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Abstract

We describe a general technique for converting an onlinarigtgm 3 to a truthtelling mechanism. We require that the
original online competitive algorithm has certain “niceséproperties in that actions on future requests are intigre
of the actual value of requests which were accepted (thduggetactions will of course depend upon the set of accepted
requests). Under these conditions, we are able to give aneomlth telling mechanism (where the values of requests
are given by bids which may not accurately represent theatialu of the requesters) such that our total profit is within
O(p + log u) of the optimum offline profit obtained by an omniscient alger (one which knows the true valuations
of the users). Herg is the competitive ratio o8 for the optimization version of the problem, apds the ratio of the
maximum to minimum valuation for a request. In general theen(2(log 1) lower bound on the ratio of worst-case profit
for a truth telling mechanism when compared to the profitiobtiby an omniscient algorithm, so this result is in some
sense best possible. In addition, we prove that our corgiruis resilient against many forms of “cheating” attempts
such as forming coalitions.

We demonstrate applications of this result to several prabl We develop online truthtelling mechanisms for online
routing and admission control of path or multicast requestsuming large network capacities. Assuming the existanc
of an algorithmB for the optimization version of the problem, our technigpesvide truthtelling mechanisms for general
combinatorial auctions. However, designing optimizatadgorithms may be difficult in general because of online or
approximation lower bounds. For the cases described aievare able to design optimization algorithii®y amortizing
the lost benefit from online computation (and from approdiorahardness in the case of multicast) against the benefit
obtained from accepted requests.

We comment that our upper bounds on profit competitiveneplyijras an obvious corollary, similar bound global
efficiency namely overall well-being of all the users. This contragithh most other work on truthtelling mechanisms for
general online resource allocation, where only efficiesapaximized, and competitiveness can be arbitrarily poor.
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1 Introduction

We construct a general technique for converting an algorfthr online optimization to a truthtelling mechanism. Welwi
draw examples from optimization problems such as onlinémgu3, 4] and construction of multicast trees [6, 5, 12]r Fo
the most part, the optimization algorithms described iséhypapers may be used as black boxes, with our protocol thyere
atop the algorithm to guarantee truthful behavior by ratlagents. Online optimization is a broad topic in computer
science literature, and there are many other examples thvelir techniques could be applied.

Truthtelling mechanism design is a longstanding probleradonomics and gametheory, with one of the earlier ex-
amples being the Vickrey auction [18] and VCG mechanisms §184]. In computer science theory, recent work has
given results describing truthtelling mechanisms for ssirpath [1], multicast [11], load balancing [17], alldoat of
goods [15, 7], and allocation of digital goods [8, 13]. Mariytttese problems can be viewed in an online setting (where
requests arrive one at a time in an adversarial fashion) alydsome of the earlier results consider the online scenario

There are two separate issues in dealing with combinatauiztions:

o existencedo profit-competitive truthtelling online mechanism desigverexis®?

e computatability:if so, can they be computed in polynomial time?

Our main contribution is the introduction of a general tdghe to transform various online optimization problemsgint
truthtelling mechanisms. This transformation introdumely anadditiveloss in the competitive ratio (a multiplicative loss
is relatively straightforward), enabling us to produceti@sssible competitive bounds for a variety of problems bfcli
the specific instances presented are only a sample.

The most general result is a truthtelling mechanism for gromline combinatorial auctions, assuming an online-opti
mization function exists. In general, combinatorial aoiesi require exponential size representation of input apdreential
computation effort.

As applications of our general framework we present constreiresults for interesting special cases, where interna
structure of the problem enables polynomial represemtaifathe input, as well as polynomial approximation in spite
of exponential number of options. Specifically, we give fostine polynomial-time optimally-competitive truthtielf
mechanisms for a number of basic online optimization proklén capacitated networks, including:

e constrained network routing and admission control, whelecsion must be made among exponentially many paths.
e multicast routing, where steiner trees need to be seleatedng exponentially many trees.

e multicast admission control, where multicast request®tadmitted must be selected among exponential number of
possibilities.

e combined multicast routing and admission control, comgrall of the problems above.

The latter three results may be contrasted against varanambss results [10] for the same problems.

Our techniques assume the existence of an online optimizatgorithm. In the case of combinatorial auctions, no
such algorithm can have a reasonable competitive raticeigéimeral setting. This may be seen via a reduction fromenlin
routing on a unit-capacity network. However, if we assunmrgdasupply of each item in the combinatorial auction, it is
straightforward to apply the algorithm of [3] to the optimion version of the problem. Alternately, some auctionghwi
additional constraints (for example each customer requegy a small subset of items) may permit such an optiminatio
algorithm.

