
Preprocessing in Incremental SAT

A proof supplement

(Technical report: IE/IS-2012-03)

Alexander Nadel 1 Vadim Rivchyn1,2 Ofer Strichman2

alexander.nadel@intel.com rvadim@tx.technion.ac.il

ofers@ie.technion.ac.il

1 Design Technology Solutions Group, Intel Corporation, Haifa, Israel
2 Information Systems Engineering, IE, Technion, Haifa, Israel

In this note we prove the correctness of Preprocess-inc, which is presented
here together with its descendants in Alg. 1. The presentation here of the al-
gorithm is identical to [1], except that ReEliminate-Or-ReIntroduce has
been abstracted: it uses a nondeterministic choice between reintroduction and
reelimination (a conservative abstraction of the algorithm), and ignores the fact
that assumptions must be reintroduced.

The notation used in this note is mostly consistent with [1], but some addi-
tional symbols are required. Specifically we use subscripts to denote restrictions
of a formula to a subset of its clauses1, e.g., for a CNF formula θ,

θj
.
= {c | c ∈ θ, vj ∈ c},

θ ̸=j
.
= θ \ θj , and

θ>j
.
= {c | c ∈ θ, vt ∈ c =⇒ t > j}.

Unless otherwise stated variable symbols, such as vj in the definitions above, re-
fer to variables, not literals. As in [1], we will use ψ to denote formulas without
preprocessing at all, and φ to denote formulas in different stages of the prepro-
cessing algorithm. Specifically, the first formula to be decided is ψ0, and ψi is the
i+1-th such formula. Similarly, φi is the i+1-th formula that is actually solved
by the SAT solver. We refer to each iteration of the external loop of the incre-
mental solver (from the time ∆i, the i-th increment to the formula, is added,
until the preprecessed formula is submitted to the SAT solver), as a layer. The
i-th layer begins by applying our algorithm to φi−1 ∧∆i. We use a 2-dimension
superscript to denote the position in the algorithm, e.g., θi,j denotes the value of
θ in layer i, at the j-th iteration of the (first) internal loop of Preprocess-Inc.
Additional notation is summarized in Table 1.
Our goal is to prove:

Proposition 1. Algorithm PreProcess-Inc is correct, i.e.,

∀i. ψi is equisatisfiable with φi .

1 We adopt the traditional dual view of CNF-s as either formulas or sets of clauses,
depending on the context.



Algorithm 1 Preprocessing in an incremental setting. This algorithm is iden-
tical to the one appeared in [1], except the abstraction in ReEliminate-Or-
ReIntroduce.
1: function ReIntroduceVar(var v, int loc, int i)
2: φi += Sv ∪ Sv̄;
3: erase ElimV arQ[loc]; ◃ v is not eliminated, hence 0 resolvents

1: function ReEliminateVar(clauseset Res, var v, int loc, int i)
2: Sv = Sv ∪ φi

v;Sv̄ = Sv̄ ∪ φi
v̄;

3: ElimV arQ[loc].resolvents += |Res|;
4: φi = (φi ∪Res) \ (φi

v ∪ φi
v̄);

5: ClearDataStructures (v);
6: TouchedV ars = TouchedV ars ∪ vars(Res);

1: function ReEliminate-Or-ReIntroduce(int loc, int i)

2:
clausesetRes = Resi(φ

i
v, φ

i
v̄) ∪

Resi(φ
i
v, Sv̄) ∪ Resi(Sv, φ

i
v̄);

3: if * then ReIntroduceVar(v, loc, i);
4: else ReEliminateVar (Res, v, loc, i);

1: function Preprocess-inc(int i) ◃ preprocessing of φi

2: SubsumptionQ = {c | ∃v. v ∈ c ∧ v ∈ vars(∆i)};
3: RemoveSubsumptions ();
4: for (j = 0 . . . |ElimV arQ| − 1) do ◃ scanning eliminated vars in order
5: v = ElimV arQ[j].v;
6: if |φi

v| = |φi
v̄| = 0 then continue;

7: ReEliminate-Or-ReIntroduce (j, i);

8: while SubsumptionQ ̸= ∅ do
9: for each non-assumption variable v ̸∈ ElimV arQ do ◃ scanning the rest
10: SubsumptionQ = EliminateVar-inc (v, i);
11: RemoveSubsumptions ();

12: SubsumptionQ = {c | vars(c) ∩ TouchedV ars ̸= ∅};
13: TouchedV ars = ∅;



ψ0 Initial formula.

