Exercise 1

Given an undirected graph with \(n \) vertices’s recall that its diameter is defined by:

\[
\text{diam}(G) = \max_{u,v \in V(G)} \{d(u, u)\}.
\]

Is the problem of deciding weather the diameter of \(G \) is at most \(\frac{n}{4} \) in \(\text{NPC} \) or in \(\text{NL} \)? Prove your answer.

Exercise 2

Let \(L \) be a language of all graphs on \(n \) vertices’s with diameter \(\log(n) \). Prove that \(L \in \text{Space}(\log(n) \cdot \log(\log(n))) \).

Exercise 3

You proved in class that each undirected graph \(G = (V, E) \) possess a cut with at least \(\frac{|E|}{2} \) edges. Give a deterministic poly-time algorithm, giddy on the conditional expectation, which constructs such a cut for a given \(G \). Prove that your algorithm satisfies all the conditions.

Exercise 4

Define \(\text{ZPP} \) as the class of all languages decided by a probabilistic Turing machine running in expected polynomial time. That is, for a language \(L \in \text{ZPP} \) there is a probabilistic Turing machine \(M(x, y) \) with the following behavior:

\(M \) always accepts any input \(x \in L \) and always reject any input \(x \notin L \). Also, for every \(x \):

\[
E_y \left[\text{the number of steps before} \ M(x, y) \text{ halts} \right] < |x|^c,
\]

for some fixed \(c > 0 \). Prove that \(\text{ZPP} = \text{RP} \cap \text{coRP} \).

GOOD LUCK