
Preprocessing in Incremental SAT

Alexander Nadel 1 Vadim Rivchyn1,2 Ofer Strichman2

alexander.nadel@intel.com rvadim@tx.technion.ac.il
ofers@ie.technion.ac.il

1 Design Technology Solutions Group, Intel Corporation, Haifa, Israel
2 Information Systems Engineering, IE, Technion, Haifa, Israel

Abstract. Preprocessing of CNF formulas is an invaluable technique
when attempting to solve large formulas, such as those that model in-
dustrial verification problems. Unfortunately, the best combination of
preprocessing techniques, which involve variable elimination combined
with subsumption, is incompatible with incremental satisfiability. The
reason is that soundness is lost if a variable is eliminated and later rein-
troduced. Look-ahead is a known technique to solve this problem, which
simply blocks elimination of variables that are expected to be part of
future instances. The problem with this technique is that it relies on
knowing the future instances, which is impossible in several prominent
domains. We show a technique for this realm, which is empirically far
better than the known alternatives: running without preprocessing at all
or applying preprocessing separately at each step.

1 Introduction

Whereas CNF preprocessing techniques have been known for a long time (e.g., [1,
2]), most are not cost-effective when it comes to formulas with millions of clauses
– a typical size for industrial verification problems that are being routinely solved
these days in the EDA industry. In that respect one of the major breakthroughs
in practical SAT solving in the last few years has been the combined preprocess-
ing techniques that were suggested by Een and Biere [3]: non-increasing variable
elimination through resolution, coupled with subsumption and self-subsumption.
These three techniques remove variables, clauses and literals, respectively. They
are implemented in MiniSat [4] and the stand-alone preprocessor SatELite, and
are in common use by many SAT solvers. Our experience with industrial verifi-
cation instances shows that these techniques frequently remove more than half
of the formula, and enable the solving of large instances that otherwise cannot
be solved within a reasonable time limit. We will describe these techniques in
more detail in Sect. 2.

A known problem with variable elimination is the fact that it is incompatible,
at least in its basic form as published, with incremental SAT solving [4, 9, 10].
The reason, as was pointed out already in [3], is that variables that are eliminated
may reappear in future instances. Soundness is not maintained in this scenario.
For example, suppose that a formula contains the two clauses (a ∨ v), (b ∨ v̄).

Eliminating v results in removing these two clauses and adding the resolvent
(a ∨ b). Suppose, now, that in the next instance the clauses (ā), (v̄) are added,
which clearly contradict (a∨ v). Yet since we erased that clause and since there
is no contradiction between the resolvent and the new clauses, the new formula
is possibly satisfiable — soundness is lost.

A possible remedy to this problem which was already suggested in [3] and
experimented with in [7], is look-ahead. This means that variables that are known
to be added in future instances are not eliminated. The problem with look-ahead
is that it is not always possible, because information about future instances is
not always available. Examples of such problem domains are:

– Some applications require interactive communication with the user for deter-
mining the next portion of the problem. For example, a recent article from
IBM [3] describes a process in which the verification engineer may re-invoke
the same instance of the SAT-based model checker for verifying a new prop-
erty, which is not known a-priory (it depends on the result of the previous
property). In such a case only a small part of the formula is changed, and
hence incremental satisfiability may be crucial for performance.

– In some applications the calculation of the next portion of the problem de-
pends on the results of the previous invocation of the SAT solver. For exam-
ple, various tasks in MicroCode validation [6] are solved by using a symbolic
execution engine to explore the paths of the program. The generated proof
obligations are solved by an incremental SAT-based SMT solver. In this ap-
plication, the next explored path of the program is determined based on the
result of the previous computation.

– In Intel, the conversion of BMC problems to CNF is done after applying a
‘saturation’ optimization at the circuit level. Saturation divides all the vari-
ables into equivalence classes and tries to unite them by propagating short
clauses that were learned in a previous instance — hence the dependency
that prevents precalculating the instances. The SAT solver is provided only
with the representatives of the equivalence classes. As a result, simple un-
rolling cannot predict those variables that will be present or absent in future
instances.

