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Abstract

The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question
in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain,
using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even
though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity
of the majority of brain regions is highly predictable from their gene expression levels–the outgoing (incoming) connectivity
is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many
genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected
genes, p-value,1e-5). Reassuringly, the genes previously known from the literature to be involved in axon guidance do
carry significant information about regional brain connectivity. Surveying the genes known to be associated with the
pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit
disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of
functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the
annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24,
p,1e-6 for the outgoing connections and 0.27, p,1e-5 for the incoming). Overall, the association between connectivity and
gene expression in a specific extant rodent species’ brain is likely to be even stronger than found here, given the limitations
of current data.
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Introduction

Genes play a major role in the formation of the nervous system

and in its continuous function. They specify neuronal cell types,

help destine neurons into defined neural circuits, and provide

important cues determining their connectivity [1–2]. Inspired by

Roger Sperry’s classical chemo-affinity hypothesis that states that

neuronal wiring takes place by selective attachment guided by

specific molecular identifiers, a large array of studies have

described various gene families that are involved in axonal

guidance and in determining their specific targets (see [3–7] for

reviews). Another central paradigm has posited that a central

driving force in determining synaptic connectivity are activity-

dependent mechanisms, by which synapses are formed between

neurons whose firing tends to be correlated in a self-organizing

Hebbian manner (see [8–9] for reviews). A third paradigm has

recently emphasized the potential role of random axonal

outgrowth and location-dependent competition in establishing

connectivity [10]. These paradigms are obviously not mutually

exclusive and are likely to concur concomitantly, and quantifying

the extent of association between gene expression and connectivity

may provide global constraints on their relative contribution.

A few recent studies have examined the association between

gene expression and connectivity on the neuronal level in the

worm C. elegans, by studying the relation between a neuron’s gene

expression and its connectivity to and from other neurons. C.

elegans offers a unique opportunity to perform such an

investigation, as it is currently the only model organism for

which both a large fraction of its synaptic connectivity and gene

expression are known on an individual neuronal level. While [11–

12] have set to predict the formation of synapses in the worm

based on the expression pattern of the pertaining genes [13],

aimed to do so while additionally considering their spatial

proximity. Overall, these studies have shown that: (1) neuronal

gene expression does contain significant information about its

connectivity, but the predictive power it entails is rather

moderate, at least with the current available data, and (2) it is

still possible to use this information to identify genes that

potentially play part in determining the neural architecture, on a

genome scale. Here we aim to significantly go beyond these

earlier studies and to investigate the fundamental relation

between gene expression and connectivity in a mammalian brain,

and to study it at the level of connectivity between different brain

regions.

A recent study [14] has used the mouse brain data of the Allen

mouse brain atlas (ABA) [15–16] and the accompanying spatial

gene expression correlation map tool to study gene expression

patterns within the CA1 field. Multiple observations have been
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made to suggest that gene expression associations between CA1

regions and other sub-cortical brain regions are indicative of direct

or indirect projections to or from distinct spatial domains of the

CA1 field. In another study [17], it was shown that a factorization

of the hippocampus volume by the local gene expression levels

leads to a spatial grouping that agrees with the known patterns of

differential connectivity. Inspired by these studies, we set out here

to generalize their scope and examine the possibility of using gene

expression signatures to predict regional connectivity in a

mammalian brain. Presently, as there is no adequate regional

gene expression and connectivity data available for a single

mammalian species, we therefore fuse data from two species: brain

wiring data for the rat brain and regional gene expression data

from the mouse brain, to study their relation in a prototypical

rodent brain. The rat connectivity atlas [18] available online

(http://brancusi.usc.edu/bkms/) provides connectivity informa-

tion for the anatomical structures of the rat. The Allen mouse

brain atlas (ABA) [15–16] provides gene expression images for the

adult mouse brain. Although gene expression during embryogen-

esis and development would have ideally been more befitting, this

data is still lacking on the large scale. Yet, major components of

synapses (such as synaptic boutons and spines) are undergoing

continuous turnover and are actively maintained during adult life

(e.g., [19–20]), which raises the possibility that information on

synaptic connectivity may also be manifested in adult gene

expression. This, coupled with the success of the earlier studies in

the worm in predicting connectivity from adult gene expression

[11–13], has motivated us to explore this possibility in depth here.

The Allen atlas also provides a mapping between image regions

and brain structures. By matching the brain structures of the rat

connectivity map and the brain structures of the mouse brain we

are able to construct a combined gene expression/connectivity

atlas of the rodent brain (Materials and Methods). Using the

combined atlas we find that gene expression levels in different

brain regions contain considerable predictive information on their

connectivity (interestingly, more than the level found in previous

studies in the worm) and identify the genes and functional

annotations whose expression is most predictive. Obviously some

errors may be introduced in this mapping due to inter-species

variations in connectivity and expression levels that may hinder

the statistical significance of our results. Hence, importantly, the

results presented here are likely to be a lower bound on the actual

magnitude of the relationship between gene expression and

regional brain connectivity. In parallel to our study, another

group demonstrated evidence for a correlation between gene

expression and connectivity in the rodent brain by using similar

sources for gene expression of the mouse brain and rat

connectivity maps [21].

