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Abstract

We describe a general technique for converting an online algorithmB to a truthtelling mechanism. We require that the
original online competitive algorithm has certain “niceness” properties in that actions on future requests are independent
of the actual value of requests which were accepted (though these actions will of course depend upon the set of accepted
requests). Under these conditions, we are able to give an online truth telling mechanism (where the values of requests
are given by bids which may not accurately represent the valuation of the requesters) such that our total profit is withinO(� + log �) of the optimum offline profit obtained by an omniscient algorithm (one which knows the true valuations
of the users). Here� is the competitive ratio ofB for the optimization version of the problem, and� is the ratio of the
maximum to minimum valuation for a request. In general thereis an
(log �) lower bound on the ratio of worst-case profit
for a truth telling mechanism when compared to the profit obtained by an omniscient algorithm, so this result is in some
sense best possible. In addition, we prove that our construction is resilient against many forms of “cheating” attempts,
such as forming coalitions.

We demonstrate applications of this result to several problems. We develop online truthtelling mechanisms for online
routing and admission control of path or multicast requests, assuming large network capacities. Assuming the existance
of an algorithmB for the optimization version of the problem, our techniquesprovide truthtelling mechanisms for general
combinatorial auctions. However, designing optimizationalgorithms may be difficult in general because of online or
approximation lower bounds. For the cases described above,we are able to design optimization algorithmsB by amortizing
the lost benefit from online computation (and from approximation hardness in the case of multicast) against the benefit
obtained from accepted requests.

We comment that our upper bounds on profit competitiveness imply, as an obvious corollary, similar bound onglobal
efficiency, namely overall well-being of all the users. This contrastswith most other work on truthtelling mechanisms for
general online resource allocation, where only efficiency is maximized, and competitiveness can be arbitrarily poor.
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1 Introduction

We construct a general technique for converting an algorithm for online optimization to a truthtelling mechanism. We will
draw examples from optimization problems such as online routing [3, 4] and construction of multicast trees [6, 5, 12]. For
the most part, the optimization algorithms described in those papers may be used as black boxes, with our protocol layered
atop the algorithm to guarantee truthful behavior by rational agents. Online optimization is a broad topic in computer
science literature, and there are many other examples to which our techniques could be applied.

Truthtelling mechanism design is a longstanding problem ineconomics and gametheory, with one of the earlier ex-
amples being the Vickrey auction [18] and VCG mechanisms [18, 9, 14]. In computer science theory, recent work has
given results describing truthtelling mechanisms for shortest path [1], multicast [11], load balancing [17], allocation of
goods [15, 7], and allocation of digital goods [8, 13]. Many of these problems can be viewed in an online setting (where
requests arrive one at a time in an adversarial fashion) and only some of the earlier results consider the online scenario.

There are two separate issues in dealing with combinatorialauctions:� existence:do profit-competitive truthtelling online mechanism designs evenexist?� computatability:if so, can they be computed in polynomial time?

Our main contribution is the introduction of a general technique to transform various online optimization problems into
truthtelling mechanisms. This transformation introducesonly anadditiveloss in the competitive ratio (a multiplicative loss
is relatively straightforward), enabling us to produce best-possible competitive bounds for a variety of problems of which
the specific instances presented are only a sample.

The most general result is a truthtelling mechanism for general online combinatorial auctions, assuming an online opti-
mization function exists. In general, combinatorial auctions require exponential size representation of input and exponential
computation effort.

As applications of our general framework we present constructive results for interesting special cases, where internal
structure of the problem enables polynomial representation of the input, as well as polynomial approximation in spite
of exponential number of options. Specifically, we give firstonline polynomial-time optimally-competitive truthtelling
mechanisms for a number of basic online optimization problems in capacitated networks, including:� constrained network routing and admission control, where selection must be made among exponentially many paths.� multicast routing, where steiner trees need to be selected,among exponentially many trees.� multicast admission control, where multicast requests to be admitted must be selected among exponential number of

possibilities.� combined multicast routing and admission control, combining all of the problems above.

The latter three results may be contrasted against various hardness results [10] for the same problems.

Our techniques assume the existence of an online optimization algorithm. In the case of combinatorial auctions, no
such algorithm can have a reasonable competitive ratio in the general setting. This may be seen via a reduction from online
routing on a unit-capacity network. However, if we assume large supply of each item in the combinatorial auction, it is
straightforward to apply the algorithm of [3] to the optimization version of the problem. Alternately, some auctions with
additional constraints (for example each customer requests only a small subset of items) may permit such an optimization
algorithm.