Another possible remedy is called full preprocessing. It was briefly mentioned
in [7] as an option that is expected not to scale, although in our experiments
it is occasionally competitive. The idea is to perform full preprocessing before
each instance. This means that all variables that were previously eliminated
are returned to the formula and resolvents are removed, other than those that
subsumed other clauses and hence cannot be removed. Therefor preprocessing
is performed independently of past or future instances, other than the fact that
it marks subsuming resolvents. The disadvantage of this approach comparing
to incremental preprocessing — the main contribution of this article — is that
it repeats a lot of work that has already been done in previous instances. Our
experiments with large instances show that this extra overhead can add more
than an hour to the preprocessing time.

2

In this article we suggest a method for combining the method of [3] with
assumptions-based incremental SAT [4]. Our experiments show that it is much
better than either running without preprocessing at all or full preprocessing.
Look-ahead is still better overall, however, when possible. The solution we sug-
gest is simple and rather easy to implement. Basically we eliminate variables
regardless of future instances, and every time a variable is reintroduced into
the formula we choose whether to reeliminate, or reintroduce it. An exception
is made for the assumptions variables, which must be reintroduced. For both
routes we need to save the clauses that were erased in the process of elimination:
these need to be resolved with the new clauses for the former, and returned to
the formula for the latter. As we show, the order in which variables are ree-
liminated or reintroduced matters for correctness. Specifically, the order must
be consistent between instances. The order also changes the resulting reduced
formula and hence the solving time. Our experiments show that in most cases
the consistent order reduces the solving time.

We continue in the next section by describing the technical details of variable
elimination, subsumption and self-subsumption. In Sect. 3 we present incremen-
tal preprocessing, which is an adaptation of these algorithms to the setting of
incremental SAT. In Sect. 4 we summarize the results of our extensive experi-
ments with industrial verification benchmarks from Intel.

2 Preliminaries

Let ϕ be a CNF formula. We denote by vars(ϕ) the variables used in ϕ. For
a clause c we write c ∈ ϕ to denote that c is a clause in ϕ. For v ∈ vars(ϕ)
we define ϕv = {c | c ∈ ϕ ∧ v ∈ c} and ϕv̄ = {c | c ∈ ϕ ∧ v̄ ∈ c} (somewhat
abusing notation, as we refer here to v as both a variable and a literal). Our
setting includes the use of assumptions [5].

Variable elimination
Input: formula ϕ and a variable v ∈ vars(ϕ).
Output: formula ϕ′ such that v 6∈ vars(ϕ′) and ϕ′ and ϕ are equisatisfiable.

Typically this preprocessing is applied only if the number of clauses in ϕ′

is not larger than in ϕ. More generally one may define a positive limit on the
growth in the number of clauses, but for simplicity we will assume here that this
limit is 0. Alg. 1 presents a variable elimination algorithm, where the eliminated
variable v is the parameter. The variable v must be unassigned.

The function Resolve computes the set of non-tautological resolvents of
two sets of clauses given to it as input (the check in line 5 excludes tautological
resolvents). Function EliminateVar uses Resolve to compute the set Res of
such resolvents of ϕv and ϕv̄. If this set is larger than |ϕv|+|ϕv̄| it simply returns,
and hence v is not eliminated. Otherwise in line 4 it adds the resolvents Res and
discards the resolved clauses. All the variables in the resolvents are added to a
list TouchedV ars in line 6. This list will be used later, in Alg. 2, for driving
further subsumption and self-subsumption.

