1. Find the smallest complexity class containing the following language:
 Let $G = (V, E)$ be a directed graph. G is in the language if G contains 2013 paths, each of length 2013?

2. (Polynomial Hierarchy.)
 (a) Prove that for every i, if $\Sigma_i = \Pi_i$ then the polynomial hierarchy collapses to the ith level.
 (b) Prove that if there exists a language which is PH-complete then the hierarchy collapses.

3. (Randomized Computation - Part I.)
 (a) Show that if $NP \subseteq BPP$ then $NP = RP$.
 (b) Show that BPP is closed under complement.

4. (Randomized Computation - Part II.)
 Prove or disprove the following statements:
 (a) $BPP(0.90 \cdot 0.905) = BPP$.
 (b) $BPP(0, 1 - \frac{1}{2^n}) = RP$.

5. (Search to Decision Reduction for Graph Isomorphism.)
 Suppose A is an algorithm solving the Graph Isomorphism (GI) problem, i.e., given two graphs G_1 and G_2 it answers “yes” if the two graphs are isomorphic and “no” otherwise. Show a polynomial time oracle algorithm B, s.t. given any two graphs G_1 and G_2, B^A outputs an isomorphism between G_1 and G_2 if one exists and “no isomorphism” otherwise.