In the case of multicast, the hardness results arise from optimizing the function of benefit minus cost. Since we
cannot solve steiner tree exactly in polynomial time, we cannot obtain any reasonable approximation to the difference
problem [10]. However, we can exploit the fact that in a capacitated network there is no direct notion of externally-
imposed cost, and we only need to worry about internally-maintained “opportunity cost”. The error in optimization of
opportunity cost because of computational hardness can effectively be amortized against the benefit gained from earlier
multicast routings if the capacities are reasonably large.
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2 Model and problem statement

Single-option auctions. We consider serving a sequence of requests which arrive one at a time online. Each request may
be represented by a pair(ri; bi). Hereri is a statement of the resources requested; this may be in manydifferent forms (for
example it might be a source-sink pair in a communication network, a node to be added to a multicast tree, or in general a
list of feasible subsets of the products to be auctioned). The variablebi is a bid, which represents the amount of money the
requester is willing to pay the auctioneer if the requested resources are provided. As each request arrives, we have several
decisions to make. We must decide whether to accept or rejectthe request. If we accept, there may be several feasible
ways to satisfyri, and we must select one such way. Finally, we must determine apricepi � bi to charge the user for our
services.

In general we assume each user has a valuationvi, which represents the amount he is really willing to pay for requesti. The bidbi will be computed in order to optimize useri’s benefit (benefit is zero if the request is rejected andvi � pi if
the request is accepted and the user is charged pricepi). An algorithm is defined to betruthtelling if each user computedbi = vi when trying to optimize benefit.

General Multiple-option (combinatorial) auctions. We consider the case of combinatorial auctions, in which we are
simultaneously auctioning a number of distinct items. Eachcustomer places bids on several subsets of the items up for
auction. Our goal is to provide each customer with one of the subsets he requested (or an empty subset) and charge some
price, such that we do not oversell our supply of any of the auctioned items and our income is maximized. This problem
does not fit the framework outlined above, in that each customer may have several distinct bids, and we must determine not
only whether to accept the customer but which subset of the items to give him. We will again represent incoming requests
by pairs(ri; bi), but hereri is a collection of feasible sets of items, andbi is a function relating the set offered to the bid.

2.1 Measures of performance

Competitiveness. Suppose we accept some set of requestsA. Our total income is equal toI =Pi2A pi. The optimum
offline omniscient income is the maximum, over setsA�, of I� = Pi2A� vi. We define our competitive ratio to be the
maximum over request sequencesR of the ratio I�E[I℄ . Our algorithms will be randomized and the expected value ofour
result is over the set of random choices made.

We assume that we are given an online algorithm for the optimization version of the problem. This algorithm guarantees
some competitive ratio�, which means the algorithm accepts some set of requestsA such that�E[Xi2A bi℄ � Xi2A� bi:
This algorithm is not truthtelling, in that users may well benefit from settingbi < vi.
Efficiency or global well-being. We comment that our upper bounds on profit competitiveness imply, as an obvious
corollary, similar bound onglobal efficiency, namely overall well-being of all the users. This contrastswith most other work
on truthtelling mechanisms for general online resource allocation, where only efficiency is maximized, and competitiveness
is, in most cases, arbitrarily poor.

Computational hardness. Another issue is ability to compute solutions in polynomialtime. General combinatorial
auctions require exponential representation of input and exponential computation effort. There are two approaches. One
“non-constructive” approach is to assume existence of certain external optimization procedure, or “black box”, performing
necessary computational work; this approach is commonly used in the literature, since many problems in this domain are
impossible even to approximate. A “constructive” approachrequires specifying a polynomial time algorithm for the above
“black box” computation, and we will give such constructiveresults for problems in routing and admission control.
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3 Statement of results

3.1 Basic results

We give a truth telling algorithm usingarbitrary nice online optimization algorithm as a black box, which will beO(�+ log�) competitive against the offline omniscient algorithm, where� = maxi vi (we assume the minimum nonzero
valuation is one). We observe that there is an
(log�) lower bound [13] in most cases. In addition, it is straightforward
to obtainO(� log�) competitivity as follows. We choose a random numberm between1 and� via an exponential distri-
bution, and discard all requests withbi < m. The remaining requests are sent to the online algorithm with bid equal tom.

In addition to improving this ratio toO(� + log�), our algorithm is resilient against various attacks including retries
and coalitions. We show in section 4.3 that even if users are allowed to “cheat” in these ways, our expected income remains
competitive with the offline omniscient algorithm.

In section 4.4 we explain how to modify the algorithm if we do not have knowledge of the value� in advance.

We first present our algorithm for the single-choice auctionand then generalize to arbitrary combinatorial auctions.

3.2 Applications of basic results

Network admission control for unicast. We consider the following problem. We are given a capacitated network.
Communication requests arrive one at a time online. Each request specifies a path from the source to the destination node,
and a bid for the service of satisfying the connection. We will model this network in terms of permanent reservations
of virtual circuits; the algorithm can be easily extended tocontrolling reservations with known durations. Our goal isto
devise a strategy for admission control (as well as pricing the admitted requests) in order to maximize our income without
exceeding the network capacities. We will assume that the network capacities are reasonably large (at leastO(log n�)
wheren is the number of nodes in the graph and� is the maximum request valuation).