3

Algorithm 1 A variable elimination algorithm similar to the one implemented
in MiniSat and in [3].
1: function Resolve(clauseset pos, clauseset neg)
2: clauseset res = ∅;
3: for each clause p ∈ pos do
4: for each clause n ∈ neg do
5: if p and n have a single possible pivot then
6: res = res ∪ resolution(p, n);

7: return res;

1: function EliminateVar(var v)
2: clauseset Res = Resolve (ϕv, ϕv̄);
3: if |Res| > |ϕv|+ |ϕv̄| then return ∅; . no variable elimination

4: ϕ = (ϕ ∪Res) \ (ϕv ∪ ϕv̄);
5: ClearDataStructures(v); . clearing occurrence list, watch-list, scores-list
6: TouchedV ars = TouchedV ars ∪ vars(Res); . used in Alg. 2
7: return Res;

Subsumption
Input : ϕ ∧ (l1 ∨ · · · ∨ li) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj).
Output : ϕ ∧ (l1 ∨ · · · ∨ li).

Self-subsumption
Input : ϕ ∧ (l1 ∨ · · · ∨ li ∨ l) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj ∨ l̄).
Output : ϕ ∧ (l1 ∨ · · · ∨ li ∨ l) ∧ (l1 ∨ · · · ∨ li ∨ li+1 ∨ · · · ∨ lj).

Preprocessing The preprocessing algorithm described in Alg. 2 is similar
to that implemented in MiniSat 2.2 [4] (based on the stand-alone preproces-
sor SatELite [3]). SubsumptionQ is a global queue of clauses. For each c ∈
SubsumptionQ, and each c′ ∈ ϕ, RemoveSubsumptions (1) checks if c ⊂ c′

and if yes performs subsumption, and otherwise (2) if c self-subsumes c′ then it
performs self-subsumption. Essentially it is similar to the implementation sug-
gested in [3]. Self-subsumption is followed by adding the reduced clause back to
the queue. The function runs until the queue is empty. Note that assumptions are
not eliminated. Eliminating assumptions would render the algorithm unsound.

In line 5 the variables are scanned in an increasing order of occurrences count.
Note that in line 7 RemoveSubsumptions is applied only to the set of newly
generated resolvents.

3 Incremental preprocessing

We now describe an incremental version of the preprocessing algorithm. In con-
trast to the full-preprocessing algorithm that was briefly described in the in-
troduction (performing preprocessing of the new formula, together with learned

4

Algorithm 2 Preprocessing, similar to the algorithm implemented in MiniSat
2.2.
1: function Preprocess
2: SubsumptionQ = ϕ;
3: while SubsumptionQ 6= ∅ do
4: RemoveSubsumptions ();
5: for each unassigned non-assumption variable v do . order heuristically
6: SubsumptionQ = EliminateVar (v);
7: if SubsumptionQ 6= ∅ then RemoveSubsumptions ();

8: SubsumptionQ = {c | vars(c) ∩ TouchedV ars 6= ∅};
9: TouchedV ars = ∅;

clauses from previous instances), our suggested algorithm does not repeat pre-
processing work that was done in previous instances.

In our setting of incremental SAT, each instance is given as a set of clauses
that should be added to the formula accumulated thus far. Removal of clauses
is done indirectly, by using assumptions that are clause selectors. For example,
if v is an assumption variable, then we can add v̄ to a set of clauses. Assigning
this variable false is equivalent to removing this set.

Let ϕ0 denote the initial formula, and ∆i denote the set of clauses added
at step i. Step i for i > 0 begins with a formula denoted ϕi, initially assigned
the conjunction of ϕi−1 at the end of the solving process (i.e., after being pre-
processed and with additional learned clauses), and ∆i. This formula changes
during the solving process.

Preprocessing in an incremental SAT setting requires various changes. In
step i, the easy case is when we wish to eliminate a variable v that is not
eliminated in step i−1. EliminateVar-inc, shown in Alg. 3 is a slight variation
of EliminateVar that we saw in Alg. 1. The only difference is that if v is
eliminated, then it saves additional data that will be used later on, as we will
soon see. Specifically, it saves ϕi

v and ϕi
v̄ in clause-sets denoted respectively by

Sv and Sv̄, and in the next line also the number of resolvents in a queue called
ElimV arQ. This queue holds tuples of the form 〈variable v, int resolvents〉.

