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Abstract. Recurrent Neural Networks (RNNs) have had considerable
success in classifying and predicting sequences. We demonstrate that
RNNs can be effectively used in order to encode sequences and provide
effective representations. The methodology we use is based on Fisher
Vectors, where the RNNs are the generative probabilistic models and
the partial derivatives are computed using backpropagation. State of the
art results are obtained in two central but distant tasks, which both
rely on sequences: video action recognition and image annotation. We
also show a surprising transfer learning result from the task of image
annotation to the task of video action recognition.
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1 Introduction

Fisher Vectors have been shown to provide a significant performance gain on
many different applications in the domain of computer vision [1,2,3,4]. In the
domain of video action recognition, Fisher Vectors and Stacked Fisher Vectors [2]
have recently outperformed state-of-the-art methods on multiple datasets [2,5].
Fisher Vectors (FV) have also recently been applied to word embedding (e.g.
word2vec [6]) and have been shown to provide state of the art results on a variety
of NLP tasks [7], as well as on image annotation and image search tasks [8].

In all of these contributions, the FV of a set of local descriptors is obtained
as a sum of gradients of the log-likelihood of the descriptors in the set, with
respect to the parameters of a probabilistic mixture model that was fitted on
a training set in an unsupervised manner. Despite being richer than the mean
vector pooling method, Fisher Vectors based on a probabilistic mixture model are
invariant to order. This makes them less appealing for annotating, for example,
video, in which the sequence of events determines much of the meaning.

This work presents a novel approach for FV representation of sequences us-
ing a Recurrent Neural Network (RNN). The RNN is trained to predict the
next element of a sequence given the previous elements. Conveniently, the gra-
dients needed for the computation of the FV are extracted using the available
backpropagation infrastructure.
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The new representation is sensitive to ordering and, therefore, mitigates the
disadvantage of using the standard Fisher Vector representation. It is applied to
two different and challenging tasks: video action recognition and image annota-
tion by sentences.

Several recent works have proposed to use an RNN for sentence represen-
tation [9,10,11,12]. The Recurrent Neural Network Fisher Vector (RNN-FV)
method differs from these works in that a sequence is represented by using de-
rived gradient from the RNN as a vector representation, instead of using a hidden
or an output layer of the RNN.

The paper explores training an RNN regressor to predict the vector repre-
sentation of the next element of a sequence given the previous ones (i.e. treating
it as a regression task). In the image annotation and image search tasks, word
embeddings are used for representing words. In the video action recognition task,
the VGG [13] Convolutional Neural Network (CNN) is used to extract features
from the frames of the video and the RNN is trained to predict the embedding of
the next frame given the previous ones. Similarly, C3D [14] features of sequential
video sub-volumes are used with the same training technique.

Although the image annotation and video action recognition tasks are quite
different, a surprising boost in performance in the video action recognition task
was achieved by using a transfer learning approach from the image annotation
task. Specifically, the VGG image embedding of a frame is projected using a
linear transformation which was learned on matching images and sentences by
the Canonical Correlation Analysis (CCA) algorithm [15].

The proposed RNN-FV method achieves state-of-the-art results in action
recognition on the HMDB51 [16] and UCF101 [17] datasets. In the image annota-
tion and image search tasks, the RNN-FV method is used for the representation
of sentences and achieves state-of-the-art results on the Flickr8K dataset [18]
and competitive results on other benchmarks.

2 Previous Work

Action Recognition As in other object recognition problems, the standard pipeline
in action recognition is comprised of three main steps: feature extraction, pool-
ing and classification. Many works [19,20,21] have focused on the first step of
extracting local descriptors. Laptev et al. [22] extend the notion of spatial inter-
est points into the spatio-temporal domain and show how the resulting features
can be used for a compact representation of video data. Wang et al. [23,24] used
low-level hand-crafted features such as histogram of oriented gradients (HOG),
histogram of optical flow (HOF) and motion boundary histogram (MBH).

Recent works have attempted to replace these hand-crafted features by deep-
learned features for video action recognition due to its wide success in the image
domain. Early attempts [25,26,27] achieved lower results in comparison to hand-
crafted features, proving that it is challenging to apply deep-learning techniques
on videos due to the relatively small number of available datasets and complex
motion patterns. More recent attempts managed to overcome these challenges
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and achieve state of the art results with deep-learned features. Simonyan et
al. [28] designed two-stream ConvNets for learning both the appearance of the
video frame and the motion as reflected by the estimated optical flow. Du Tran et
al. [14] designed an effective approach for spatiotemporal feature learning using
3-dimensional ConvNets.

