES03]. Our algorithms are double-incremental,
meaning that learned clauses of the SAT solver can be reused across depths, as well
as across the properties at every depth. The most efficient among our algorithms use a
simultaneous SAT solver (SSAT), which is able to resolve several objectives related to
the same instance in one traversal of the search space. In SSAT, besides a selected,
currently watched objective, one actually watches all unresolved objectives as well,
and can falsify or prove them valid during the search oriented to solve the currently
watched objective. Because of these “one traversal” and “all watched” principles, our
algorithm is more efficient than previous approaches to fully incremental SAT solving
which, like SSAT, allowed reusing all learned conflict clauses [GN01, ES03]. We
will discuss these approaches in detail in a related work section and will provide
experimental results to demonstrate the superiority of the SSAT approach.

The paper is organized as follows: in the next section, we will give a short
introduction into modern DPLL-based algorithms. In Section 3, we describe SSAT
algorithm and its implementation on top of a DPLL-based propositional SAT solver.
In Section 4, we compare the SSAT algorithm with previous approaches to
incremental solving of related satisfiability objectives. As one can see, sections 2-4
are dedicated to propositional satisfiability checking. In Section 5, we propose several
new, double-incremental methods for simultaneous model checking of safety
properties based on SAT algorithms described in sections 2-4. In Section 6, we
present experimental results demonstrating the usefulness of the SSAT approach on
series of benchmarks originating from formal property verification and formal
equivalence verification of Intel designs. Conclusions appear in Section 7.

2 The Basic DPLL Algorithm in Modern SAT Solvers

The DPLL algorithm [DP60, DLL62] is the basic backtrack search algorithm for
SAT. We briefly describe the functionality of modern DPLL-based SAT solvers,
referring the interested reader to [LM02] or [Nad02] for a more detailed description.

Most of the modern SAT solvers enhance the DPLL algorithm by the so-called
Boolean constraint propagation (BCP) [ZM88], conflict driven learning [MS99],
[ZMM+01] and search restarts [GSK98]. The SAT solver receives as input a formula
in Conjunctive Normal Form (CNF), represented as a set of clauses, each clause being
a disjunction of literals, where a literal is a Boolean variable or its negation. The
solver builds a binary search tree until it either finds an assignment satisfying all the
clauses—a model, in which case the formula is satisfiable; or it explores the whole
search space and finds no model, in which case the formula is unsatisfiable. Note that
some of the variables in a model may be don’t cares, meaning that any assignment to
these variables still yields a model of the CNF formula.

At each node of the search tree the solver performs one of the following steps:

1. It chooses and assigns the next decision literal and propagates its value using
BCP. A unit clause is a clause having all but one literal assigned false, while the
remaining literal l is unassigned. Observe that l must be assigned true in order to
satisfy the formula; this operation is often referred to as the unit clause rule and

 Simultaneous SAT-Based Model Checking of Safety Properties 59

l = true is referred to as an implied assignment. BCP identifies unit clauses and
repeatedly applies the unit clause rule until either:
− No more unit clauses exist. In this case, the solver checks whether all the

clauses are satisfied. If they are, we have found a model and the formula is
satisfiable, otherwise the solver is looking for the next decision literal;

− A variable exists that must be assigned both false and true in two different
unit clauses, in which case we say that a conflict is discovered.

2. If a conflict is discovered, the solver adds one or more conflict clauses to the
formula. A conflict clause is a new clause that prevents the set of assignments
that lead to the conflict from reappearing again during the subsequent search
[MS99]. Then, if a literal y exists such that it is sufficient to flip its value in
order to resolve the conflict, the solver backtracks and flips the value of y;
otherwise the formula is unsatisfiable. The former case is referred to as a local
conflict and the latter case is referred to as a global conflict. For our purposes, it
is also important to mention that during conflict analysis one or more literals
may be discovered to be globally true, that is, they must be assigned true
independently of other variable values. This happens every time when a new
conflict clause containing exactly one literal l is learned. The literal l as well as
all the literals assigned as a result of BCP following the assignment l = true are
globally true.

3. Once in a while the solver restarts the search, keeping all or some of the learned
conflict clauses [GSK98].

We demonstrate the above concepts on a simple example taken from [Str04].

Example 1: Consider the following set of clauses {c1,c2,c3,c4}, where

c1 = ¬x1 ∨ x2
c2 = ¬x1 ∨ x3 ∨ x5
c3 = ¬x2 ∨ x4
c4 = ¬x3 ∨ ¬x4

Assume the current assignment is x5 = false (i.e., x5 is assigned false), and a new
decision assignment is x1 = true. The resulted implication graph is shown in Figure 1:
applying BCP leads to conflicting assignments x4 = true and x4 = false. The clauses
¬x1 ∨ ¬x3 ; ¬x1 ∨ x5 are examples of conflict clauses, and a subset of conflict
clauses is kept as learned conflict clauses.

c1 c3

c4c2

c2

x5 = false

x3 = true

x4

x2 = true

conflict

x1 = true

decision

Fig. 1. An implication graph

60 Z. Khasidashvili et al.

3 SSAT Implementation Within a DPLL-Based SAT Solver

Now we describe the simultaneous propositional satisfiability algorithm, denoted as
SSAT. In addition to the input formula (the SAT instance, or CNF instance), SSAT
receives as a parameter a list of proof objective literals (PO literals, or POs for short).
The POs must be proven falsifiable or valid. We require the variables of the PO
literals to occur (positively or negatively, or both) in the CNF instance.1

Example 1 (continued): Assume our SAT instance consists of the same four clauses
{c1, c2, c3, c4}, and assume our PO literals (or simply POs) are PO1 = ¬x1, PO2 = x5,
and PO3 = x2. One can verify that all of the POs are falsifiable – there is a model for
the SAT instance (i.e., an assignment satisfying the instance) where ¬x1 is assigned
false (thus x1 is assigned true), there is a model where x5 is assigned false, and a
model where x2 is assigned false. For example, the (partial) assignment x1 = false, x3 =
false, x4 = true, x5 = false is a model for {c1, c2, c3, c4} in which PO2 is falsified. Note
that x2 is unassigned in the model – x2 is a don’t care variable since assigning any of
the truth values to x2 yields a model for {c1, c2, c3, c4}. Assigning x2 = false yields a
model in which PO3 is falsified. The partial assignment x1 = false, x3 = false, x4 = true
is another model (with more don’t cares) for {c1, c2, c3, c4}.