Algorithm 3 Variable elimination for ϕi, where the eliminated variable v was
not eliminated in ϕi−1.
1: function EliminateVar-inc(var v, int i)
2: clauseset Res = Resolve (ϕi

v, ϕ
i
v̄);

3: if |Res| > |ϕi
v|+ |ϕi

v̄| then return ∅; . no variable elimination

4: Sv = ϕi
v; Sv̄ = ϕi

v̄; . Save for possible reintroduction
5: ElimV arQ.push(〈v, |Res|〉); . Save #resolvents in queue
6: ϕi = (ϕi ∪Res) \ (ϕi

v ∪ ϕi
v̄);

7: ClearDataStructures (v);
8: TouchedV ars = TouchedV ars ∪ vars(Res); . used in Alg. 5
9: return Res;

5

The more difficult case is when v is already eliminated at step i − 1. In
that case we invoke ReEliminate-Or-ReIntroduce, as shown in Alg. 4. This
function decides between reintroduction and reelimination.

– Reelimination. In Line 6 the algorithm computes the set of resolvents Res
that need to be added in case v is reeliminated. Note that ϕi may contain
v because of two separate reasons. First, vars(∆i) may contain v; Second,
variables that were reintroduced in step i prior to v may have led to reintro-
duction of clauses that contain v. The total number of resolvents resulting
from eliminating v is |Res| + the number of resolvents incurred by eliminat-
ing v up to step i, which, recall, is saved in ElimV arQ.

– Reintroduction. In case we decide to cancel elimination, the previously re-
moved clauses Sv and Sv̄ have to be reintroduced. The total number of
clauses resulting from reintroducing v is thus |Sv ∪ Sv̄ ∪ ϕi

v ∪ ϕi
v̄|. Note that

the algorithm reintroduces variables that appear in the assumption list.

The decision between the two options is made in line 7. If reintroduction
results in a smaller number of clauses, we simply return the saved clauses Sv and
Sv̄ by calling ReIntroduceVar, which also removes its entry from ElimV arQ
because v is no longer eliminated. The rest of the code is self-explanatory.

Algorithm 4 Variable elimination for ϕi, where the eliminated variable (located
in ElimV arQ[loc].v) was already eliminated in ϕi−1.
1: function ReIntroduceVar(var v, int loc, int i)
2: ϕi += Sv ∪ Sv̄;
3: erase ElimV arQ[loc]; . v is not eliminated, hence 0 resolvents

1: function ReEliminateVar(clauseset Res, var v, int loc, int i)
2: Sv = Sv ∪ ϕi

v;Sv̄ = Sv̄ ∪ ϕi
v̄;

3: ElimV arQ[loc].resolvents += |Res|;
4: ϕi = (ϕi ∪Res) \ (ϕi

v ∪ ϕi
v̄);

5: ClearDataStructures (v);
6: TouchedV ars = TouchedV ars ∪ vars(Res);

1: function ReEliminate-Or-ReIntroduce(int loc, int i)
2: var v = ElimV arQ[loc].v; . The variable to eliminate
3: if v is an assumption then
4: ReIntroduceVar(v, loc, i);
5: return ∅;

6:
clausesetRes = Resolve(ϕi

v, ϕ
i
v̄) ∪

Resolve(ϕi
v, Sv̄) ∪ Resolve(Sv, ϕ

i
v̄);

7: if (|Res|+ ElimV arQ[loc].resolvents) > |Sv ∪ Sv̄ ∪ ϕi
v ∪ ϕi

v̄| then
8: ReIntroduceVar(v, loc, i);
9: return ∅;

10: ReEliminateVar (Res, v, loc, i);
11: return Res

6

Given EliminateVar-Inc and ReEliminate-Or-ReIntroduce we can
now focus on Preprocess-inc in Alg. 5, which is parameterized by the in-
stance number i. The difference from Alg. 2 is twofold: First, variables that are
already eliminated in the end of step i− 1 are processed by ReEliminate-Or-
ReIntroduce; Second, other variables are processed in EliminateVar-inc.
The crucial point here is the order in which variables are eliminated. Note that
1) elimination is consistent between instances, and 2) variables that are not
currently eliminated are checked for elimination only at the end. These two con-
ditions are necessary for correctness, because, recall, ReIntroduceVar may
return clauses that were previously erased. These clauses may contain any vari-
able that was not eliminated at the time they were erased.

