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Abstract.  This document is an addendum to [38]. Its main goal is to provide 

additional experimental data. In particular, we compare our algorithms to 

publicly available algorithms for single MUC extraction. We also provide 

further details about the performance of our algorithms. In addition, we correct 

a number of inaccuracies. This document should be read after [38]. 

1 Experimental Results 

In this section, we provide additional experimental results. 

5.1 Comparing the Resolution-based Method to the Selector-Variable-based 

Method for High-Level MUC Extraction 

This section provides a more detailed analysis of the results presented in Tables II and 

III in [38]. Fig. 1 and Fig. 2 provide the data regarding the number of clauses and 

interesting constraints, respectively, in the instances we used.  

 

Fig. 1.  Clause size of the instances used for testing high-level MUC extraction 

algorithms. 
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Fig. 2.  The number of interesting constraints for the instances used for testing 

high-level MUC extraction algorithms. 

 

Fig. 3 and Fig. 4 compare the best version of our resolution-based approach to 

high-level single MUC extraction 1MN vs. the selector variable-based approach SV. 

These figures compare run-times and MUC sizes, respectively. Note that the run-time 

summary and the average MUC size for these algorithms appear on Table III in [38]. 

The main observation is that the results are scattered, meaning that both approaches 

have their own strengths and weaknesses. More investigation is needed to understand 

the reasons for this phenomenon.   
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Fig. 3.  Comparing the run-time of 1MN vs. SV algorithms for high-level MUC 

extraction. 

 

     

Fig. 4.  Comparing the MUC size of 1MN vs. SV algorithms for high-level MUC 

extraction. 
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5.2 Comparing Publicly Available Tools for High-Level MUC Extraction 

This section compares CAMUS [13], the only publicly available tool that is able to 

extract high-level MUCs, with our selector-variable-based algorithm SV. We 

configured CAMUS to extract a single MUC only and to use resolution-based 

preprocessing to obtain optimal performance for these experiments (our claim in [38] 

that CAMUS can only extract all of the MUCs is incorrect.). All the experiments with 

CAMUS (as well as AOMUS and MiniUnsat in Section 5.3) were carried out on Intel 

Xeon machines with 4Ghz CPU frequency and 32Gb of memory. These machines 

have the same CPU frequency as those used for benchmarking algorithms in [38], but 

they have eight times more memory. We use the results of SV that were collected in 

[38]. 

Consider Fig. 5. The main observation is that SV outperforms CAMUS by 1-2 

orders of magnitude. SV solves each of the instances in less than 500 seconds, while 

CAMUS times out on many of the instances. As CAMUS is the only existing tool that 

is able to extract high-level MUCs, our approach to this problem significantly 

outperforms the state-of-the-art. 

 

5.3 Comparing Publicly Available Tools for Clause-Level MUC Extraction 

 

This section compares various algorithms for clause-level single MUC extraction. In 

particular, we compare our best resolution-based algorithm 1MN, our selector 

variable-based algorithm SV, our previous resolution-based approach CRR+RRP [6-

8], CAMUS [13], AOMUS [39], and MiniUnsat [14]. We did not use AMUSE [4] 

and MUP [36] for the comparison, since these tools are outperformed by CRR+RRP 

[6-8]. Recall from [38] that CRR+RRP exactly corresponds to PDR.  

The comparison is carried out on the same instances as in [38]. Consider Table 1. 

First note that AOMUS and MiniUnsat are outperformed by other approaches, hence 

we will concentrate on comparing the other algorithms. Consider the first 7 instances 

taken from the domain of microprocessor verification [38]. The instances from this 

family are the largest in terms of the number of clauses. Note that CAMUS cannot 

solve these instances, while 1MN is the best approach for them. We move on to the 

barrel instances [33]. The results for these instances are mixed. CAMUS performs the 

best for the first two instances. SV is the best approach for another instance, while 

PDR performs the best for another instance (1MN is only 5 seconds slower than 

PDR). CAMUS turned to be out the best MUC extractor for the longmult family [33]. 

This result may be related to the fact that this family has the fewest number of clauses 

of all three families we used. Additional study is required to understand these results 

better. 

2  Conclusion 

We have provided additional experimental results to complement the experimental 

results section of [38]. We have seen that our selector-variable-based approach 

outperforms the state-of-the-art for the problem of high-level MUC extraction by 1-2 

orders of magnitude. Our resolution-based approach is faster for clause-level MUC 

extraction on large and difficult test-cases. 

 

 



 

 

      Fig. 5.  Comparing CAMUS to our selector-variable-based approach to single high-level 

MUC extraction. The run-time in seconds of both approaches is shown. The time-out was 7200 

seconds. 
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Table 1.  Comparing different approaches to single clause-level MUC extraction. The run-time 

is provided in seconds. The time threshold was 2 hours. The best time is highlighted. 

Instance Clauses 1MN SV CRR+RRP CAMUS AOMUS MiniUnsat  

3pipe_k 27405 167  239  469  TO ERR TO 

4pipe 80213 1417  2021  3791  TO TO TO 

4pipe_1_ooo 74554 1528  4323  2928  TO TO TO 

4pipe_2_ooo 82207 2383  4999  4566  TO TO TO 

4pipe_3_ooo 89473 2560  5357  4465  TO TO TO 

4pipe_4_ooo 96480 2432  6354  5865  TO TO TO 

4pipe_k 79489 1426  3097  2938  TO TO TO 

barrel5 5383 68  48  115  31 ERR 267 

barrel6 8931 348  402  436  223 ERR 1391 

barrel7 13765 849  700  1081  1443 ERR 5027 

barrel8 20083 4115  5758  4110  5823 ERR TO 

longmult4 6069 14  78  12  5 540 227 

longmult5 7431 143  642  100  21 ERR 538 

longmult6 8853 968  5705  1760  79 TO 1149 

longmult7 10335 5099  TO TO 858 TO 2497 
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