Results

The combined expression/connectivity atlas of the rodent brain

contains 176 brain regions. Each is associated here with three

signatures. The first signature is a gene expression vector of size

20,936 obtained from processing the Allen Brain Atlas. The other

two signatures specify brain region connectivity: one encodes the

outgoing connections from each region (Efferent connectivity), and

the other encodes the incoming connections to each region

(Afferent connectivity). Connectivity is obtained from the BAMS

atlas [18] using the nomenclature of [22], assuming that

connections that are not reported do not exist [23].

Similarly to [11] we study the connectivity information

contained in gene expression by considering both prediction

accuracy and the expression/connectivity correlation. Prediction

accuracy measures the extent to which connectivity is predicted

given the gene expression data. It is estimated for each region

separately via a standard cross validation procedure. The

correlation between gene expression and connectivity is a global

index that measures how similar are the distances between regions

in connectivity terms to their distances in expression terms, for all

regions at once. On top of predictability and correlation, we also

bring further support to our results by examining the enrichment

of connectivity-related predicted genes in various disorders that

are believed to be related to alterations in brain connectivity.

Connectivity prediction ability was studied using a linear SVM

classifier (see Materials and Methods). We first obtain results for

outgoing connections: In order to examine each region only once,

we consider those 146 regions that do not contain other regions,

i.e., regions that are leaves of the regional hierarchy of ABA

(Figure 1(a)). Additionally, all regions that have less than 5

outgoing connections are discarded, resulting in a set of 44 regions

A1,…,A44. We then fix a region Ai and consider the expression

signatures of all other leaf regions B1,…, B146. At each of the 5

cross-validation iterations, we train a classifier using 4/5 of the

regions and obtain a mapping between gene expression of the

target region Bj and the existence of an outgoing connection from

Ai to Bj. The learned map is then applied to the remaining 1/5

regions in order to obtain predictions on the test data, unseen

during training. These 5 iterations produce predictions to all

regions B1,…,B146, and the overall prediction performance is

quantified using the standard Area Under Curve (AUC) measure.

A p-value is assigned to each region by performing a standard

permutation test (see Materials and Methods). An analogous

procedure was applied for predicting incoming connections.

The resulting prediction ability for outgoing connectivity is

significant (p,0.05) for 32 out of the 44 regions (73%). The

average AUC was 0.74 over all regions, and 0.79 for the significant

regions. Significant prediction ability was observed also for the

incoming connections. There are 57 regions that are not contained

in other regions and which have at least 5 incoming connections.

Out of these regions 32 (56%) have statistically significant

(p,0.05) prediction accuracy. The average AUC is 0.73 for all

the 57 regions and 0.83 for the 32 significant ones. The results for

the prediction experiments (combining incoming and outgoing)

are provided in Table S1, and the significant regions are portrayed

in Figure 1(b,c). The outgoing and the incoming experiments share

35 brain regions that have at least 5 outgoing and 5 incoming

connections, out of which 15 are successfully predicted in both

incoming and outgoing sets.

In several regions of the hierarchy, the BAMS atlas is more

detailed than the Allen Brain Atlas, therefore there are known

BAMS connections that exist between substructures of the given

leafs of the Allen Brain Atlas. In our study, such connections are

Author Summary

Brain connectivity is believed to be associated with gene
expression levels in the developing and the adult animal.
Recently, this association has been explored in two model
animals: the worm C. elegans at the level of single neurons;
and the mouse, where specific subpopulations of neurons
in the hippocampus were studied. Inspired by these
studies, we set out to generalize their scope and examine
the possibility of using gene expression signatures to
predict regional connectivity in the whole rodent brain.
Our results show a higher degree of association between
connectivity and expression than shown before, and key
genes are identified that are highly predictive of brain
connectivity.

Expression and Connectivity of Rodent Brain
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eliminated since they arise from localized substructures that might

have specific gene expression profiles, not necessarily matching

that of the larger structures. This conservative approach is in line

with the incompleteness of BAMS [24], i.e., the conservative

connectivity map is geared to allow for more missing links rather

than erroneously including spurious ones. However, for complete-

ness, we also report the results obtained when taking a more liberal

approach, which propagates links between BAMS substructures

up to regions that have ABA analogs, are also presented in Table

S1. This ‘liberal’ connectivity matrix contains well studied links

that do not appear in the conservative connectivity map, such as

the projection from the dentate gyrus to Ammon’s horn. In this

experiment too, there are many regions for which the connectivity

prediction is significantly above chance 249% of the efferent

regions and 58% of the afferent regions show significant

predictability. While this is somewhat lower than the results

obtained using the conservative connectivity matrix (73% and

56%), this drop in performance is expected due to the addition of

regions with only few known connections, and the specificity of the

connections to and from sub-regions that go beyond the resolution

of the maps.

