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Abstract. We propose a new local learning scheme that is based on the
principle of decisiveness: the learned classifier is expected to exhibit large
variability in the direction of the test example. We show how this prin-
ciple leads to optimization functions in which the regularization term is
modified, rather than the empirical loss term as in most local learning
schemes. We combine this local learning method with a Canonical Corre-
lation Analysis based classification method, which is shown to be similar
to multiclass LDA. Finally, we show that the classification function can
be computed efficiently by reusing the results of previous computations.
In a variety of experiments on new and existing data sets, we demon-
strate the effectiveness of the CCA based classification method compared
to SVM and Nearest Neighbor classifiers, and show that the newly pro-
posed local learning method improves it even further, and outperforms
conventional local learning schemes.

1 Introduction

Object recognition systems, viewed as learning systems, face three major chal-
lenges: First, they are often required to discern between many objects; second,
images taken under uncontrolled settings display large intraclass variation; and
third, the number of training images provided is often small.

Previous attempts to overcome these challenges use prior generic knowledge
on variations within objects classes [1], employ large amounts of unlabeled data
(e.g., [2]), or reuse previously learned visual features [3]. Here, we propose a more
generic solution, that does not assume nor benefit from the existence of prior
learning stages or of an additional set of training images.

To deal with the challenge of multiple classes, we propose a Canonical Cor-
relation Analysis (CCA) based classifier, which is a regularized version of a
recently proposed method [4], and is highly related to Fisher Discriminant Anal-
ysis (LDA/FDA). We treat the other two challenges as one since large intraclass
variations and limited training data both result in a training set that does not
capture well the distribution of the input space. To overcome this, we propose a
new local learning scheme which is based on the principle of decisiveness.

In local learning schemes, some of the training is deferred to the prediction
phase, and a new classifier is trained for each new (test) example. Such schemes
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have been introduced by [5] and were recently advanced and shown to be ef-
fective for modern object recognition applications [6] (see references therein for
additional references to local learning methods). One key difference between our
method and the previous contribution in the field is that we do not select or di-
rectly weigh the training examples by their proximity to the test point. Instead,
we modify the objective function of the learning algorithm to reward components
in the resulting classifier that are parallel to the test example. Thus, we encour-
age the classification function (before thresholding takes place) to be separated
from zero.

Runtime is a major concern for local learning schemes, since a new clas-
sifier needs to be trained or adjusted for every new test example. We show
how the proposed classifier can be efficiently computed by several rank-one up-
dates to precomputed eigenvectors and eigenvalues of constant matrices, with
the resulting time complexity being significantly lower than that of a full eigen-
decomposition. We conclude by showing the proposed methods to be effective
on four varied datasets which exhibit large intraclass variations.

2 Multiclass classification via CCA

We examine the multiclass classification problem with k classes, where the goal
is to construct a classifier given n training samples (xi, yi), with xi ∈ Rm and
yi ∈ {1, 2, . . . , k}. We assume

∑n
i=1 xi = 0 (otherwise we center the data). Our

approach is to find a transformation T : Rm → Rl and class vectors vj ∈ Rl such
that the transformed inputs T (xi) would be close to the class vector vyi

corre-
sponding to their class. Limiting the discussion at first to linear transformations,
we represent T by a m× l matrix A such that T (x) = A>x. The formulation of
the learning problem is therefore:

min
A,{vj}k

j=1

n∑
i=1

‖A>xi − vyi
‖2 (1)

Define V to be the k × l matrix with vj as its j’th row, so vj = V >ej . Also
define zi = eyi where ej is the j’th column of the identity k×k matrix Ik. Using
these definitions, vyi = V >zi and Equation 1 becomes:

min
A,V

n∑
i=1

‖A>xi − V >zi‖2 (2)

This expression can be further simplified by defining the matrices X ∈ Rm×n,
Z ∈ Rk×n: X = (x1, x2, . . . , xn), Z = (z1, z2, . . . , zn). Equation 2 then becomes:

min
A,V

tr(A>XX>A) + tr(V >ZZ>V )− 2 tr(A>XZ>V ) (3)