In the second step of the pipeline, the pooling, Wang et al. [29] compared
different pooling techniques for the application of action recognition and showed
empirically that the Fisher Vector encoding has the best performance. Recently,
more complex pooling methods were demonstrated by Peng et al. [2] who pro-
posed Stacked Fisher Vectors (SFV), a multi-layer nested Fisher Vector encoding
and Wang et al. [5] who proposed a trajectory-pooled deep-convolutional de-
scriptor (TDD). TDD uses both a motion CNN, trained on UCF101, and an ap-
pearance CNN, originally trained on ImageNet [30], and fine-tuned on UCF101.
Fernando et al. [31] suggested to capture the temporal ordering of a particular
video by training a linear ranking machine on the frames of that video. The pa-
rameters of the ranking machine are used as the video representation for action
recognition. In parallel to our work, Nagel et al. [32] proposed using event Fisher
Vectors for encoding a visual stream. They considered two different generative
models beyond the Gaussian Mixture Model. The first is the Student’s-t mixture
model which has heavy tails but is not sensitive to the order of the elements in
the sequence. The second is the Hidden Markov Model which can capture the
temporal ordering of the elements in the sequence. Our work is using a Fisher
Vector which is defined on a Recurrent Neural Network model.

Image Annotation and Image Search In the past few years, the state-of-the-art
results in image annotation and image search have been provided by deep learn-
ing approaches [33,34,8,35,36,37,38,39,40,41]. A typical system is composed of
three important components: (i) Image Representation, (ii) Sentence Representa-
tion, and (iii) Matching Images and Sentences. The image is usually represented
by applying a pre-trained CNN on the image and taking the activations from
the last hidden layer.

There are several different approaches for the sentence representation; Socher
et al. [33] used a dependency tree Recursive Neural Network. Yan et al. [34] used
a TF-IDF histogram over the vocabulary. Klein et al. [8] used word2vec [6] as the
word embedding and then applied Fisher Vector based on a Hybrid Gaussian-
Laplacian Mixture Model (HGLMM) in order to pool the word2vec embeddings
of the words in a given sentence into a single representation. Ma et al. [41]
proposed a matching CNN (m-CNN) that composes words to different seman-
tic fragments and learns the inter-modal relations between the image and the
composed fragments at different levels.

Since a sentence can be seen as a sequence of words, many works have used a
Recurrent Neural Network (RNN) in order to represent sentences [35,40,36,37,12].
To address the need for capturing long term semantics in the sentence, these
works mainly use Long Short-Term Memory (LSTM) [42] or Gated Recurrent
Unit (GRU) [43] cells. Generally, the RNN treats a sentence as an ordered se-
quence of words, and incrementally encodes a semantic vector of the sentence,
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word-by-word. At each time step, a new word is encoded into the semantic vector,
until the end of the sentence is reached. All of the words and their dependencies
will then have been embedded into the semantic vector, which can be used as a
feature vector representation of the entire sentence. Our work also uses an RNN
in order to represent sentences, but takes the derived gradient from the RNN as
features, instead of using a hidden or an output layer of the RNN. In parallel to
our work, Gordo et al. [44] proposed using the gradient representation of CNNs
for images.

A number of techniques have been proposed for the task of matching images
and sentences. Klein et al. [8] used CCA [15] and Yan et al. [34] introduced a
Deep CCA in order to project the images and sentences into a common space and
then performed a nearest neighbor search between the images and the sentences
in the common space. Kiros et al. [37], Karpathy et al.[35], Socher et al. [33]
and Ma et al. [41] used a contrastive loss function trained on matching and
unmatching pairs of (image, sentence) in order to learn a score function for a
given pair. Mao et al. [36] and Vinyals et al. [40] learned a probabilistic model
for inferring a sentence given an image and, therefore, are able to compute the
probability that a given sentence will be created by a given image and used it
as the score.

Related Work [45,46] have also proposed methods incorporating advanced pool-
ing techniques within the CNN and backpropagation infrastructure.

2.1 Baseline Pooling Methods

In this section, we describe two baseline pooling methods that can represent
a multiset of vectors as a single vector. The notation of a multiset is used to
clarify that the order of the vectors does not affect the representation, and that
a vector can appear more than once. Both methods can be applied to sequences.
However, the resulting representation will be insensitive to ordering.

Mean Vector This pooling method takes a multiset of vectors,X = {x1..xN} ∈ RD,

and computes its mean: v = 1
N

∑N
i=1 xi. Clearly, the vector v that results from

the pooling is in RD.

Fisher Vector of a GMM Given a multiset of vectors, X = {x1..xN} ∈ RD, the
standard FV [47] is defined as the gradient of the log-likelihood of X with re-
spect to the parameters of a pre-trained Diagonal-Covariance Gaussian Mixture
Model (GMM). In [4], Perronnin et al. introduced two normalizations of the FV
which improved its performance. It is worth noting that the linear structure of
the GMM FV pooling would not be preserved in the RNN model, where the
probability of an element in the sequence depends on all the previous elements.

3 RNN-Based Fisher Vector

The pooling methods described above share a common disadvantage: insensitiv-
ity to the order of the elements in the sequence. A way to tackle this, while keep-
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Fig. 1. RNN structure and loss function (in red), as was trained for the action recog-
nition task. The RNN is trained to predict the next element of the sequence, given the
previous ones. The gradient of the loss function (which can be seen as likelihood), with
respect to the RNN’s weights, constitutes the unnormalized RNN-FV.

ing the power of gradient-based representation, would be to replace the Gaussian
model by a generative sequence model that takes into account the order of ele-
ments in the sequence. A desirable property of the sequence model would be the
ability to calculate the gradient (with respect to the model’s parameters) of the
likelihood estimate by this model to an input sequence.