In the case of multicast, the hardness results arise frommatg the function of benefit minus cost. Since we
cannot solve steiner tree exactly in polynomial time, wencdrobtain any reasonable approximation to the difference
problem [10]. However, we can exploit the fact that in a cdtp#éed network there is no direct notion of externally-
imposed cost, and we only need to worry about internallyatagéied “opportunity cost”. The error in optimization of
opportunity cost because of computational hardness cant®#ly be amortized against the benefit gained from earlie
multicast routings if the capacities are reasonably large.



2 Model and problem statement

Single-option auctions. We consider serving a sequence of requests which arrivet@tinae online. Each request may
be represented by a pair;, b;). Herer; is a statement of the resources requested; this may be in diféenent forms (for
example it might be a source-sink pair in a communicatiowagk, a node to be added to a multicast tree, or in general a
list of feasible subsets of the products to be auctioned@.vEhiableh; is a bid, which represents the amount of money the
requester is willing to pay the auctioneer if the requeststurces are provided. As each request arrives, we havakeve
decisions to make. We must decide whether to accept or rifjeaequest. If we accept, there may be several feasible
ways to satisfy;, and we must select one such way. Finally, we must determime@p; < b; to charge the user for our
services.

In general we assume each user has a valuatiomhich represents the amount he is really willing to pay &juest
i. The bidb; will be computed in order to optimize usés benefit (benefit is zero if the request is rejected and p; if
the request is accepted and the user is charged ppicén algorithm is defined to beuthtelling if each user computed
b; = v; when trying to optimize benefit.

General Multiple-option (combinatorial) auctions. We consider the case of combinatorial auctions, in which e a
simultaneously auctioning a number of distinct items. Eagstomer places bids on several subsets of the items up for
auction. Our goal is to provide each customer with one of thissts he requested (or an empty subset) and charge some
price, such that we do not oversell our supply of any of theaianed items and our income is maximized. This problem
does not fit the framework outlined above, in that each custanay have several distinct bids, and we must determine not
only whether to accept the customer but which subset of #mestto give him. We will again represent incoming requests
by pairs(r;, b;), but herer; is a collection of feasible sets of items, @nds a function relating the set offered to the bid.

2.1 Measures of performance

Competitiveness. Suppose we accept some set of requdst®ur total income is equal tb= ), , p;- The optimum
offline omniscient income is the maximum, over sdts of [* = EieA* v;. We define our competitive ratio to be the
maximum over request sequende®f the ratio#}]. Our algorithms will be randomized and the expected valueuof
result is over the set of random choices made.

We assume that we are given an online algorithm for the opétign version of the problem. This algorithm guarantees
some competitive ratip, which means the algorithm accepts some set of requestgh that

PE[Z b;] > Z b;.

i€EA iEA*

This algorithm is not truthtelling, in that users may welhleét from setting); < v;.

Efficiency or global well-being. We comment that our upper bounds on profit competitivenep$yjmas an obvious
corollary, similar bound oglobal efficiencynamely overall well-being of all the users. This contragth most other work
on truthtelling mechanisms for general online resourazalion, where only efficiency is maximized, and competitigss
is, in most cases, arbitrarily poor.

Computational hardness. Another issue is ability to compute solutions in polynontiade. General combinatorial
auctions require exponential representation of input agpabeential computation effort. There are two approachase O
“non-constructive” approach is to assume existence oaueexternal optimization procedure, or “black box”, penfing
necessary computational work; this approach is commorgd ursthe literature, since many problems in this domain are
impossible even to approximate. A “constructive” approaezjuires specifying a polynomial time algorithm for the ado
“black box” computation, and we will give such constructresults for problems in routing and admission control.



3 Statement of results

3.1 Basic results

We give a truth telling algorithm usingrbitrary nice online optimization algorithm as a black box, whichlviie
O(p + log 1) competitive against the offline omniscient algorithm, véher= max; v; (we assume the minimum nonzero
valuation is one). We observe that there istHog ) lower bound [13] in most cases. In addition, it is straightfard

to obtainO(plog i) competitivity as follows. We choose a random numiebetweenl andy via an exponential distri-
bution, and discard all requests with < m. The remaining requests are sent to the online algorithin id equal to
m.

In addition to improving this ratio t6)(p + log i), our algorithm is resilient against various attacks inglgdetries
and coalitions. We show in section 4.3 that even if userslioeed to “cheat” in these ways, our expected income remains
competitive with the offline omniscient algorithm.