This expression is not invariant to arbitrary scaling of A and Z. Furthermore,
we require the l components of the transformed vectors A>xi and V >zi to be
pairwise uncorrelated since there is nothing to be gained by correlations between



3

them. Therefore, we add the constraints A>XX>A = V >ZZ>V = Il, leading
to the final problem formulation:

max
A,V

tr(A>XZ>V )

subject to A>XX>A = V >ZZ>V = I (4)

This problem is solved through Canonical Correlation Analysis (CCA) [7]. A
simple solution involves writing the corresponding Lagrangian and setting the
partial derivatives to zero, yielding the following generalized eigenproblem:(

0 XZ>

ZX> 0

) (
ai

vi

)
= λi

(
XX> 0

0 ZZ>

) (
ai

vi

)
(5)

where λi, i = 1..l are the leading generalized eigenvalues, ai are the columns
of A, and vi are, as defined above, the columns of V . To classifying a new sample
x, it is first transformed to A>x, and then compared to the k class vectors, i.e.,
the predicted class is given by arg min1≤j≤k ||A>x− vj ||.

This classification scheme is readily extendable to non-linear functions that
satisfy Mercer’s conditions by using Kernel CCA [8,9]. Kernel CCA is also equiv-
alent to solving a generalized eigenproblem of the form of Equation 5, so although
we refer directly to linear CCA throughout this paper, our conclusions are equally
valid for Kernel CCA.

In Kernel CCA, or in the linear case when m > n, and in many other com-
mon scenarios, the problem is ill-conditioned and regularization techniques are
required [10]. For linear regression, ridge regularization is often used, as is its
equivalent in CCA and Kernel CCA [8]. This involves replacing XX> and ZZ>

in Equation 5 with XX> + ηXI and ZZ> + ηZI, where ηX and ηZ are regular-
ization parameters. In the CCA case presented here, for multiclass classification,
since the number of training examples n is not smaller than the number of
classes k, regularization need not be used for Z and we set ηZ = 0. Also, since
the X regularization is relative to the scale of the matrix XX>, we scale the
regularization parameter ηX as a fraction of the largest eigenvalue of XX>.

The multiclass classification scheme via CCA presented here is equivalent to
Fisher Discriminant Analysis (LDA). We provide a brief proof of this equivalence.
A previous lemma was proven by Yamada et al [4] for the unregularized case.

Lemma 1. The multiclass CCA classification method learns the same linear
transformation as multiclass LDA.

Proof. The generalized eigenvalue problem in Equation 5, with added ridge reg-
ularization, can be represented by the following two coupled equations:

(XX> + ηIm)−1XZ>v = λa (6)
(ZZ>)−1ZX>a = λv (7)
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Any solution (a, v, λ) to the above system satisfies:

(XX> + ηIm)−1XZ>(ZZ>)−1ZX>a = (XX> + ηIm)−1XZ>λv = λ2a (8)
(ZZ>)−1ZX>(XX> + ηIm)−1XZ>v = (ZZ>)−1ZX>λa = λ2v (9)

Thus the columns of the matrix A are the eigenvectors corresponding to the
largest eigenvalues of (XX>+ηIm)−1XZ>(ZZ>)−1ZX>. Examine the product
ZZ> =

∑
i=n eyi

e>yi
. It is a k × k diagonal matrix with the number of training

samples in each class (denoted Ni) along its diagonal. Therefore, (ZZ>)−1 =

diag( 1
N1

, 1
N2

, . . . , 1
Nk

). Now examine XZ>: (XZ>)i,j =
n∑

s=1
Xi,sZj,s =

∑
s:ys=j

Xi,s.

