1. Let A be a minimization problem. The decision problem Gap-$A[\alpha, \beta]$ is, given an input x, decide whether there exists a solution for A of size at most α or every solution is of size at least β (the other instances are not allowed). Recall that an algorithm is a c-approximation for A if it finds a solution of size at most c times the optimal one ($c > 1$). Prove that if there exists a polynomial-time c-approximation algorithm for A for some $c < \frac{\beta}{\alpha}$ then Gap-$A[\alpha, \beta] \in P$.

2. Suppose that a CNF formula has less than n^k clauses, each with at least $2k \log_2 n$ distinct variables. Use the probabilistic method to show that it has a satisfying assignment.

3. Represent the following conditions as graph constraints problems. You may use the two variants we saw in class.

 (a) The graph is bipartite.

 (b) A $4 - NAE$ formula is satisfiable.

 (c) The graph can be partitioned to 3 sets such that at least 0.95-fraction of the edges connect vertices from different sets.

4. (a) Prove that Gap - Max - kSAT$[1 - 2^{-k} + \epsilon, 1]$ is $NP - Hard$ for every $k \geq 3$ and $\epsilon > 0$.

 (b) Show that Gap - Max - EkSAT$[1 - 2^{-k} - \epsilon, 1] \in P$ for every k and $\epsilon > 0$.

5. Prove that for every $\epsilon > 0$ it is $NP - Hard$ to approximate the minimal VC within a factor of $17/16 - \epsilon$.

6. We say that a graph is special if the size of the largest independent set equals the chromatic number. Prove that it is $NP - Hard$ to decide if a graph is special.