In section 4.4 we explain how to modify the algorithm if we da have knowledge of the valyein advance.
We first present our algorithm for the single-choice auctiod then generalize to arbitrary combinatorial auctions.

3.2 Applications of basic results

Network admission control for unicast. We consider the following problem. We are given a capadtatetwork.
Communication requests arrive one at a time online. Eadhesigspecifies a path from the source to the destination node,
and a bid for the service of satisfying the connection. We mibdel this network in terms of permanent reservations
of virtual circuits; the algorithm can be easily extendeddmtrolling reservations with known durations. Our goatlas
devise a strategy for admission control (as well as pridirgadmitted requests) in order to maximize our income withou
exceeding the network capacities. We will assume that tiwark capacities are reasonably large (at legadbg nu)
wheren is the number of nodes in the graph anid the maximum request valuation).

The optimization version of this problem was addressed nA3suming that each request is accompanied by a true
valuation (rather than a possibly untruthful bid),@fiog nu)-competitive online algorithm was given, and matching lowe
bounds were provided. The large capacity restriction oretiges is necessary for this guarantee; the case of uniticapa
edges is provably hard. We would like to extend this resudirt@uction setting.

The algorithm of [3] works as follows. Each edge in the netisassigned an “opportunity” cost which is exponential
in the current load on the edge. For each request, we compastavhich is the sum of the cost of the edges along the
shortest satisfying path. If this cost is less than the vafufe request, then we accept and update the loads. Otleerwis
we reject the request (loads remain unchanged). We obdeavéhie actions of this deterministic algorithm are enyirel
determined by the set of accepted requests (the actuabuwaiuequests do not effect the action of the algorithm otien t
by determining whether to accept or reject). This algoritamice, and therefore ideal for the technique described in Fig.
1.

It immediately follows that we can construct a truthtellmgchanism with competitivitg) (p + log 1) = O(log npu),
which is asymptotically identical to the competitivity dfe best possible online algorithm for the optimization i@rof
the problem. We have effectively lost nothing by transforgiio the auction problem.

In addition, we observe that the costs generated by theitligoof [3] are nondecreasing (as the loads only rise with
time) and additive. It follows that our mechanism is resiliagainst retries, coalitions, and resellers.

Combined unicast routing and admission control. In additional to controlling the rates, we can also seleetrtutes
between senders and receivers. Notice that there are exjilyemany options, and only one needs to be selected. This
is an example of an combinatorial auction that can be handlpdlynomial time.

Again, the optimization version of this problem was addeeda [3], with anO(log nu)-competitive online algorithm
was given, and matching lower bounds were provided. Theighgoin in [3] selects shortest path in the above opporfunit
cost, and applies admission control procedure above.

Once again, a truthtelling mechanism with optimal compétjt O(p + log 1) = O(log nu) follows, which is resilient



against retries, coalitions, and resellers.

Multicast admission control is a generalization of unicast admission control.

Instead of paths from senders to receivers, we are givereatfof trees, rooted at a number of senders. We are given
a set of bid9); for each of the nodes, and we can choose to connect some drtladl cequested nodes into a tree. Our
algorithm’s income will be the total prices assigned to tbdes which are actually part of the tree we construct. We are
limited by network bandwidths in the underlying graph; eadge has a capacity and we may place at most a bounded
number of trees along the edge.

In the case of multicast, the hardness results arise frommatg the function of benefit minus cost. Since we
cannot solve steiner tree exactly in polynomial time, wencdrobtain any reasonable approximation to the difference
problem [10]. Here we exploit the fact that in a capacitatetivork there is no direct notion of externally-imposed cost
except internally-maintained “opportunity cost”. Thetéaitcan be only approximately optimized because of steneer t
hardness, but the errors in this computation can effegtivelamortized against the benefit gained from earlier nagtic
routings if the capacities are reasonably large.

This situation differs from the scenario presented by Feigeim et al [10], in that they are trying to construct a
single-commodity multicast tree with costs on the edgesinfline scenario, whereas we are solving a multi-commaodity
problem, namely packing large numbers of multicast tre&s angraph with capacity constraints (but no costs) on the
edges. In contrast to the hardness results presented feintjle tree with costs ([10] shows that the problem is eiffety
inapproximable), we are able to provide polylogarithmisigige results for the capacitated problem.

Multicast admission control with routing is a generalization of the above, when we also need to canstristeiner
tree”. In this case, the computational hardness resuke &mm optimizing the function of benefit minus “opportymiit
cost. Since we cannot solve steiner tree exactly in polyabtinie, we cannot obtain any reasonable approximationgo th
difference problem [10]. However, in a capacitated netwtbeke is no direct notion of cost. We will compute an online
“opportunity cost” which will be only approximate becaudetiner tree, but the errors in this computation can effelt

be amortized against the benefit gained from earlier mugiticautings if the capacities are reasonably large.