In this section, we show that such a model can be obtained by training an
RNN regressor to predict the embedding of the next element in a sequence, given
the previous elements. Having this, we propose, for the first time, the RNN-FV:
A Fisher Vector that is based on such an RNN sequence model.

Given a sequence of vectors S with N vector elements x1, ..., xN ∈ RD, we
convert it to the input sequence X = (x0, x1, ..., xN−1), where x0 = xstart. This
special element is used to denote the beginning of the input sequence, and we
use xstart = 0 throughout this paper. The RNN is trained to predict, at each
time step i, the next element xi+1 of the sequence, given the previous elements
x0, ..., xi. Therefore, given the input sequence, the target sequence would be:
Y = (x1, x2, ...xN ). The training data and the training process are application
dependent, as described in Sec. 4 for action recognition and in Sec. 5 for image
annotation. There are several regression loss functions that can be used. Here,
we consider the following loss function:

Loss(y, v) =
1

2
‖y − v‖2 (1)

where y is the target vector and v is the predicted vector.
After the RNN training is done, and given a new sequence S, the derived

sequence X is fed to the RNN. Denote the output of the RNN at time step i
(i = 0, ..., N − 1) by RNN(x0, ..., xi) = vi ∈ RD. The target at time step i is
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xi+1 (the next element in the sequence), and the loss is:

Loss(xi+1, vi) =
1

2
‖xi+1 − vi‖2 (2)

The RNN can be seen as a generative model, and the likelihood of any vector
x being the next element of the sequence, given x0, ..., xi, can be defined as:

p (x|x0, ..., xi) = (2π)−D/2 exp

(
−1

2
‖x− vi‖2

)
(3)

Here, we are interested in the likelihood of the correct prediction, i.e., in the
likelihood of the vector xi+1 given x0, ..., xi: p (xi+1|x0, ..., xi).

The RNN-based likelihood of the entire sequence X is:

p(X) =

N−1∏
i=0

p (xi+1|x0, ..., xi) (4)

The negative log likelihood of X is:

L(X) = − log (p(X)) = −
N−1∑
i=0

log (p (xi+1|x0, ..., xi))

=
ND

2
log(2π) +

1

2

N−1∑
i=0

‖xi+1 − vi‖2
(5)

In order to represent X using the Fisher Vector scheme, we have to compute
the gradient of L(X) with respect to our model’s parameters. With RNN being
our model, the parameters are the weights W of the network. By (2) and (5),
we get that L(X) equals the loss that would be obtained when X is fed as
input to the RNN, up to an additive constant. Therefore, the desired gradient
can be computed by backpropagation: we feed X to the network and perform
forward and backward passes. The obtained gradient ∇WL(X) would be the
(unnormalized) RNN-FV representation of X. Notice that this gradient is not
used to update the network’s weights as done in training - here we perform
backpropagation at inference time. Other loss functions may be used instead of
the one presented in this analysis. Given a sequence, the gradient of the RNN
loss may serve as the sequence representation, even if the loss is not interpretable
as a likelihood. Figure 1 illustrates the RNN structure and the loss function that
we used for the action recognition task.

3.1 Normalization of the RNN-FV

It was suggested by [47] that normalizing the FVs by the Fisher Information
Matrix is beneficial. We approximated the diagonal of the Fisher Information
Matrix (FIM), which is usually used for FV normalization. Note, however, that
we did not observe any empirical improvement due to this normalization, and
our experiments are reported without it.
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4 Action Recognition Pipeline

The action recognition pipeline contains the underlying appearance features used
to encode the video, the sequence encoding using the RNN-FV, and an SVM
classifier on top. The entire pipeline is illustrated in Figure 2. In this section, we
discuss each step of the pipeline.

4.1 Visual Features

The RNN-FV is capable of encoding the sequence properties, and as underlying
features, we rely on video encodings that are based on single frames or on fixed
length blocks of frames.
VGG Using the pre-trained 19-layer VGG convolutional network [13], we extract
a 4096-dimensional representation of each video frame. The VGG pipeline is
used, namely, the original image is cropped in ten different ways into 224 by 224
pixel images: the four corners, the center, and their x-axis mirror image. The
mean intensity is then subtracted in each color channel and the resulting images
are encoded by the network. The average of the 10 feature vectors obtained is
then used as the single image representation. In order to speed up the method,
the input video was sub-sampled, and one in every 10 frames was encoded.
Empirically, we noticed that recognition performance was not harmed by this
sub-sampling. To further reduce run-time, the data dimensionality was reduced
via PCA to 500D. In addition, L2 normalization was applied to each vector. All
PCAs in this work were trained for each dataset and each training/test split
separately, using only the training data.
CCA Using the same VGG representation of video frames as mentioned above
and the code of [8]3, we represented each frame by a vector as follows: we consid-
ered the common image-sentence vector space obtained by the CCA algorithm,
using the best model (GMM+HGLMM) of [8] trained on the COCO dataset [48].
We mapped each frame to that vector space, getting a 4096-dimensional image
representation. As the final frame representation, we used the first (i.e. the prin-
cipal) 500 dimensions. For our application, the projected VGG representations
were L2 normalized. The CCA was trained for an unrelated task of image to sen-
tence matching, and its success, therefore, suggests a new application of transfer
learning: from image annotation to action recognition.
C3D While the representations above encode single frames, the C3D method [14]
splits the video into sub-volumes that are encoded one by one. Following the
recommended settings, we applied the C3D pre-trained 3D convolutional neural
network in order to extract a 4096D representation of each 16-frame blocks.
The blocks are sampled with an 8 frame stride. Following feature extraction,
PCA dimensionality reduction (500D) and L2 normalization were applied. Notice
that while we used the available pretrained C3D network, our results are not
comparable to [14]’s highest reported performance which was reached using an
ensemble of 3 C3D networks (to our knowledge, the other two networks were not
released) combined with idt [49].