Hence, the j’th column is the sum of all training samples of the class j. Denote
by X̄j the mean of the training samples belonging to the class j, then the j’th
column of XZ> is NjX̄j . It follows that

XZ>(ZZ>)−1ZX> =
k∑

j=1

N2
j

Nj
X̄jX̄

>
j =

k∑
j=1

NjX̄jX̄
>
j = SB (10)

Where SB is the between-class scatter matrix defined in LDA [11]. Let ST =
XX> be the total scatter matrix ST . ST = SW + SB (where SW is LDA’s
within-class scatter matrix), and using ST in LDA is equivalent to using SW .
Hence, the multiclass CCA formulation is equivalent to the eigen-decomposition
of (SW + ηI)−1SB , which is the formulation of regularized multiclass LDA.

Our analysis below uses the CCA formulation; the LDA case is equivalent,
with some minor modifications to the way the classification is done after the
linear transformation is applied.

3 Local Learning via Regularization

The above formulation of the multiclass classification problem is independent of
the test vector to be classified x. It may be the case that the learned classifier is
“indifferent” to x, transforming it to a vector A>x which has a low norm. Note
that by the constraint V >ZZ>V = I, the norm of the class vectors vj is N−0.5

j

which is roughly constant for balanced data sets. This possible mismatch between
the norm of the transformed example and the class vectors may significantly
decrease the ability to accurately classify x. Furthermore, when the norm of
A>x is small, it is more sensitive to additive noise.

In local learning, the classifier may be different for each test sample and
depends on it. In this work, we discourage classifiers that are indifferent to x,
and have low ‖A>x‖2. Hence, to discourage indifference (increase decisiveness),
we add a new term to the CCA problem:

max
A,V

tr(A>XZ>V ) + ᾱ tr(A>xx>A)

subject to A>XX>A = V >ZZ>V = I (11)
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tr(A>xx>A) = ‖A>x‖2, and the added term reflects the principle of deci-
siveness. ᾱ is a parameter corresponding to the trade-off between the correlation
term and the decisiveness term. Adding ridge regularization as before to the
solution of Equation 11, and setting α = ᾱλ−1 gives the following generalized
eigenproblem:(

0 XZ>

ZX> 0

) (
a
v

)
= λ

(
XX> + ηI − αxx> 0

0 ZZ>

) (
a
v

)
(12)

Note that this form if similar to the CCA based multiclass classifier presented
in Section 2 above, except that the ridge regularization matrix ηI is replaced by
the local regularization matrix ηI−αxx>. We proceed to analyze the significance
of this form of local regularization. In ridge regression, the influence of all eigen-
vectors is weakened uniformly by adding η to all eigenvalues before computation
of the inverse. This form of regularization encourages smoothness in the learned
transformation. In our version of local regularization, smoothness is still achieved
by the addition of η to all eigenvalues. The smoothing effect is weakened, how-
ever, by α, in the component parallel to x. This can be seen by the representation
xx> = UxλxUx> for U>

x Ux = UxU>
x = I, with λx = diag(‖x‖2, 0, . . . , 0). Now

ηI − αxx> = Ux(ηI − αλx)U>
x , and the eigenvalues of the regularization ma-

trix are (η − α, η, η, . . . , η). Hence, the component parallel to x is multiplied by
η−α while all others are multiplied by η. Therefore, encouraging decisiveness by
adding the term α‖A>x‖2 to the maximization goal is a form of regularization
where the component parallel to x is smoothed less than the other components.