Example 1. Suppose that in step i − 1, v1 was eliminated, and as a result a
clause c = (v1 ∨ v2) was removed. Then v2 was eliminated as well. Suppose
now that in step i we first reeliminate v2, and then decide to reintroduce v1.
The clause c above is added back to the formula. But c contains v2 which was
already eliminated. ut

Algorithm 5 Preprocessing in an incremental SAT setting
1: function Preprocess-inc(int i) . preprocessing of ϕi

2: SubsumptionQ = {c | ∃v. v ∈ c ∧ v ∈ vars(∆i)};
3: while SubsumptionQ 6= ∅ do
4: RemoveSubsumptions ();
5: for (j = 0 . . . |ElimV arQ| − 1) do . scanning eliminated vars in order
6: v = ElimV arQ[j].v;
7: if |ϕi

v| = |ϕi
v̄| = 0 then continue;

8: ReEliminate-Or-ReIntroduce (j, i);

9: for each unchecked non-assumption variable v do . scanning the rest
10: SubsumptionQ = EliminateVar-inc (v, i);
11: RemoveSubsumptions ();

12: SubsumptionQ = {c | vars(c) ∩ TouchedV ars 6= ∅};
13: TouchedV ars = ∅;

Let ψn = ϕ0 ∧
∧n

i=1∆
i, i.e., ψn is the n-th formula without preprocessing at

all. We claim that:

Proposition 1. Algorithm Preprocess-inc is correct, i.e., for all n

ψn is equisatisfiable with ϕn .

Proof. The full proof is given in a technical report [8]. Here we only sketch
its main steps. The proof is by induction on n. The base case corresponds to
standard (i.e., non-incremental) preprocessing. Proving the step of the induction
relies on another induction, which proves that the following two implications hold

7

right after line 8 at the j-th iteration of the first loop in Preprocess-inc, for
j ∈ [0 . . . |ElimV arQ| − 1]:

ψn =⇒
(
ϕn ∧

|ElimV arQ|−1∧
k=j+1

∧
c∈Svk

∪Sv̄k

c
)

=⇒ ∃v1 . . . vj . ψ
n ,

The implication on the right requires some attention: existential quantification
is necessary because of variable elimination via resolution (in the same way that
Res(x ∨A)(x̄ ∨B) = (A ∨B) and (A ∨B) =⇒ ∃x. (x ∨A)(x̄ ∨B)). The crucial
point in the proof of this implication is to show that if a variable is eliminated
at step j, it cannot reaapear in the formula in later iterations. This is indeed
guaranteed by the order in which the first loop processes the variables.

Note that at the last iteration j = |ElimV arQ| − 1 and the big conjunctions
disappear. This leaves us with

ψn =⇒ ϕn =⇒ ∃v1 . . . vj . ψ
n ,

which implies that ψn is equisatisfiable with the formula after the last iter-
ation. The second loop of Preprocess-inc is non-incremental preprocessing,
and hence clearly maintains satisfiability. ut

Removal of resolvents Recall that ReIntroduceVar returns the clause sets
Sv and Sv̄ to the formula. So far we ignored the question of what to do with
the resolvents: should we remove them given that we canceled the elimination of
v? These clauses are implied by the original formula, so keeping them does not
hinder correctness. Removing them, however, is not so simple, because they may
have participated in subsumption / self-subsumption of other clauses. Removing
them hinders soundness, as demonstrated by the following example.