The optimization version of this problem was addressed in [3]. Assuming that each request is accompanied by a true
valuation (rather than a possibly untruthful bid), anO(log n�)-competitive online algorithm was given, and matching lower
bounds were provided. The large capacity restriction on theedges is necessary for this guarantee; the case of unit-capacity
edges is provably hard. We would like to extend this result toan auction setting.

The algorithm of [3] works as follows. Each edge in the network is assigned an “opportunity” cost which is exponential
in the current load on the edge. For each request, we compute acost which is the sum of the cost of the edges along the
shortest satisfying path. If this cost is less than the valueof the request, then we accept and update the loads. Otherwise
we reject the request (loads remain unchanged). We observe that the actions of this deterministic algorithm are entirely
determined by the set of accepted requests (the actual values of requests do not effect the action of the algorithm other than
by determining whether to accept or reject). This algorithmis nice, and therefore ideal for the technique described in Fig.
1.

It immediately follows that we can construct a truthtellingmechanism with competitivityO(� + log�) = O(log n�),
which is asymptotically identical to the competitivity of the best possible online algorithm for the optimization version of
the problem. We have effectively lost nothing by transforming to the auction problem.

In addition, we observe that the costs generated by the algorithm of [3] are nondecreasing (as the loads only rise with
time) and additive. It follows that our mechanism is resilient against retries, coalitions, and resellers.

Combined unicast routing and admission control. In additional to controlling the rates, we can also select the routes
between senders and receivers. Notice that there are exponentially many options, and only one needs to be selected. This
is an example of an combinatorial auction that can be handledin polynomial time.

Again, the optimization version of this problem was addressed in [3], with anO(log n�)-competitive online algorithm
was given, and matching lower bounds were provided. The algorithm in in [3] selects shortest path in the above opportunity
cost, and applies admission control procedure above.

Once again, a truthtelling mechanism with optimal competitivity O(�+log �) = O(log n�) follows, which is resilient
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against retries, coalitions, and resellers.

Multicast admission control is a generalization of unicast admission control.

Instead of paths from senders to receivers, we are given a forest of trees, rooted at a number of senders. We are given
a set of bidsbi for each of the nodes, and we can choose to connect some or all of the requested nodes into a tree. Our
algorithm’s income will be the total prices assigned to the nodes which are actually part of the tree we construct. We are
limited by network bandwidths in the underlying graph; eachedge has a capacity and we may place at most a bounded
number of trees along the edge.

In the case of multicast, the hardness results arise from optimizing the function of benefit minus cost. Since we
cannot solve steiner tree exactly in polynomial time, we cannot obtain any reasonable approximation to the difference
problem [10]. Here we exploit the fact that in a capacitated network there is no direct notion of externally-imposed cost,
except internally-maintained “opportunity cost”. The latter can be only approximately optimized because of steiner tree
hardness, but the errors in this computation can effectively be amortized against the benefit gained from earlier multicast
routings if the capacities are reasonably large.

This situation differs from the scenario presented by Feigenbaum et al [10], in that they are trying to construct a
single-commodity multicast tree with costs on the edges in an offline scenario, whereas we are solving a multi-commodity
problem, namely packing large numbers of multicast trees into a graph with capacity constraints (but no costs) on the
edges. In contrast to the hardness results presented for thesingle tree with costs ( [10] shows that the problem is effectively
inapproximable), we are able to provide polylogarithmic positive results for the capacitated problem.

Multicast admission control with routing is a generalization of the above, when we also need to construct a “steiner
tree”. In this case, the computational hardness results arise from optimizing the function of benefit minus “opportunity”
cost. Since we cannot solve steiner tree exactly in polynomial time, we cannot obtain any reasonable approximation to the
difference problem [10]. However, in a capacitated networkthere is no direct notion of cost. We will compute an online
“opportunity cost” which will be only approximate because of steiner tree, but the errors in this computation can effectively
be amortized against the benefit gained from earlier multicast routings if the capacities are reasonably large.

4 Single-choice auction

The single-choice auction algorithmB0 uses any deterministic or “nice” (see Def. 1) randomized online algorithmB as a
black box .

Computem between1 and�. With probability 12 we havem = 1, otherwisem = 2i with probability 12 log � for eachi � log�.

Basic Algorithm
i  min v such thatB accepts(ri; 
i) .
Feed(ri; bi) to B & updateB’s state
If bi � m
i then accept and chargepi = m
i. /* Otherwise we reject requesti * /

Figure 1:The algorithm for a single-choice auction.

Notice that the online algorithmB will update its state (assuming we accepted requesti) even if we in fact computedbi < m
i and rejected requesti.
Theorem 4.1 LetB be a any deterministic or “nice” randomized algorithm (Def.1) which is�-competitive, and let� be
the range of bids. Then, algorithmB0 in Fig. 1 is truthtelling mechanism which isO(� + log�) competitive against the
offline omniscient algorithm.
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4.1 Preliminaries

Definition 1 We define an online algorithm asnice if the following conditions hold.� If a request is a accepted with a bidb, it must also be accepted with larger bidb0 > b.� the decision of whether to accept requesti (whetheri 2 A) may depend upon the current members of setA, but does
not depend upon the bidsbj of the membersj 2 A. It may however, depend upon the bidsbj that were rejected, i.e.j =2 A.

