1. **(GI is Self Reducible.)** Define a language L to be *downward self reducible* if there’s a polynomial-time algorithm R that for any n and $x \in \{0, 1\}^n$, $R^{L_{n-1}}(x) = L(x)$ where by L_k we denote an oracle that solves L on inputs of size at most k.

The GI (Graph Isomorphism) problem: given two graphs $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ decide if they are isomorphic, that is, there exists a 1-1 and onto mapping $\pi : V_1 \rightarrow V_2$ such that $(u, v) \in E_1$ iff $(\pi(u), \pi(v)) \in E_2$.

Show that the problem GI is downward self reducible. That is, prove that given two graphs G_1, G_2 on n vertices and access to a subroutine P that solves the GI problem on graphs with up to $n - 1$ vertices, we can decide whether or not G_1 and G_2 are isomorphic in polynomial time.

2. **(Oracle Machines.)**

 (a) Are P^{NP} and NP the same?

 (b) Prove that $P^{PSPACE} = PSPACE$.

 (c) Which complexity class is $PSPACE^{PSPACE}$?

 (d) Which complexity class is P^{EXP}?

 (e) Which complexity class is EXP^{EXP}?

3. **(NP and co-NP.)**

 (a) Let L_1, L_2 be two languages in NP.
 Show that $L_1 \cap L_2 \in NP$ and that $L_1 \cup L_2 \in NP$.

 (b) Let L_1, L_2 be two languages in NP \cap co-NP and let
 \[L_1 \oplus L_2 = \{ x : x \text{ is in exactly one of } L_1, L_2 \} \]. Show that $L_1 \oplus L_2$ is in NP \cap co-NP as well.

4. **(PRIME)** Let $PRIME$ be the language of all prime numbers. Show that $PRIME$ is in co-NP (without using the fact that $PRIME$ is in P).

5. **(Pratt Certificate - Bonus)** Consider the following algorithm that verifies whether a given integer $n > 2$ is prime:
• Guess an integer $1 < r < n$.
• Verify that: $r^{n-1} \mod n = 1$.
• Guess $q_1, ..., q_k$ and verify that:
 - $q_1 \cdot q_2 \cdot ... \cdot q_k = (n - 1)$
 - For every $1 \leq i \leq k$, q_i is prime.
 - For every $1 \leq i \leq k$, $r \frac{n-1}{q_i} \mod n \neq 1$.

Answer the following questions:

(a) Prove the correctness of the algorithm, assuming the following theorem:

Lucas test:
Let n be a positive integer. If there exists an integer $1 < a < n$ such that $a^{n-1} \mod n = 1$ and for every prime factor q of $n - 1$ the following holds: $a^{(n-1)/q} \mod n \neq 1$, then n is prime (otherwise n is either 1 or composite).

(b) Prove that the language accepted by this algorithm is in NP. What is the bound on the running time you found?

(c) Given a prime integer n as an input for this algorithm, describe the witness w_n for showing that n is prime. What is the bound on the length of the witness?