Several other alternative choices were also made in order to

demonstrate the robustness of the experimental design and results,

and are also depicted in Table S1. When choosing a threshold of

10 connections instead of 5, the average AUC obtained is similar;

When replacing the SVM algorithm with the ensemble algorithm

gentleBoost [25], results remain similar or slightly improve.

Interestingly, when using the Nearest Neighbor algorithm as the

classifier, the results somewhat deteriorate, suggesting that the

connectivity predicting patterns are not metrically related in a

trivial manner. To provide further support to the validity of the

prediction method in the face of missing connectivity data (as

BAMS is probably not comprehensive [24]), we also run

simulations on synthetic connectivity graphs where one can

carefully control the level of missing information (Materials and

Methods). The results show that it is possible to have significantly

correct predictions even if a large majority of the connections are

missing.

Supplementary Table S2 shows predictions for individual

connections that were obtained by aggregating the results over

individual brain regions. Shown are both connections which are

known to exist (230 outgoing and 207 incoming) and newly

Figure 1. Brain regions for which prediction ability is significantly above chance. (a) The hierarchy of the brain regions in the Allen Brain
Atlas is shown in the inner circle as circles with abbreviates. Colors are used to distinguish between subtrees. (b) Regions in the rodent brain for which
prediction was significant at the p = 0.05 level for outgoing connectivity are marked green in the circle next to the outermost one. Those with
insignificant prediction results are marked yellow. Note that only regions with at least 5 outgoing connections are marked by either color. (c) Similarly,
for incoming connectivity in the outermost circle.
doi:10.1371/journal.pcbi.1002040.g001

Expression and Connectivity of Rodent Brain
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predicted connections that currently have not been reported in the

literature (416 outgoing and 390 incoming), obtained with the

natural SVM detection threshold at zero.

Using the connectivity prediction paradigm described above we

employ a zero-norm SVM feature selection procedure (see

Materials and Methods) to select the genes whose expression

levels are most predictive of connectivity. For each region, the top

500 genes (out of 20,936) are selected, and a list of the 500 most

frequently selected genes over all regions is formed, one for

predicting the outgoing and one for predicting the incoming

connections (Materials and Methods). As can be seen in Figure 2,

many genes are selected repeatedly over the different regions in

each of the outgoing and the incoming experiments.

Remarkably, 241 genes (out of the 500 most selected) are

shared by both the outgoing and the incoming lists (the expected

number of shared genes according to the hypergeometric

distribution is approximately 12, p,1e-5). The lists of genes

selected are reported in Supplementary Table S3. Thus, in

parallel to our finding that the connectivity of many brain regions

is predictable on both the outgoing and incoming side, we also

find that many genes are informative of both the incoming and

outgoing connectivity. Since the outgoing predictions are based

on the gene expression vectors of the target regions, and the

incoming predictions are based on those of the source regions, the

two sets of experiments use two halves of the data and the

intersection of the two gene lists is not a statistical necessity. As a

control test, we check whether those genes that show the highest

region-to-regions variability are those that get selected as

predictive. If this were the case, one could attribute their

selection to the increased variability and not to their ability to

predict connectivity. To this end, all genes were ranked according

to their region-to-regions variability, measured as the mean

distance from the average expression value, and put in equally

sized bins. Then, the intersection of each bin with the two lists of

the most informative genes was computed. As is evident from

Figure 3 the selected connectivity-predicting genes are not

necessarily those genes with the highest region-to-region vari-

ability and the two sets are inherently different. Apparently, a

Figure 2. Frequency histogram of gene selection across regions. The number of times each of the 20,936 genes was selected as connectivity-
predictive by the per-region zero-norm experiments. Graphs are shown for the Outgoing connections experiment, for the Incoming one, and
compared to the frequency obtained with a random shuffle.
doi:10.1371/journal.pcbi.1002040.g002
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large amount of variability points to the influence of other factors

that are not related to connectivity.

