Data Structures - Assignment no. 5

Remarks:

- Write both your name and your ID number very clearly on the top of the exercise. Write your exercises in pen, or in clearly visible pencil. Please write very clearly.
- Recall that 80% of the theoretical exercises must be submitted. The exercises can and must be worked on and submitted alone.
- Give correctness and complexity proofs for every algorithm you write.
- For every question where you are required to write pseudo-code, also explain your solution in words.

1. Describe an algorithm that receives as input a sorted array that contains \(n \) different real numbers, and returns

 (a) a 2-4+ tree whose keys are these numbers.
 (b) an RBT tree whose keys are these numbers.

 The algorithms should run in \(O(n) \) time.

2. Insert the keys 23, 34, 4 and 39 to the 2-4+ tree depicted in Figure 1. Then delete keys 10 and 20. Now draw the resulting tree.

3. Suggest a data structure based on RBT that supports the following operation and given time complexities.

 - \(\text{Init}(x_1, \ldots, x_n) \) - Init the DS with \(n \) real numbers (unordered) in \(O(n \log n) \) time.
 - \(\text{Insert}(x) \) - Insert \(x \) to the DS in \(O(\log n) \) time.
 - \(\text{findMin}() \) - Return the value of the minimal element in \(O(1) \) time.
 - \(\text{findMax}() \) - Return the value of the maximal element in \(O(1) \) time.
 - \(\text{findMed}() \) - Return the value of the median element in \(O(\log n) \) time.
 - \(\text{DelMin}() \) - Remove the minimal element in \(O(\log n) \) time.
 - \(\text{DelMax}() \) - Remove the maximal element in \(O(\log n) \) time.
 - \(\text{DelMed}() \) - Remove the median element in \(O(\log n) \) time.

4. Suppose that a node \(x \) is inserted into a red-black tree with RB-INSERT and then immediately deleted with RB-DELETE. Is the resulting red-black tree the same as the initial red-black tree?

5. (a) You are given a 2-4+ search tree where the root has exactly two children, \(u \) and \(v \). Let \(X \) be the number of descendants of \(v \), and \(Y \) be the number of descendants of \(u \). (In other words, \(X \) is the size of the subtree of \(v \), and \(Y \) is the size of the subtree of \(u \)). Is it necessarily true that \(X \leq 2008 \cdot Y \)? Explain your answer.

 (b) Solve the same question for an R-B tree
6. Suppose you do a sequence of m insertions and deletions on a 2-4+ tree where you get a pointer to the leaf that has to contain the new item in case of insert, or contains the item to be deleted in case of delete. The 2-4+ trees contain at most n elements when we start performing the sequence. Prove that it takes $O(n + m)$ time to perform the sequence.

7. Write an ADT that supports the operations:
 - $Init(S)$ that receives an array S of size n, such that each cell contains the age and salary of some worker
 - $MaxSalary(i, j)$ which returns the age of the oldest worker in S whose salary is between i and j, for some reals i and j.

 Assume that $MaxSalary(i, j)$ refers to the array S in the last call to $Init(S)$, and returns 0 if $Init$ was never called. You don’t need to prove your answers in this question.

 (a) A call to $Init(S)$ should take $O(n \log n)$ time W.C, and a call to $MaxSalary(i, j)$ should take $O(\log n)$ time W.C.

 (b) A call to $MaxSalary(i, j)$ should take $O(1)$ time W.C., and a call to $Init(S)$ can take any finite amount of time.

Figure 1: A 2-4+ tree. (Recall that a 2-4+ tree is a 2-4 tree where the real set elements are only the keys that are at the leaves, and the rest of the elements are just pivot elements to aid in searching.)