Theorem 4.2 If there exists a deterministic online�-competitive algorithm for the optimization problem, thenthere exists
a nicealgorithm with the same competitive ratio.

Proof: Suppose we are given a deterministic online algorithmB. We construct algorithmB0 as follows. Some stream
of requestsR arrives. As each requesti arrives, we compute
i to be the minimum value such that, if algorithmB were
presented with requests(r1;min(b1; 
1)); (r2;min(b2; 
2)); :::; (ri; 
i), then it would accept the request(ri; 
i). AlgorithmB0 accepts requesti if its bid satisfiesbi � 
i.

It is immediate that algorithmB0 satisfies the niceness conditions. Increasing the bid of an accepted request will not
cause it to be rejected (since the new bid is still more than
i). The decision of whether to accept requesti depends upon the
previous requestsrj and the values of the minimum ofbj and
j for them. Since only the rejected requests havebj < 
j ,
it follows that only the bids of rejected requests can effectour decision.

It remains to analyze the competitive ratio. Suppose there was some request streamR which could be fed to algorithmB0 for which the competitive ratio is worse than�. We construct a new request streamR0 by replacing the bid of requesti with min(bi; 
i). Now supposeB0 rejects some requesti from streamR. It follows thatB would reject requesti from
streamR0. Similarly, if B0 accepts requesti from streamR, thenB would accept the request. We know that ifA is
the set of requests accepted byB0 from streamR, then�Pi2A bi < Pi2A� bi. However, considerB acting on streamR0. We have profit

Pi2Amin bi; 
i, whereas there exists an alternate solution which gains profit
Pi2A� min bi; 
i. Since

algorithmB is �-competitive, we know that�Pi2Amin bi; 
i �Pi2A� min bi; 
i. We now consider replacingmin bi; 
i
with the valuebi. The lefthand side of the inequality increases, asbi � 
i for each requesti 2 A. The righthand side of
the inequality increases by a smaller amount, sincebi � 
i for each request inA� except those also accepted byA. So we
have�Pi2A bi �Pi2A� bi as desired.

4.2 Analysis for a single choice case

We will consider several categories of requests. There are some requestsA which our algorithm accepted. There is some
setQ of requests which have
i � bi; these are the requests whichB accepts, but we will accept only some of them because
of our random choice ofm. Finally, there is a setP of requests which the optimum omniscient offline accepts, but which
havebi < 
i and which we reject. We need to show that our total income

Pi2A pi is comparable to the optimum income,
which is bounded above by

Pi2P vi +Pi2Q vi.
Lemma 4.1 Xi2P vi � �Xi2Q 
i
Proof: Consider the given online algorithm for the optimization problem. If we feed this algorithm the pairs(ri; bi), it
will accept exactlyi 2 Q. We now consider feeding the algorithm the pairs(ri;min(bi; 
i)). Since
i is defined as the
minimum bid such that(ri; 
i) will be accepted, and the future actions of the algorithm do not depend upon the actual bids
submitted by accepted requests, the algorithms behavior onthis new request stream will be identical to its behavior on the
original request stream. Since the algorithm is truth telling, we havebi = vi, and one feasible solution to the problem
involves accepting the setP and obtaining income of

Pi2P vi. We were given a�-competitive algorithm which obtains
income of

Pi2AQmin(bi; 
i) =Pi2Q 
i, and the presumed competitivity yields the desired result.
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Lemma 4.2 E[Xi2A pi℄ � 12Xi2Q 
i
Proof: Consider any requesti 2 Q. Notice that this set does not depend upon our choice ofm. With probability 12 we will
havem = 1 and thuspi = 
i andA = Q. So the expected value of

Pi2A pi will be at least half the value of
Pi2Q 
i.

Lemma 4.3 Xi2Q vi � 4(log�)E[Xi2A pi℄
Proof: We note thatQ is the set of requests accepted byB, and does not depend upon our choice of the random valuem.
For anyi 2 Q, we will compute its expected contribution to the righthandsum. With probability 12 log � we selectedm
such thatm
i � vi � 2m
i, in which case we will havei 2 A andpi � 12vi. The expected contribution of requesti toPi2A pi will be at least vi4 log� , and summing this over requestsi gives the desired bound.

Theorem 4.3 Xi2A� vi � (2�+ 4 log�)E[Xi2A pi℄
Proof: We know the setA� is a subset ofQSP . Thus we have

Pi2A� vi � Pi2Q vi +Pi2P vi. We now apply the
lemmas to obtain

Pi2A� vi � (2�+ 4 log�)E[Pi2A pi℄.
We also need to show that this algorithm is truthtelling. This is immediate from previous work.