Having such lists gives as an opportunity to estimate the level of

involvement of neural connectivity alterations in different brain

disorders. To this end, we assembled from the literature lists of the

top 100 genes that have been associated with each disorder

examined, and quantified the number of (both efferent and

afferent) connectivity related genes in each such list – the higher

this number is, the more likely it is that connectivity alterations

may play a role in the pathogenesis of the said disorder (Materials

and Methods). Ranked by this measure (supp Table S4), the

disorders we examined are (from the most associated to the least

associated) Autism, attention deficit disorder, Schizophrenia,

anxiety disorder, major depression, Parkinson’s disease, bipolar

disorder, Alzheimer’s disease, obesity, glioma, and cardiovascular

diseases. This ranking order fits fairly well with the prominent role

ascribed to neuronal connectivity alterations in schizophrenia and

autism. To obtain a rough estimate of the role of neuronal

connectivity in these disorders as perceived in the literature, we

recorded the number of web documents reported by the Google

search engine that contained both the name of the disorder and

the term ‘‘neuronal connectivity’’ and compared the latter to the

connectivity-involvement measure we computed above. The web

frequency count, as collected between March 28 and March 30,

2010 (supp Table S4), shows that the disorders examined can be

divided to three main groups - high (schizophrenia and autism),

low (obesity, glioma and cardiovascular) and medium level (the

remaining ones). Quite remarkably, the high-frequency group has

the highest mean of predicted connectivity related genes (15),

followed by the medium level group (11.8) and then the low level

one (3). These differences are statistically significant. Notably, one

disorder originally belonging to the medium-level group (attention

deficit disorder) has a similar number of connectivity-related genes

as those in the high level group, possibly suggesting a potential role

of connectivity alterations in its pathogenesis. A recent compre-

hensive meta-analysis of genes associated with Schizophrenia [21],

listing 75 Schizophrenia related genes, has provided us an

opportunity to examine our pertaining predictions in light of this

gene association data. A random intersection of 500 genes would

include less than 1.8 genes on average. The list of incoming

connectivity genes intersects this list by 7 genes (p,0.002), and the

outgoing lists intersects it by 4 genes (p = 0.1).

To estimate the global correlation (i.e., across all regions)

between gene expression and connectivity we represent each of

these two information sources as a square matrix that depicts the

correlation in either gene expression or the connectivity profiles

between every two regions (see Materials and Methods). Three

1466146 matrices are hence obtained: one based on similarity in

gene expression and two for the similarity in incoming and

outgoing connectivity profiles. Following previous work [11,26],

we compute the Pearson correlation between the lower triangular

part of the matrices to evaluate correlation between data sources.

The correlation between gene expression and outgoing connec-

tivity is 0.26 (p,1e-7, empirical p,1e-4) and the one to outgoing

connectivity is 0.23 (p,1e-6, empirical p,1e-4), showing again

that there is a robust and significant relation between gene

expression and regional brain connectivity.

We then employ such a correlation test to evaluate the

connectivity information content of four different sets of genes of

interest (Materials and Methods): an axon guidance list based on

[27], a compilation of presynaptic genes [28], the list of predictive

genes identified in C. elegans [11], and the list of genes that were

found to bear an embryologic imprint [29]. The first two lists

represent known gene sets that given their axonal/synaptic

function are potentially, likely to be involved in determining and

maintaining brain connectivity. The Third set has been previously

found to be predictive in the worm. The last set might be

correlated with connectivity since developmental relationships are

sometimes mirrored in connectivity [30]. For each of these four

sets we compute the 1466146 expression similarity matrix and

Figure 3. The correlation between variability in gene expression and predictability of connectivity. All genes were ranked by their
region to region variability and put into equally sized bins. The intersection of each bin with the list of 500 efferent connectivity genes and the list of
500 afferent connectivity genes is shown (highest variance bin on the right, the x-axis depicts the amount of variability). As can be seen, the genes
with the highest variability are not excessively frequent within the lists of most informative connectivity genes.
doi:10.1371/journal.pcbi.1002040.g003
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examine its correlation to the original connectivity matrix

obtained between the 146 different leaf regions. The results are

presented in Table 1. Quite remarkably, only the genes known to

be associated with axon guidance from the literature are

significantly correlated with the brain regional connectivity and

a significant correlation is absent for the three other groups. It is

intriguing to find such an association between axon guidance and

connectivity-related genes, even when looking at adult expression

data. In addition to the four sets of genes, Table 1 presents the p-

values of the connectivity correlation test applied to the lists of

genes that were collected for each of the medical conditions

mentioned above. These results are similar to the expected

ranking, with various brain disorder genes showing an inter-region

distribution that is significantly correlated with brain connectivity.

To further study which gene annotation groups are informative

with respect to connectivity, we also applied the correlation test to

individual functional annotation groups. For each of 1,616

annotation groups in DAVID [31] that were at least partly

expressed in the 20,936 genes at hand, we compute its 1466146

expression regional expression similarity matrix and examine its

correlation to the original connectivity matrix. The results are

summarized in Table 2 for the outgoing connectivity and Table 3

for the incoming connectivity, and are given in full in Table S5.

Reassuringly, the top listed functional annotation groups are

generally mostly related to neurogenesis, cell-cell signaling,

synaptic activity and axonogenesis (both tables), and to neuro-

transmitter binding and receptor activity on the incoming side.

There were 276 outgoing groups with p-value smaller than 0.05,

and 200 incoming groups and the two lists share 156 annotation

groups (18 expected by random).

Finally, it is interesting to compare the association we found

between expression and connectivity of brain regions in rodents to

the linkage previously found for single neurons in nematodes. To

this end, we reanalyzed the data used in [11] using the global

correlation test and created a list of functional annotation groups

that are most correlated with connectivity in C. elegans (Table S6).