3 Available at www.cs.tau.ac.il/~wolf/code/hglmm

www.cs.tau.ac.il/~wolf/code/hglmm
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Fig. 2. Our general action recognition pipeline is composed of 6 steps: (a) Input
Data - we use subsampled video frames or frame blocks as input to our system. (b)
Feature Extraction - we extract features from the frames/frame-blocks using VGG/C3D
pretrained CNN. (c) Post-Processing (PP1) - PCA/CCA dimension reduction and L2

normalization are performed. (d) Pooling - the extracted sequential features are fed
into the RNN, then backpropagation is performed to obtain the partial derivatives
with respect to the weights of the last fully-connected layer. (e) Post-Processing (PP2)
- PCA dimension reduction is performed, followed by power normalization and L2

normalization. (f) Classification - the final representation is fed into a linear multi-
class SVM classifier which predicts the estimated action label.

4.2 Network Structure

Our RNN model (illustrated in Figure 1) consists of three layers: a 200D fully-
connected layer with Leaky-Relu activation (α = 0.1), a 200D Long Short-Term
Memory (LSTM) [42] layer, and a 500D linear fully-connected layer. Our net-
work is trained as a regressor with the mean square error (MSE) loss function.
Weight decay and dropouts were also applied. An improvement in recognition
performance was noticed when the dropout rate was enlarged, up to a rate of
0.95, due to its ability to ensure the discriminative characteristics of each weight
and hence also of each partial derivative in the gradient.

4.3 Training and Classification

We train the RNN to predict the next element in our video representation se-
quence, given the previous elements, as described in Sec. 3. In our experiments,
we use only the part of gradient corresponding to the weights of the last fully-
connected layer. Empirically, we saw no improvement when using the partial
derivatives with respect to the weights of other layers. In order to obtain a fixed
size representation, we average the gradients over all time steps. The gradient
representation dimension is 500x201=100500, which is the number of weights in
the last fully-connected layer. We then apply PCA to reduce the representation
size to 1000D, followed by power and L2 normalization.

Video classification is performed using a linear SVM with a parameter C = 1.
Empirically, we noticed that the the best recognition performance is obtained
very quickly and hence early stopping is necessary. In order to choose an early
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stopping point, we use a validation set. Some of the videos in the dataset are
actually segments of the same original video, and are included in the dataset as
different samples. Care was taken to ensure that no such similar videos are in
both the training and validation sets, in order to guarantee that high validation
accuracy will ensure good generalization and not merely over-fitting.

After each RNN epoch, we extract the RNN-FV representation as described
above, train a linear SVM classifier on the training set and evaluate the perfor-
mance on the validation set. The early stopping point is chosen at the epoch
with the highest recognition accuracy on the validation set. After choosing our
model this way, we train an SVM classifier on all training samples (training +
validation samples) and report our performance on the test set.

5 Image-Sentence Retrieval

In the image-sentence retrieval tasks (image annotation and image search), vec-
tor representations are extracted separately for the sentences and the images.
These representations are then mapped into a common vector space, where the
two are being matched. [8] have presented a similar pipeline for GMM-FV. We
replace this representation with RNN-FV.

A sentence, being an ordered sequence of words, can be represented as a
vector using the RNN-FV scheme. Given a sentence with N words w1, ..., wN ,
(where wN is considered to be the period, namely a wend special token), we treat
the sentence as an ordered sequence S = (w0, w1, ..., wN−1), where w0 = wstart.
An RNN is trained to predict, at each time step i, the next word wi+1 of the
sentence, given the previous words w0, ..., wi. Therefore, given the input sequence
S, the target sequence would be: (w1, w2, ...wN ). The training data may be any
large set of sentences. These sentences may be extracted from the dataset of a
specific benchmark, or, in order to obtain a generic representation, any external
corpus, e.g., Wikipedia, may be used.

As observed in the action recognition case, we did not benefit from extracting
partial derivatives with respect to the weights of the hidden layers, and hence
we only use those of the output layer as our representation.