∆i The i-th increment.

ψi = ψ0 ∧
∧i

k=1
∆k.

φi The formula solved by the SAT solver instead of ψi.

cl(φ)
.
= {c | φ =⇒ c, vars(c) ⊆ vars(φ)}. In words, cl(φ) is the logical closure
of a CNF φ. We use it to refer to a formula together with clauses learnt
from it.

Resj(c1, c2) Binary resolution of clauses c1, c2 where vj is the pivot.

Resj(cls) For a set of clauses cls such that cls = cl1 ∪ cl2 and cl1, cl2 contain
respectably vj and v̄j , Resj(cls) =

∧
c1∈cl1,c2∈cl2

Resj(c1, c2).

j A variable index in ElimV arQ.

Sj
.
= Svj ∪ Sv̄j . Recall, for a variable v, Sv denotes the set of clauses con-
taining v that were resolved away because v is eliminated.

E An ordered set of variables, equivalent to the projection of ElimV arQ to
its variables.

Ei,j The set E at the i-th layer, after j iterations of the loop in Alg. 2, re-
stricted to the variables v0 . . . vj .

∃[varset]. An existential quantification operation over the set of variables in varset.

sz[i]
.
= |Ei,0| − 1. This is the number of elements in ElimV arQ, with which
φi−1 ∧ ∆i is being preprocessed. The shortened notation below is used
instead.

sz Same as sz[i], when i is known from the context (simplifies notation).

Table 1. Notation used in this note.



Note that the loop in lines 8 – 13 of Preprocess-inc is standard (non-
incremental) preprocessing. Hence it is sufficient to prove that the formula en-
tering this loop for the first time is equisatisfiable to ψi. From thereon equi-
satisfiability is maintained by the standard properties of preprocessing. Hence,
we focus on lines 4 – 7 of that algorithm, as shown in Alg. 2. ReEliminate-
Or-ReIntroduce of line 7 in Preprocess-inc and its descendants have been
inlined. Some of the statements were rewritten so they use the notation that we
will use in the proof, and is explained in Table 1.2 Note that:

– Line 2 is equivalent to line 6 of Preprocess-inc, only that it uses our
convention by which subscripts denote restrictions to variables rather than
literals;

– Line 4 is equivalent to line 4 of ReEliminateVar;
– Line 5 is equivalent to line 2 in ReIntroduceVar.

For simplicity Alg. 2 and the proof that follows ignores the issue of assumption
variables. It also mostly ignores the function RemoveSubsumptions since it
only applies subsumption and self-subsumption, both of which maintain logical
equivalence.

Algorithm 2 An abstract inlined version of the loop in lines 4–7 of
Preprocess-inc.
1: for j = 0 . . . sz do
2: if |φi

j | = 0 then continue;

3: if * then
4: φi,j = (φi,j−1

̸=j ) ∧Resj(φi,j−1
j ∪ Sj) ◃ reelimination

5: else φi,j = φi,j−1 ∧ Sj ◃ reintroduction

Whereas it is sufficient, by the arguments given above, to prove that Alg. 2
maintains satisfiability in order to establish Proposition 1, this claim is not strong
enough to be inductive. We therefore prove a stronger proposition as stated in
Proposition 2 below.