A straightforward way to implement SSAT is as follows: (1) proceed with a
regular DPLL-based search; (2) when a model is discovered, mark all the POs that are
assigned false in the model as falsifiable; (3) as soon as all the search space is
explored, mark all the unmarked POs valid and exit. However, there is a major
problem with this solution: the number of models might be very large and therefore it
is extremely inefficient to visit each of them during the search. Moreover, if a SAT
solver uses search restarts (as do most of the state-of-the-art solvers), the algorithm
might never finish, since the same models could be rediscovered after each restart.
One solution could be adding clauses preventing the rediscovery of each model, but
this might lead to memory explosion. We propose the following solution to this
problem.

We always maintain a PO literal that we are trying to falsify, called the currently
watched PO (CWPO). At the beginning of the search we set CWPO to be any PO
literal. At any stage of the search, prior to invoking a generic decision heuristic, we
assign CWPO the value false, if not already assigned. The CWPO ceases to be the
currently watched PO under two circumstances: (1) When a model containing CWPO
= false is discovered, in which case we mark as falsifiable the CWPO as well as all
the POs that are assigned false (or are don’t care literals) in the model; (2) When
CWPO is discovered to be globally true, in which case we mark the CWPO as well all
other globally valid POs (if any) as valid. On both occasions, we check whether there
exists a PO l that has not been discovered valid or falsifiable, in which case we set
CWPO to l, otherwise the algorithm halts. This simple adjustment ensures that: (a) the
number of discovered models is at most the number of POs; (b) a model is never
rediscovered even if search restarts are used. Indeed, after encountering a model we

1 We expect that POs are related to the instance; the definition of the POs in terms of variables

in the instance can be included as a part of the CNF instance; thus the above requirement is
not a restriction from application point of view.

 Simultaneous SAT-Based Model Checking of Safety Properties 61

always choose a CWPO that has not been false under any model and assign it the
value false. This guarantees that any model will be different from all the previously
discovered models. In addition, since the number of CWPOs is at most equal to the
number of POs, the number of discovered models is at most equal to the number of
POs. Also, our algorithm ensures that every PO is visited during new CWPO selection
and thus every PO is marked valid or falsifiable after SSAT terminates.

The SSAT algorithm is presented in Figure 2. First, SSAT chooses a CWPO. Then,
it enters a loop that terminates only when all the POs are proven to be either
falsifiable or valid. Within the loop, SSAT first checks whether the current CWPO
has already received a value. If it has, then a new CWPO is selected and assigned
false. If all POs are resolved, the algorithm terminates. If the current CWPO has not
been resolved yet, a new decision literal is picked using a generic decision heuristic.
At the next stage, a conflict analysis loop is entered. After BCP, SSAT marks any PO
that was found to be globally true as valid. Then, SSAT checks what the status of the
formula is after BCP. If a global conflict has been discovered, that is, all the
assignment space has been explored, the algorithm marks all the unmarked POs as

SSAT ([PO1,..,POn], cnf_instance) {
 Literal CWPO = any PO literal;
 while (1) {
 if (CWPO is valid or falsifiable) {
 if (all the POs are valid or falsifiable) Return;

CWPO = any PO literal that is neither valid nor falsifiable;
 Assign CWPO = false;
 } else {
 Assign choose_decision_literal();
 }
 do {
 status = BCP();
 Mark any PO literal that is discovered to be globally true as valid;
 if (status == global_conflict) {
 Mark all unmarked PO literals valid; Return;
 }
 if (status == model) {
 Mark any falsified and don’t care PO literal falsifiable;
 Unassign all the literals that are not globally true;
 }
 if (status == local_conflict) {
 Add a conflict clause; Backtrack;

 Assign literal that must be flipped following conflict analysis;
 }
 } while (status == local_conflict);
 }
}

Fig. 2. SSAT pseudo-algorithm

valid (since after exploring the whole search tree, we discovered that no model
falsifies them) and halts. If a model has been discovered, SSAT marks as falsifiable
all the POs that are assigned false or are don’t cares in the model and unassigns all
the literals except ones that are globally true. Observe that in this case the algorithm
exits the conflict analysis loop and picks the next CWPO during a new iteration of
the global loop. Finally, if a local conflict has been encountered, SSAT backtracks
and flips the value of a certain literal. Observe that in this case the algorithm goes

62 Z. Khasidashvili et al.

on with the conflict analysis loop. Notice that it is safe to use restarts in the SSAT
algorithm.

4 Comparing Simultaneous SAT Algorithm with Previous Work

The incremental satisfiability technique proposed in [MS97, WKS01, Str04] is based
on identifying and reusing the pervasive conflict clauses encountered by the SAT
solver during the search for a satisfying assignment to a given CNF formula. When
one is trying to solve related SAT problems, the clauses occurring in the CNF
formulas that are to be checked for satisfiability, which we will call the satisfiability
objectives, can be divided into two classes: the clauses that are common to all
satisfiability objectives will be called pervasive clauses, and the remaining clauses
will be called temporal clauses. Then the conflict clauses that can be derived solely
from the pervasive clauses are pervasive conflict clauses, and can be used for
resolving each satisfiability objective. Experimental results in [WKS01, Str04]
amply demonstrate that pervasive conflict clauses can significantly accelerate
solving families of related SAT objectives. We will refer to this approach as PISAT
approach.

To understand the differences between our SSAT approach and the PISAT
approach, here we explain on an example the definition of pervasive conflict clauses
and their usage in incremental SAT solving, as proposed in [Str04].

