1. Let \(f, g : \mathbb{N} \to \mathbb{N} \) be two functions. Recall that \(f = O(g) \) if there exists a \(c > 0 \) such that \(f(n) \leq c \cdot g(n) \) for every sufficiently large \(n \). We say that \(f = \Omega(g) \) if \(g = O(f) \) and that \(f = \Theta(g) \) if \(f = O(g) \) and \(g = O(f) \). Also, we say that \(f = o(g) \) if for any \(\varepsilon > 0 \), \(f(n) \leq \varepsilon \cdot g(n) \) for every sufficiently large \(n \). Finally, we say that \(f = \omega(g) \) if \(g = o(f) \).

Prove or disprove:

(a) \((5n)! = O(n!^5)\).

(b) If \(f(n) = O(n) \) then \(10^f(n) = O(2^n) \).

(c) \(\log(n!) = \Theta(n \log n) \).

(d) Every two functions \(f, g \) satisfy \(f = O(g) \) or \(g = O(f) \).

(e) There exists a function \(f \) such that \(f(n) = O(n^{1+\varepsilon}) \) for any \(\varepsilon > 0 \) but \(f(n) = \omega(n) \).

2. For two languages \(L_1, L_2 \) define \(L_1 \Delta L_2 = (L_1 \setminus L_2) \cup (L_2 \setminus L_1) \). We say that a class \(C \) is closed under \(\Delta \) if \(L_1, L_2 \in C \) implies \(L_1 \Delta L_2 \in C \). For each class decide if it is closed under \(\Delta \) (or show that it is equivalent to an open question): \(P, NP, NP \cap \text{coNP} \).

3. Prove that each of the following problems can be solved by a polynomial time algorithm:

(a) Input: A graph \(G \) and a positive integer \(k \).
 Question: Does \(G \) contain a vertex of degree at least \(\log_2 |V(G)| \) or a clique of size \(k \)?
 (\(V(G) \) denotes the vertex set of \(G \)).

(b) Input: A list of \(n \) positive integer numbers \(A_1, \ldots, A_n \) and a number \(T \). All the numbers are given in unary representation (i.e., a number \(k \) is represented as \(1^k \)).
 Question: Does exist a subset \(S \subseteq \{1, 2, \ldots, n\} \) such that \(\sum_{i \in S} A_i = T \)?

(c) Input: A 3CNF formula \(\phi \) in which each clause contains exactly 3 distinct literals and each variable occurs exactly 3 times.
 Question: Is \(\phi \) satisfiable?
 Hint: Use the fact that any regular bipartite graph has a perfect matching.\(^1\)

4. Let \(A \subseteq \{0, 1\}^* \) be a language which satisfies \(|A \cap \{0, 1\}^n| = n^3 \) for all \(n \geq 10 \). Prove that \(A \in \text{NP} \) implies \(A \in \text{coNP} \).

\(^1\)A regular graph is a graph where each vertex has the same number of neighbors. A matching in a graph is a set of edges without common vertices. A perfect matching is a matching which matches all vertices of the graph.