The input to the network is the word’s embedding, a 300D vector in our case,
followed by an LSTM layer of size 100. The output layer is a fully-connected one,
where the (300 dimensional) word embedding of the next word is predicted. We
use no activation function at the output layer.

For matching images and text, each image is represented as a 4096-dimensional
vector extracted using the 19-layer VGG, as described in Sec. 4.1. The regular-
ized CCA algorithm [50], where the regularization parameter is selected based
on the validation set, is used to match the the VGG representation with the sen-
tence RNN-FV representation. In the shared CCA space, the cosine similarity
is used in order to score (image, sentence) pairs.

We explored several configurations for training the RNN. RNN training
data We employed either the training data of each split in the respective bench-
mark, or the 2010-English-Wikipedia-1M dataset made available by the Leipzig
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HMDB51
Method MP MP+TPP GMM-FV GMM-FV+TPP RNN-FV RNN-FV+TPP
VGG-PCA 42.16 46.14 36.8 38.54 45.62 47.38
VGG-CCA 43.05 47.19 39.61 41.5 46.14 46.01
C3D 51.2 54.01 45.82 48.54 52.88 53.51
C3D + VGG-CCA 37.1 56.23 50.19 52.16 54.33 55.77
C3D + VGG-CCA + idt 58.48 63.70 64.68 61.00 67.71 64.99

UCF101
Method MP MP+TPP GMM-FV GMM-FV+TPP RNN-FV RNN-FV+TPP
VGG-PCA 75.51 77.34 76.53 77.12 79.29 81.56
VGG-CCA 77.49 78.68 76.84 77.95 79.49 80.83
C3D 81.05 81.72 80.04 80.10 82.33 82.81
C3D + VGG-CCA 65.55 87.85 86.73 87.11 88.01 88.09
C3D + VGG-CCA + idt 89.02 92.16 93.22 91.80 94.08 93.67

Table 1. Pooling technique comparison: mean-pooling (MP), GMM-FV, RNN-FV, and
their combinations with Temporal-Pyramid-Pooling (TPP), as evaluated on HMDB51
and UCF101 datasets. Three types of sequential features are used: VGG-PCA, VGG-
CCA, and C3D. Additionally, a combination of descriptors (C3D + VGG) is evaluated,
including a combination with idt GMM-FV [49]. All combinations are performed with
early fusion. The table reports recognition average accuracy (higher is better).

Corpora Collection [51]. This dataset contains 1 million sentences randomly sam-
pled from English Wikipedia. Word embedding A word was represented ei-
ther by word2vec, or by a “CCA word embedding” obtained as follows: (1)
Each word was represented by the GMM+HGLMM FV representation of [8].
(2) These word representations were projected to the common image-sentence
CCA space trained by [8] (on the respective dataset). (3) To reduce dimensional-
ity, the first (i.e. the principal) 300 dimensions (out of 4096) of the mapped word
representations were used. We made sure to match the training split according
to the benchmark tested. Sentence sequence direction We explored both the
conventional left-to-right sequence of words and the reverse direction.

We also explored using an RNN-FV which is based on a classifier RNN instead
of a regressor. This design creates two challenges. The first is dimensionality: the
size of the softmax layer equals the size of the dictionary, which is typically large.
As a result, ∇WL(X) has a high dimensionality. The second issue is with gen-
eralization capability: since the softmax layer is fixed, a network cannot handle
a sentence containing a word that does not appear in its training data. The
RNN-FV regressor outperformed the RNN-FV classifier, and our experiments
are reported without it.

6 Experiments

We evaluated the effectiveness of the various pooling methods on two important
yet distinct application domains: action recognition and image textual annota-
tion and search. As mentioned, applying the FIM normalization (Sec. 3.1) did
not seem to improve results. Another form of normalization we have tried, is to
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Method HMDB51 UCF101

idt [49] 57.2 85.9

idt + high-D encodings [53] 61.1 87.9

Two-stream CNN (2 nets) [28] 59.4 88

Multi-skip Feature Stacking [54] 65.4 89.1

C3D (1 net) [14] – 82.3
C3D (3 nets) [14] – 85.2
C3D (3 nets) + idt [14] – 90.4

TDD (2 nets) [5] 63.2 90.3
TDD (2 nets) + idt [5] 65.9 91.5

stacked FV [2] 56.21 –
stacked FV + idt [2] 66.78 –

RNN-FV(C3D + VGG-CCA) 54.33 88.01
RNN-FV(C3D + VGG-CCA) + idt 67.71 94.08

Table 2. comparison to
the state of the art on
UCF101 and HMDB51. In
order to obtain the best
performance, we combine,
similar to all other contri-
butions, multiple features.
We also present a result
where idt [49] is com-
bined, similar to all other
top results (Multi-skip ex-
tends idt). This adds mo-
tion based information to
our method.

normalize each dimension of the gradient by subtracting its mean and dividing
by its standard deviation. This also did not lead to an improved performance.
Two normalizations that were found to be useful are the Power Normalization
and the L2 Normalization, which were introduced in [52]. Both are employed,
using a constant α = 1/2. In addition to the experimental details provided in
this section, further technical details and comparisons with baselines are given
in the supplementary material.