Example 1 (continued): Suppose again we have the same SAT formula consisting of
clauses {c1, c2, c3, c4}. Further, define clauses c5 = x1, c6 = ¬x5, and c7 = ¬x2, and
assume we are interested in solving the following three SAT instances:

(1) {c1, c2, c3, c4, c5}
(2) {c1, c2, c3, c4, c6}
(3) {c1, c2, c3, c4, c7}

The incremental SAT solving approach proposed in [Str04] is as follows: One
observes that clauses {c1, c2, c3, c4} are common to all three SAT problems, and
clauses c5, c6 and c7 are unique to particular SAT instances (1), (2) and (3),
respectively. When solving the instance (1), one marks clauses c1, c2, c3, and c4, and
for every conflict clause c encountered during the SAT search, if all clauses leading to
the conflict are already marked, then one marks c as well. Note that all pervasive
conflict clauses are logical consequences of {c1, c2, c3, c4}, thus the satisfiability of (2)
and (3) will remain unaffected if the pervasive conflict clauses are added to instances
(2) and (3).

Suppose when solving instance (1), the SAT solver chooses first the assignment
x5 = false.2 From this assignment, using clause c5, BCP will force implied assignment
x1 = true, and further iterations of unit clause rule in BCP will lead to the discovery of

2 Most of the modern SAT solvers would start with BCP, and BCP in our example would find

a model. We have chosen to start with assignment x5 = false for demonstration purposes, and
this allows us to reuse example from [Str04] (and to keep the presentation simple).

 Simultaneous SAT-Based Model Checking of Safety Properties 63

a conflict clause ¬x1 ∨ x5 (as shown before, see Figure 1). Since clause c5 is
responsible for that conflict, the conflict clause will not be marked as pervasive, and
its usage is not allowed during SAT search for instance (2) (and instance (3)). When
trying to resolve instance (2), the SAT solver may again choose to assign x5 = false
and then x1 = true, and discover the same conflict clause again – a duplication of
work, which is desired to avoid.

The reader may have noticed that solving SAT problems (1), (2) and (3)
corresponds to solving the validity of POs PO1 = ¬x1, PO2 = x5, and PO3 = x2,
respectively, from our running Example 1. In the SSAT algorithm, there is no need to
distinguish between pervasive and other conflict clauses – all conflict clauses are re-
usable till the end of the SSAT search. Thus any conflict clause can be added to the
original clause set without affecting any of the POs’ status, and no such conflict clause
will be encountered twice in a SSAT search. The following is a possible scenario of a
SSAT run on our running example: Suppose SSAT selected PO2 as the first currently
watched PO. Then x5 is assigned false. BCP yields no implied assignments, and SSAT
may chose x1 = true as the next decision. BCP will then discover the conflict clause
¬x1 ∨ x5. A clever decision here is to flip the conflicting assignment of x1, and assign x1
= false. This assignment satisfies clauses c1 and c2. SSAT may then choose x4 = true as
the next decision. This assignment will satisfy the clause c3, and BCP will force
implied assignment x3 = false to satisfy c4 as well. Thus we got a model x5 = false, x1 =
false, x3 = false, x4 = true. Variable x2 is a don’t care variable for the discovered model,
thus PO3 can also be declared falsifiable. Thus SSAT is left with PO1; it chooses PO1
as CWPO and assigns it false – thus x1 = true. BCP will use the previously discovered
conflict clause ¬x1 ∨ x5 to force assignment x5 = true (here we have used a conflict
clause that is not pervasive in the sense of [Str04]); BCP will also imply assignments x2
= true, x4 = true and x3 = false. SSAT has thus discovered a counter model to validity
of PO1 – x1 = true, x5 = true, x2 = true, x4 = true, x3 = false. SSAT will report PO1 as
falsifiable and exit.

We have mentioned that SSAT can declare a PO valid during the search when it
discovers that the PO is globally true. This happens when a conflict clause is
encountered in which the PO is the unique literal. This can also happen during BCP.
In the experimental results section we give data on the valid POs proved in such
situations – all POs proved valid in SSAT are such POs. Note that in the PISAT
approach, a PO can be proved valid if the instance where the PO is assigned false is
unsatisfiable – thus it is necessary to cover the entire search space, while in SSAT the
POs can be proved valid after a partial traversal of the search space.

It is worth reiterating that in SSAT it is possible to falsify several POs based on the
same model. We have seen above a toy example where three POs are falsified based
on two models. In the next section we will give experimental data on this as well.
This simultaneous falsification feature significantly accelerates the SSAT algorithm.
When one works with POs, a similar feature can also be implemented for the PISAT
approach based on pervasive conflict clauses. Such a simultaneous falsification
feature was indeed activated in the benchmark runs reported in the next section.

Re-usage of certain conflict clauses is the essence of the incremental approach of
[MS97, WKS01, Str04]. However, PISAT allows one to reuse only pervasive

64 Z. Khasidashvili et al.

conflict clauses; hence any conflict whose associated conflict clause is temporal
may reappear while solving the next instance. In another context, Goldberg and
Novikov [GN01] proposed a method, which we refer to as GN, allowing one to
reuse all conflict clauses when solving multiple POs for a given single propositional
instance – thus tracking pervasive clauses becomes redundant. Similarly to our
approach, GN maintains a currently watched PO (CWPO). It assigns CWPO the
value false prior to assigning values to other variables. From then on, GN treats
CWPO as a normal decision variable and proceeds with a DPLL-style, backtrack
search. If a model is found while exploring the subspace, where CWPO is assigned
false, CWPO is falsifiable, otherwise it is valid. After GN completes checking a
certain CWPO, it augments the initial formula with all or some of the recorded
conflict and uses the described above method to determine the status of the
remaining POs.