Example 2. Consider the following four clauses:

c1 = (l1 ∨ l2 ∨ l3) c2 = (l4 ∨ l5 ∨ l̄3)
c3 = (l1 ∨ l2 ∨ l̄4) c4 = (l1 ∨ l2 ∨ l̄5) ,

and the following sequence:

– elimination of var(l3):
• c5 = res(c1, c2) = (l1 ∨ l2 ∨ l4 ∨ l5) is added;
• c1 and c2 are removed and saved.

– self-subsumption between c3 and c5: c5 = (l1 ∨ l2 ∨ l5).
– self-subsumption between c4 and c5: c5 = (l1 ∨ l2).
– subsumption of c3 and c4 by c5.
– removal of the resolvent c5 and returning of c1 and c2.

We are left with only a subset of the original clauses (c1 and c2), which do not
imply the rest. In this case the original formula is satisfiable, but it is not hard
to see that the subsumed clauses (c3, c4) could have been part of an unsatisfiable
set of clauses, and hence that their removal could have changed the result from
unsat to sat. Soundness is therefore not secured if resolvents that participated
in subsumption are removed. ut

8

In our implementation we solve this problem as follows. When eliminating
v, we associate all the resolvent clauses with v. In addition, we mark all clauses
that subsumed other clauses. We then change ReIntroduceVar as can be seen
in Alg. 6. Note that in line 3 we guarantee that unit resolvents remain: it does
not affect correctness and is likely to improve performance.

Algorithm 6 ReIntroduceVar with removal of resolvents that did not par-
ticipate in subsumption.
1: function ReIntroduceVar(var v, int loc, int i)
2: ϕi += Sv ∪ Sv̄;
3: for each non-unit clause c associated with v do
4: if c is not marked then Remove c from ϕi;

5: erase ElimV arQ[loc];

4 Experimental results

We implemented incremental preprocessing on top of Fiver1, and experimented
with hundreds of large processor Bounded Model-checking instances from Intel,
categorized to four different families. In each case the problem is defined as
performing BMC up to a given bound2 in increments of size 1, or finding a
satisfying assignment on the way to that bound. The time out was set to 4000
sec. After removing those benchmarks that cannot be solved by any of the tested
methods within the time limit we were left with 206 BMC problems.3 We turned
off the ‘saturation’ optimization at the circuit level that was described in the
introduction, in order to be able to compare our results to look-ahead. Overall in
about half of the cases there is no satisfying assignment up to the given bound.

The first graph, in Fig. 1, summarizes the overall results of the four com-
pared methods: full-preprocessing, no-preprocessing, incremental-preprocessing,
and look-ahead. The number of time-outs and the average total run-time with
these four methods is summarized in Table 1.

Look-ahead wins overall, but recall that in this article we focus on scenarios
in which lookahead is impossible. Also note that it only has an advantage in a
setting in which there is a short time-out. Incremental-preprocessing is able to
close the gap and become almost equivalent once the time-out is set to a high
value. It seems that the reason for the advantage of incremental preprocessing
over look-ahead in hard instances is that unlike the latter, it does not force each
variable to stay in the formula until it is known that it will not be added from
thereon.
1 Fiver is a new SAT solver that was developed in Intel. It is a CDCL solver, com-

bining techniques from Eureka, Minisat, and other modern solvers.
2 Internal customers in Intel are typically interested in checking properties up to a

given bound.
3 The benchmarks are available upon request from the authors.

9

Method Time-outs Avg. total run-time

full-preprocessing 68 2465.5
no-preprocessing 42 1784.7
incremental-preprocessing 2 1221.3
look-ahead 0 1064.9

Table 1. The number of time-outs and the average total run time (incl. preprocessing)
achieved by the four compared methods.

Fig. 1. Overall run-time of the four compared methods.