Without loss of generality, assume that E = v0, v1, . . . , in that order, and
that variables not in ElimV arQ have higher indices. We can always rename the
variables to force this property at the beginning of each layer: since variables that
are eliminated in line 10 of Preprocess-inc are pushed to the end of ElimVarQ,
such renaming will not change the order within this list. We now claim that:

Proposition 2.

∀i . ψi =⇒ φi,sz (1)

∀i . φi,sz =⇒ ∃[Ei,sz]. ψi . (2)

2 The difference in the notation is related to the fact that in the algorithm variables
are updated several times in the loop, whereas in the proof we need each symbol to
refer to a single value at a specific location.



Recall that sz is a shortened version for sz[i], and hence φi,sz is simply the
formula at the end of Alg. 2. Clearly Proposition 2 implies that the formulas at
the beginning and end of Alg. 2 are equisatisfiable, which in itself implies Prop 1.

Proof. (Proposition 2) The proof is by induction on i.

Base case. For i = 0 ElimV arQ = ∅ at the beginning of Alg. 2, and hence
sz = 0 and E0,sz = ∅. Alg. 2 is therefore skipped, ψ0 ⇔ φ0,0 and both (1) + (2)
hold trivially.

Step. We assume Proposition 2 holds up to i − 1 — hereafter referred to as
hypothesis H1 — and prove the proposition for i. We define:

Removed≥j
.
=

sz∧
k=j

∧
cls∈Sk

cls .

In words, Removed≥j for j ∈ [0..sz] is a conjunction of all the eliminated clauses,
such that if vt led to the elimination of the clause, then t ≥ j. We claim that:

Lemma 1. For j ∈ [0..sz]:

ψi =⇒ φi,j ∧Removed≥j+1 (3)

φi,j ∧Removed≥j+1 =⇒ ∃[Ei,j ]. ψi . (4)

Note that when j = sz this lemma is equivalent to Proposition 2 for a given i.

Proof. The proof is by induction on j:

Base case. The first iteration begins with φi−1 ∧∆i and ends with either

Reelimination: φi,0 = φi−1 ∧∆i
>0 ∧Res0(S0 ∪∆i

0) , or (5)

Reintroduction: φi,0 = φi−1 ∧∆i ∧ S0 (6)

Note that (6) implies (5), because

∆i =⇒ ∆i
>0, and

∆i =⇒ ∆i
0 and S0 ∧∆i

0 =⇒ Res0(S0 ∪∆i
0) .

Hence, from the four combinations of {(3), (4)}×{(5), (6)} we only need to prove
((3),(6)) and ((4),(5)):

– (3),(6): We need to prove

ψi =⇒ φi−1 ∧∆i ∧ S0︸ ︷︷ ︸
φi,0(6)

∧Removed≥1 .



• ψi =⇒ φi−1, since ψi =⇒ ψi−1 and by hypothesis H1, ψi−1 =⇒ φi−1;
• ψi =⇒ ∆i, since ψi = ψi−1 ∧∆i; and
• ψi =⇒ S0 ∧Removed≥1 because the RHS is contained in cl(ψi).

– (4),(5): We need to prove

φi−1 ∧∆i
>0 ∧Res0(S0 ∪∆i

0)︸ ︷︷ ︸
φi,0(5)

∧Removed≥1 =⇒ ∃v0. ψi .

The RHS is equivalent to ∃v0. ψi−1 ∧∆i, or to:

ψi−1
>0 ∧∆i

>0 ∧ ∃v0. ψi−1
0 ∧∆i

0 ,

and is implied by the LHS:
• φi−1∧Removed≥1 =⇒ ψi−1

>0 , because ψi−1
>0 ⊆ (φi−1∪Removed≥1) (to be

more precise it is ψi−1
>0 after subsumption that is contained in the RHS,

but as mentioned earlier we ignore subsumption because it maintains
logical equivalence). To see why, observe that:
∗ ψi−1 ⊆ (φi−1 ∪Removed≥0);
∗ Equivalently, ψi−1

0 ∧ ψi−1
>0 ⊆ (φi−1 ∪ S0 ∪Removed≥1);