4 Efficient implementation

In this section we analyze the computational complexity of our method, and
propose an efficient update algorithm that allows it to be performed in time
comparable to standard CCA with ridge regularization. Our algorithm avoids
fully retraining the classifier for each testing example by training it once using
standard CCA with uniform ridge regularization, and reusing the results in the
computation of the local classifiers.
Efficient training of a uniformly regularized multiclass CCA classifier.
In the non-local case, training a multiclass CCA classifier consists of solving
Equations 6 and 7, or, equivalently, Equations 8 and 9. Let r = min(m, k), and
note that we assume m ≤ n, since the rank of the data matrix is at most n,
and if m > n we can change basis to a more compact representation. To solve
Equations 8 and 9, it is enough to find the eigenvalues and eigenvectors of a
r×r square matrix. Inverting (XX>+ηIm)−1 and (ZZ>)−1 and reconstructing
the full classifier (A and V ) given the eigenvalues and eigenvectors of the r × r
matrix above can be done in O(m3 + k3). While this may be a reasonable effort
if done once, it may become prohibitive if done repeatedly for each new test
example. This, however, as we show below, is not necessary.
Representing the local learning problem as a rank-one modification.
We first show the problem to be equivalent to the Singular Value Decomposition
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(SVD) of a (non-symmetric) matrix, which is in turn equivalent to the eigen-
decomposition of two symmetric matrices. We then prove that one of these two
matrices can be represented explicitly as a rank-one update to a constant (with
regards to the new test example) matrix whose eigen-decomposition is computed
only once. Finally, we show how to efficiently compute the eigen-decomposition
of the modified matrix, how to derive the full solution using this decomposition
and how to classify the new example in time complexity much lower than that
of a full SVD.

Begin with a change of variables. Let Ā = (XX> + ηIm − αxx>)
1
2 A and

V̄ = (ZZ>)
1
2 V . By the constraints (Equation 11, with added ridge and local

regularizations), Ā and V̄ satisfy Ā>Ā = A>(XX> + ηIm − αxx>)A = I and
V̄ >V̄ = V >ZZ>V = I. Hence, the new variables are orthonormal and the CCA
problem formulation (Equation 4) with added ridge regularization becomes:

max
Ā,V̄

tr(Ā>(XX> + ηIm − αxx>)−
1
2 XZ>(ZZ>)−

1
2 V̄ )

subject to Ā>Ā = V̄ >V̄ = I (13)

Define:

M0 = (XX> + ηIm)−
1
2 XZ>(ZZ>)−

1
2 = U0Σ0R

>
0 (14)

M = (XX> + ηIm − αxx>)−
1
2 XZ>(ZZ>)−

1
2 = UΣR> (15)

where UΣR> is the Singular Value Decomposition (SVD) of M and similarly
U0Σ0R

>
0 for M0. Then the maximization term of Equation 13 is Ā>UΣR>V̄ ,

which under the orthonormality constraints of Equation 13, and since we seek
only l components, is maximized by Ā = U0|l and V̄ = R0|l, which are the l left
and right singular vectors of M corresponding to the l largest singular values.

Since M>M = RΣ2R>, the right singular vectors can be found by the
eigen-decomposition of the symmetric M>M . We proceed to show how M>M
can be represented explicitly as a rank-one update to M>

0 M0. Define JX =
(XX> + ηIm)−1, then JX is symmetric as the inverse of a symmetric matrix,
and by the Sherman-Morrison formula [12],

(XX> + ηXIm − αxx>)−1 = (JX − αxx>)−1 = JX +
JXαxx>JX

1− αx>JXx

= JX +
α

1− αx>JXx
(JXx) (JXx)> = (XX> + ηXIm)−1 + βbb> (16)

where β = α
1−αx>JXx

and b = JXx. β and b can both be computed using
O(m2) operations, since JX is known after being computed once. Now,

M>M = (ZZ>)−
1
2 ZX>(XX> + ηIm − αxx>)−1XZ>(ZZ>)−

1
2

= (ZZ>)−
1
2 ZX> (

(XX> + ηIm)−1 + βbb>
)
XZ>(ZZ>)−

1
2

= M>
0 M0 + β(ZZ>)−

1
2 ZX>bb>XZ>(ZZ>)−

1
2

= M>
0 M0 + βcc> (17)

(18)
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where c = (ZZ>)−
1
2 ZX>b, and again c is easily computed from b in O(km)

operations. Now let w = R>
0

c
‖c‖ (so ‖w‖ = 1) and γ = β‖c‖2 to arrive at the

representation
M>M = R0(Σ2

0 + γww>)R>
0 (19)

It is left to show how to efficiently compute the eigen-decomposition of a rank-
one update to a symmetric matrix, whose eigen-decomposition is known. This
problem has been investigated by Golub [13] and Bunch et al. [14]. We propose
a simple and efficient algorithm that expands on their work. We briefly state
their main results, without proofs, which can be found in the original papers.