4 Single-choice auction

The single-choice auction algorithBi uses any deterministic or “nice” (see Def. 1) randomizedherdlgorithmB as a
black box .

Computem betweenl andy. With probability 1 we havem = 1, otherwisem = 27 with probabilitym for each
i <logu.

Basic Algorithm

¢; + minwv such that3 acceptgr;, ¢;) .

Feed(r;, b;) to B & updateB’s state

If b; > me; then accept and charge = mc;. /* Otherwise we reject request /

Figure 1:The algorithm for a single-choice auction.

Notice that the online algorithrB will update its state (assuming we accepted reqi)esten if we in fact computed
b; < mc; and rejected request

Theorem 4.1 Let B be a any deterministic or “nice” randomized algorithm (Dé&f) which isp-competitive, and let be
the range of bids. Then, algorithi¥ in Fig. 1 is truthtelling mechanism which &(p + log 1) competitive against the
offline omniscient algorithm.



4.1 Preliminaries
Definition 1 We define an online algorithm asceif the following conditions hold.

e If arequestis a accepted with a bigit must also be accepted with larger bitd> b.

e the decision of whether to accept requesthether; € A) may depend upon the current members ofssdiut does
not depend upon the bids of the memberg € A. It may however, depend upon the bigghat were rejected, i.e.

jé¢ A

Theorem 4.2 If there exists a deterministic onlinecompetitive algorithm for the optimization problem, thbare exists
a nicealgorithm with the same competitive ratio.

Proof: Suppose we are given a deterministic online algoritimWe construct algorithn8’ as follows. Some stream
of requestsRk arrives. As each requestrrives, we compute; to be the minimum value such that, if algorithfnwere
presented with requests, , min(by, ¢1)), (ro, min(bs, ¢2)), ..., (13, ¢;), then it would accept the requést, c;). Algorithm
B’ accepts requestf its bid satisfied; > c;.

It is immediate that algorithn8’ satisfies the niceness conditions. Increasing the bid ofaeped request will not
cause it to be rejected (since the new bid is still more thanThe decision of whether to accept requedtpends upon the
previous requests; and the values of the minimum 6f andc; for them. Since only the rejected requests higve c;,
it follows that only the bids of rejected requests can eféeatdecision.

It remains to analyze the competitive ratio. Suppose theieseme request stredfwhich could be fed to algorithm
B’ for which the competitive ratio is worse than We construct a new request stredthby replacing the bid of request
i with min(b;, ¢;). Now supposeé3’ rejects some requesfrom streamR. It follows that3 would reject request from
streamR’. Similarly, if B’ accepts requestfrom streamR, then B would accept the request. We know thatdifis
the set of requests accepted Byfrom streamR, thenp ), , b; < >, 4. bi. However, consideB acting on stream
R'. We have profiEieA min b;, ¢;, whereas there exists an alternate solution which gairfg @;EA* min b;, ¢;. Since
algorithmB is p-competitive, we know that } . , min b;, ¢; > 3, 4. minb;, c;. We now consider replacingin b;, c;
with the valueb;. The lefthand side of the inequality increaseshas c; for each request € A. The righthand side of
the inequality increases by a smaller amount, sipce ¢; for each request id* except those also accepted By So we
havep ), 4 bi > > ;c 4+ bi as desired. [ |

4.2 Analysis for a single choice case

We will consider several categories of requests. There@aresequestsl which our algorithm accepted. There is some
set@ of requests which hawg < b;; these are the requests whilaccepts, but we will accept only some of them because
of our random choice afi. Finally, there is a seP of requests which the optimum omniscient offline acceptsyiich
haveb; < ¢; and which we reject. We need to show that our total inc@}gA p; is comparable to the optimum income,
which is bounded above By, p vi + 3, vi-

Lemma 4.1

Zvi szci

ieP i€EQ

Proof: Consider the given online algorithm for the optimizatioolpem. If we feed this algorithm the paifs;, b;), it
will accept exactlyi € Q. We now consider feeding the algorithm the pdits min(b;, ¢;)). Sincec; is defined as the
minimum bid such thafr;, ¢;) will be accepted, and the future actions of the algorithm aiodepend upon the actual bids
submitted by accepted requests, the algorithms behavitii®new request stream will be identical to its behaviorton t
original request stream. Since the algorithm is truthnglliwe haveh; = v;, and one feasible solution to the problem
involves accepting the sét and obtaining income o}, v;. We were given g@-competitive algorithm which obtains
income ofy ;o min(b;, ¢;) = 3,5 ¢;, and the presumed competitivity yields the desired result. ]