6.1 Action Recognition

Our experiments were conducted on two large action recognition benchmarks.
The UCF101 [17] dataset consists of 13,320 realistic action videos, collected
from YouTube, and divided into 101 action categories. We use the three splits
provided with this dataset in order to evaluate our results and report the average
accuracy over these splits. The HMDB51 dataset [16] consists of 6766 action
videos, collected from various sources, and divided into 51 action categories.
Three splits are provided as an official benchmark and are used here. The average
accuracy over these splits is reported.

We compare the performance of the RNN-FV to the baselines of mean-
pooling and GMM-FV when combined with Temporal-Pyramid-Pooling (TPP)
in order to validate that it is able to better capture temporal ordering infor-
mation, as shown in Table 1. Three sets of features, as described in Sec. 4.1,
are used: VGG coupled with PCA, VGG projected by the image to sentence
matching CCA, and C3D.

As can be seen in Table 1, the RNN-FV pooling outperformed the other pool-
ing methods by a sizable margin. Another interesting observation is that with
VGG frame representation, CCA outperformed PCA consistently in all pooling
methods. Not shown is the performance obtained when using the activations
of the RNN as a feature vector. These results are considerably worse than all
pooling methods. Notice that the representation dimension of Mean pooling is
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Image Annotation Image Search Sentence
r@1 r@5 r@10 median mean r@1 r@5 r@10 median mean mean

rank rank rank rank rank
SDT-RNN [33] 6.0 22.7 34.0 23.0 NA 6.6 21.6 31.7 25.0 NA NA
DFE [35] 12.6 32.9 44.0 14.0 NA 9.7 29.6 42.5 15.0 NA NA
RVP [38] 11.7 34.8 48.6 11.2 NA 11.4 32.0 46.2 11.0 NA NA
DVSA [39] 16.5 40.6 54.2 7.6 NA 11.8 32.1 44.7 12.4 NA NA
SC-NLM [37] 18.0 40.9 55.0 8.0 NA 12.5 37.0 51.5 10.0 NA NA

Flickr8k DCCA [34] 17.9 40.3 51.9 9.0 NA 12.7 31.2 44.1 13.0 NA NA
Previous NIC [40] 20.0 NA 61.0 6.0 NA 19.0 NA 64.0 5.0 NA NA

m-RNN [55] 14.5 37.2 48.5 11.0 NA 11.5 31.0 42.4 15.0 NA NA
m-CNN [41] 24.8 53.7 67.1 5.0 NA 20.3 47.6 61.7 5.0 NA NA
MeanVector [8] 22.6 48.8 61.2 6.0 28.7 19.1 45.3 60.4 7.0 27.0 12.5
GMM-FV [8] 28.4 57.7 70.1 4.0 20.1 20.6 48.6 64.2 6.0 21.8 10.8
MM-ENS [8] 31.0 59.3 73.7 4.0 18.4 21.3 50.1 64.8 5.0 21.0 10.5

wiki,w2v 29.3 57.8 70.8 4.0 21.4 19.8 48.5 62.9 6.0 25.2 10.0
w2v 27.4 57.9 70.5 4.0 22.7 20.4 49.1 63.4 6.0 25.5 10.4
cca 30.9 60.1 73.1 4.0 19.4 20.7 48.7 63.8 6.0 29.2 11.3
cca,rvrs 29.1 57.3 71.7 4.0 18.4 20.8 48.5 62.9 6.0 30.2 12.5

Flickr8K cca + rvrs 30.8 59.8 72.9 4.0 18.2 21.8 49.6 64.4 6.0 27.3 11.2
Ours cca + [8] 32.9 61.7 74.9 3.0 16.8 22.0 51.5 66.5 5.0 20.7 9.4

cca + rvrs + [8] 32.1 60.7 74.8 3.0 16.5 22.1 51.4 66.5 5.0 21.4 9.5
all rnn-fv models 29.9 60.7 73.4 4.0 17.9 22.4 52.7 67.2 5.0 20.9 8.7
all rnn-fv models + [8] 31.6 61.2 74.3 3.0 17.4 23.2 53.3 67.8 5.0 19.4 8.5

SDT-RNN [33] 9.6 29.8 41.1 16.0 NA 8.9 29.8 41.1 16.0 NA NA
DFE [35] 14.2 37.7 51.3 10.0 NA 10.2 30.8 44.2 14.0 NA NA
RVP [38] 12.1 27.8 47.8 11.0 NA 12.7 33.1 44.9 12.5 NA NA
DVSA [39] 22.2 48.2 61.4 4.8 NA 15.2 37.7 50.5 9.2 NA NA
SC-NLM [37] 23.0 50.7 62.9 5.0 NA 16.8 42.0 56.5 8.0 NA NA
DCCA [34] 16.7 39.3 52.9 8.0 NA 12.6 31.0 43.0 15.0 NA NA

Flickr30k NIC [40] 17.0 NA 56.0 7.0 NA 17.0 NA 57.0 7.0 NA NA
Previous LRCN [56] NA NA NA NA NA 17.5 40.3 50.8 9.0 NA NA