In contrast with PISAT, GN allows one to reuse every conflict clause recorded
while checking a certain PO. Indeed, CWPOs are treated as internal assumptions and
every recorded conflict clause is guaranteed to be independent of internal
assumptions. This feature is common with our SSAT algorithm; still there are
important differences between the GN and SSAT algorithms. Most importantly,
SSAT is oriented towards simultaneous solving of the POs – it watches all POs and
tries to decide other POs while checking the CWPO, whereas GN treats one PO – the
CWPO, at a time. To begin with, suppose that a model, falsifying all the POs, is
discovered. In this case, SSAT declares all the POs falsifiable and exits, whereas GN
falsifies only the CWPO and continues to work to falsify other POs. Generally, each
time a model falsifying more than one PO is discovered, GN falsifies only the CWPO.
Another advantage of SSAT is that it can never rediscover the same model, because it
always chooses as a CWPO only POs that have not been previously falsified by any
model. This allows SSAT to prune the search space in a much more efficient manner.
In contrast, GN can reach the same models again and again while checking different
POs. We will demonstrate empirically that SSAT is more efficient than GN. It is
worth mentioning that [GN01] was not written in the context of BMC. Experimental
data section of [GN01] contains benchmarks having only a few hundred variables and
clauses. Modern BMC benchmarks are larger by 3-5 orders of magnitude, and it is
interesting to see how GN performs compared with PISAT and SSAT on such
instances.

Conflict clause re-usage was also proposed by Eén and Sörensson [ES03]. The
basic idea is the same as in [GN01]. The POs are considered to be internal
assumptions, thus every conflict clause is guaranteed to be globally correct. However,
[ES03] treats only the case where one should prove a single PO. The conflict clauses
are passed between formulas corresponding to different base and step depths.
Roughly, the enhanced API proposed by [ES03] corresponds to our SSAT API.
However, [ES03] were concerned with solving one objective at a time and their
approach lacks the “one traversal” and “all watched” principles of SSAT. We will
refer to the fully incremental approaches of [GN01] and [ES03] as FISAT – indeed,
their aim (as stated in the respective papers) is to achieve a maximal re-usage of
conflicts, rather that simultaneous solving of related objectives.

 Simultaneous SAT-Based Model Checking of Safety Properties 65

5 Methods for Simultaneous Bounded Model Checking and
Induction

Previous sections were concerned with simultaneous solving of propositional
objectives. In this section we propose several new methods for simultaneous model
checking of multiple safety properties, using the proposed propositional algorithms.
Since BMC corresponds to the base of temporal induction, we will mainly discuss
induction algorithms. Let us first briefly recall the induction method of [SSS00]. Let
path(s0,…,sk), base(P,k), step(P,k), and loopFree(k) denote the following formulas:

path(s0,…,sk) = Tr(s0,s1) ∧ Tr(s1,s2) ∧ … ∧ Tr(sk-1,sk) (1)

base(P,k) = I(s0) ∧ path(s0,…,sk) ∧ P(s0) ∧ … ∧ P(sk-1) ∧ ¬P(sk) (2)

step(P,k) = path(s0,…,sk + 1) ∧ P(s0) ∧ … ∧ P(sk) ∧ ¬P(sk + 1) (3)

loopFree(k) = path(s0,…,sk) ∧ (/\ 0≤ i <j ≤ k (si ≠ sj)) (4)

where Tr is a transition relation between states s0, s1, … of a Finite State Machine M,
and I(s0) denotes that s0 is an initial state of M. Then a pseudo-code for the basic
induction algorithm for an invariant property P looks as follows:

BASIC-TEMPORAL-INDUCTION (P, max_depth) {
 k = 0;

while (k ≤ max_depth) {
If (satisfiable (base(P,k)) {
 Return “P is falsifiable (counter-example length is k)”;
}
If (unsatisfiable (step(P,k) && loopFree(k)) {
 Return “P is valid”;
}
k++;

}
 Return “P has no counter-example of length max_depth or less”;
}

Fig. 3. Basic temporal induction scheme

Checking P in the BMC style consists of finding a k such that base(P,k) is
satisfiable. We then can generate a counter-example (CE) of length k, which is an
error trace for P. The above induction scheme for verifying P consists of finding a k
such that either base(P,k) is satisfiable (and a CE will be generated) or base(P,i) and
step(P,k) are unsatisfiable for 0 ≤ i ≤ k, in which case P is valid at all reachable states.
The loopFree condition is needed for the completeness of the algorithm, but the
proofs obtained without this condition remain sound. In the algorithms below, for the
simplicity of presentation we omit this condition.

Work [ES03] discusses several variations of this basic induction algorithm. There
are several ways to combine base checks with step checks, for example. Further, in

66 Z. Khasidashvili et al.

the basic algorithm the depth k is incremented by 1, while larger increments are
possible by slight modification of the base and step formulas. In the next section
where we describe versions of temporal induction algorithms for simultaneous
verification of safety properties, for the simplicity of presentation we will only
consider a combination of base and step parts in the style of the basic induction
algorithm above, and we will only consider increment 1 in base and step depths.
Variations similar to those discussed in [ES03] are possible also for this basic
simultaneous induction algorithm.

5.1 The Previous Work on Simultaneous Induction

Fraer et al. [FIK+02] proposed a method for simultaneously checking a number of
safety properties P1,…,Pn on the same model. Their idea is to form a conjunction P
from the properties Pi. If P is false at depth 0, a CE to P is a CE for a number of
properties Pi. These Pi are reported falsifiable (at depth 0), and remaining properties
will form a conjunction P’. The same process will be applied to P’, repeatedly, till
the maximal subset of properties whose conjunction is not falsifiable at depth 0 is
found. To perform BMC, such properties must be checked for depth 1, and so on.
The BMC check terminates when all properties are falsified or the depth limit is
reached. For the step, the idea is similar: The aim is to find a maximal subset
(which actually is the maximal subset) V of yet unresolved properties whose
conjunction P* can be proven at current depth k (that is, the corresponding step
formula step(P*,k) must be unsatisfiable). The subset V is found after several
iterations of SAT-checking of conjunctions of unresolved properties and
eliminating properties that cannot be proven at depth k, by inspecting the models
returned by the SAT solver.

The next figure describes a basic induction algorithm for multiple safety
properties; here and in the remaining algorithms below, U will denote the list of
safety properties to be resolved. Furthermore, in these algorithms we normally use
callbacks to report the status of the properties (the callbacks are activated during the
run, or after the algorithm terminates). The callbacks may or may not be mentioned
explicitly. All algorithms return the list of unresolved properties (remaining from the
input list).