The first stage in the algorithm described in Bunch et al. [14] is deflation,
transforming the problem to equivalent (and no larger) problems S +ρzz> satis-
fying that all elements of z are nonzero, and all elements of S are distinct. Then,
under the conditions guaranteed by the deflation stage, the new eigenvalues can
be found. The eigenvalues of S+ρzz> satisfying that all elements of z are nonzero

and all elements of S are distinct are the roots of f(λ) = 1+ρ
s∑

i=1

z2
i

di−λ , where s is

the size of the deflated problem, zi are the elements of z and di are the elements
of the diagonal of S. [14] show an iterative algorithm with a quadratic rate of
convergence, so all eigenvalues can be found using O(s2) operations, with a very
small constant as shown in their experiments. Since the deflated problem is no
larger than k, this stage requires O(k2) operations at most. Once the eigenvalues
have been found, the eigenvectors of Σ2

0 + γww> can be computed by

ξi =
(S − λiI)−1z

‖(S − λiI)−1z‖
(20)

using O(k) operations for each eigenvector, and O(k2) in total to arrive at
the representation

M>M = R0R1Σ1R
>
1 R0 (21)

Explicit evaluation of Equation 21 to find V̂ requires multiplying k×k, which
should be avoided to keep the complexity O(m2 + k2). The key observation is
that we do not need to find V explicitly but only A>x − vi for i = 1, 2, . . . , k,
with vi being the i’th class vector (Equation 1). The distances we seek are:

‖A>x− vi‖2 = ‖A>x‖2 + ‖vi‖2 − 2v>i A>x (22)

with ‖vi‖2 = Ni (see Section 3). Hence, finding all exact distances can be done
by computation of x>AA>x−V A>x, since v>i is the i’th row of V . Transforming
back from V̄ to V gives V = (ZZ>)−

1
2 V̄ , where (ZZ>)−

1
2 needs to be computed

only once. From Equations 6 and 21,

A>x = Σ−1
1 V >ZX>(XX> + ηIm − αxx>)−1x

= Σ−1
1 R>

1 R>
0 (ZZ>)−

1
2 ZX> (

(XX> + ηIm)−1 + βbb>
)
x (23)

All the matrices in Equation 23 are known after the first O(k3 +m3) compu-
tation and O(k2 +m2) additional operations per test example, as we have shown
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above. Hence, A>x can be computed by a sequence of matrix-vector multiplica-
tions in time O(k2 + m2), and similarly for

V A>x = (ZZ>)−
1
2 R0R1A

>x (24)

Thus, the distances of the transformed test vector x from all class vectors can
be computed in time O(m2 + k2), which is far quicker than O(m3 + k3) which
is required by training the classifier from scratch, using a full SVD. Note that
the transformation of a new vector without local regularization requires O(ml)
operations, and the classification itself O(kl) operations. The difference between
the classification times of a new test vector using local regularization, therefore,
is O(m2 + k2) compared to O ((m + k)l) using uniform regularization.

5 Experiments

We report results on 3 data sets: a new Dog Breed data set, the CalPhotos
Mammals collection [15], and the “Labeled Faces in the Wild” face recognition
data set [16]. These data sets exhibit a large amount of intraclass variation.