A Pearson correlation test reveals that the list of p-values obtained

for each functional annotation group in the worm is significantly

correlated with the similar list obtained for rodents. For outgoing

(incoming) connectivity, the correlation value is of 0.24, p-value 1e-

5 (0.27, p-value 1e-6). Hence, there is a certain similarity in the

functional gene groups that are associated with neural/brain

connectivity across fairly distant phyla and across neuroanatomical

scales.

Discussion

Our work follows a direction set forth by previous work done for

single neurons in C. elegans [11–13]. Despite obvious differences in

the brain complexity, connectivity type, and the amount and

quality of the data, it is interesting to compare the prediction

performance obtained here to that of its preceding C. elegans

investigation. In the previous study of [11], the mean Area Under

the ROC curve (AUC) for the prediction experiments is only

about 0.6 for both incoming and outgoing connectivity. In our

results, the average AUC is markedly higher (0.73 and 0.74). For

all 289 genes used in [11], the correlation between connectivity

and expression in the worm was 0.176 for outgoing connectivity,

and 0.075 for incoming connectivity. Looking at all of the 20

thousands plus genes used in this work at once, the equivalent

correlations are 0.26 and 0.23. Moreover, there is considerable

Table 1. Connectivity-information content in several
pertaining groups of genes from the literature.

Functional annotation Correlation test p-value

Efferent Afferent

Axon guidence 0.05 0.13

Presynaptic 0.11 0.14

C elegans 0.63 0.31

Embryonic 0.32 0.71

Schizophrenia ,0.001 0.004

Autism 0.01 0.01

Bipolar ,0.001 ,0.001

Alzheimer’s disease 0.63 0.18

Major depression 0.01 0.02

Parkinson’s disease 0.03 0.11

Attention deficit 0.11 0.52

Anxiety disorder 0.16 0.05

Obesity 0.22 0.19

Glioma 0.22 0.24

Cardiovascular 0.51 0.50

p-values are obtained using the correlation test (materials and methods).
doi:10.1371/journal.pcbi.1002040.t001

Table 2. The gene annotation groups which were found to
be most informative (p,0.001) with outgoing connectivity
using the correlation test.

Functional annotation Correlation p-value

Axon 0.27 ,0.001

Ionic channel 0.27 ,0.001

Transmission of nerve impulse 0.26 ,0.001

Axonogenesis 0.26 ,0.001

Calcium transport 0.26 ,0.001

Synaptic transmission 0.26 ,0.001

Voltage-gated cation channel activity 0.26 ,0.001

Cation channel activity 0.26 ,0.001

Gated channel activity 0.26 ,0.001

Ion channel activity 0.26 ,0.001

Metal ion transmembrane transporter activity 0.26 ,0.001

Substrate specific channel activity 0.26 ,0.001

Channel activity 0.26 ,0.001

Passive transmembrane transporter activity 0.26 ,0.001

Neurite development 0.26 ,0.001

Di-, tri-valent inorganic cation homeostasis 0.25 ,0.001

Cellular morphogenesis during differentiation 0.25 ,0.001

Neuron development 0.25 ,0.001

Cellular di-, tri-valent inorganic cation homeostasis 0.25 ,0.001

Blood circulation 0.25 ,0.001

Neurogenesis 0.25 ,0.001

Cell-cell signaling 0.25 ,0.001

Neuron migration 0.25 ,0.001

Homeostatic process 0.25 ,0.001

Glycoprotein 0.25 ,0.001

doi:10.1371/journal.pcbi.1002040.t002
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variance in the predictability in different regions and some regions

achieve quite high predictive values (0.83 and 0.79 mean AUC

values over the significant regions, with maximal AUC values

reaching 0.99).

Our results are further supported by the recent parallel

contribution of French and Pavlidis [21], in which a similar

correlation test yields a score of 0.22 and 0.26 for incoming and

outgoing connectivity respectively. The work of [21] is focused on

the correlation assay and the authors state that they were unable to

perform convincing predictive experiments. Here, in difference,

we show that there is a considerable predictive signal. In fact, the

prediction capability is considerably stronger than that found in

the worm, and many of the brain regions present a marked and

highly significant level of predictability. This prediction ability is

further used here to select the lists of connectivity-related genes. A

predictive test is, in our minds, a more solid foundation for gene

selection than a correlation test. This is because a combination of

even uninformative features can produce a correlation map that is

similar to a given input map, while the separation between train

and test data in the prediction experiments is much less prone to

this pitfall. The lists of selected connectivity-related genes we

obtain are verified here by comparing them to various lists

obtained from the literature, again, going beyond the results

presented in [21].

Regions of high predictability do not seem to be clustered in

specific parts of the hierarchy. While smaller nuclei with many

connections and therefore more available data seem somewhat

easier to predict, a comparison between a structure’s volume and

the predictability of its connectivity map shows that regions of all

sizes depict good predictability (Supplementary Figure S2). This

might suggest that all regions are potentially of high predictability;

however, the quality of the data currently available limits our

ability to uncover their true predictability. The correlation

between spatial proximity and connectivity is 0.11 and 0.10 for

outgoing and incoming connectivity (compared to 0.26 and 0.23).