SIMULTANEOUS-INDUCTION(U, max_depth) {
 k = 0;

while (k ≤ max_depth && U != ∅) {
U = simultaneous_base(U,k);
If (U != ∅)
 U = simultaneous_step(U,k);
k++;

}
 Return U;
}

Fig. 4. A basic simultaneous induction scheme for multiple safety properties

 Simultaneous SAT-Based Model Checking of Safety Properties 67

In the induction scheme above, for a depth k, the algorithm simulta-
neous_ base(U,k) checks which of the properties in U are falsifiable in the instance
unrolled to depth k. This can clearly be done in different ways. The
BASE_CONJUNCTION algorithm below corresponds to the method in [FIK+02] for
performing simultaneous base on properties in U:

BASE_CONJUNCTION(U,k) {

P = /\U; // the conjunction of all formulas in U
While (U != ∅) {
 if(satisfiable(base(P,k))) {

U = base_conj_callback(M);

P = /\U; }
 else {
 break; }

}
Return U;

}

Fig. 5. The conjunction method for simultaneous base at depth k

Here M is the model returned by the SAT solver, and base_conj_callback checks M:
all properties Pj in U whose representative variables at depth k are false in M are
reported to the user as falsifiable at depth k; the list of remaining Pj is saved as U.

Similarly, the STEP_CONJUNCTION algorithm below corresponds to the way
simultaneous_step procedure is performed in [FIK+02]:

 STEP_CONJUNCTION(U,k) {
 V = U; // properties we may still prove valid at depth k

 U = ∅; // properties we already know cannot be proven at depth k
While (V != ∅) {

 P = /\V;
 if (satisfiable(step(P,k)) {

(V,U) = step_model_callback(M); }
 else {
 Break; }

}
valid_callback(V);
Return U;

}

Fig. 6. The conjunction method for simultaneous step at depth k

Here M is the model returned by the SAT solver, and step_model_callback checks
which of the variables representing properties in V at depth k + 1 are false in M; such
properties are moved from V to U, as we know they cannot be proven at depth k;
valid_callback will report all properties in V valid to the user (the list V may be empty
after STEP_CONJUNCTION terminates).

68 Z. Khasidashvili et al.

5.2 SSAT-Based Induction

In this subsection we propose several new methods for simultaneous temporal
induction for multiple safety properties.

The following BASE_SSAT(U,k) procedure is a way to perform the
simultaneous_base(U,k) procedure in the SIMULTANEOUS-INDUCTION scheme of
Figure 4; it uses the SSAT algorithm:

BASE_SSAT(U,k) {
U = SSAT+(U, base_ssat_callback);
Return U;

}

Fig. 7. The SSAT method for simultaneous base at depth k

Here SSAT+ starts by running SSAT; the callback base_ssat_callback updates the user
every time a property Pj from U gets falsified; finally, the list of remaining properties
(properties, proved valid by SSAT) will be assigned to U.

To describe simultaneous step algorithms for multiple safety properties, let us
define:

step_ssat(U,k) = [¬step(P1,k),..., ¬step(Pn,k)] (5)

step_hybrid(U,k) = [step2(U,k,1),…,step2(U,k,n)] (6)

where both step_hybrid(U,k) and step_ssat(U,k) are lists of formulas; step2(U,k,l) =
path(s0,…,sk + 1) ∧ P(s0) ∧ …∧ P(sk) → Pl(sk + 1), Pl is a property in U= {P1,…,Pn},
and P =/\U . Then two methods of performing simultaneous step are described by
STEP_SSAT and STEP_HYBRID algorithms below:

STEP_SSAT(U,k) {
(U,V) = SSAT*(step_ssat(U,k))
valid_callback(V);
Return U;

}

Fig. 8. SSAT method for simultaneous induction step at depth k

Here we assume that SSAT* runs SSAT and returns a pair of lists, where the first list
contains all properties Pj from U whose corresponding formulas ¬step(Pj,k) get
falsified by SSAT solver, and the second list consists of the remaining properties Pj
from U; valid_callback reports all formulas Pj in V valid to the user. Indeed, for all
such Pj from V, the corresponding step formula step(Pj,k) is unsatisfiable, and since Pj
was not falsified till depth k, it is valid according to the temporal induction scheme in
[SSS00].

 Simultaneous SAT-Based Model Checking of Safety Properties 69

 STEP_HYBRID (U,k) {
 V = U; // properties we may still prove valid at depth k

 U = ∅; // properties we already know cannot be proven at depth k
 fixpoint_reached = false;
 While (! fixpoint_reached) {

U_old = U;
(U,V) = SSAT**(step_hybrid(U,k))
if (U == U_old)
 fixpoint_reached = true;

}
valid_callback(V);
Return U;

}

Fig. 9. Hybrid method for simultaneous induction step at depth k

Here SSAT** procedure runs SSAT and updates U and V as follows: it moves from V to
U all formulas Pj whose corresponding step formulas step2(U,k,j) = path(s0,…,sk + 1) ∧
P(s0) ∧…∧ P(sk) → Pj(sk + 1) from the list step_hybrid(U,k) get falsified in SSAT.
When there are no such formulas, the while loop stops – fixpoint_reached is assigned
true. Note that in such a case path(s0,…,sk + 1) ∧ P(s0) ∧…∧ P(sk) ∧ ¬P(sk + 1) is
unsatisfiable, and it is the step formula for the conjunct P, thus P (and all its
conjuncts) are valid according to the temporal induction scheme in [SSS00]. The
callback valid_callback reports all properties in V valid to the user.