RTP [57](manual annotations) 37.4 63.1 74.3 NA NA 26.0 56.0 69.3 NA NA NA
m-RNN [55] 35.4 63.8 73.7 3.0 NA 22.8 50.7 63.1 5.0 NA NA
m-CNN [41] 33.6 64.1 74.9 3.0 NA 26.2 56.3 69.6 4.0 NA NA
MeanVector [8] 24.9 52.5 64.4 5.0 27.3 20.5 46.4 59.3 6.8 32.3 16.2
GMM-FV [8] 33.0 60.8 72.0 3.0 19.0 23.9 51.7 64.9 5.0 24.8 15.0
MM-ENS [8] 35.0 62.1 73.8 3.0 17.4 25.1 52.8 66.1 5.0 23.7 14.1

wiki,w2v 32.9 59.6 72.1 3.0 18.5 23.9 52.0 65.2 5.0 26.0 15.2
w2v 32.0 59.5 71.4 3.0 17.2 23.4 51.7 65.2 5.0 24.5 14.1
cca 33.6 60.5 73.0 3.0 15.7 24.5 52.5 66.3 5.0 27.7 16.9
cca,rvrs 32.8 61.9 72.7 3.0 17.4 24.4 51.2 64.6 5.0 28.9 16.1

Flickr30k cca + rvrs 33.6 62.4 73.4 3.0 15.5 25.0 53.6 66.9 5.0 26.2 15.5
Ours cca + [8] 35.1 63.3 74.2 3.0 15.3 26.4 54.9 68.6 4.0 21.7 13.4

cca + rvrs + [8] 35.1 63.5 74.5 3.0 15.0 26.5 55.2 68.5 4.0 22.0 13.5
all rnn-fv models 34.7 62.7 72.6 3.0 15.6 26.2 55.1 69.2 4.0 21.2 12.8
all rnn-fv models + [8] 35.6 62.5 74.2 3.0 15.0 27.4 55.9 70.0 4.0 20.0 12.2

DVSA [39] 38.4 69.9 80.5 1.0 NA 27.4 60.2 74.8 3.0 NA NA
m-RNN [55] 41.0 73.0 83.5 2.0 NA 29.0 42.2 77.0 3.0 NA NA
m-CNN [41] 42.8 73.1 84.1 2.0 NA 32.6 68.6 82.8 3.0 NA NA

COCO STV [12] 33.8 67.7 82.1 3.0 NA 25.9 60.0 74.6 4.0 NA NA
Previous MeanVector [8] 33.2 61.8 75.1 3.0 14.5 24.2 56.4 72.4 4.0 14.7 14.3

GMM-FV [8] 39.0 67.0 80.3 3.0 11.2 24.2 59.3 76.0 4.0 11.3 12.4
MM-ENS [8] 39.4 67.9 80.9 2.0 10.4 25.2 59.9 76.7 4.0 11.0 12.9

wiki,w2v 37.7 70.5 81.0 2.0 9.9 26.6 61.1 76.9 4.0 10.9 11.9
w2v 39.9 71.5 81.3 2.0 10.5 26.9 61.8 77.4 4.0 11.4 12.1
cca 40.9 75.0 84.9 2.0 8.2 30.2 65.0 80.4 3.0 11.1 13.2
cca,rvrs 41.3 71.5 83.7 2.0 8.1 28.9 64.5 79.9 3.0 11.3 12.6

COCO cca + rvrs 40.8 73.4 84.1 2.0 8.2 30.4 65.5 80.9 3.0 10.7 12.3
Ours cca + [8] 40.7 72.3 83.5 2.0 9.1 28.1 64.1 79.8 3.0 10.2 11.5

cca + rvrs + [8] 40.2 72.7 84.2 2.0 8.6 29.0 64.8 80.2 3.0 10.1 11.5
all rnn-fv models 40.8 71.9 83.2 2.0 8.9 29.6 64.8 80.5 3.0 9.7 10.6
all rnn-fv models + [8] 41.5 72.0 82.9 2.0 9.0 29.2 64.7 80.4 3.0 9.5 10.2

Table 3. Image annotation, image search and sentence similarity results on the Flickr8k, Flickr30k
and COCO datasets. Shown are the recall rates at 1, 5, and 10 retrieval results (higher is better).
Also shown are the median and mean rank of the first ground truth (lower is better). We compare
the results of the previous work to variants of our RNN-FV. The ‘wiki’ notation indicates that the
RNN was trained on Wikipedia and not on the sentences of the specific dataset. Models notated by
‘w2v’ employ word2vec, while the other models (‘cca’) use the CCA word embedding (as explained
in Sec. 5). ‘rvrs’ models were trained on reversed sentences. We also report results of combinations:
‘cca’ and ‘reverse’ models; ‘cca’ and the best model (GMM+HGLMM) of [8] (‘MM-ENS’); ‘cca’,
‘reverse’ and [8]; All RNN-FV models; All RNN-FV models and [8]. The RTP method [57] utilizes
additional information that is not accessible to the other methods: manual annotations of bounding
boxes in the images, which were collected via crowdsourcing.
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500 (like the features we used), the GMM-FV dimension is 2× k× 500, where k
is the number of clusters in the GMM (this parameter was chosen according to
performance on a validation set) and the RNN-FV dimension is 1000.