The experiments in all cases are similar and consist of multiclass classifica-
tion. We compare the following algorithms: Nearest Neighbor, Linear All-Vs-All
SVM (a.k.a “pairwise”, ”All-Pairs”), Multiclass CCA (the method of Section 2),
and Local Multiclass CCA (Section 3). The choice of using All-Vs-All SVM is
based on its simplicity and relative efficiency. A partial set of experiments ver-
ified that One-Vs-All SVM classifiers perform similarly. It is well established in
the literature that the performance of other multiclass SVM schemes is largely
similar [6,17]. Similar to other work in object recognition we found Gaussian-
kernel SVM to be ineffective, and to perform worse than Linear SVM for every
kernel parameter we tried. Evaluating the performance of non-linear versions of
Multiclass CCA and Local Multiclass CCA is left for future work.

We also compare the conventional local learning scheme [5], which was devel-
oped further in [6]. In this scheme the k nearest neighbors of each test point are
used to train a classifier. In our experiments we have scanned over a large range
possible neighborhood sizes k to verify that this scheme does not outperform
our local learning method regardless of k. Due to the computational demands of
such tests, they were only performed on two out of the four data sets.

Each of the described experiments was repeated 20 times. In each repetition
a new split to training and testing examples was randomized, and the same splits
were used for all algorithms. Note that due to the large intraclass variation, the
standard deviation of the result is typically large. Therefore, we use paired t-tests
to verify that the reported results are statistically significant.
Parameter selection. The regularization parameter of the linear SVM algo-
rithm was selected by a 5-fold cross-validation. Performance, however, is pretty
stable with respect to this parameter. The regularization parameter of Multiclass
CCA and Local Multiclass CCA η was fixed at 0.1 times the leading eigenvalue
of XX>, a value which seems to be robust in a large variety of synthetic and real
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Dog Breed data set CalPhoto Mammals

Bullmastiff Chow Chow Black Rhinoceros Prairie Dog

Fig. 1. Sample images from the Dog Breed and CalPhoto Mammal data sets.

data sets. The local regularization parameter β was set at 0.5η in all experiments,
except for the ones done to evaluate its effect on performance.
Image representation. The visual descriptors of the images in the Dog Breed
and CalPhotos Mammels data sets are computed by the Bag-of-SIFT imple-
mentation of Andrea Vendaldi [18]. This implementation uses hierarchical K-
means [19] for partitioning the descriptor space. Keypoints are selected at ran-
dom locations [20]. Note that the dictionary for this representation was recom-
puted at each run in order to avoid the use of testing data during training. Using
the default parameters, this representation results in vectors of length 11, 111

The images in the face data set are represented using the Local Binary Pat-
tern [21] image descriptor, which were adopted to face identification by [22]. An
LBP is created at a particular pixel location by thresholding the 3× 3 neighbor-
hood surrounding the pixel with the central pixels intensity value, and treating
the subsequent pattern as a binary number. Following [22], we set a radius of 2
and sample at the boundaries of 5 pixel blocks, and bin all patterns for which
there are more than 2 transition from 0 to 1 in just one bin. LBP representations
for a given image are generated by dividing an image into several windows and
creating histograms of the LBPs within each window.

5.1 Results on individual data sets

Dog Breed images. The Dog Breed data set contains images of 34 dog species,
with 4–7 photographs each, a total of 177 images. The images were collected from
the internet, and as can be seen in Figure 1 are quite diverse.

Table 1 compares the classification results for a varying number of train-
ing/testing examples per breed. The results demonstrate that Local Multiclass
CCA performs better than Multiclass CCA, which in turn performs better than
Nearest Neighbor and SVM. Since the images vary significantly, the results ex-
hibit a large variance. Still, all differences in the table are significant (p < 0.01),
except for the difference between Multiclass CCA and SVM in the case of 3
training images per breed.
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Table 1. Mean (± standard deviation) recognition rates (in percents) for the
Dog Breed data set. Each column is for a different number of training and testing
examples per breed for the 34 dog breeds.