Thus, while in the brain nearby regions are more likely to be

connected, this association is significantly lower than the

association between gene expression and connectivity.

To build the combined rodent brain atlas that contains both

expression and connectivity, we rely on available resources that

are not fully compatible or complete. Some of the connectivity that

is currently absent in the rat atlas may actually exist in the rodent

brain. The assumption of conservation of connectivity and

expression between mouse and rat, underlying the construction

of a combined atlas of a common rodent ancestor, probably holds

only partly. Furthermore, the gene expression data was not

measured during brain development, as would ideally have been

more befitting. Yet, as both connectivity and expression are

associated with common factors such as functionality, it is perhaps

not surprising that considerable pertaining information can be

delineated in adult expression patterns of neurons. As evident, the

latter permit a considerable level of connectivity prediction, exhibit

significant correlations with the connectivity data, and show a

marked overlap between genes that are discriminative for

incoming and outgoing connectivity. Finally, strictly speaking,

we identify an association and not a causal relation from genes to

connectivity. Although this causal direction is expected based on

current consensus, it is certainly possible that connectivity in turn

affects gene expression – one possible route for such effects may be

indeed via activity-dependent mechanisms that shape synaptic

formation and maintenance, mentioned earlier [8–9].

Despite the above limitations to the quality of the data, we were

able to uncover a fairly marked association between gene

expression and connectivity. Thus, we are able to make a

significant advancement toward the long term goal of inferring

the connectome from the genome [32]. Naturally, had our data

been richer, for example, alleviating the need to rely on

conservation across species, even better results could be expected.

However, especially given these limitations, the magnitude of the

association found here is truly remarkable, and the large-scale

analysis approach presented here will undoubtedly show its

continuing value in future studies as more refined data

accumulates. This type of analysis is valid for both single neuron

connectivity and connectivity between brain regions, and it is likely

to be valid for intermediate, mesoscopic scales [24,33]. In the

nearby future, such efforts can be applied to link between newly

established connectivity maps in humans (e.g. [34]) with

accumulating regional gene expression data in the human brain.

Moreover, once the genetic atlas of the developing brain [16] is

processed to register gene maps, a distinction can be drawn

between genes that are associated in maintaining connectivity and

genes that are dominant during the initial formation of brain

connectivity.

With the future advent of better and more accurate data we

might be able to perform the analysis presented here focusing

solely on the gene expression of neuronal cells while disregarding

other cell types. To gain preliminary experimental insight into the

role played by cell type in determining the link between expression

and connectivity, we have examined the human data available

from two recent papers. The first paper [35] has microarray data

collected from the brains of AD patients and controls. In the

second paper [36], care was taken such that the gene expression

data was collected from neurons only. Therefore, for a first

approximation, we have samples that are glia + neurons and

samples that are only neurons. By comparing the two sets of

Table 3. The gene annotation groups which were found to
be most informative (p#0.001) with incoming connectivity
using the correlation test.

Functional annotation Correlation p-value

Neurogenesis 0.25 ,0.001

Ionic channel 0.25 ,0.001

Calcium transport 0.25 ,0.001

Neurotransmitter receptor activity 0.24 ,0.001

Neurotransmitter binding 0.24 ,0.001

Neuron migration 0.24 ,0.001

Glycoprotein 0.24 ,0.001

Blood circulation 0.24 ,0.001

Axonogenesis 0.25 0.001

Gated channel activity 0.25 0.001

Substrate specific channel activity 0.24 0.001

Neuron projection 0.24 0.001

Neurite morphogenesis 0.24 0.001

Synapse 0.24 0.001

Metal ion transport 0.24 0.001

Chloride 0.24 0.001

Muscle contraction 0.24 0.001

Chloride channel 0.23 0.001

Gliogenesis 0.23 0.001

Neuromuscular process 0.22 0.001

doi:10.1371/journal.pcbi.1002040.t003
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samples we can identify genes that are over-expressed in glia and

not over-expressed in neuron samples (Note that the situation is

not symmetric and the opposite list cannot be extracted without

further assumptions). Working with the mouse homologs of the

identified human genes, we find that those genes that tend to be

over expressed in glia are less informative than a typical group of

the same size. The p-value of this finding is borderline though –

0.02 for efferent correlation test and 0.17 for the afferent

correlation test. Future studies analyzing neuronal vs glial

expression data comparatively are hence needed to shed further

light on this intriguing question.

Materials and Methods

Data and preprocessing
Our study has been made possible thanks to the innovative open

approach of the Allen Brain project [16]. Gene expression data

was obtained from the Allen Mouse Brain Atlas (ABA) dataset [15]

for gene expression in the adult mouse brain composed of 20,936

genes (http://mouse.brain-map.org/). For each gene a 200

micron 3d volume of gene expression in the mouse brain is

available (a vector of length ,150 k). Some genes have several

scans. Scans are available in one of two planes: Coronal and

Sagittal. We compiled a dataset of voxel gene expressions based on

sagittal scans. When numerous scans exist for a single gene a mean

is taken (maximum was also tried – resulting in only minute,

negligible differences in results reported).