Notice the differences between STEP_SSAT and STEP_HYBRID algorithms.
STEP_SSAT needs one call to SSAT, thus in general is faster than STEP_HYBRID
which may require more calls to SSAT. However, STEP_HYBRID works more like
STEP_CONJUNCTION in that it can find the maximal subset of U whose conjunction
can be proved at a given depth k. On the other hand, in STEP_SSAT, each unresolved
property Pj is proved “without help of other properties”, meaning that Pj at depth k +
1 is attempted to prove based on assuming Pj valid at depths 0 to k, while
STEP_HYBRID and STEP_CONJUNCTION use stronger assumptions that the
conjunction of all unresolved properties in U is valid at depths 0 to k. Thus
STEP_HYBRID and STEP_CONJUNCTION may in general prove more properties at
a given depth than STEP_SSAT. The difference between STEP_HYBRID and
STEP_CONJUNCTION is that the latter uses a SAT solver rather than SSAT;
therefore the number of calls to the SAT solver depends on the returned models, and
since in these models normally not all the properties falsifiable under the current step
assumption come up false; in general STEP_CONJUNCTION needs much more
iterations than STEP_HYBRID. This is one of the main advantages of STEP_HYBRID
over STEP_CONJUNCTION.

Several variations of simulatenous_base and simultaneous_step are also possible.
For example, one may choose to use the GN algorithm instead of SSAT in
simultaneous base and step schemes proposed in this section. We have already
mentioned that variations are possible in combining the base and step parts of
induction, and increments to the depth other than 1 can easily be allowed by slight
modification of the base and step formulas.

70 Z. Khasidashvili et al.

All base and step procedures described in this section can be made incremental in
various ways. The conjunction method (and implementation) proposed in [FIK+02] is
non-incremental, but it can easily be made incremental in the PISAT style of
[WKS01, Str04] which needs tracking of pervasive learned clauses, or in the FISAT
style of [ES03] where all learned clauses are pervasive. In the former approach,
variables used to define the involved base and step formulas can be soundly removed
from the instances, while for the latter option one needs to keep them. Since in SSAT
all learned clauses are pervasive, it is safe to use them across all calls to SSAT solver
at the same or different depths, as long as no variables and clauses used to define the
involved base and step formulas are removed; indeed, since no temporal assumptions
are made before SSAT calls, all learned clauses are logical consequences of the
unrolled instances. From our experience, the extra defining clauses and variables of
the base and step formulas are not a significant overhead to the SSAT solver.

6 Experimental Results

In this section, we report experimental results on some important applications in
formal hardware verification domain where simultaneous and incremental SAT
solving is very beneficial. In particular, we will compare the performance of the basic
simultaneous induction algorithm when different simultaneous base and step
procedures and different incremental schemes are used. All benchmarks originate
from Intel designs. The performance results were generated on a 3.2 GHz machines
with 4GB memory.

Since there are many variations of simultaneous temporal induction, there is a
choice to be made here. As a base line, we choose the non-incremental conjunction
method of [FIK+02]. We will refer to it as conj. We will consider a double-
incremental version of it, in the PISAT style – we will refer to it as dincr_conj; this
method is double incremental as we transfer the learned clauses from iteration to
iteration at the same depth, as well as from depth to depth. It will allow us to measure
the effect of pervasive learning on simultaneous induction. To measure the effect of
fully incremental approach FISAT, we will consider SSAT-based schemes where the
simultaneous falsification feature (which requires watching of all objectives) is
disabled; we will consider two options: incr_gn, where learned clauses are not
transferred from low to higher depths; and dincr_gn, where learned clauses are
transferred to higher depths (note that the [GN01] approach corresponds to incr_gn
rather than dincr_gn, since they did not consider incremental learning for related
instances – rather, they considered the same instance for multiple objectives). We
then consider the SSAT-based induction schemes – BASE_SSAT as
simultaneous_base algorithm, and both STEP_SSAT and STEP_HYBRID
as simultaneous_step. We will consider the double-incremental versions for both
schemes, and refer to them as dincr_ssat and dincr_hybr, respectively. Furthermore,
to measure the effect of double-incremental learning in SSAT-based induction as
well, we will disable transferring the learned clauses from low to higher depths in
dincr_ssat; we call the resulting scheme incr_ssat. We will not consider the scheme
precisely corresponding to [ES03], as in the majority of our benchmarks we have tens
or hundreds of properties in the same session, and even non-incremental simultaneous

 Simultaneous SAT-Based Model Checking of Safety Properties 71

induction schemes are superior to repeated application of incremental induction for
single safety properties, when solving multiple properties.

The benchmark Tables 1-2 below originate from simultaneous SAT-based model
checking of 543 invariant properties. The pruned model (that includes only the “cone
of influence” of the properties) contains 2723 state elements (latches), 37159 logic
gates and 3767 inputs. The first table gives data of a BMC run using both SSAT and
PISAT algorithms at depths 6-15 (the lower depths took less than a second each to
complete; the depth count in our algorithm starts from 0). And the second table gives
similar data for the step part of the induction algorithm. The combinational instances
at each depth are represented as ∧ / ¬ graphs (and-inverter graphs, or AIGs, allow for
a compact representation of Boolean formulas, see e.g. [KGP01]) and then are
translated to the CNF representation to run PISAT or SSAT algorithm. The PISAT
algorithm requires multiple calls to the DPLL algorithm, to resolve each (non-trivial)
PO. For each PO, the corresponding cone of influence is built, and then translated to
CNF representation. Usually, lots of optimizations are performed when translating an
AIG representation into a CNF representation, allowing one to reduce significantly
the amount of variables in the CNF instance. The downside is that performing such
optimizations for each PO separately may be quite an overhead in some cases,
especially when the “cones of influences” of the POs have a significant overlap.
Usually, vectors of invariant properties are formed so that the properties share large
chunks of common logic (otherwise there would be no reason for performing
simultaneous model checking). This is the case in the benchmarks reported below.