Algorithm 1 training / 3 test 2 training / 2 test 3 training / 1 test

Nearest Neighbor 11.03 ± 1.71 14.85 ± 3.96 18.68 ± 6.35
All-Pairs Linear SVM 11.03 ± 1.71 17.50 ± 4.37 23.82 ± 6.32
Multiclass CCA 13.43 ± 3.56 19.63 ± 4.99 24.12 ± 6.92
Local Multiclass CCA 15.78 ± 3.63 21.25 ± 4.56 26.18 ± 6.39

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

(a) (b)

Fig. 2. Mean performance and standard deviation (normalized by
√

20) for ad-
ditional experiments on the Dog Breed data set. (a) k-nearest neighbors based
local learning. The x axis depicts k, the size of the neighberhood. Top line – the
performance of the Multiclass CCA classifier, Bottom dashed line – the perfor-
mance of SVM. (b) Performance for various values of the local regularization
parameter. The x axis depicts the ratio of β and η.

To further understand the nature of the local learning method we performed
two additional more experiments. Figure 2(a) demonstrates that the conventional
local learning scheme, based on k-nearest neighbors does not seem to improve
performance for any values of k. Figure 2(b) demonstrates that the performance
of the Local CCA method is stable with respect to the additional parameter α.
CalPhoto Mammals. The mammal collection of the CalPhoto image reposi-
tory [15] contains thousands of images. After filtering out all images for which
the Latin species name does not appear and species for which there are less than
4 images, 3, 740 images of 256 species remain. For each species, the images vary
considerably, as can be seen in Figure 1.

In each experiment 10, 20 or 40 random species are selected. Each contributes
2 random training images and 2 test ones. Table 2 compares the classification
results. Once again, Local Multiclass CCA outperforms the uniform Multiclass
CCA, followed by SVM and NN. All performance differences in the table are
statistically significant, except for SVM and Multiclass CCA for 40 classes.
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Table 2. Mean (± standard deviation) recognition rates (percents) for the Mam-
mals data set. Each column is for a different number of random classes per
experiment. Each experiment was repeated 20 times.

Algorithm 10 classes 20 classes 40 classes

Nearest Neighbor 25.50 ± 8.57 20.25 ± 7.86 14.13 ± 3.89
All-Pairs Linear SVM 28.75 ± 10.87 25.38 ± 9.22 17.13 ± 4.20
Multiclass CCA 33.00 ± 11.63 28.75 ± 9.78 18.88 ± 4.81
Local Multiclass CCA 36.00 ± 11.19 31.87 ± 10.06 21.00 ± 5.48

Labeled Faces in the Wild. From the Labeled Faces in the Wild dataset [16],
we filtered out all persons which have less than four images. 610 persons and a
total of 6, 733 images remain. The images are partly aligned via funneling [23],
and all images are 256×256 pixels. We only use the center 100×100 sub-image,
and represent it by LBP features of a grid of non-overlapping 16 pixels blocks.

The number of persons per experiment vary from 10 to 100. For each run, 10,
20, 50 or 100 random persons and 4 random images per person are selected. 2 are
used for training and 2 for testing. Table 3 compares the classification results.
While the differences may seem small, they are significant (p < 0.01) and Local
Multiclass CCA leads the performance table followed by Multiclass CCA and
either NN or SVM. Additional experiments conducted for the 50 persons split
show that k-nearest neighbors based local learning hurts performance for all
values of k, for both SVM and Multiclass CCA.

Table 3. Mean (± STD) recognition rates (percents) for “Labeled Faces in the
Wild”. Columns differ in the number of random persons per experiment.

Algorithm 10 persons 20 persons 50 persons 100 persons

Nearest Neighbor 36.00 ± 12.73 25.25 ± 7.20 18.10 ± 3.77 15.27 ± 1.90
All-Pairs Linear SVM 35.00 ± 13.67 24.37 ± 5.55 18.55 ± 3.91 14.10 ± 2.39
Multiclass CCA 40.50 ± 14.68 29.25 ± 6.93 24.15 ± 5.51 20.55 ± 2.99
Local Multiclass CCA 41.25 ± 14.77 31.25 ± 6.46 25.70 ± 5.07 21.40 ± 3.02
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