Lemma 4.2

1
E[sz] > 3 Zci

€A 1€EQ

Proof: Consider any requeste (). Notice that this set does not depend upon our choiee.ddVith probability% we will
havem = 1 and thug; = ¢; andA = Q. So the expected value df,_ , p; will be at least half the value OZiEQ c;. l

Lemma 4.3

> vi < 4(log WE[Y_ pi)

i€Q ic€A

Proof: We note that) is the set of requests accepted®yand does not depend upon our choice of the random value
For anyi € @, we will compute its expected contribution to the righthaudn. With probability lc}gu we selectedn

such thatne; < v; < 2me;, in which case we will have € A andp; > %vi. The expected contribution of requégsb

> ic4 pi Will be at Ieastzugﬁ, and summing this over requestgives the desired bound. ]
Theorem 4.3

Y vi < (2p+4log ) EY_ pi]

icA* i€A

Proof: We know the setd* is a subset of) |J P. Thus we havg . 4. vi < > ,cqvi + D ;cpvi. We now apply the
lemmas to obtairy ;. 4. v; < (2p + 4log ) E[Y ;4 il- [ |

We also need to show that this algorithm is truthtelling.slisiimmediate from previous work.
Theorem 4.4 The algorithm is a truthtelling mechanism.

Proof: We observe that the prigg is independant of the bili; the price is set based upon previous requests and a random
numberm. If the bid does not match the true valuation, the price resianchanged, so the bidder does not benefim

4.3 Retry, Coalitions, and Resellers

Truthtelling mechanisms make certain assumptions abeuetijuesters. Itis assumed that each requester is an irtbagien
agent who offers one and only one bid to the auction. This migdeot realistic. First, we have the possibility of retry.
An individual whose request is rejected might continue besitting requests until one is accepted. If the computeckpri
for this request fluxuates, it might be beneficial to the ratgreto lie about his bid, then retry on a reject (possibhhvait
different bid). Second, we have the possibility of coatiso A group of requesters could agree to lie about their viang

or to reorder their requests. Third, we have the possitilityesellers, where a group of requesters merge their résjues
into a single request (for the sum of the required resourtesy will benefit if the price computed by the algorithm fhet
union is less than the sum of the individual prices.

We will show that our approach remains competitive despiteas, coalitions, and resellers, provided the givennanli
optimization algorithm has certain additional properties

Theorem 4.5 If the costs computed Wy for a particular request are nondecreasing, then our appios resilient against
retries.

Proof: If we repeat request; at some later timg > ¢, then the computed cost will kg > ¢;. The computed price will
therefore benc; > mc;, which is only larger. ]

Theorem 4.6 If the costs computed Wy for a particular request are nondecreasing, then our appios resilient against
coalitions.



Proof: Suppose some set of requeBt$orm a coalition. Some of these requests R might lie about their valuations,
bidding b; # v;. Bid i has three possibilities, it may be pre-rejected (rejectédowt effecting future actions of the
algorithm), pre-accepted but rejected later (causing update its costs), or actually accepted. The actudl;ldtermines
which set the request will join, but has no other effect. Suggrequestlies and causes itself to be rejected (be< ¢; <
v;). In this case, since the requéstill not effect the actions of the algorithm it may as well leenoved from the request
stream. The coalition would only benefit by re-adding retjues a time subsequent to all other coalition members. On
the other hand, suppose requéeties and causes itself to be pre-accepted but rejecte@aidsif being accepted. This
means we have; < b; < me; < v;. We observe that the actions of the algorithm on other sulssdgequests are
uneffected by this (since the algorithm only depends uperptie-accepts and the choicenof. If we had seb; = v; then
all future actions of the algorithm are unchanged, but wé atatain additional benefit of; — me¢; > 0, so the coalition
has no incentive to lie in this way. The only other possibies'l involve settingh; > v;. It follows that the coalition has a
dominant strategy which might reorder the requests, butlivbuaranteel; > v; for all requests. But our competitivity
guarantee op for the online black box8 was against adversarial orderings of the requests, so ai@ i@ir competitivity
in the face of coalitions. u

Theorem 4.7 If 5 assigns cost to a union of requests which is at least equdleabst of those requests appearing in
sequence, then our approach is resilient against resellers