Table 1. BMC at depths 6-15

BMC
depth

 # of
POs

 # of
gates

 # of
inputs

 # of
literals

 # of
clauses

PISAT
(sec)

GN
(sec)

SSAT
(sec)

6 543 98288 25383 93784 254145 174.36 9.28 2.42

7 494 113938 28885 108488 295157 245.51 5.41 4.68

8 473 132372 33352 125745 342993 210.47 8.14 3.96

9 450 150565 37454 142720 390432 316.93 2.61 2.61

10 450 170016 42072 160938 440968 305.79 11.79 6

11 435 189670 46529 179233 492157 508.97 14.61 11.6

12 418 209885 51380 198212 544750 364.76 7.68 6.69

13 417 229883 55880 216769 596763 576.3 5.72 5.71

14 417 250285 60745 235896 649809 424.04 11.14 11.38

15 415 270393 65243 254571 702148 686.75 7.96 8.05

Total 3813.88 84.34 63.1

 Tables 1-2 show the size of the entire instance both in its AIG representation as
well as in CNF representation. In these runs, around 40% of total runtime was spent
on the pruning (i.e., relevant cone formation and CNF re-generation) part of the
PISAT algorithm (the reported PISAT run times include the pruning times). And
the PISAT algorithm spends more time in DPLL search than the SSAT algorithm

72 Z. Khasidashvili et al.

even if the pervasive learned conflicts are re-used in the PISAT algorithm (we know
however that SSAT allows sharing of more conflict clauses). Overall, these tables
demonstrate that the SSAT algorithm can perform orders of magnitude faster than the
PISAT algorithm, at least on many practical designs. Furthermore, even if the time-
consuming pruning is not performed in the GN algorithm, the benchmarks show that
overall SSAT is significantly faster than GN.

Table 2. Induction step at depths 1-10

Step
depth

 # of
POs

 # of
gates

 # of
inputs

 # of
literals

 # of
clauses

PISAT
(sec)

GN
(sec)

SSAT
(sec)

1 543 52786 8026 45811 132490 87.42 30.3 1.99

2 433 73274 9024 62397 184397 117.71 44.6 2.2

3 433 94927 10065 79932 239277 170.86 62.13 3.26

4 433 117160 11128 97964 295687 230.31 78.97 3.92

5 433 140251 12196 117095 355143 291.87 97.73 5.03

6 384 161723 13135 134894 410561 323.46 109.5 15.93

7 260 182905 14182 152888 465867 273.91 117.62 10.36

8 236 204098 15210 170834 521100 292.09 117.87 8.56

9 236 225355 16241 188819 576470 321.43 131.28 11.03

10 221 246438 17261 206653 631386 340.79 139.34 9.24

Total 2449.85 929.34 71.52

Data in Tables 3-4 originate from compositional formal sequential equivalence
verification runs [KSKH04]. The specification and implementation circuits are
divided into corresponding sub-circuits and verified separately. Equivalence of the
circuits can be derived from the equivalence of the corresponding sub-circuits. The
properties that are checked state that the corresponding pairs of sub-circuit outputs in
the specification and implementation models have same values for any input vector
sequence of the respective sub-circuits.

We report experimental data on 6 vectors of safety properties. In order to show the
overall impact on the run-time of the end tool (in this case, a SAT-based model
checker), in this and other tables below we give total runtimes (BMC or Induction till
a certain bound), and do not report a breakdown of times spent at each depth. Tables 3
and 4 both originate from the same model-checking runs (simultaneous induction).

In Table 3 we report the data showing the impact of several advanced features of
the SSAT algorithm that do not exist in PISAT and FISAT. The POs in SSAT
represent the base and step formulas at different depths. We report the amount of
models discovered by SSAT and the number of POs falsified using these models – on
average, each model was sufficient to falsify 8-9 POs. We also report the amount of
POs proved valid based on global assignments before the end of search (i.e., based on
a partial search) – all other POs were trivial to resolve, and they were not passed to
the SAT solvers (their validity was discovered during translating the AIG
representation to CNF). More interestingly, we give also data on the ratio of pervasive
conflicts in the PISAT algorithm, and the amount of conflicts in the SSAT algorithm.

 Simultaneous SAT-Based Model Checking of Safety Properties 73

Table 3. Full proof with induction: conflicts, globally true, and simultaneous faslification data

properties

#PISAT
pervasive
conflicts

#PISAT
conflicts

#SSAT
conflicts

#SSAT
globally
true

#SSAT
models

#SSAT
false

Bound
reached

9 6170 35225 13615 126 21 189 22

9 8549 40680 15709 135 21 189 22

9 8258 37814 14206 135 21 189 22

9 8488 39945 14276 135 21 189 22

9 7056 35370 14251 135 21 189 22

9 6968 13257 13257 135 21 189 22

Table 4. Full proof induction

#properties Conj dincr-conj dincr-gn incr-ssat dincr-ssat dincr-hybr

9 189.57 72.67 66.65 35.05 29.84 29.32

9 200.13 73.23 61.72 40.46 27.76 29.09

9 222.29 66.11 67.17 35.84 26.06 27.83

9 246.51 67.85 62.33 37.22 28.24 29.5

9 253 68.14 59.55 39.04 28.66 30.13

9 215.09 70.25 60.5 35.52 26.7 27.86

Total (sec) 1326.59 418.25 377.92 223.13 167.26 173.73

Table 5. BMC run times (sec) till different depth

#properties BMC depth conj dincr-conj incr-gn dincr-gn incr-ssat dincr-ssat

32 50 32.95 5.4 536.3 8.31 533.87 8.14

32 50 32.85 5.46 543.15 8.42 534.85 8.15

3 50 318.87 108.54 3041.72 46.17 3064.57 46.05

3 50 360.67 464.32 3760.78 210.15 3747.52 210.45

3 50 310.64 367.93 3653.52 50.23 3612.3 50.06

3 50 242.4 231.59 3337.25 199.96 3330.65 199.46

8 50 78.8 30.69 681.68 27.46 685.82 27.18

8 50 78.14 30.77 680.2 26.97 682.88 26.91

8 50 18.53 3.28 162.84 9.98 157.66 10.03

8 50 18.46 3.35 157.25 10.23 157.69 10.18

543 15 139.82 41.18 51.26 32.78 36.08 18.91

172 30 145.75 52.13 76.83 40.5 63.59 28.06

1035 3 2478.61 406.2 1743.56 1618.58 386.93 229.28

Total run times: 4256.49 1750.84 18426.34 2289.74 16994.41 872.86

74 Z. Khasidashvili et al.

There is a clear correlation between these conflict counts and the runtimes of the
dincr_conj and dincr_hybr algorithms reported in Table 4. In Table 4, one can also
see the advantage of the double-incremental verification. And furthermore, the SSAT-
based algorithms dincr-ssat and dincr-hybr are the fastest among all simultaneous
induction algorithms discussed in previous sections.

