Data Structures - Assignment no. 3

Remarks:

- Write both your name and your ID number very clearly on the top of the exercise. Write your exercises in pen, or in clearly visible pencil. Please write very clearly.
- Recall that 80% of the theoretical exercises must be submitted. The exercises can and must be worked on and submitted alone.
- Give correctness and complexity proofs for every algorithm you write.
- For every question where you are required to write pseudo-code, also explain your solution in words.

1. Insert the keys 5, then 9 and then 2 to the heap depicted in Figure 1. Then perform delete-min four times. Now draw the resulting heap.

2. Describe an algorithm that melds two binary heaps, represented by arrays, into one binary heap. Denote by \(n \) the sum of the sizes of the heaps. (Assume that no key appears more than once in the input). Try to make the algorithm as asymptotically efficient as possible. (Hint: the solution is very easy, and can be described in one or two lines).

3. Describe an algorithm that prints the \(k \) smallest elements in a binary heap. You can assume that the heap is represented as an array or as a tree, whichever is more comfortable for you. You may also assume that no key appears more than once in the heap. The algorithm should take \(O(k \log k) \) time. The algorithm should not modify the heap. Give: (i) pseudo-code; (ii) an explanation of the algorithm; (iii) an explanation why it is correct; and (iv) an explanation why the running time is indeed \(O(k \log k) \).
 Note: Observe that getting an algorithm that runs in time \(O(k \log n) \), where \(n \) is the size of the heap, is easy – just perform \(k \) delete-mins. (In order to avoid modifying the heap, you need to undo your actions, which takes another \(O(k \log n) \) time).

4. A \(d \)-ary heap is like a binary heap, but instead of 2 children, nodes have \(d \) children.
 (a) How would you represent a \(d \)-ary heap in an array?
 (b) What is the height of a \(d \)-ary heap of \(n \) elements in terms of \(n \) and \(d \)?
 (c) Give an efficient implementation of \textit{find-min}. Analyze its running time in terms of \(d \) and \(n \).
 (d) Give an efficient implementation of \textit{insert}. Analyze its running time in terms of \(d \) and \(n \).
 (e) Give an efficient implementation of \textit{decrease-key}(\(A, i, \delta \)), which sets \(A[i] \) to \(\min(A[i], \delta) \) and updates the heap structure appropriately. Analyze its running time in terms of \(d \) and \(n \).
5. 1) Prove the following properties of binomial trees:

 (a) A binomial tree of rank k has 2^k vertices.

 (b) A binomial tree of rank k has depth k.

 (c) A binomial tree of rank k has $\binom{k}{r}$ vertices of depth r.

6. (a) Draw the corresponding binomial heap at the end of each line in the following sequence.

 • Insert the keys 10, 20, 3, 8, 30, 2, 25, 22, 35, 1, 32 to an empty binomial heap H_1.

 • Insert the keys 60, 12, 30, 82 to an empty binomial heap H_2

 • H_3=Meld(H_1, H_2)

 • Insert the keys 15, 18, 8, 10, 17, 8 to an empty heap H_4.

 • H_5=Meld(H_3, H_4)

 • Delete-Min(H_5)

 • Decrease the key of the node in H_5 that contain ‘17’ – to ‘10’

 • Decrease the key of the node in H_5 that contain ‘20’ – to ‘0’

(b) Say you perform the same sequence as in (a) on a binomial heap with "lazy meld". Draw the heap at the end of the sequence. Assume that:

 • when you meld two heaps H_1 and H_2 you put the trees of H_1 before the trees of H_2;

 • After successive linking you put the trees in the list sorted by increasing ranks;

 ![Figure 1: A Heap.](image-url)