Proof: Suppose requests froitto j apply to a reseller. The algorithm will see a single req(®sf_.r;, > 2 _.b;). The

cost computed for this union of requests will 6e> Zi:i ¢;, leading to a price ofnC. But if the requests had not used
the reseller, they would see a sum of prices which is only lkemanplying that the benefit has been reduced. ]

4.4 Guessing the Max Bid

The technique described in Fig. 1 depends upon knowleddeeahtiximum possible bid. This knowledge is needed in
order to determine the distribution of random variabie If the algorithm uses a value for this maximum bid which is
too low, then it will not be competitive. If the value is tooghi, then the competitive ratio deteriorates (since it ddpen
logarithmically upon the valug). In some applications a reasonable accurate guegswilf be available, but in general
this may not be the case. We will describe an alternate mdtinagkneratingn which does not depend on prior knowledge
of the valueu. This method is based on the idea of classify and select oownded range, first presented by Lipton and
Tomkins [16].

Theorem 4.8 Let B be a “nice” randomized algorithm which ig-competitive. We can design a truthtelling mechanism
which isO(p+1log u(loglog 11)?) competitive against the offline omniscient algorithm, veheis the range of bids, without
prior knowledge of the value @f.

Proof: The algorithm is unchanged, except that we must genetaea different way. We will setn = 1 with probability
%. Otherwise, we seh, = 2¢ with probability density functio (Hi)(;(eﬂ))g for nonnegativé. Integrating the probability
function, we have total probability equal to one. We now éd@sthe probability of selecting: to be “just right” to charge
spme request iy |t§ bid. Before, this probability Wa§101m. Now, the probability looks |Ik@(m) and this
yields the result claimed. u

5 General Combinatorial Auction

The multiplicative random factam in our algorithm (Fig. 1) might tempt the customers to lie ase of auctions with
multiple choices. For example, suppose the customer wdkdceither item1 or item 2, and their values to him are)0
and10 respectively. Suppose we have casts= 90 for item one ana, = 1 for item two. Clearly the customer prefers to
purchase item one if the prices are equal to the costs. Hop@vee we add the random multiplier, it will frequently be
the case that00 — 90m < 10 — m and the customer prefers item two.

We can avoid this problem by making the factormefadditive instead of multiplicative. We assume we are given a
black box online algorithn8 which will be competitive assuming all bids are truthful aeth customer bids on only a



single set of items. Various results show that producindp sulslack box is difficult. If we assume that only a single copy
of each item is available, then we are required to solve anoxppation of the unit-capacity online flow problem, which
has hardness results from (among others) [3]. However, dsgeme large supply of each item we can immediately obtain
such a black box using an exponential-cost routing algerith

In addition, we assume that given a request pair; ), we are able to select a se€ r; which maximize®;(s) —c;(s).
If the request; is given as a polynomial length “list” of feasible sets, thbis computation is straightforward. There are
interesting cases where the list of feasible sets is expg@bémlength and we are unable to compute this maximization
exactly. The next section will deal with extensions of tlyigd.

Combinatorial Auction Algorithm
With probability + setr = 0, otherwisem = 2* with probabilitym for eachi < log p.
For each set, computez; (s) as the minimum value such thtacceptgr;, ¢;(s)).
SelectS which maximized;(s) — ¢;(s). Feed(s, b;(s)) to B, updating its state.
If b;(s) > m + ¢;(s) then accept
give s to the customer and charge= m + ¢;(s) [*Otherwise we reject request/

Figure 2:The algorithm for mutiple-choice (combinatorial) auction

We will first prove this algorithm is a truthtelling mechamis
Theorem 5.1 The algorithm is truthtelling.

Proof: Suppose a customer requests one of severa$ sEte each set, we implicitly assign a priegs) = m+c¢;(s). The
customer’s goal is to obtain the set which will maximize tfiféedence of utility and pricey;(s) — pi(s). This is exactly
the same set which maximizegs) — c;(s). If the customer is truthful, he will receive the most delsiesset, and since
the price paid is independent of the customer’s bids, therithgn is truthtelling. ]

We again analyze the algorithm by considering several detsqoests. We have sett of requests which we accept,
set@ of requests which algorithm8 accepts (which havi;(s) > ¢;(s)), and setP of requests which are accepted by
the offline omniscient but which we rejected altogether. ddigon, we will now divide@ into @)1, requests which have
bi(s) > 1b;i(s*), andQ,, requests which havie(s) < 1b;(s*). Heres* represents the set which the offline optimum
ominiscient uses to accept requeéf the optimum rejects requestthens* is the set of maximurh; (s*)).