For linking voxels to brain structures we use the structural

annotation available at ABA (http://mouse.brain-map.org/pdf/

Allen_Reference_Atlases.pdf). It defines a nomenclature of 209

brain structures organized in a hierarchy. The gene expression for

each brain structure is computed as the average of all voxels

contained within that region. Once more, experiments were also

performed by taking the maximal value instead of the mean with

little, negligible influence on the connectivity prediction ability and

on the results reported.

One should note that during the preparation of this work partial

results on the developing mouse brain have been uploaded to the

ABA website. These results are not complete enough to enable us

to run our experiments on a developing brain. For example, there

is no mapping currently available between voxels and brain

structures.

Rat connectivity information is obtained from [18]. To match

rat connectivity to mouse gene expression we link the rat

nomenclature of [22] and the ABA mouse nomenclature, by

creating a mapping between identical terms. The mapping is given

in Table S7.

It sometimes occurs that a region is identified in the mouse

nomenclatures and at least one of the children of this region is not

identified. Even in such cases, we do not perform the analysis on

the non-leaf regions. This policy simplifies the framework and

minimizes borderline cases, for example, when some of the leaves

are identified and some are not.

Prediction assay
We use a Linear Support Vector Machine (SVM) [37]

classification with a fixed parameter of C = 1 for prediction. The

learned binary labels correspond to the existence or non-existence

of a connection between regions. Regions with less than 5 positive

examples (i.e. connections) are discarded. For each region

separately, a balanced 5-fold cross-validation is performed on this

data with 80% training and 20% testing. Since each connection

(existing or not) is tested exactly once, the cross validation

procedure produces a connectivity prediction value for each

possible connection. We consider the real value which is the signed

distance from the learned classifier’s separating hyperplane, and

use it to compute the Area Under Curve (AUC) statistics. To

eliminate dependence on the random split used, each such cross-

validation experiment is repeated 20 times, and the mean AUC is

recorded. In order to evaluate statistical significance, the entire

experiment is repeated 1,000 times while permuting the labels.

To demonstrate the validity of the prediction assay in the face of

missing connectivity data we perform the following synthetic data

experiment: A random network was created of a similar

cardinality as the BAMS network used in our experiments, such

that the degrees of the nodes are five times higher than those of the

BAMS network (varying between nodes, similarly to BAMS).

Synthetic random vectors of ‘‘gene expression’’ were created in

such a way that nodes that are connected to a specific node have

for a subset of the genes a somewhat similar pattern, randomly

varied around a certain central pattern, i.e., tend to have some

genes overexpressed and some genes underexpressed in a similar

manner. Then, we run the same protocol as in our prediction

assay and measure success by computing the mean AUC obtained

from all regions (the equivalent success in the real data

experiments is 0.73). This experiment is then repeated when

some of the initially given positive connections are held out and

marked as ‘non existing’ (i.e., incorporating missing data in a

controlled manner).

The results of the simulations for specific missing data values,

averaged over many runs are presented below in Supplementary

Figure S1 . As can be seen, even for such challenging simulations

where the prediction for the full dataset is at 80%, the results

degrade nicely with the number of missing connections. In these

noisy conditions the results vs the simulated atlas remain well

above chance even when only 15% of the connections are retained

(i.e., ‘known’, blue-line). Moreover, the classifiers learned with the

missing data are useful for predicting the complete (no missing

data) simulated connections (red-line).

Correlation assay
To examine the correlation between a genetic pattern and a

connectivity pattern across all brain structures under investiga-

tion, we used an assay similar to the one used by Toledo–

Rodriguez et al [26]. This assay was also used in [11]. Given a

set of N = 146 structures, we constructed two N6N similarity

matrices, S1 and S2, where S1 (S2) represents the pairwise

similarity between the expression data (connectivity) of every

two brain structures. Pearson correlation is used as a measure of

those pairwise similarities for both gene expression and

connectivity, both between the vectors of gene expression, and

the connectivity vectors. The (N * N/2 – N) entries forming the

lower triangle of S1 (S2) are concatenated to form a covariation

vector v1 (v2). The Pearson correlation between the two

covariation vectors v1 and v2 describes the extent to which

similarities in gene expression imply similarities in connectivity

and vice-versa. The statistical significance of the resulting

correlation is computed using an empiric null hypothesis

constructed from repeating the procedure with shuffling. On

each repetition the gene expression signatures were shuffled

amongst all regions, thus disassociating a region and its gene

expression. The p-values are calculated by repeating the

shuffling 1,000 times and computing the probability to achieve

a score equal or higher than the score of the non-shuffled data.