In Table 5 we report the model checking runtimes for various methods of
simultaneous BMC on test cases originated from formal property verification as well
as formal equivalence verification of Intel designs. Again, the SSAT-based algorithm
dincr_ssat is clearly superior.

In Table 6, we compare the main double-incremental schemes, and show the
speedup of dincr_ssat and dincr_hybr compared with dincr_conj (columns speedup
1 and speedup 2 respectively). The superiority of the SSAT based schemes is evident.
We also present data on the number of properties, and number of properties proved
valid or falsifiable. In the corresponding column, for the proved properties we give
two figures: properties proved in dincr_hybr and properties proved in dincr_ssat; we
already know that the former scheme may prove more properties than the latter.

Table 6. Full induction till bounds 10-30

#PO/#false/#valid depth conj dincr_conj dincr_ssat dincr_hybr speedup 1 speedup 2

172/106/65 30 2777.54 1718.51 200.69 237.66 8.56 7.23

543/128/(275:214) 30 3978.52 3287.89 312.08 233.97 10.54 14.05

100/0/(73:41) 10 18040.21 6390.95 830.61 1384.08 7.69 4.62

249/32/(70:64) 14 31338.58 7730.62 3710.35 2148.58 2.08 3.60

7 Conclusions

We presented an incremental propositional satisfiability technique allowing one to
solve simultaneously and efficiently multiple satisfiability problems for related
formulas. Insignificant modification to a (regular) DPLL-based SAT solver is
sufficient to implement our Simultaneous SAT algorithm. Further, we presented
several novel techniques for simultaneous SAT-based model checking of multiple
safety properties. We provided experimental results demonstrating that the SSAT
algorithm may be orders of magnitude faster in solving related SAT problems than the
previous incremental SAT solving approaches that require multiple calls to a SAT
solver, and that double-incremental simultaneous model checking of related safety
properties employing the SSAT algorithm can accelerate verification significantly.

References

[BCCZ99] Biere A., A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without BDDs,
Tools and Algorithms for the Construction and Analysis of Systems, TACAS
1999.

[BCC+03] Biere, A., A. Cimatti, and E. Clarke, O. Strichman, Y. Zhu, Bounded Model
Checking, Chapter in Advances in Computers, vol. 58, 2003.

 Simultaneous SAT-Based Model Checking of Safety Properties 75

[Bry86] Bryant R.E., Graph-based algorithms for Boolean function manipulation, IEEE
Trans. Computers, C-35(8), 1986.

[CGP99] Clarke E.M., O. Grumberg, D.A. Peled, Model Checking, MIT Press, 1999.
[DLL62] Davis M., G. Logemann, D. Loveland, A machine program for theorem proving. In

Communications of the ACM, (5):394-397, 1962.
[DP60] Davis M., H. Putnam, A computing procedure for quantification theory, J. ACM,

vol 7, 1960.
[ES03] Eén N, N. Sörensson, Temporal induction by incremental SAT solving,

International Workshop on Bounded Model Checking, BMC 2003.
[FIK+02] Fraer, R., S. Ikram, G. Kamhi, T. Leonard, A. Mokkedem, Accelerated verification

of RTL assertions based on satisfiability solvers, HLDVT, 2002.
[GN01] Goldberg E., Y. Novikov, An efficient learning procedure for multiple implication

check. In Design, Automation, and Test in Europe (DATE '01), 2001.
[GSK98] Gomes C.P., B. Selman, H. Kautz, Boosting combinatorial search through

randomization, National Conference on Artificial Intelligence, 1998.
[KGP01] Kuehlmann A., M.K. Ganai, V. Paruthi, Circuit-based Boolean reasoning, DAC

2001.
[KSKH04] Khasidashvili, Z., M. Skaba, D. Kaiss, Z. Hanna, Theoretical framework for

compositional sequential hardware equivalence verification in presence of design
constraints, ICCAD’04, 2004.

[LM02] Lynce I., J. Marques-Silva, Building state-of-the-art SAT solvers, European
Conference on Artificial Intelligence (ECAI), 2002.

[MS97] Marques-Silva J.P., K.A. Sakallah, Robust search algorithm for test pattern
generation, IEEE Fault-Tolerant Computing Symposium, 1997.

[MS99] Marques-Silva J.P., K.A. Sakallah, GRASP: A search algorithm for propositional
satisfiability, IEEE Transactions on Computers, vol. 48, 1999.

[McM93] McMillan, K.L., Symbolic Model Checking, Kluwer, 1993.
[Nad02] Nadel A. Backtrack search algorithms for propositional satisfiability: Review and

Innovations, Master Thesis, the Hebrew University of Jerusalem, 2002.
[PBG05] Prasad M., A. Biere, A. Gupta, A survey of recent advances in SAT-based formal

verification, Int. Journal on Software Tools for Technology Transfer (STTT), vol.
7, number 2, 2005.

[SSS00] Sheeran, M., S. Singh, G. Stalmarck, Checking safety properties using induction
and a SAT-solver, FMCAD, 2000.

[Str04] Strichman, O., Accelerating bounded model checking of safety properties, Formal
Methods in System Design, vol, 24, 2004.

[ZM88] Zabih R., D.A. McAllester, A rearrangement search strategy for determining
propositional satisfiability, National Conference on Artificial Intelligence, 1988.

[ZMM+01] Zhang, L., C.F. Madigan, M.H. Moskewicz, S. Malik, Efficient conflict driven
learning in a boolean satisfiability solver. International Conference on Computer-
Aided Design (ICCAD'01), 2001.

[WKS01] Whittemore, J., K. Kim, K. Sakallah, SATIRE: A new incremental satisfiability
engine, DAC, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