Theorem 4.4 The algorithm is a truthtelling mechanism.

Proof: We observe that the pricepi is independant of the bidbi; the price is set based upon previous requests and a random
numberm. If the bid does not match the true valuation, the price remains unchanged, so the bidder does not benefit.

4.3 Retry, Coalitions, and Resellers

Truthtelling mechanisms make certain assumptions about the requesters. It is assumed that each requester is an independent
agent who offers one and only one bid to the auction. This model is not realistic. First, we have the possibility of retry.
An individual whose request is rejected might continue resubmitting requests until one is accepted. If the computed price
for this request fluxuates, it might be beneficial to the requester to lie about his bid, then retry on a reject (possibly with a
different bid). Second, we have the possibility of coalitions. A group of requesters could agree to lie about their valuations
or to reorder their requests. Third, we have the possibilityof resellers, where a group of requesters merge their requests
into a single request (for the sum of the required resources); they will benefit if the price computed by the algorithm for the
union is less than the sum of the individual prices.

We will show that our approach remains competitive despite retries, coalitions, and resellers, provided the given online
optimization algorithm has certain additional properties.

Theorem 4.5 If the costs computed byB for a particular request are nondecreasing, then our approach is resilient against
retries.

Proof: If we repeat requestri at some later timej > i, then the computed cost will be
j > 
i. The computed price will
therefore bem
j > m
i, which is only larger.

Theorem 4.6 If the costs computed byB for a particular request are nondecreasing, then our approach is resilient against
coalitions.
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Proof: Suppose some set of requestsR form a coalition. Some of these requestsi 2 R might lie about their valuations,
bidding bi 6= vi. Bid i has three possibilities, it may be pre-rejected (rejected without effecting future actions of the
algorithm), pre-accepted but rejected later (causingB to update its costs), or actually accepted. The actual bidbi determines
which set the request will join, but has no other effect. Suppose requesti lies and causes itself to be rejected (i.e.bi < 
i �vi). In this case, since the requesti will not effect the actions of the algorithm it may as well be removed from the request
stream. The coalition would only benefit by re-adding request i at a time subsequent to all other coalition members. On
the other hand, suppose requesti lies and causes itself to be pre-accepted but rejected, instead of being accepted. This
means we have
i � bi < m
i � vi. We observe that the actions of the algorithm on other subsequent requests are
uneffected by this (since the algorithm only depends upon the pre-accepts and the choice ofm). If we had setbi = vi then
all future actions of the algorithm are unchanged, but we will obtain additional benefit ofvi �m
i > 0, so the coalition
has no incentive to lie in this way. The only other possible “lies” involve settingbi > vi. It follows that the coalition has a
dominant strategy which might reorder the requests, but which guaranteesbi � vi for all requestsi. But our competitivity
guarantee of� for the online black boxB was against adversarial orderings of the requests, so we retain our competitivity
in the face of coalitions.

Theorem 4.7 If B assigns cost to a union of requests which is at least equal to the cost of those requests appearing in
sequence, then our approach is resilient against resellers.

Proof: Suppose requests fromi to j apply to a reseller. The algorithm will see a single request(Pjx=i ri;Pjx=i bi). The
cost computed for this union of requests will beC �Pjx=i 
i, leading to a price ofmC. But if the requests had not used
the reseller, they would see a sum of prices which is only smaller, implying that the benefit has been reduced.

4.4 Guessing the Max Bid

The technique described in Fig. 1 depends upon knowledge of the maximum possible bid. This knowledge is needed in
order to determine the distribution of random variablem. If the algorithm uses a value for this maximum bid which is
too low, then it will not be competitive. If the value is too high, then the competitive ratio deteriorates (since it depends
logarithmically upon the value�). In some applications a reasonable accurate guess of� will be available, but in general
this may not be the case. We will describe an alternate methodfor generatingm which does not depend on prior knowledge
of the value�. This method is based on the idea of classify and select on unbounded range, first presented by Lipton and
Tomkins [16].

Theorem 4.8 LetB be a “nice” randomized algorithm which is�-competitive. We can design a truthtelling mechanism
which isO(�+log �(log log�)2) competitive against the offline omniscient algorithm, where� is the range of bids, without
prior knowledge of the value of�.

Proof: The algorithm is unchanged, except that we must generatem in a different way. We will setm = 1 with probability12 . Otherwise, we setm = 2i with probability density function 12(e+i)(ln(e+i))2 for nonnegativei. Integrating the probability
function, we have total probability equal to one. We now consider the probability of selectingm to be “just right” to charge
some request inQ its bid. Before, this probability was 12 log� . Now, the probability looks likeO( 1log�(log log�)2 ) and this
yields the result claimed.