Feature (gene) selection
Similarly to the prediction assay, for each brain region we

take connected regions gene expression as positive examples and
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non-connected regions as negative examples. This is done once

for outgoing connections, and once for incoming connections,

where the two experiments are performed independently. At

each time, feature (gene) selection was performed using zero norm

SVM algorithm [38]. Zero norm SVM works by iteratively

training an SVM while reweighing the feature vectors until

convergence. In order to select a fixed number of features, we

have selected the 500 features with the highest weights provided

by the zero-norm SVM procedure. This is repeated for each

brain structure which has at least 5 connections, i.e., to 44

regions in the outgoing experiment and to 57 regions in the

incoming experiment.

To obtain two global lists of selected genes that are informative

to either outgoing connectivity or incoming connectivity, the

individual lists obtained for each region are combined. This is

done by counting for each gene the number of times it was selected

across the brain structures in each of the two experiments. The

500 genes that appeared most frequently in the individual

outgoing experiments form the list of selected outgoing genes,

and similarly for the incoming list.

To gain more insight into the nature of the selected genes, we

have employed the DAVID functional annotation tools [31] to

determine the most prominent annotations in the two lists formed

above. The details of this experiment are provided in Supple-

mentary Table S8.

To alleviate potential concerns about the influence of artifacts in

the gene expression data on the prediction and gene selection

process, we have compared the prevalence of artifacts in the data

of selected genes to that of a disjoint sample of genes. 50 genes

were sampled randomly from the groups 241 genes that are found

to be predictive for both outgoing and incoming connectivity.

Another group of 50 genes was sampled from the 1000 most brain

active genes that do not appear in either list of predictive genes.

For further control, genes that were not highly expressed in the

brain were removed from the study since their images are expected

to contain less data and therefore fewer artifacts.

The results show that for the sample of connectivity predictive

genes, 58% of the slices contained local artifacts such as localized

stains. The equivalent number for the background group is 57%.

The ratio of global artifacts such as folds and scratches are also

quite similar between the two groups: 11% and 17% respectively.

Overall, we do not observe a tendency for more artifacts in the

selected genes in comparison to the general population of brain-

expressed genes. Supplementary table S9 contains the raw data of

this analysis.

Medical disorder gene-lists
The top 100 genes associated with each disorder were extracted

from the HuGe database [39], and the size of the intersection of

these lists and the two lists of connectivity genes extracted by the

feature selection method above were computed. The expected size

of a random intersection is 2.5 genes.

Literature based gene-lists
There were 4 such lists. (1) Axon guidance genes were

obtained from the gene families discussed in [27]: Netrin, Slit,

Semaphorin, Ephrin, DCC, UNC5, Robo, Robo3, Neuropilin,

Plexin and Eph. A total of 86 homologous members of these

families were matched in the ABA gene set. (2) A group of 103

pre-synaptic gene homologs was obtained from a list of 107

genes appearing in [28]. (3) C.elegans genes were obtained from

mouse homologies on the most highly ranked genes shown to be

involved in neural connectivity in [11]. ABA homologies of 19

outgoing (31 incoming) were obtained from 30 outgoing (53

incoming) C.elegans genes. (4) The list of genes which are

indicative of embryonic history taken from [29]. 83 such genes

were identified within the ABA gene list out of 93 in the original

list.

Computing significance of the correlation obtained by a
group of genes

In order to compute the significance of the correlation assay

results obtained by a group of genes, such as the three literature

based gene-lists or the 1,616 DAVID groups, we have compared

the p-value obtained using the correlation assay with the p-values

obtained for 1000 random groups of the same size. This procedure

eliminates bias caused by the group size.

Supporting Information

Figure S1 Area Under Curve (AUC) of synthetic data

experiment as a function of the amount of missing data. The

blue curve shows the AUC when using the degraded labels (those

with missing values) to compute the ROC curve. The red curve

shows the AUC obtained with full labels.

(TIF)

Figure S2 A plot showing a comparison of the volume (in cubic

mm.) of each substructure (as obtained from the ABA) to the p-

value in the prediction experiment.

(TIF)

Table S1 Prediction assay results.

(XLS)

Table S2 Prediction results are compared to the BAMS ground

truth. For each potential connection (existing or not) that

participates in the prediction experiment we report the BAMS

data and the prediction result, which is obtained when the

potential connection is part of the test data.

(XLS)

Table S3 Selected genes (500 outgoing, 500 Incoming, and 241

intersection).

(XLS)

Table S4 Linking between medical conditions and brain

connectivity by document count and by number of genes that

appear both in the relevant association study and in the genes

selected as informative for connectivity.

(XLS)

Table S5 Functional annotation groups that were found to be

informative by the correlation test for the rodent data.

(XLS)

Table S6 Correlation test applied to the functional annotation

groups arising from 142 genes for which there is information for

both rodents and C. elegans.

(XLS)

Table S7 Mapping between rat and mouse brain region

nomenclatures.

(XLS)

Table S8 DAVID Functional annotation analysis for the 500

selected genes.

(XLS)

Table S9 Prevalence of artifacts in the ABA gene expression

images, comparing the selected genes (Table S3) with a

background set of genes that are expressed in the brain.

(XLS)
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