∗ ψi−1
0 and S0 only contain clauses with v0, and they are the only com-

ponents in the above that contain such clauses. Hence we can remove
them from both sides, which gives us ψi−1

>0 ⊆ (φi−1 ∪Removed≥1).
• ∆i

>0 is on the LHS; and
• φi−1 ∧Res0(S0 ∪∆i

0) =⇒ ∃v0. ψi−1
0 ∧∆i

0, because

Res0(ψ
i−1
0 ∪∆i

0) =⇒ ∃v0. ψi−1
0 ∧∆i

0

by definition of resolution, and

φi−1 ∧Res0(S0 ∪∆i
0) =⇒ Res0(ψ

i−1
0 ∪∆i

0) . (7)

Justifying (7) requires a split:
∗ First, assume there is no subsumption. In that case, ψi−1

0 ⊆ S0

(S0 can contain more clauses than ψi−1
0 because of conflict clauses),

which means that Res0(S0 ∪∆i
0) alone implies the RHS.

∗ Now assume there is subsumption. In that case a clause c ∈ ψi−1
0

may be subsumed by a clause c′ which is not in ψi−1
0 . On the other

hand c′ (or yet another clause that subsumed c′, and so on) is still
in φi−1. Any resolvent of c on the RHS must be subsumed by c′ as
well. The reason is that the pivot is v0 and v0 is not in c′. Hence
c′ ⊂ (c \ v0) and therefore must be part of the resolvent.

Step (Lemma 1). Assume (3) and (4) hold for j − 1 — hereafter referred to as
hypothesis H2 — and prove the proposition for j. The j − 1-th iteration begins
with φi,j−1 and ends with

Reelimination: φi,j = (φi,j−1
̸=j ) ∧Resj(φi,j−1

j ∪ Sj) (8)

Reintroduction: φi,j = φi,j−1 ∧ Sj . (9)



Similarly to the base case, we rely on the relation between the two possible
outcomes to reduce the number of cases that need to be checked. In particular,
(9) implies (8) because:

φi,j−1 =⇒ (φi,j−1
̸=j ), and

φi,j−1
j ∧ Sj =⇒ Resj(φ

i,j−1
j ∪ Sj), and φ

i,j−1
j ⊂ φi,j−1 .

Hence from the four combinations of {(3), (4)}×{(8), (9)} we only need to prove
((3),(9)) and ((4),(8)):

– (3),(9): We need to prove:

ψi =⇒ φi,j−1 ∧ Sj︸ ︷︷ ︸
φi,j(9)

∧Removed≥j+1 ,

or equivalently
ψi =⇒ φi,j−1 ∧Removed≥j ,

• ψi =⇒ φi,j−1 by H2;
• cl(ψi) ⊇ Removed≥j .

– (4),(8): We need to prove:

(φi,j−1
̸=j ∧Resj(φi,j−1

j ∪ Sj)︸ ︷︷ ︸
φi,j(8)

∧Removed≥j+1 =⇒ ∃[Ei,j ]. ψi . (10)

Falsely assume that (10) does not hold, which implies that there exists an
assignment α such that

α |= (φi,j−1
̸=j ) ∧Resj(φi,j−1

j ∪ Sj) ∧Removed≥j+1 ∧ ∀[Ei,j ]. ¬ψi . (11)

Note that vj is not free in (11), and hence α does not have to include a
value for it. We will prove that from α we can derive an assignment that
contradicts the hypothesis H2, and therefore α cannot exist.
By H2:

φi,j−1 ∧Removed≥j =⇒ ∃[Ei,j−1]. ψi ,

which is the same as

(φi,j−1
̸=j ) ∧ φi,j−1

j ∧ Sj ∧Removed≥j+1 =⇒ ∃[Ei,j−1]. ψi . (12)

We will show an assignment that contradicts this implication.
Standard resolution implies that