5 General Combinatorial Auction

The multiplicative random factorm in our algorithm (Fig. 1) might tempt the customers to lie in case of auctions with
multiple choices. For example, suppose the customer would like either item1 or item2, and their values to him are100
and10 respectively. Suppose we have costs
1 = 90 for item one and
2 = 1 for item two. Clearly the customer prefers to
purchase item one if the prices are equal to the costs. However, once we add the random multiplierm, it will frequently be
the case that100� 90m < 10�m and the customer prefers item two.

We can avoid this problem by making the factor ofm additive instead of multiplicative. We assume we are given a
black box online algorithmB which will be competitive assuming all bids are truthful andeach customer bids on only a
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single set of items. Various results show that producing such a black box is difficult. If we assume that only a single copy
of each item is available, then we are required to solve an approximation of the unit-capacity online flow problem, which
has hardness results from (among others) [3]. However, if weassume large supply of each item we can immediately obtain
such a black box using an exponential-cost routing algorithm.

In addition, we assume that given a request pair(ri; bi), we are able to select a sets 2 ri which maximizesbi(s)�
i(s).
If the requestri is given as a polynomial length “list” of feasible sets, thenthis computation is straightforward. There are
interesting cases where the list of feasible sets is exponential in length and we are unable to compute this maximization
exactly. The next section will deal with extensions of this type.

Combinatorial Auction Algorithm
With probability 12 setm = 0, otherwisem = 2i with probability 12 log� for eachi � log�.
For each sets, compute
i(s) as the minimum value such thatB accepts(ri; 
i(s)).
SelectS which maximizesbi(s)� 
i(s). Feed(s; bi(s)) toB, updating its state.
If bi(s) � m+ 
i(s) then accept

gives to the customer and chargepi = m+ 
i(s) /*Otherwise we reject requesti.*/
Figure 2:The algorithm for mutiple-choice (combinatorial) auction.

We will first prove this algorithm is a truthtelling mechanism.

Theorem 5.1 The algorithm is truthtelling.

Proof: Suppose a customer requests one of several setss. For each set, we implicitly assign a pricepi(s) = m+
i(s). The
customer’s goal is to obtain the set which will maximize the difference of utility and price,vi(s) � pi(s). This is exactly
the same set which maximizesvi(s) � 
i(s). If the customer is truthful, he will receive the most desirable set, and since
the price paid is independent of the customer’s bids, the algorithm is truthtelling.

We again analyze the algorithm by considering several sets of requests. We have setA of requests which we accept,
setQ of requests which algorithmB accepts (which havebi(s) � 
i(s)), and setP of requests which are accepted by
the offline omniscient but which we rejected altogether. In addition, we will now divideQ into Q1, requests which havebi(s) � 12bi(s�), andQ2, requests which havebi(s) < 12bi(s�). Heres� represents the set which the offline optimum
ominiscient uses to accept requesti (if the optimum rejects requesti, thens� is the set of maximumbi(s�)).
Theorem 5.2 Xi2A� vi(s�) � (6�+ 8 log�)E[Xi2A pi℄
Proof: We split A� into several sets:A� 2 Q1SQ2SP . As before, we have

Pi2P vi(s�) � 2�Pi2A pi from
lemma 4.1. We now consider the members ofQ1. For any requesti 2 Q1, there is a probability of 12 log� that we setm such that we obtain a price withbi(s) � pi � 12bi(s) � 14bi(s�), so we have

Pi2Q1 vi(s�) � 8 log�E[Pi2A pi℄. This
leaves the setQ2. For each of these requests, we could have used used the optimum set to satisfy them but chose not to.
It follows that 12vi(s�) � vi(s) � 
i(s) � vi(s�) � 
i(s�), from which we conclude thatvi(s�) � 2
i(s�). We can now
argue that ifB were given the requests inQ2 along with their optimum subsets and half the optimum valuations, it would
reject. We conclude that

Pi2Q2 vi(s�) � 4�E[Pi2A pi℄ using arguments similar to those in lemma 4.1 for pre-rejected
requests. Combining these equations yields the lemma claimed.

We observe that the above algorithm is not resilient againstresellers, since the cost assigned to a union of requests adds
the randomm only once instead of multiple times, allowing the reseller to obtain a benefit.

6 Polynomial-time Multicast Routing/Admission Mechanisms

The problem can be viewed as an extension of the case of combinatorial auctions presented in the previous section. We are
given a list of feasible subsets (multicast trees) along with valuations for each of them. However, the list of feasible subsets
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is now exponentially long, and we cannot determine the sets which optimizesbi(s) � 
i(s) (optimizing this function is
precisely what [10] shows to be hard). In fact, we cannot evenapproximate the difference! Instead, we will assume we are
given a black box algorithmA which guarantees to finds with �(bi(s)� 
i(s)) � bi(s�)� 
i(s�) (for some� � 1) under
the assumption that the optimizing sets� hasbi(s�) � �
i(s�) (for some� � 2). For the case of multicast trees, any
of the various approximation algorithms for the maximal dense subtree (k �MST ) will serve this purpose; for example
we could use the algorithms of [2]. As usual, we additionallyhave the algorithmB which performs online optimization
(without truthtelling) under the assumption that we are given one tree-bid pair at a time and must choose to accept or reject
(an exponential cost algorithm on the edges such as [3] will serve for multicast).