We now examine the results in more detail. Fig. 2 shows the consistent benefit
of incremental preprocessing over full preprocessing. The generated formula is
not necessarily the same because of the order in which the variables are examined.
Recall that it is consistent between instances in Preprocess-Inc and gives
priority to those variables that are currently eliminated. In full preprocessing, on
the other hand, it checks each time the variable that is contained in the minimal
number of clauses. The impact of the preprocessing order on the search time is
inconsistent, but there is a slight advantage to that of Preprocess-Inc, as can
be seen in the middle figure. The overall run time favors Preprocess-Inc, as
can be seen at the bottom figure.

Fig. 3 compares incremental preprocessing and no preprocessing at all. Again,
the advantage of the former is very clear.

Finally, Fig. 4 compares incremental preprocessing and look-ahead, which
shows the benefit of knowing the future. The fact that the preprocessing time of
the latter is smaller is very much expected, because it does not have the overhead
incurred by the checks in Alg. 3 and the multiple times that each variable can be
reeliminated and reintroduced. The last graph shows that a few more instances

10

Fig. 2. Incremental preprocessing vs. full preprocessing: (top) preprocessing time,
(middle) SAT time, and (bottom) total time.

11

Fig. 3. Incremental preprocessing vs. no-preprocessing.

were solved overall faster with look-ahead, but recall that according to Fig. 1
with a long-enough timeout the two methods have very similar results in terms
of the number of solved instances.

5 Conclusion

In various domains there is a need for incremental SAT, but the sequence of
instances cannot be computed apriori, because of dependance on the result of
previous instances. In such scenarios applying preprocessing with look-ahead,
namely preventing elimination of variables that are expected to be reintroduced,
is impossible. Incremental preprocessing, the method we suggest here, is an ef-
fective algorithm for solving this problem. Our experiments with hundreds of
industrial benchmarks show that it is much faster than the two known alterna-
tives, namely full-preprocessing and no-preprocessing. Specifically, with a time-
out of 4000 sec. it is able to reduce the number of time-outs by a factor of four
and three, respectively.

References

1. F. Bacchus and J. Winter. Effective preprocessing with hyper-resolution and equal-
ity reduction. In SAT 2003, volume 2919 of LNCS, pages 341–355, 2003.

2. Daniel Le Berre. Exploiting the real power of unit propagation lookahead. Elec-
tronic Notes in Discrete Mathematics, 9:59–80, 2001.

3. Niklas Eén and Armin Biere. Effective preprocessing in sat through variable and
clause elimination. In SAT, pages 61–75, 2005.

12

Fig. 4. Incremental preprocessing vs. look-ahead: (top) preprocessing time, (middle)
SAT time, and (bottom) total time.

13

4. Niklas Eén and Niklas Sörensson. An extensible SAT-solver [ver 1.2]. In Proceedings
of Theory and Applications of Satisfiability Testing, volume 2919 of Lect. Notes in
Comp. Sci., pages 512–518. Springer, 2003.

5. Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solving.
Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

6. Anders Franzén, Alessandro Cimatti, Alexander Nadel, Roberto Sebastiani, and
Jonathan Shalev. Applying smt in symbolic execution of microcode. In FMCAD,
pages 121–128, 2010.

7. Stefan Kupferschmid, Matthew D. T. Lewis, Tobias Schubert, and Bernd Becker.
Incremental preprocessing methods for use in bmc. Formal Methods in System
Design, 39(2):185–204, 2011.

8. Alex Nadel, Vadim Ryvchin, and Ofer Strichman. Preprocessing in incremental sat.
Technical Report IE/IS-2012-02, Industrial Engineering, Technion, 2012. Available
also from http://ie.technion.ac.il/∼ofers/publications/sat12t.pdf.

9. Ofer Shtrichman. Prunning techniques for the SAT-based bounded model check-
ing problem. In proc. of the 11th Conference on Correct Hardware Design and
Verification Methods (CHARME’01), Edinburgh, September 2001.

10. Jesse Whittemore, Joonyoung Kim, and Karem Sakallah. SATIRE: a new incre-
mental satisfiability engine. In IEEE/ACM Design Automation Conference (DAC),
2001.

14