Table 2 compares our proposed RNN-FV method, combining multiple fea-
tures together, with recently published methods on both datasets. The combi-
nations were performed using early fusion, i.e, we concatenated the normalized
low-dimensional gradients of the models and train multi-class linear SVM on the
combined representation. We also tested the combination of our two best models
with idt [49] and got state of the art results on both benchmarks. Interestingly,
comparable results were obtained even when training the RNN on one dataset
and testing on the other, proving that our RNN-FV representation is generic
and not dataset specific.

6.2 Image-Sentence Retrieval

The effectiveness of RNN-FV as sentence representation is evaluated on the bidi-
rectional image and sentence retrieval task. We perform our experiments on three
benchmarks: Flickr8K [18], Flickr30K [58], and COCO [48]. The datasets contain
8, 000, 30, 000, and 123, 000 images respectively. Each image is accompanied by
5 sentences describing the image content, collected via crowdsourcing.

The Flickr8k dataset is provided with training, validation, and test splits. For
Flickr30K and COCO, no training splits are given, and the splits by [8] are used.
There are three tasks in this benchmark: image annotation, in which the goal is
to retrieve, given a query image, the five ground truth sentences; image search,
in which, given a query sentence, the goal is to retrieve the ground truth image;
and sentence similarity, in which the goal is, given a sentence, to retrieve the
other four sentences describing the same image. Evaluation is performed using
Recall@K, namely the fraction of times that the correct result was ranked within
the top K items. The median and mean rank of the first ground truth result are
also reported. For the sentence similarity task, only the mean rank is reported.

As mentioned in Sec. 5, we explored RNN-FV based on several RNNs. The
first RNN is a generic one: it was trained with the Wikipedia sentences as training
data and word2vec as word embedding. In addition, for each of the three datasets,
we trained three RNNs with the dataset’s training sentences as training data:
one with word2vec as word embedding; one with the “CCA word embedding”
derived from the semantic vector space of [8], as explained in Sec. 5; and one with
the CCA word embedding, and with feeding the sentences in reverse order. The
RNN is using an LSTM layer of size 100. We did not observe a benefit in using
more LSTM units. We used the part of the gradient corresponding to all 30,300
weights of the output layer (including one bias per word-embedding dimension).
In the case of the larger COCO dataset, due to the computational burden of the
CCA calculation, we used PCA to reduce the gradient dimension from 30,300 to
20,000. PCA was calculated on a random subset of 300,000 sentences (around
50%) of the training set. We also tried PCA dimension reduction to a lower
dimension of 4,096, for all three datasets. We observed no change in performance
(Flickr8K) or slightly worse results (Flickr30K and COCO).



14 Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf

Table 3 shows the results of the different RNN-FV variants compared to the
baselines and to the current state of the art methods. The baselines, Mean Vector
and GMM-FV, appear in the table as previous work of [8]. We also report results
of combinations of models. Combining was done by averaging the image-sentence
(or sentence-sentence) cosine similarities obtained by each model.

First, we notice the competitive performance of the model trained on Wikipedia
sentences, which demonstrates the generalization power of the RNN-FV, being
able to perform well on data different than the one which the RNN was trained
on. Training using the dataset’s sentences only slightly improves results, and not
always. Improved results are obtained when using the CCA word embedding in-
stead of word2vec. It is interesting to see the result of the “reverse” model, which
is on a par with the other models. It is somewhat complementary to the “left-to-
right” model, as the combination of the two yields somewhat improved results.
Finally, the combination of RNN-FV with the best model (GMM+HGLMM)
of [8] outperforms the current state of the art on Flickr8k, and is competitive on
the other datasets.

7 Conclusions

This paper introduces a novel FV representation for sequences that is derived
from RNNs. The proposed representation is sensitive to the element ordering in
the sequence and provides a richer model than the additive “bag” model typically
used for conventional FVs.

The RNN-FV representation surpasses the state-of-the-art results for video
action recognition on two challenging datasets. When used for representing sen-
tences, the RNN-FV representation achieves state-of-the-art or competitive re-
sults on image annotation and image search tasks. Since the length of the sen-
tences in these tasks is usually short and, therefore, the ordering is less crucial,
we believe that using the RNN-FV representation for tasks that use longer text
will provide an even larger gap between the conventional FV and the RNN-FV.

A transfer learning result from the image annotation task to the video ac-
tion recognition task was shown. The conceptual distance between these two
tasks makes this result both interesting and surprising. It supports a human
development-like way of training, in which visual labeling is learned through
natural language, as opposed to, e.g., associating bounding boxes with nouns.
While such training was used in computer vision to learn related image to text
tasks, and while recently zero-shot action recognition was shown [59,60], NLP to
video action recognition transfer was never shown to be as general as presented
here.
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