We have the following algorithm:

Computem between0 and�. With probability 12 we havem = 0, otherwisem = 2i with probability 12 log� for eachi � log�.

Multicast Algorithm
UseA to computes which optimizesbi(s)� 
i(s)
Feed(s; bi(s)) toB & updateB’s state
If bi(s) � m+ 
i(s) then accept and chargepi = m+ 
i(s). /* Otherwise we reject requesti * /

Figure 3:The algorithm for multicast.

The analysis again proceeds by dividing the requests into four sets. We have setA of requests which we accept, setQ1
of requests for whichbi(s�) � �
i(s�) for the optimum sets�, setQ2 for whichbi(s�) < �
i(s�) but the online algorithmB still finds a way to accept, and setP which the offline omniscient algorithm accepts butB rejects.

Theorem 6.1
Pi2A� vi(s�) � (4��+ 8(log�)�E[Pi2A pi℄

Proof: We splitA� into several sets:A� 2 Q1SQ2SP . We consider a requesti 2 P . If there was a sets withbi(s) � �
i(s), then we would have found a set with positive benefit minus cost andB would have accepted. It follows
that vi(s) < �
i(s). We conclude that the algorithmB would reject the request(s; vi(s)=�) for any sets 2 ri, and
competitivity ofB yields the inequality

Pi2P vi(s�) � 2��E[Pi2A pi℄ as in lemma 4.1. We now consider the members
of Q1. For these requests we have a probability12 log� of settingm just right such that we obtain a price ofpi � 12bi(s).
Membership inQ1 implies thatbi(s�) � �
i(s�) which implies�(bi(s)�
i(s)) � bi(s�)�
i(s�). From these inequalities
along with� � 2, we conclude that�bi(s) � 12bi(s�), allowing us to show thatXi2Q1 vi � 8(log�)�E[Xi2A pi℄:
Finally, we consider setQ2. Membership inQ2 implies thatvi(s�) < �
i(s�). It follows that the algorithmB would reject(s�; vi(s�)=�), so again obtain the inequality

Pi2Q2 vi � 2��E[Pi2A pi℄. Combining these inequalities yields the result
claimed.

This yields a competitive ratio ofO(��+� log�). However, we observe that the algorithm described is not truthtelling.
If the customer lies about his valuationsbi, it might induce our approximation algorithmA to choose a different sets to
satisfy the customer. Conceivably this sets could have a larger value ofvi(s) � 
i(s), leading the customer to prefer it.
However, by modifying the bids to cause this to occur, the customer is only helping the algorithm. We state this formally
as follows.

Theorem 6.2 If the customers lie in order to improve their benefit, the algorithm is still competitive.

Proof: Suppose customeri lies. This leads to customeri being assigned some sets0 instead of the sets which would
have been assigned had he been truthful. So the customer’s value minus price is nowvi(s0) � 
i(s0) � m instead ofvi(s) � 
i(s) �m. We assume that customeri is acting in his own self-interest, so we conclude thatvi(s0) � 
i(s0) �vi(s) � 
i(s). But this means the customer is effectively producing a “better” approximation algorithmA0 for us, and the
proof of the preceding theorem will again hold.
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7 Appendix: Published Prices and Open Problems

We consider the problem of publishing prices. Here, we wouldlike to be able to post a price which does not change based
upon rejected requests. In our modular approach described earlier, the costs will change on the basis of pre-rejects. Wecan
modify the algorithm to the following:

Published Price Algorithm
i  min v such thatB accepts(ri; 
i) .
Post pricesm
i for ri; a newm is computed for each customer.
If bi � m
i, then feed(ri; bi) to B & updateB’s state

Figure 4:The algorithm for price-posting.

In this algorithm, the prices are independent of the rejects. However, the prices are continually being assigned new
random values for each request. This is undesirable both because we do not have true “published prices” and because the
algorithm is no longer resilient against retries.

Since our offered price is always at least
i, we guarantee we will not violate capacity constraints and so forth if the
generic online could not do so.

The proof of competitivity for this new algorithm requires only slight modifications. We can still classify requests as
“pre-rejected” if they havebi < 
i (in other words, they will be rejected automatically regardless of the random number).
Each request belongs to some category,P , Q, orA. Which category it belongs to depends upon random variables, since
the value of the cost at the current time is no longer deterministic (it depends on which earlier requests were accepted).

However, we can still show that have
Pi2P vi � �Pi2Q 
i as a deterministic guarantee. We now consider some

requesti. There is some probability it was pre-rejected, but let’s assume that is not the case. Once we takebi � 
i as given,
whether this request is actually accepted is independent ofprevious events.