Resj(φ
i,j−1
j ∪ Sj) =⇒ ∃vj . (φi,j−1

j ∧ Sj) , (13)

and hence (11) implies:

α |= (φi,j−1
̸=j ) ∧ (∃vj . (φi,j−1

j ∧ Sj)) ∧Removed≥j+1 . (14)



Denote by α′ the assignment α augmented with a value of vj chosen to

instantiate the existential quantifier in (14). Since vj only appears in (φi,j−1
j ∧

Sj)
3 and α does not have a value for vj , then

α′ |= (φi,j−1
̸=j ) ∧ (φi,j−1

j ∧ Sj) ∧Removed≥j+1 ,

i.e., α′ satisfies the LHS of (12). It is left to show that α′ also satisfies the
negation of the RHS of (12), i.e.,

α′ |= ¬∃[Ei,j−1]. ψi ,

or

α′ |= ∀[Ei,j−1]. ¬ψi . (15)

By (11) we know that

α |= ∀[Ei,j ]. ¬ψi . (16)

This is equivalent to

α |= ∀vj∀[Ei,j−1]. ¬ψi .

Note that (15) can be seen as an instantiation of the left universal quantifier
to the value given to vj by α′, and hence is implied by the above.
Hence, we have shown an assignment α′ that contradicts (12) and there-
fore the assumption H2. From this we conclude that our assumed α that
contradicts (10) cannot exist. Hence (10) holds.

This concludes the proof of Lemma 1. ⊓⊔

For j = sz Lemma 1 gives us

ψi =⇒ φi,sz

φi,sz =⇒ ∃[Ei,sz]. ψi .

Proposition 2 has now been proven, and consequently also Proposition 1. ⊓⊔

The importance of the elimination order Recall that Alg. 1 and 2 require
that the order of elimination is consistent for different values of i. We begin
by showing an example where without this requirement equisatisfiability is not
maintained. We will then show where the proof would fail had the order was not
maintained.

Example 1. Consider the satisfiable formula:

ψ0 = (v1v̄2v3)(v̄1v̄2v̄3)(v1v̄3)(v2) .

3 This argument is only true because of the consistent order in which variables are
reeliminated. We discuss this further in the end of this note.



Elimination of v3 yields
(v1v̄2)(v2) ,

and then eliminating v2 yields
(v1) .

So far we have

S3 = (v1v̄2v3)(v̄1v̄2v̄3)(v1v̄3)

S2 = (v1v̄2)(v2)

We now add the formula
∆v

1 = (v̄1v3)

which is unsatisfiable if conjoined with the original formula ψ0. This brings us
to

(v1)(v̄1v3)

We now reeliminate v2, and then reintroduce v3 (note the inconsistent order).
The former has no impact, since the formula does not contain the variable v2.
On the other hand reintroducing v3 adds S3, which leaves us with:

(v1)(v̄1v3)(v1v̄2v3)(v̄1v̄2v̄3)(v1v̄3)

This formula is satisfied by the assignment (v1v̄2v3). Hence equisatisfiability is
not maintained. ⊓⊔

The proof relies on the consistent order in several places. For example, after (14)
we relied on an assumption that Removed≥j+1 does not include vj when reelim-
inating vj , which is only guaranteed to be true because of the consistent order.
The following example demonstrates this fact. In layer i− 1 vj is reintroduced,
which brings back a clause c = (vj , vj+1). Then vj+1 is reeliminated, and now
Sj+1 contains c. In layer i, vj is eliminated again (in line 10) and hence pushed
to ElimVarQ after j + 1. But suppose that we do not maintain this order, and
now try to reeliminate vj before vj+1. Now we are in a state that we reeliminate
vj whereas vj is in Sj+1 and hence in Removed≥j+1. Recall our argument right

after (14): “Since vj only appears in (φi,j−1
j ∧Sj) ...”; this is no longer true when

reeliminaing vj , since Removed≥j+1 contains j.

References

1. Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Preprocessing in incremental
SAT. In SAT’12, 2012.