Theorem 5.2
> vi(s*) < (6p +8log ) E[Y_ pi]

i€EA* i€A

Proof: We split A* into several sets:A* € Q;JQ2JP. As before, we havg ,_pvi(s*) < 2p> ;.4 pi from
lemma 4.1. We now consider the membergQf For any request € @, there is a probability o%g” that we set
m such that we obtain a price with(s) > p; > 3bi(s) > 1bi(s*), sowe have, ., vi(s*) < 8log B[}, 4 pi]- This
leaves the sef),. For each of these requests, we could have used used theuap8at to satisfy them but chose not to.
It follows that{v;(s*) > vi(s) — ¢i(s) > vi(s*) — ¢;(s*), from which we conclude that;(s*) < 2¢;(s*). We can now
argue that if3 were given the requests @, along with their optimum subsets and half the optimum vadunest, it would
reject. We conclude that, ., vi(s*) < 4pE[> ;. 4 pi] using arguments similar to those in lemma 4.1 for pre-refct
requests. Combining these equations yields the lemmaethim ]

We observe that the above algorithm is not resilient aga@is&tllers, since the cost assigned to a union of requessts add
the randommn only once instead of multiple times, allowing the reselteobtain a benefit.

6 Polynomial-time Multicast Routing/Admission Mechanisns

The problem can be viewed as an extension of the case of catobil auctions presented in the previous section. We are
given a list of feasible subsets (multicast trees) alony wétuations for each of them. However, the list of feasiblesets



is now exponentially long, and we cannot determine thes settich optimizes;(s) — ¢;(s) (optimizing this function is
precisely what [10] shows to be hard). In fact, we cannot epgroximate the difference! Instead, we will assume we are
given a black box algorithml which guarantees to findwith 5(b;(s) — ¢;(s)) > b;(s*) — ¢;(s*) (for somes > 1) under

the assumption that the optimizing séthasb;(s*) > ac;(s*) (for somea > 2). For the case of multicast trees, any
of the various approximation algorithms for the maximal slesubtreek{ — M ST') will serve this purpose; for example
we could use the algorithms of [2]. As usual, we additionhbye the algorithn88 which performs online optimization
(without truthtelling) under the assumption that we areegiene tree-bid pair at a time and must choose to accept ot reje
(an exponential cost algorithm on the edges such as [3] arllesfor multicast).

We have the following algorithm:

Computem betweer) andy. With probability% we havem = 0, otherwisem = 2! with probabilityﬁ for each
i < log p.

Multicast Algorithm

Use A to computes which optimized;(s) — ¢;(s)

Feed(s, b;(s)) to B & updateB’s state

If b;(s) > m + ¢;(s) then accept and charge = m + ¢;(s). /* Otherwise we reject request /

Figure 3:The algorithm for multicast.

The analysis again proceeds by dividing the requests intodets. We have set of requests which we accept, €gt
of requests for which; (s*) > ac;(s*) for the optimum set*, set@- for whichb;(s*) < ac;(s*) but the online algorithm
B still finds a way to accept, and sBtwhich the offline omniscient algorithm accepts Butejects.

Theorem 6.1 5", . vi(s*) < (4pa + 8(log ) BE[Y S, 4 Pi]

Proof: We split A* into several setsA* € @, |JQ2JP. We consider a requeste P. If there was a set with
bi(s) > ac;i(s), then we would have found a set with positive benefit minus and B would have accepted. It follows
thatv;(s) < ac;(s). We conclude that the algorithi#l would reject the request, v;(s)/«) for any sets € r;, and
competitivity of B yields the inequality _, , vi(s*) < 2paE[Y ;. 4 pi] @s in lemma 4.1. We now consider the members
of ;. For these requests we have a probab'blil{&g—u of settingm just right such that we obtain a price pf > %bi(s).
Membership inQ; implies that; (s*) > ac;(s*) which implies3(b;(s) —c;(s)) > b;(s*) —c;(s*). From these inequalities
along witha > 2, we conclude thab;(s) > 1b;(s*), allowing us to show that

> vi <8(log w)BE[Y_ pil.

i€Q1 €A

Finally, we consider s&p,. Membership irQ» implies that; (s*) < ac;(s*). It follows that the algorithn$s would reject
(s*,vi(s*)/), so again obtain the inequali}y,; ., vi < 2paE[} ;. 4 pi]. Combining these inequalities yields the result
claimed. ]

This yields a competitive ratio @ (pa+ 3 log ). However, we observe that the algorithm described is ntitelling.
If the customer lies about his valuatiols it might induce our approximation algorithph to choose a different satto
satisfy the customer. Conceivably this satould have a larger value of(s) — ¢;(s), leading the customer to prefer it.
However, by modifying the bids to cause this to occur, theamesr is only helping the algorithm. We state this formally
as follows.