Also, we can still guarantee that4(log�)E[piji 2 Q℄ � vi. This enables us to bound the expected cost much as before.

The above arguments are formalized below.

Lemma 7.1 Xi2P vi < �Xi2A 
i
Proof: This will be a deterministic guarantee, and we will show it istrue for any request stream and set of random

choices. Suppose for some request stream and random choicesthe theorem fails. We will construct a modified request
stream as follows. First, for each requesti with 
i < vi < 
iri, we remove requesti and random numberri from the
streams of requests and random numbers. We now have a new request stream, and the behavior of the algorithm on this
stream will be identical (since the eliminated requests were to be rejected anyway). We now consider what would happen
if we feed this request stream to the generic online algorithm. We have eliminated the ”random rejects” so the generic
online will accept exactly the same requests on this new request stream as our randomized algorithm. In fact, even if we setvi = min(vi; 
i) for each request, the generic online will still accept exactly the same set of requestsA which our online
algorithm accepts. This means the generic online obtains benefit equal to

Pi2A 
i, whereas it could have obtained at leastPi2P vi (observing that these requests were not modified in any way and are still a part of the request stream with their
original valuations). Since the generic online has a competitive ratio of�, the theorem must hold.

Lemma 7.2 E[Xi2Q vi℄ < 2(log�)E[Xi2A 
iri℄
Proof: Define potential function � = 2(log�)Xi2A 
iri �Xi2Q vi:
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Consider what happens to� when requesti arrives. There is some probability (based upon earlier requests and random
choices) thatvi < 
i. If this happens, then requesti will be rejected, but will not be a member of the setQ, so the value of� will be unchanged. Otherwise, with some probability we havevi > 
i. In this case, we will have
iri < vi < 2
iri with
probability1=(log�). If this happens we will havei 2 A, and the potential function will increase byvi(log�). Regardless,
we will havei 2 Q so the potential function will decrease byvi. In an expected sense, the potential function does not
decrease.

This gives the lemma claimed.

Combining the two theorems gives:E[Xi2Q vi +Xi2P vi℄ < 2[(log�) + �℄E[Xi2A 
iri℄
The main open problem is combining the various extensions tothe algorithm. Ideally, we would like to be able to

publish prices which the customers can take or refuse, with the assumption that prices do not change except after a sale
is made. Our extension regarding published prices does not quite handle this because a distinct random number must be
applied to each customer (they do not simply accept or refusethe published price).

References

[1] A. Archer and E. Tardos. Frugal path mechanisms.Proceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms, 2002.

[2] A. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for minimum weight k-trees and
prize-collecting salesman.SIAM Journal of Computing, 1999.

[3] A. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. Proceedings of the 25th ACM
Symposium on Theory of Computing, 1993.

[4] A. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual circuits with unknown duration.
Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, 1994.

[5] B. Awerbuch. Online algorithms for selective multicast: A survey.Proceedings of the Dagstuhl Workshop on Online
Algorithms, 1996.

[6] B. Awerbuch and T. Singh. Online algorithms for selective multicast and maximal dense trees.Proceedings of the
ACM Symposium on Theory of Computing, 1996.

[7] A. Bagchi, A. Chaudhary, R. Garg, M. Goodrich, and V. Kumar. Seller-focused algorithms for online auctioning. In
7th International Workshop on Algorithms and Data Structures (WADS 2001), pages 135–147, 2001.

[8] Z. Bar-Yossef, K. Hildrum, and F. Wu. Incentive-compatible online auctions for digital goods. In13th ACM-SIAM
Symp. on Discrete Algorithms, pages 964–970, 2002.

[9] E. Clarke. Multipart pricing of public goods.Public Choice, 1971.

[10] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast transactions.Proceedings of the ACM
Symposium on Theory of Computing, 2000.

[11] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharting the cost of multicast transmissions.Proceedings of the
32nd ACM Symposium on Theory of Computing, 2001.

[12] A. Goel, M. Henzinger, and S. Plotkin. Online throughput-competitive algorithm for multicast routing and admission
control. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 1998.

[13] A. Goldberg, J. Hartline, and A. Wright. Competitive auctions and digital goods.Proceedings of the 12th ACM-SIAM
Symposium on Discrete Algorithms, 2001.

11



[14] T. Groves. Incentives in teams.Econemetrica, 1973.

[15] R. Lavi and N. Nisan. Competitive analysis of incentivecompatible on-line auctions. InACM Conference on Elec-
tronic Commerce, pages 233–241, 2000.

[16] R. J. Lipton and A. Tomkins. Online interval scheduling. Proceedings of the 5th ACM-SIAM Symposium on Discrete
Algorithms, 2001.

[17] N. Nisan and A. Ronen. Algorithmic mechanism design. In31st ACM Symp. on Theory of Computing, pages 129–
140, 1999.

[18] W. Vickery. Counterspeculation, auctions and competitive sealed tenders.Journal of Finance, 1961.

12


