
Boosting Minimal Unsatisfiable Core Extraction:

Paper Addendum

Alexander Nadel

Intel Corporation,

P.O. Box 1659, Haifa 31015 Israel

alexander.nadel@intel.com

Abstract. This document is an addendum to [38]. Its main goal is to provide

additional experimental data. In particular, we compare our algorithms to

publicly available algorithms for single MUC extraction. We also provide

further details about the performance of our algorithms. In addition, we correct

a number of inaccuracies. This document should be read after [38].

1 Experimental Results

In this section, we provide additional experimental results.

5.1 Comparing the Resolution-based Method to the Selector-Variable-based

Method for High-Level MUC Extraction

This section provides a more detailed analysis of the results presented in Tables II and

III in [38]. Fig. 1 and Fig. 2 provide the data regarding the number of clauses and

interesting constraints, respectively, in the instances we used.

Fig. 1. Clause size of the instances used for testing high-level MUC extraction

algorithms.

0

1000000

2000000

3000000

4000000

5000000

6000000

Clause Size

Fig. 2. The number of interesting constraints for the instances used for testing

high-level MUC extraction algorithms.

Fig. 3 and Fig. 4 compare the best version of our resolution-based approach to

high-level single MUC extraction 1MN vs. the selector variable-based approach SV.

These figures compare run-times and MUC sizes, respectively. Note that the run-time

summary and the average MUC size for these algorithms appear on Table III in [38].

The main observation is that the results are scattered, meaning that both approaches

have their own strengths and weaknesses. More investigation is needed to understand

the reasons for this phenomenon.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of Interesting Constraints

Fig. 3. Comparing the run-time of 1MN vs. SV algorithms for high-level MUC

extraction.

Fig. 4. Comparing the MUC size of 1MN vs. SV algorithms for high-level MUC

extraction.

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

1

M

N

SV

1MN vs. SV Run-Time Comparison

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

1

M

N

SV

SV vs. 1MN MUC Size Comparison

5.2 Comparing Publicly Available Tools for High-Level MUC Extraction

This section compares CAMUS [13], the only publicly available tool that is able to

extract high-level MUCs, with our selector-variable-based algorithm SV. We

configured CAMUS to extract a single MUC only and to use resolution-based

preprocessing to obtain optimal performance for these experiments (our claim in [38]

that CAMUS can only extract all of the MUCs is incorrect.). All the experiments with

CAMUS (as well as AOMUS and MiniUnsat in Section 5.3) were carried out on Intel

Xeon machines with 4Ghz CPU frequency and 32Gb of memory. These machines

have the same CPU frequency as those used for benchmarking algorithms in [38], but

they have eight times more memory. We use the results of SV that were collected in

[38].

Consider Fig. 5. The main observation is that SV outperforms CAMUS by 1-2

orders of magnitude. SV solves each of the instances in less than 500 seconds, while

CAMUS times out on many of the instances. As CAMUS is the only existing tool that

is able to extract high-level MUCs, our approach to this problem significantly

outperforms the state-of-the-art.

5.3 Comparing Publicly Available Tools for Clause-Level MUC Extraction

This section compares various algorithms for clause-level single MUC extraction. In

particular, we compare our best resolution-based algorithm 1MN, our selector

variable-based algorithm SV, our previous resolution-based approach CRR+RRP [6-

8], CAMUS [13], AOMUS [39], and MiniUnsat [14]. We did not use AMUSE [4]

and MUP [36] for the comparison, since these tools are outperformed by CRR+RRP

[6-8]. Recall from [38] that CRR+RRP exactly corresponds to PDR.

The comparison is carried out on the same instances as in [38]. Consider Table 1.

First note that AOMUS and MiniUnsat are outperformed by other approaches, hence

we will concentrate on comparing the other algorithms. Consider the first 7 instances

taken from the domain of microprocessor verification [38]. The instances from this

family are the largest in terms of the number of clauses. Note that CAMUS cannot

solve these instances, while 1MN is the best approach for them. We move on to the

barrel instances [33]. The results for these instances are mixed. CAMUS performs the

best for the first two instances. SV is the best approach for another instance, while

PDR performs the best for another instance (1MN is only 5 seconds slower than

PDR). CAMUS turned to be out the best MUC extractor for the longmult family [33].

This result may be related to the fact that this family has the fewest number of clauses

of all three families we used. Additional study is required to understand these results

better.

2 Conclusion

We have provided additional experimental results to complement the experimental

results section of [38]. We have seen that our selector-variable-based approach

outperforms the state-of-the-art for the problem of high-level MUC extraction by 1-2

orders of magnitude. Our resolution-based approach is faster for clause-level MUC

extraction on large and difficult test-cases.

 Fig. 5. Comparing CAMUS to our selector-variable-based approach to single high-level

MUC extraction. The run-time in seconds of both approaches is shown. The time-out was 7200

seconds.

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500

C

A

M

U

S

MUC-SV

CAMUS vs. MUC-SV: Run-Time
Comparison

y = x

Table 1. Comparing different approaches to single clause-level MUC extraction. The run-time

is provided in seconds. The time threshold was 2 hours. The best time is highlighted.

Instance Clauses 1MN SV CRR+RRP CAMUS AOMUS MiniUnsat

3pipe_k 27405 167 239 469 TO ERR TO

4pipe 80213 1417 2021 3791 TO TO TO

4pipe_1_ooo 74554 1528 4323 2928 TO TO TO

4pipe_2_ooo 82207 2383 4999 4566 TO TO TO

4pipe_3_ooo 89473 2560 5357 4465 TO TO TO

4pipe_4_ooo 96480 2432 6354 5865 TO TO TO

4pipe_k 79489 1426 3097 2938 TO TO TO

barrel5 5383 68 48 115 31 ERR 267

barrel6 8931 348 402 436 223 ERR 1391

barrel7 13765 849 700 1081 1443 ERR 5027

barrel8 20083 4115 5758 4110 5823 ERR TO

longmult4 6069 14 78 12 5 540 227

longmult5 7431 143 642 100 21 ERR 538

longmult6 8853 968 5705 1760 79 TO 1149

longmult7 10335 5099 TO TO 858 TO 2497

References1

[38] Alexander Nadel, “Boosting Minimal Unsatisfiable Core Extraction”. Accepted to

FMCAD’10.

[39] Éric Grégoire, Bertrand Mazure, Cédric Piette: Local-search Extraction of MUSes.

Constraints 12(3): 325-344 (2007)

1 The first 37 references appear in [38].