Theorem 6.2 If the customers lie in order to improve their benefit, theoaihm is still competitive.

Proof: Suppose customeérlies. This leads to customerbeing assigned some sétinstead of the set which would
have been assigned had he been truthful. So the customér&s wanus price is now;(s’) — ¢;(s') — m instead of
vi(s) — ci(s) — m. We assume that customeis acting in his own self-interest, so we conclude thgt’) — ¢;(s') >
vi(s) — ¢;(s). But this means the customer is effectively producing atds&approximation algorithrd’ for us, and the
proof of the preceding theorem will again hold. [ ]



7 Appendix: Published Prices and Open Problems

We consider the problem of publishing prices. Here, we widikédto be able to post a price which does not change based
upon rejected requests. In our modular approach descréyédrethe costs will change on the basis of pre-rejectscélve
modify the algorithm to the following:

Published Price Algorithm

¢; + minwv such that3 acceptgr;, ¢;) .

Post pricesnc; for r;; a newm is computed for each customer.
If b; > mc;, then feedr;, b;) to B & updateB3’s state

Figure 4:The algorithm for price-posting.

In this algorithm, the prices are independent of the rejeklgwever, the prices are continually being assigned new
random values for each request. This is undesirable botuiseove do not have true “published prices” and because the
algorithm is no longer resilient against retries.

Since our offered price is always at leastwe guarantee we will not violate capacity constraints anébsth if the
generic online could not do so.

The proof of competitivity for this new algorithm requiresly slight modifications. We can still classify requests as
“pre-rejected” if they havé; < ¢; (in other words, they will be rejected automatically redgesd of the random number).
Each request belongs to some categéy), or A. Which category it belongs to depends upon random variabilese
the value of the cost at the current time is no longer detastiirn(it depends on which earlier requests were accepted).

However, we can still show that haye, ., v; < p) ;. i as a deterministic guarantee. We now consider some
request. There is some probability it was pre-rejected, but letsuase that is not the case. Once we take ¢; as given,
whether this request is actually accepted is independeresfous events.

Also, we can still guarantee thétlog 1) E[p;|i € Q] > v;. This enables us to bound the expected cost much as before.
The above arguments are formalized below.

Lemma 7.1

Zvi <pZCi

i€P i€EA

Proof: This will be a deterministic guarantee, and we will show itrise for any request stream and set of random
choices. Suppose for some request stream and random clivécbeeorem fails. We will construct a modified request
stream as follows. First, for each requéstith ¢; < v; < ¢;r;, we remove requestand random number; from the
streams of requests and random numbers. We now have a neestetream, and the behavior of the algorithm on this
stream will be identical (since the eliminated requestsawelbe rejected anyway). We now consider what would happen
if we feed this request stream to the generic online algaritiWe have eliminated the "random rejects” so the generic
online will accept exactly the same requests on this newasitgiream as our randomized algorithm. In fact, even if we se
v; = min(v;, ¢;) for each request, the generic online will still accept elyette same set of requestiswhich our online
algorithm accepts. This means the generic online obtainsflie@qual toy -, , ¢;, whereas it could have obtained at least
> icp Vi (Observing that these requests were not modified in any wdyaemstill a part of the request stream with their
original valuations). Since the generic online has a coitipetatio of p, the theorem must hold. ]

Lemma 7.2

E[Z v;] < 2(log ,u)E[Z ciri

i€Q i€A
Proof: Define potential function

¢ =2(logp) Y _ciri — Y vi.

i€A I€EQ
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Consider what happens gowhen request arrives. There is some probability (based upon earlierestgiand random
choices) thav; < ¢;. If this happens, then requeswill be rejected, but will not be a member of the ggtso the value of
¢ will be unchanged. Otherwise, with some probability we hgve c¢;. In this case, we will have;r; < v; < 2¢;r; with
probability1/(logu). If this happens we will havee A, and the potential function will increase by(logu). Regardless,
we will havei € @Q so the potential function will decrease by. In an expected sense, the potential function does not
decrease.

This gives the lemma claimed. ]
Combining the two theorems gives:

E[Z v; + Z v;] < 2[(log p) + P]E[Z CiTi)

i€EQ iEP €A

The main open problem is combining the various extensiorikegalgorithm. Ideally, we would like to be able to
publish prices which the customers can take or refuse, Wahassumption that prices do not change except after a sale
is made. Our extension regarding published prices doesuit lgandle this because a distinct random number must be
applied to each customer (they do not simply accept or rehespublished price).
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